mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2025-01-27 16:31:34 +07:00
55d81aa5c1
Use a consistent crystal value of 28.636360 MHz for computing all PLL parameters so clocks don't have relative error due to assumed crystal value mismatches. Also aimed to have all PLLs run their VOCs at close to 400 MHz to minimze the error of these PLLs as frequency synthesizers. Also set the VDCLK and AIMCLK PLLs to sane values before the APU and CPU firmware are loaded. Also fixed I2S Master clock dividers. Many thanks to Mike Bradley and Jeff Campbell for reporting this problem and suggesting the solution, researching and experimenting, and performing extensive testing to support their suggested solution. Reported-by: Jeff Campbell <jac1dlists@gmail.com> Reported-by: Mike Bradley <mike.bradley@incanetworks.com> Signed-off-by: Andy Walls <awalls@radix.net> Signed-off-by: Mauro Carvalho Chehab <mchehab@redhat.com>
546 lines
15 KiB
C
546 lines
15 KiB
C
/*
|
|
* cx18 ADEC audio functions
|
|
*
|
|
* Derived from cx25840-audio.c
|
|
*
|
|
* Copyright (C) 2007 Hans Verkuil <hverkuil@xs4all.nl>
|
|
* Copyright (C) 2008 Andy Walls <awalls@radix.net>
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License
|
|
* as published by the Free Software Foundation; either version 2
|
|
* of the License, or (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software
|
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
|
|
* 02110-1301, USA.
|
|
*/
|
|
|
|
#include "cx18-driver.h"
|
|
|
|
static int set_audclk_freq(struct cx18 *cx, u32 freq)
|
|
{
|
|
struct cx18_av_state *state = &cx->av_state;
|
|
|
|
if (freq != 32000 && freq != 44100 && freq != 48000)
|
|
return -EINVAL;
|
|
|
|
/*
|
|
* The PLL parameters are based on the external crystal frequency that
|
|
* would ideally be:
|
|
*
|
|
* NTSC Color subcarrier freq * 8 =
|
|
* 4.5 MHz/286 * 455/2 * 8 = 28.63636363... MHz
|
|
*
|
|
* The accidents of history and rationale that explain from where this
|
|
* combination of magic numbers originate can be found in:
|
|
*
|
|
* [1] Abrahams, I. C., "Choice of Chrominance Subcarrier Frequency in
|
|
* the NTSC Standards", Proceedings of the I-R-E, January 1954, pp 79-80
|
|
*
|
|
* [2] Abrahams, I. C., "The 'Frequency Interleaving' Principle in the
|
|
* NTSC Standards", Proceedings of the I-R-E, January 1954, pp 81-83
|
|
*
|
|
* As Mike Bradley has rightly pointed out, it's not the exact crystal
|
|
* frequency that matters, only that all parts of the driver and
|
|
* firmware are using the same value (close to the ideal value).
|
|
*
|
|
* Since I have a strong suspicion that, if the firmware ever assumes a
|
|
* crystal value at all, it will assume 28.636360 MHz, the crystal
|
|
* freq used in calculations in this driver will be:
|
|
*
|
|
* xtal_freq = 28.636360 MHz
|
|
*
|
|
* an error of less than 0.13 ppm which is way, way better than any off
|
|
* the shelf crystal will have for accuracy anyway.
|
|
*
|
|
* Below I aim to run the PLLs' VCOs near 400 MHz to minimze error.
|
|
*
|
|
* Many thanks to Jeff Campbell and Mike Bradley for their extensive
|
|
* investigation, experimentation, testing, and suggested solutions of
|
|
* of audio/video sync problems with SVideo and CVBS captures.
