linux_dsm_epyc7002/include/linux/ssb/ssb.h
Michael Buesch e79c1ba84c ssb: Add SPROM fallback support
This adds SSB functionality to register a fallback SPROM image from the
architecture setup code.

Weird architectures exist that have half-assed SSB devices without SPROM attached to
their PCI busses. The architecture can register a fallback SPROM image that is
used if no SPROM is found on the SSB device.

Signed-off-by: Michael Buesch <mb@bu3sch.de>
Cc: Florian Fainelli <florian@openwrt.org>
Signed-off-by: John W. Linville <linville@tuxdriver.com>
2009-03-05 14:39:32 -05:00

629 lines
18 KiB
C

#ifndef LINUX_SSB_H_
#define LINUX_SSB_H_
#include <linux/device.h>
#include <linux/list.h>
#include <linux/types.h>
#include <linux/spinlock.h>
#include <linux/pci.h>
#include <linux/mod_devicetable.h>
#include <linux/dma-mapping.h>
#include <linux/ssb/ssb_regs.h>
struct pcmcia_device;
struct ssb_bus;
struct ssb_driver;
struct ssb_sprom {
u8 revision;
u8 il0mac[6]; /* MAC address for 802.11b/g */
u8 et0mac[6]; /* MAC address for Ethernet */
u8 et1mac[6]; /* MAC address for 802.11a */
u8 et0phyaddr; /* MII address for enet0 */
u8 et1phyaddr; /* MII address for enet1 */
u8 et0mdcport; /* MDIO for enet0 */
u8 et1mdcport; /* MDIO for enet1 */
u8 board_rev; /* Board revision number from SPROM. */
u8 country_code; /* Country Code */
u8 ant_available_a; /* A-PHY antenna available bits (up to 4) */
u8 ant_available_bg; /* B/G-PHY antenna available bits (up to 4) */
u16 pa0b0;
u16 pa0b1;
u16 pa0b2;
u16 pa1b0;
u16 pa1b1;
u16 pa1b2;
u8 gpio0; /* GPIO pin 0 */
u8 gpio1; /* GPIO pin 1 */
u8 gpio2; /* GPIO pin 2 */
u8 gpio3; /* GPIO pin 3 */
u16 maxpwr_a; /* A-PHY Amplifier Max Power (in dBm Q5.2) */
u16 maxpwr_bg; /* B/G-PHY Amplifier Max Power (in dBm Q5.2) */
u8 itssi_a; /* Idle TSSI Target for A-PHY */
u8 itssi_bg; /* Idle TSSI Target for B/G-PHY */
u16 boardflags_lo; /* Boardflags (low 16 bits) */
u16 boardflags_hi; /* Boardflags (high 16 bits) */
/* Antenna gain values for up to 4 antennas
* on each band. Values in dBm/4 (Q5.2). Negative gain means the
* loss in the connectors is bigger than the gain. */
struct {
struct {
s8 a0, a1, a2, a3;
} ghz24; /* 2.4GHz band */
struct {
s8 a0, a1, a2, a3;
} ghz5; /* 5GHz band */
} antenna_gain;
/* TODO - add any parameters needed from rev 2, 3, or 4 SPROMs */
};
/* Information about the PCB the circuitry is soldered on. */
struct ssb_boardinfo {
u16 vendor;
u16 type;
u16 rev;
};
struct ssb_device;
/* Lowlevel read/write operations on the device MMIO.
