mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2025-01-20 10:56:07 +07:00
050e9baa9d
The changes to automatically test for working stack protector compiler support in the Kconfig files removed the special STACKPROTECTOR_AUTO option that picked the strongest stack protector that the compiler supported. That was all a nice cleanup - it makes no sense to have the AUTO case now that the Kconfig phase can just determine the compiler support directly. HOWEVER. It also meant that doing "make oldconfig" would now _disable_ the strong stackprotector if you had AUTO enabled, because in a legacy config file, the sane stack protector configuration would look like CONFIG_HAVE_CC_STACKPROTECTOR=y # CONFIG_CC_STACKPROTECTOR_NONE is not set # CONFIG_CC_STACKPROTECTOR_REGULAR is not set # CONFIG_CC_STACKPROTECTOR_STRONG is not set CONFIG_CC_STACKPROTECTOR_AUTO=y and when you ran this through "make oldconfig" with the Kbuild changes, it would ask you about the regular CONFIG_CC_STACKPROTECTOR (that had been renamed from CONFIG_CC_STACKPROTECTOR_REGULAR to just CONFIG_CC_STACKPROTECTOR), but it would think that the STRONG version used to be disabled (because it was really enabled by AUTO), and would disable it in the new config, resulting in: CONFIG_HAVE_CC_STACKPROTECTOR=y CONFIG_CC_HAS_STACKPROTECTOR_NONE=y CONFIG_CC_STACKPROTECTOR=y # CONFIG_CC_STACKPROTECTOR_STRONG is not set CONFIG_CC_HAS_SANE_STACKPROTECTOR=y That's dangerously subtle - people could suddenly find themselves with the weaker stack protector setup without even realizing. The solution here is to just rename not just the old RECULAR stack protector option, but also the strong one. This does that by just removing the CC_ prefix entirely for the user choices, because it really is not about the compiler support (the compiler support now instead automatially impacts _visibility_ of the options to users). This results in "make oldconfig" actually asking the user for their choice, so that we don't have any silent subtle security model changes. The end result would generally look like this: CONFIG_HAVE_CC_STACKPROTECTOR=y CONFIG_CC_HAS_STACKPROTECTOR_NONE=y CONFIG_STACKPROTECTOR=y CONFIG_STACKPROTECTOR_STRONG=y CONFIG_CC_HAS_SANE_STACKPROTECTOR=y where the "CC_" versions really are about internal compiler infrastructure, not the user selections. Acked-by: Masahiro Yamada <yamada.masahiro@socionext.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
126 lines
3.9 KiB
C
126 lines
3.9 KiB
C
/* SPDX-License-Identifier: GPL-2.0 */
|
|
/*
|
|
* GCC stack protector support.
|
|
*
|
|
* Stack protector works by putting predefined pattern at the start of
|
|
* the stack frame and verifying that it hasn't been overwritten when
|
|
* returning from the function. The pattern is called stack canary
|
|
* and unfortunately gcc requires it to be at a fixed offset from %gs.
|
|
* On x86_64, the offset is 40 bytes and on x86_32 20 bytes. x86_64
|
|
* and x86_32 use segment registers differently and thus handles this
|
|
* requirement differently.
|
|
*
|
|
* On x86_64, %gs is shared by percpu area and stack canary. All
|
|
* percpu symbols are zero based and %gs points to the base of percpu
|
|
* area. The first occupant of the percpu area is always
|
|
* irq_stack_union which contains stack_canary at offset 40. Userland
|
|
* %gs is always saved and restored on kernel entry and exit using
|
|
* swapgs, so stack protector doesn't add any complexity there.
|
|
*
|
|
* On x86_32, it's slightly more complicated. As in x86_64, %gs is
|
|
* used for userland TLS. Unfortunately, some processors are much
|
|
* slower at loading segment registers with different value when
|
|
* entering and leaving the kernel, so the kernel uses %fs for percpu
|
|
* area and manages %gs lazily so that %gs is switched only when
|
|
* necessary, usually during task switch.