|
|
*/
|
|
|
|
if (state->aud_input > CX18_AV_AUDIO_SERIAL2) {
|
|
switch (freq) {
|
|
case 32000:
|
|
/*
|
|
* VID_PLL Integer = 0x0f, VID_PLL Post Divider = 0x04
|
|
* AUX_PLL Integer = 0x0d, AUX PLL Post Divider = 0x20
|
|
*/
|
|
cx18_av_write4(cx, 0x108, 0x200d040f);
|
|
|
|
/* VID_PLL Fraction = 0x2be2fe */
|
|
/* xtal * 0xf.15f17f0/4 = 108 MHz: 432 MHz pre-postdiv*/
|
|
cx18_av_write4(cx, 0x10c, 0x002be2fe);
|
|
|
|
/* AUX_PLL Fraction = 0x176740c */
|
|
/* xtal * 0xd.bb3a060/0x20 = 32000 * 384: 393 MHz p-pd*/
|
|
cx18_av_write4(cx, 0x110, 0x0176740c);
|
|
|
|
/* src3/4/6_ctl */
|
|
/* 0x1.f77f = (4 * xtal/8*2/455) / 32000 */
|
|
cx18_av_write4(cx, 0x900, 0x0801f77f);
|
|
cx18_av_write4(cx, 0x904, 0x0801f77f);
|
|
cx18_av_write4(cx, 0x90c, 0x0801f77f);
|
|
|
|
/* SA_MCLK_SEL=1, SA_MCLK_DIV=0x20 */
|
|
cx18_av_write(cx, 0x127, 0x60);
|
|
|
|
/* AUD_COUNT = 0x2fff = 8 samples * 4 * 384 - 1 */
|
|
cx18_av_write4(cx, 0x12c, 0x11202fff);
|
|
|
|
/*
|
|
* EN_AV_LOCK = 0
|
|
* VID_COUNT = 0x0d2ef8 = 107999.000 * 8 =
|
|
* ((8 samples/32,000) * (13,500,000 * 8) * 4 - 1) * 8
|
|
*/
|
|
cx18_av_write4(cx, 0x128, 0xa00d2ef8);
|
|
break;
|
|
|
|
case 44100:
|
|
/*
|
|
* VID_PLL Integer = 0x0f, VID_PLL Post Divider = 0x04
|
|
* AUX_PLL Integer = 0x0e, AUX PLL Post Divider = 0x18
|
|
*/
|
|
cx18_av_write4(cx, 0x108, 0x180e040f);
|
|
|
|
/* VID_PLL Fraction = 0x2be2fe */
|
|
/* xtal * 0xf.15f17f0/4 = 108 MHz: 432 MHz pre-postdiv*/
|
|
cx18_av_write4(cx, 0x10c, 0x002be2fe);
|
|
|
|
/* AUX_PLL Fraction = 0x062a1f2 */
|
|
/* xtal * 0xe.3150f90/0x18 = 44100 * 384: 406 MHz p-pd*/
|
|
cx18_av_write4(cx, 0x110, 0x0062a1f2);
|
|
|
|
/* src3/4/6_ctl */
|
|
/* 0x1.6d59 = (4 * xtal/8*2/455) / 44100 */
|
|
cx18_av_write4(cx, 0x900, 0x08016d59);
|
|
cx18_av_write4(cx, 0x904, 0x08016d59);
|
|
cx18_av_write4(cx, 0x90c, 0x08016d59);
|
|
|
|
/* SA_MCLK_SEL=1, SA_MCLK_DIV=0x18 */
|
|
cx18_av_write(cx, 0x127, 0x58);
|
|
|
|
/* AUD_COUNT = 0x92ff = 49 samples * 2 * 384 - 1 */
|
|
cx18_av_write4(cx, 0x12c, 0x112092ff);
|
|
|
|
/*
|
|
* EN_AV_LOCK = 0
|
|
* VID_COUNT = 0x1d4bf8 = 239999.000 * 8 =
|
|
* ((49 samples/44,100) * (13,500,000 * 8) * 2 - 1) * 8
|
|
*/
|
|
cx18_av_write4(cx, 0x128, 0xa01d4bf8);
|
|
break;
|
|
|
|
case 48000:
|
|
/*
|
|
* VID_PLL Integer = 0x0f, VID_PLL Post Divider = 0x04
|
|
* AUX_PLL Integer = 0x0e, AUX PLL Post Divider = 0x16
|
|
*/
|
|
cx18_av_write4(cx, 0x108, 0x160e040f);
|
|
|
|
/* VID_PLL Fraction = 0x2be2fe */
|
|
/* xtal * 0xf.15f17f0/4 = 108 MHz: 432 MHz pre-postdiv*/
|
|
cx18_av_write4(cx, 0x10c, 0x002be2fe);
|
|
|
|
/* AUX_PLL Fraction = 0x05227ad */
|
|
/* xtal * 0xe.2913d68/0x16 = 48000 * 384: 406 MHz p-pd*/
|
|
cx18_av_write4(cx, 0x110, 0x005227ad);
|
|
|
|