* Internal, don't use that outside of ssb. */
struct ssb_bus_ops {
u8 (*read8)(struct ssb_device *dev, u16 offset);
u16 (*read16)(struct ssb_device *dev, u16 offset);
u32 (*read32)(struct ssb_device *dev, u16 offset);
void (*write8)(struct ssb_device *dev, u16 offset, u8 value);
void (*write16)(struct ssb_device *dev, u16 offset, u16 value);
void (*write32)(struct ssb_device *dev, u16 offset, u32 value);
#ifdef CONFIG_SSB_BLOCKIO
void (*block_read)(struct ssb_device *dev, void *buffer,
size_t count, u16 offset, u8 reg_width);
void (*block_write)(struct ssb_device *dev, const void *buffer,
size_t count, u16 offset, u8 reg_width);
#endif
};
/* Core-ID values. */
#define SSB_DEV_CHIPCOMMON 0x800
#define SSB_DEV_ILINE20 0x801
#define SSB_DEV_SDRAM 0x803
#define SSB_DEV_PCI 0x804
#define SSB_DEV_MIPS 0x805
#define SSB_DEV_ETHERNET 0x806
#define SSB_DEV_V90 0x807
#define SSB_DEV_USB11_HOSTDEV 0x808
#define SSB_DEV_ADSL 0x809
#define SSB_DEV_ILINE100 0x80A
#define SSB_DEV_IPSEC 0x80B
#define SSB_DEV_PCMCIA 0x80D
#define SSB_DEV_INTERNAL_MEM 0x80E
#define SSB_DEV_MEMC_SDRAM 0x80F
#define SSB_DEV_EXTIF 0x811
#define SSB_DEV_80211 0x812
#define SSB_DEV_MIPS_3302 0x816
#define SSB_DEV_USB11_HOST 0x817
#define SSB_DEV_USB11_DEV 0x818
#define SSB_DEV_USB20_HOST 0x819
#define SSB_DEV_USB20_DEV 0x81A
#define SSB_DEV_SDIO_HOST 0x81B
#define SSB_DEV_ROBOSWITCH 0x81C
#define SSB_DEV_PARA_ATA 0x81D
#define SSB_DEV_SATA_XORDMA 0x81E
#define SSB_DEV_ETHERNET_GBIT 0x81F
#define SSB_DEV_PCIE 0x820
#define SSB_DEV_MIMO_PHY 0x821
#define SSB_DEV_SRAM_CTRLR 0x822
#define SSB_DEV_MINI_MACPHY 0x823
#define SSB_DEV_ARM_1176 0x824
#define SSB_DEV_ARM_7TDMI 0x825
/* Vendor-ID values */
#define SSB_VENDOR_BROADCOM 0x4243
/* Some kernel subsystems poke with dev->drvdata, so we must use the
* following ugly workaround to get from struct device to struct ssb_device */
struct __ssb_dev_wrapper {
struct device dev;
struct ssb_device *sdev;
};
struct ssb_device {
/* Having a copy of the ops pointer in each dev struct
* is an optimization. */
const struct ssb_bus_ops *ops;
struct device *dev;
struct ssb_bus *bus;
struct ssb_device_id id;
u8 core_index;
unsigned int irq;
/* Internal-only stuff follows. */
void *drvdata; /* Per-device data */
void *devtypedata; /* Per-devicetype (eg 802.11) data */
};
/* Go from struct device to struct ssb_device. */
static inline
struct ssb_device * dev_to_ssb_dev(struct device *dev)
{
struct __ssb_dev_wrapper *wrap;
wrap = container_of(dev, struct __ssb_dev_wrapper, dev);
return wrap->sdev;
}
/* Device specific user data */
static inline
void ssb_set_drvdata(struct ssb_device *dev, void *data)
{
dev->drvdata = data;
}
static inline
void * ssb_get_drvdata(struct ssb_device *dev)
{
return dev->drvdata;
}
/* Devicetype specific user data. This is per device-type (not per device) */
void ssb_set_devtypedata(struct ssb_device *dev, void *data);
static inline
void * ssb_get_devtypedata(struct ssb_device *dev)
{
return dev->devtypedata;
}
struct ssb_driver {
const char *name;
const struct ssb_device_id *id_table;
int (*probe)(struct ssb_device *dev, const struct ssb_device_id *id);
void (*remove)(struct ssb_device *dev);
int (*suspend)(struct ssb_device *dev, pm_message_t state);
int (*resume)(struct ssb_device *dev);
void (*shutdown)(struct ssb_device *dev);
struct device_driver drv;
};
#define drv_to_ssb_drv(_drv) container_of(_drv, struct ssb_driver, drv)
extern int __ssb_driver_register(struct ssb_driver *drv, struct module *owner);
static inline int ssb_driver_register(struct ssb_driver *drv)