|
|
*
|
|
* As gcc requires the stack canary at %gs:20, %gs can't be managed
|
|
* lazily if stack protector is enabled, so the kernel saves and
|
|
* restores userland %gs on kernel entry and exit. This behavior is
|
|
* controlled by CONFIG_X86_32_LAZY_GS and accessors are defined in
|
|
* system.h to hide the details.
|
|
*/
|
|
|
|
#ifndef _ASM_STACKPROTECTOR_H
|
|
#define _ASM_STACKPROTECTOR_H 1
|
|
|
|
#ifdef CONFIG_STACKPROTECTOR
|
|
|
|
#include <asm/tsc.h>
|
|
#include <asm/processor.h>
|
|
#include <asm/percpu.h>
|
|
#include <asm/desc.h>
|
|
|
|
#include <linux/random.h>
|
|
#include <linux/sched.h>
|
|
|
|
/*
|
|
* 24 byte read-only segment initializer for stack canary. Linker
|
|
* can't handle the address bit shifting. Address will be set in
|
|
* head_32 for boot CPU and setup_per_cpu_areas() for others.
|
|
*/
|
|
#define GDT_STACK_CANARY_INIT \
|
|
[GDT_ENTRY_STACK_CANARY] = GDT_ENTRY_INIT(0x4090, 0, 0x18),
|
|
|
|
/*
|
|
* Initialize the stackprotector canary value.
|
|
*
|
|
* NOTE: this must only be called from functions that never return,
|
|
* and it must always be inlined.
|
|
*/
|
|
static __always_inline void boot_init_stack_canary(void)
|
|
{
|
|
u64 canary;
|
|
u64 tsc;
|
|
|
|
#ifdef CONFIG_X86_64
|
|
BUILD_BUG_ON(offsetof(union irq_stack_union, stack_canary) != 40);
|
|
#endif
|
|
/*
|
|
* We both use the random pool and the current TSC as a source
|
|
* of randomness. The TSC only matters for very early init,
|
|
* there it already has some randomness on most systems. Later
|
|
* on during the bootup the random pool has true entropy too.
|
|
*/
|
|
get_random_bytes(&canary, sizeof(canary));
|
|
tsc = rdtsc();
|
|
canary += tsc + (tsc << 32UL);
|
|
canary &= CANARY_MASK;
|
|
|
|
current->stack_canary = canary;
|
|
#ifdef CONFIG_X86_64
|
|
this_cpu_write(irq_stack_union.stack_canary, canary);
|
|
#else
|
|
this_cpu_write(stack_canary.canary, canary);
|
|
#endif
|
|
}
|
|
|
|
static inline void setup_stack_canary_segment(int cpu)
|
|
{
|
|
#ifdef CONFIG_X86_32
|
|
unsigned long canary = (unsigned long)&per_cpu(stack_canary, cpu);
|
|
struct desc_struct *gdt_table = get_cpu_gdt_rw(cpu);
|
|
struct desc_struct desc;
|
|
|
|
desc = gdt_table[GDT_ENTRY_STACK_CANARY];
|
|
set_desc_base(&desc, canary);
|
|
write_gdt_entry(gdt_table, GDT_ENTRY_STACK_CANARY, &desc, DESCTYPE_S);
|
|
#endif
|
|
}
|
|
|
|
static inline void load_stack_canary_segment(void)
|
|
{
|
|
#ifdef CONFIG_X86_32
|
|
asm("mov %0, %%gs" : : "r" (__KERNEL_STACK_CANARY) : "memory");
|
|
#endif
|
|
}
|
|
|
|
#else /* STACKPROTECTOR */
|
|
|
|
#define GDT_STACK_CANARY_INIT
|
|
|
|
/* dummy boot_init_stack_canary() is defined in linux/stackprotector.h */
|
|
|
|
static inline void setup_stack_canary_segment(int cpu)
|
|
{ }
|
|
|
|
static inline void load_stack_canary_segment(void)
|
|
{
|
|
#ifdef CONFIG_X86_32
|
|
asm volatile ("mov %0, %%gs" : : "r" (0));
|
|
#endif
|
|
}
|
|
|
|
#endif /* STACKPROTECTOR */
|
|
#endif /* _ASM_STACKPROTECTOR_H */
|