/* src3/4/6_ctl */
|
|
/* 0x1.4faa = (4 * xtal/8*2/455) / 48000 */
|
|
cx18_av_write4(cx, 0x900, 0x08014faa);
|
|
cx18_av_write4(cx, 0x904, 0x08014faa);
|
|
cx18_av_write4(cx, 0x90c, 0x08014faa);
|
|
|
|
/* SA_MCLK_SEL=1, SA_MCLK_DIV=0x16 */
|
|
cx18_av_write(cx, 0x127, 0x56);
|
|
|
|
/* AUD_COUNT = 0x5fff = 4 samples * 16 * 384 - 1 */
|
|
cx18_av_write4(cx, 0x12c, 0x11205fff);
|
|
|
|
/*
|
|
* EN_AV_LOCK = 0
|
|
* VID_COUNT = 0x1193f8 = 143999.000 * 8 =
|
|
* ((4 samples/48,000) * (13,500,000 * 8) * 16 - 1) * 8
|
|
*/
|
|
cx18_av_write4(cx, 0x128, 0xa01193f8);
|
|
break;
|
|
}
|
|
} else {
|
|
switch (freq) {
|
|
case 32000:
|
|
/*
|
|
* VID_PLL Integer = 0x0f, VID_PLL Post Divider = 0x04
|
|
* AUX_PLL Integer = 0x0d, AUX PLL Post Divider = 0x30
|
|
*/
|
|
cx18_av_write4(cx, 0x108, 0x300d040f);
|
|
|
|
/* VID_PLL Fraction = 0x2be2fe */
|
|
/* xtal * 0xf.15f17f0/4 = 108 MHz: 432 MHz pre-postdiv*/
|
|
cx18_av_write4(cx, 0x10c, 0x002be2fe);
|
|
|
|
/* AUX_PLL Fraction = 0x176740c */
|
|
/* xtal * 0xd.bb3a060/0x30 = 32000 * 256: 393 MHz p-pd*/
|
|
cx18_av_write4(cx, 0x110, 0x0176740c);
|
|
|
|
/* src1_ctl */
|
|
/* 0x1.0000 = 32000/32000 */
|
|
cx18_av_write4(cx, 0x8f8, 0x08010000);
|
|
|
|
/* src3/4/6_ctl */
|
|
/* 0x2.0000 = 2 * (32000/32000) */
|
|
cx18_av_write4(cx, 0x900, 0x08020000);
|
|
cx18_av_write4(cx, 0x904, 0x08020000);
|
|
cx18_av_write4(cx, 0x90c, 0x08020000);
|
|
|
|
/* SA_MCLK_SEL=1, SA_MCLK_DIV=0x30 */
|
|
cx18_av_write(cx, 0x127, 0x70);
|
|
|
|
/* AUD_COUNT = 0x1fff = 8 samples * 4 * 256 - 1 */
|
|
cx18_av_write4(cx, 0x12c, 0x11201fff);
|
|
|
|
/*
|
|
* EN_AV_LOCK = 0
|
|
* VID_COUNT = 0x0d2ef8 = 107999.000 * 8 =
|
|
* ((8 samples/32,000) * (13,500,000 * 8) * 4 - 1) * 8
|
|
*/
|
|
cx18_av_write4(cx, 0x128, 0xa00d2ef8);
|
|
break;
|
|
|
|
case 44100:
|
|
/*
|
|
* VID_PLL Integer = 0x0f, VID_PLL Post Divider = 0x04
|
|
* AUX_PLL Integer = 0x0e, AUX PLL Post Divider = 0x24
|
|
*/
|
|
cx18_av_write4(cx, 0x108, 0x240e040f);
|
|
|
|
/* VID_PLL Fraction = 0x2be2fe */
|
|
/* xtal * 0xf.15f17f0/4 = 108 MHz: 432 MHz pre-postdiv*/
|
|
cx18_av_write4(cx, 0x10c, 0x002be2fe);
|
|
|
|
/* AUX_PLL Fraction = 0x062a1f2 */
|
|
/* xtal * 0xe.3150f90/0x24 = 44100 * 256: 406 MHz p-pd*/
|
|
cx18_av_write4(cx, 0x110, 0x0062a1f2);
|
|
|
|
/* src1_ctl */
|
|
/* 0x1.60cd = 44100/32000 */
|
|
cx18_av_write4(cx, 0x8f8, 0x080160cd);
|
|
|
|
/* src3/4/6_ctl */
|
|
/* 0x1.7385 = 2 * (32000/44100) */
|
|
cx18_av_write4(cx, 0x900, 0x08017385);
|
|
cx18_av_write4(cx, 0x904, 0x08017385);
|
|
cx18_av_write4(cx, 0x90c, 0x08017385);
|
|
|
|
/* SA_MCLK_SEL=1, SA_MCLK_DIV=0x24 */
|
|
cx18_av_write(cx, 0x127, 0x64);
|
|
|
|
/* AUD_COUNT = 0x61ff = 49 samples * 2 * 256 - 1 */
|
|
