mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2024-11-30 11:56:43 +07:00
f1b6eb6e6b
The kmalloc* functions of all slab allcoators are similar now so lets move them into slab.h. This requires some function naming changes in slob. As a results of this patch there is a common set of functions for all allocators. Also means that kmalloc_large() is now available in general to perform large order allocations that go directly via the page allocator. kmalloc_large() can be substituted if kmalloc() throws warnings because of too large allocations. kmalloc_large() has exactly the same semantics as kmalloc but can only used for allocations > PAGE_SIZE. Signed-off-by: Christoph Lameter <cl@linux.com> Signed-off-by: Pekka Enberg <penberg@kernel.org>
92 lines
2.3 KiB
C
92 lines
2.3 KiB
C
#ifndef _LINUX_SLAB_DEF_H
|
|
#define _LINUX_SLAB_DEF_H
|
|
|
|
/*
|
|
* Definitions unique to the original Linux SLAB allocator.
|
|
*/
|
|
|
|
struct kmem_cache {
|
|
/* 1) Cache tunables. Protected by cache_chain_mutex */
|
|
unsigned int batchcount;
|
|
unsigned int limit;
|
|
unsigned int shared;
|
|
|
|
unsigned int size;
|
|
u32 reciprocal_buffer_size;
|
|
/* 2) touched by every alloc & free from the backend */
|
|
|
|
unsigned int flags; /* constant flags */
|
|
unsigned int num; /* # of objs per slab */
|
|
|
|
/* 3) cache_grow/shrink */
|
|
/* order of pgs per slab (2^n) */
|
|
unsigned int gfporder;
|
|
|
|
/* force GFP flags, e.g. GFP_DMA */
|
|
gfp_t allocflags;
|
|
|
|
size_t colour; /* cache colouring range */
|
|
unsigned int colour_off; /* colour offset */
|
|
struct kmem_cache *slabp_cache;
|
|
unsigned int slab_size;
|
|
|
|
/* constructor func */
|
|
void (*ctor)(void *obj);
|
|
|
|
/* 4) cache creation/removal */
|
|
const char *name;
|
|
struct list_head list;
|
|
int refcount;
|
|
int object_size;
|
|
int align;
|
|
|
|
/* 5) statistics */
|
|
#ifdef CONFIG_DEBUG_SLAB
|
|
unsigned long num_active;
|
|
unsigned long num_allocations;
|
|
unsigned long high_mark;
|
|
unsigned long grown;
|
|
unsigned long reaped;
|
|
unsigned long errors;
|
|
unsigned long max_freeable;
|
|
unsigned long node_allocs;
|
|
unsigned long node_frees;
|
|
unsigned long node_overflow;
|
|
atomic_t allochit;
|
|
atomic_t allocmiss;
|
|
atomic_t freehit;
|
|
atomic_t freemiss;
|
|
|
|
/*
|
|
* If debugging is enabled, then the allocator can add additional
|
|
* fields and/or padding to every object. size contains the total
|
|
* object size including these internal fields, the following two
|
|
* variables contain the offset to the user object and its size.
|
|
*/
|
|
int obj_offset;
|
|
#endif /* CONFIG_DEBUG_SLAB */
|
|
#ifdef CONFIG_MEMCG_KMEM
|
|
struct memcg_cache_params *memcg_params;
|
|
#endif
|
|
|
|
/* 6) per-cpu/per-node data, touched during every alloc/free */
|
|
/*
|
|
* We put array[] at the end of kmem_cache, because we want to size
|
|
* this array to nr_cpu_ids slots instead of NR_CPUS
|
|
* (see kmem_cache_init())
|
|
* We still use [NR_CPUS] and not [1] or [0] because cache_cache
|
|
* is statically defined, so we reserve the max number of cpus.
|
|
*
|
|
* We also need to guarantee that the list is able to accomodate a
|
|
* pointer for each node since "nodelists" uses the remainder of
|
|
* available pointers.
|
|
*/
|
|
struct kmem_cache_node **node;
|
|
struct array_cache *array[NR_CPUS + MAX_NUMNODES];
|
|
/*
|
|
* Do not add fields after array[]
|
|
*/
|
|
};
|
|
|
|
#endif /* _LINUX_SLAB_DEF_H */
|