cx18_av_write4(cx, 0x12c, 0x112061ff);
|
|
|
|
/*
|
|
* EN_AV_LOCK = 0
|
|
* VID_COUNT = 0x1d4bf8 = 239999.000 * 8 =
|
|
* ((49 samples/44,100) * (13,500,000 * 8) * 2 - 1) * 8
|
|
*/
|
|
cx18_av_write4(cx, 0x128, 0xa01d4bf8);
|
|
break;
|
|
|
|
case 48000:
|
|
/*
|
|
* VID_PLL Integer = 0x0f, VID_PLL Post Divider = 0x04
|
|
* AUX_PLL Integer = 0x0d, AUX PLL Post Divider = 0x20
|
|
*/
|
|
cx18_av_write4(cx, 0x108, 0x200d040f);
|
|
|
|
/* VID_PLL Fraction = 0x2be2fe */
|
|
/* xtal * 0xf.15f17f0/4 = 108 MHz: 432 MHz pre-postdiv*/
|
|
cx18_av_write4(cx, 0x10c, 0x002be2fe);
|
|
|
|
/* AUX_PLL Fraction = 0x176740c */
|
|
/* xtal * 0xd.bb3a060/0x20 = 48000 * 256: 393 MHz p-pd*/
|
|
cx18_av_write4(cx, 0x110, 0x0176740c);
|
|
|
|
/* src1_ctl */
|
|
/* 0x1.8000 = 48000/32000 */
|
|
cx18_av_write4(cx, 0x8f8, 0x08018000);
|
|
|
|
/* src3/4/6_ctl */
|
|
/* 0x1.5555 = 2 * (32000/48000) */
|
|
cx18_av_write4(cx, 0x900, 0x08015555);
|
|
cx18_av_write4(cx, 0x904, 0x08015555);
|
|
cx18_av_write4(cx, 0x90c, 0x08015555);
|
|
|
|
/* SA_MCLK_SEL=1, SA_MCLK_DIV=0x20 */
|
|
cx18_av_write(cx, 0x127, 0x60);
|
|
|
|
/* AUD_COUNT = 0x3fff = 4 samples * 16 * 256 - 1 */
|
|
cx18_av_write4(cx, 0x12c, 0x11203fff);
|
|
|
|
/*
|
|
* EN_AV_LOCK = 0
|
|
* VID_COUNT = 0x1193f8 = 143999.000 * 8 =
|
|
* ((4 samples/48,000) * (13,500,000 * 8) * 16 - 1) * 8
|
|
*/
|
|
cx18_av_write4(cx, 0x128, 0xa01193f8);
|
|
break;
|
|
}
|
|
}
|
|
|
|
state->audclk_freq = freq;
|
|
|
|
return 0;
|
|
}
|
|
|
|
void cx18_av_audio_set_path(struct cx18 *cx)
|
|
{
|
|
struct cx18_av_state *state = &cx->av_state;
|
|
u8 v;
|
|
|
|
/* stop microcontroller */
|
|
v = cx18_av_read(cx, 0x803) & ~0x10;
|
|
cx18_av_write_expect(cx, 0x803, v, v, 0x1f);
|
|
|
|
/* assert soft reset */
|
|
v = cx18_av_read(cx, 0x810) | 0x01;
|
|
cx18_av_write_expect(cx, 0x810, v, v, 0x0f);
|
|
|
|
/* Mute everything to prevent the PFFT! */
|
|
cx18_av_write(cx, 0x8d3, 0x1f);
|
|
|
|
if (state->aud_input <= CX18_AV_AUDIO_SERIAL2) {
|
|
/* Set Path1 to Serial Audio Input */
|
|
cx18_av_write4(cx, 0x8d0, 0x01011012);
|
|
|
|
/* The microcontroller should not be started for the
|
|
* non-tuner inputs: autodetection is specific for
|
|
* TV audio. */
|
|
} else {
|
|
/* Set Path1 to Analog Demod Main Channel */
|
|
cx18_av_write4(cx, 0x8d0, 0x1f063870);
|
|
}
|
|
|
|
set_audclk_freq(cx, state->audclk_freq);
|
|
|
|
/* deassert soft reset */
|
|
v = cx18_av_read(cx, 0x810) & ~0x01;
|
|
cx18_av_write_expect(cx, 0x810, v, v, 0x0f);
|
|
|
|
if (state->aud_input > CX18_AV_AUDIO_SERIAL2) {
|
|
/* When the microcontroller detects the
|
|
* audio format, it will unmute the lines */
|
|
v = cx18_av_read(cx, 0x803) | 0x10;
|
|
cx18_av_write_expect(cx, 0x803, v, v, 0x1f);
|
|
}
|
|
}
|
|
|
|
static int get_volume(struct cx18 *cx)
|
|
{
|
|
/* Volume runs +18dB to -96dB in 1/2dB steps
|
|
* change to fit the msp3400 -114dB to +12dB range */
|
|
|
|
/* check PATH1_VOLUME */
|
|
int vol = 228 - cx18_av_read(cx, 0x8d4);
|
|
vol = (vol / 2) + 23;
|
|
return vol << 9;
|
|
}
|
|
|
|
static void set_volume(struct cx18 *cx, int volume)
|
|
{
|
|
/* First convert the volume to msp3400 values (0-127) */
|
|
int vol = volume >> 9;
|
|
/* now scale it up to cx18_av values
|
|
* -114dB to -96dB maps to 0
|
|
* this should be 19, but in my testing that was 4dB too loud */
|
|
if (vol <= 23)
|
|
vol = 0;
|
|
else
|
|
vol -= 23;
|
|
|
|
/* PATH1_VOLUME */
|
|
cx18_av_write(cx, 0x8d4, 228 - (vol * 2));
|
|
}
|
|
|
|
static int get_bass(struct cx18 *cx)
|
|
{
|
|
/* bass is 49 steps +12dB to -12dB */
|
|
|
|
/* check PATH1_EQ_BASS_VOL */
|
|
int bass = cx18_av_read(cx, 0x8d9) & 0x3f;
|
|
bass = (((48 - bass) * 0xffff) + 47) / 48;
|
|
return bass;
|
|
}
|
|
|
|
static void set_bass(struct cx18 *cx, int bass)
|
|
{
|
|
/* PATH1_EQ_BASS_VOL */
|
|
cx18_av_and_or(cx, 0x8d9, ~0x3f, 48 - (bass * 48 / 0xffff));
|
|
}
|
|
|
|
static int get_treble(struct cx18 *cx)
|
|
{
|
|
/* treble is 49 steps +12dB to -12dB */
|
|
|
|
/* check PATH1_EQ_TREBLE_VOL */
|
|
int treble = cx18_av_read(cx, 0x8db) & 0x3f;
|
|
treble = (((48 - treble) * 0xffff) + 47) / 48;
|
|
return treble;
|
|
}
|
|
|
|
static void set_treble(struct cx18 *cx, int treble)
|
|
{
|
|
/* PATH1_EQ_TREBLE_VOL */
|
|
cx18_av_and_or(cx, 0x8db, ~0x3f, 48 - (treble * 48 / 0xffff));
|
|
}
|
|
|
|
static int get_balance(struct cx18 *cx)
|
|
{
|
|
/* balance is 7 bit, 0 to -96dB */
|
|
|
|
/* check PATH1_BAL_LEVEL */
|
|
int balance = cx18_av_read(cx, 0x8d5) & 0x7f;
|
|
/* check PATH1_BAL_LEFT */
|
|
if ((cx18_av_read(cx, 0x8d5) & 0x80) == 0)
|
|
balance = 0x80 - balance;
|
|
else
|
|
balance = 0x80 + balance;
|
|
return balance << 8;
|
|
}
|
|
|
|
static void set_balance(struct cx18 *cx, int balance)
|
|
{
|
|
int bal = balance >> 8;
|
|
if (bal > 0x80) {
|
|
/* PATH1_BAL_LEFT */
|
|
cx18_av_and_or(cx, 0x8d5, 0x7f, 0x80);
|
|
/* PATH1_BAL_LEVEL */
|
|
cx18_av_and_or(cx, 0x8d5, ~0x7f, bal & 0x7f);
|
|
} else {
|
|
/* PATH1_BAL_LEFT */
|
|
cx18_av_and_or(cx, 0x8d5, 0x7f, 0x00);
|
|
/* PATH1_BAL_LEVEL */
|
|
cx18_av_and_or(cx, 0x8d5, ~0x7f, 0x80 - bal);
|
|
}
|
|
}
|
|
|
|
static int get_mute(struct cx18 *cx)
|
|
{
|
|
/* check SRC1_MUTE_EN */
|
|
return cx18_av_read(cx, 0x8d3) & 0x2 ? 1 : 0;
|
|
}
|
|
|
|
static void set_mute(struct cx18 *cx, int mute)
|
|
{
|
|
struct cx18_av_state *state = &cx->av_state;
|
|
u8 v;
|
|
|
|
if (state->aud_input > CX18_AV_AUDIO_SERIAL2) {
|
|
/* Must turn off microcontroller in order to mute sound.
|
|
* Not sure if this is the best method, but it does work.
|
|
* If the microcontroller is running, then it will undo any
|
|
* changes to the mute register. */
|
|
v = cx18_av_read(cx, 0x803);
|
|
if (mute) {
|
|
/* disable microcontroller */
|
|
v &= ~0x10;
|
|
cx18_av_write_expect(cx, 0x803, v, v, 0x1f);
|
|
cx18_av_write(cx, 0x8d3, 0x1f);
|
|
} else {
|
|
/* enable microcontroller */
|
|
v |= 0x10;
|
|
cx18_av_write_expect(cx, 0x803, v, v, 0x1f);
|
|
}
|
|
} else {
|
|
/* SRC1_MUTE_EN */
|
|
cx18_av_and_or(cx, 0x8d3, ~0x2, mute ? 0x02 : 0x00);
|
|
}
|
|
}
|
|
|
|
int cx18_av_audio(struct cx18 *cx, unsigned int cmd, void *arg)
|
|
{
|
|
struct cx18_av_state *state = &cx->av_state;
|
|
struct v4l2_control *ctrl = arg;
|
|
int retval;
|
|
|
|
switch (cmd) {
|
|
case VIDIOC_INT_AUDIO_CLOCK_FREQ:
|
|
{
|
|
u8 v;
|
|
if (state->aud_input > CX18_AV_AUDIO_SERIAL2) {
|
|
v = cx18_av_read(cx, 0x803) & ~0x10;
|
|
cx18_av_write_expect(cx, 0x803, v, v, 0x1f);
|
|
cx18_av_write(cx, 0x8d3, 0x1f);
|
|
}
|
|
v = cx18_av_read(cx, 0x810) | 0x1;
|
|
cx18_av_write_expect(cx, 0x810, v, v, 0x0f);
|
|
|
|
retval = set_audclk_freq(cx, *(u32 *)arg);
|
|
|
|
v = cx18_av_read(cx, 0x810) & ~0x1;
|
|
cx18_av_write_expect(cx, 0x810, v, v, 0x0f);
|
|
if (state->aud_input > CX18_AV_AUDIO_SERIAL2) {
|
|
v = cx18_av_read(cx, 0x803) | 0x10;
|
|
cx18_av_write_expect(cx, 0x803, v, v, 0x1f);
|
|
}
|
|
return retval;
|
|
}
|
|
|
|
case VIDIOC_G_CTRL:
|
|
switch (ctrl->id) {
|
|
case V4L2_CID_AUDIO_VOLUME:
|
|
ctrl->value = get_volume(cx);
|
|
break;
|
|
case V4L2_CID_AUDIO_BASS:
|
|
ctrl->value = get_bass(cx);
|
|
break;
|
|
case V4L2_CID_AUDIO_TREBLE:
|
|
ctrl->value = get_treble(cx);
|
|
break;
|
|
case V4L2_CID_AUDIO_BALANCE:
|
|
ctrl->value = get_balance(cx);
|
|
break;
|
|
case V4L2_CID_AUDIO_MUTE:
|
|
ctrl->value = get_mute(cx);
|
|
break;
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
break;
|
|
|
|
case VIDIOC_S_CTRL:
|
|
switch (ctrl->id) {
|
|
case V4L2_CID_AUDIO_VOLUME:
|
|
set_volume(cx, ctrl->value);
|
|
break;
|
|
case V4L2_CID_AUDIO_BASS:
|
|
set_bass(cx, ctrl->value);
|
|
break;
|
|
case V4L2_CID_AUDIO_TREBLE:
|
|
set_treble(cx, ctrl->value);
|
|
break;
|
|
case V4L2_CID_AUDIO_BALANCE:
|
|
set_balance(cx, ctrl->value);
|
|
break;
|
|
case V4L2_CID_AUDIO_MUTE:
|
|
set_mute(cx, ctrl->value);
|
|
break;
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
break;
|
|
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
|
|
return 0;
|
|
}
|