{
return __ssb_driver_register(drv, THIS_MODULE);
}
extern void ssb_driver_unregister(struct ssb_driver *drv);
enum ssb_bustype {
SSB_BUSTYPE_SSB, /* This SSB bus is the system bus */
SSB_BUSTYPE_PCI, /* SSB is connected to PCI bus */
SSB_BUSTYPE_PCMCIA, /* SSB is connected to PCMCIA bus */
};
/* board_vendor */
#define SSB_BOARDVENDOR_BCM 0x14E4 /* Broadcom */
#define SSB_BOARDVENDOR_DELL 0x1028 /* Dell */
#define SSB_BOARDVENDOR_HP 0x0E11 /* HP */
/* board_type */
#define SSB_BOARD_BCM94306MP 0x0418
#define SSB_BOARD_BCM4309G 0x0421
#define SSB_BOARD_BCM4306CB 0x0417
#define SSB_BOARD_BCM4309MP 0x040C
#define SSB_BOARD_MP4318 0x044A
#define SSB_BOARD_BU4306 0x0416
#define SSB_BOARD_BU4309 0x040A
/* chip_package */
#define SSB_CHIPPACK_BCM4712S 1 /* Small 200pin 4712 */
#define SSB_CHIPPACK_BCM4712M 2 /* Medium 225pin 4712 */
#define SSB_CHIPPACK_BCM4712L 0 /* Large 340pin 4712 */
#include <linux/ssb/ssb_driver_chipcommon.h>
#include <linux/ssb/ssb_driver_mips.h>
#include <linux/ssb/ssb_driver_extif.h>
#include <linux/ssb/ssb_driver_pci.h>
struct ssb_bus {
/* The MMIO area. */
void __iomem *mmio;
const struct ssb_bus_ops *ops;
/* The core in the basic address register window. (PCI bus only) */
struct ssb_device *mapped_device;
/* Currently mapped PCMCIA segment. (bustype == SSB_BUSTYPE_PCMCIA only) */
u8 mapped_pcmcia_seg;
/* Lock for core and segment switching.
* On PCMCIA-host busses this is used to protect the whole MMIO access. */
spinlock_t bar_lock;
/* The bus this backplane is running on. */
enum ssb_bustype bustype;
/* Pointer to the PCI bus (only valid if bustype == SSB_BUSTYPE_PCI). */
struct pci_dev *host_pci;
/* Pointer to the PCMCIA device (only if bustype == SSB_BUSTYPE_PCMCIA). */
struct pcmcia_device *host_pcmcia;
#ifdef CONFIG_SSB_SPROM
/* Mutex to protect the SPROM writing. */
struct mutex sprom_mutex;
#endif
/* ID information about the Chip. */
u16 chip_id;
u16 chip_rev;
u16 sprom_size; /* number of words in sprom */
u8 chip_package;
/* List of devices (cores) on the backplane. */
struct ssb_device devices[SSB_MAX_NR_CORES];
u8 nr_devices;
/* Software ID number for this bus. */
unsigned int busnumber;
/* The ChipCommon device (if available). */
struct ssb_chipcommon chipco;
/* The PCI-core device (if available). */
struct ssb_pcicore pcicore;
/* The MIPS-core device (if available). */
struct ssb_mipscore mipscore;
/* The EXTif-core device (if available). */
struct ssb_extif extif;
/* The following structure elements are not available in early
* SSB initialization. Though, they are available for regular
* registered drivers at any stage. So be careful when
* using them in the ssb core code. */
/* ID information about the PCB. */
struct ssb_boardinfo boardinfo;
/* Contents of the SPROM. */
struct ssb_sprom sprom;
/* If the board has a cardbus slot, this is set to true. */
bool has_cardbus_slot;
#ifdef CONFIG_SSB_EMBEDDED
/* Lock for GPIO register access. */
spinlock_t gpio_lock;
#endif /* EMBEDDED */
/* Internal-only stuff follows. Do not touch. */
struct list_head list;
#ifdef CONFIG_SSB_DEBUG
/* Is the bus already powered up? */
bool powered_up;
int power_warn_count;
#endif /* DEBUG */
};
/* The initialization-invariants. */
struct ssb_init_invariants {
/* Versioning information about the PCB. */
struct ssb_boardinfo boardinfo;
/* The SPROM information. That's either stored in an
* EEPROM or NVRAM on the board. */
struct ssb_sprom sprom;
/* If the board has a cardbus slot, this is set to true. */
bool has_cardbus_slot;
};
/* Type of function to fetch the invariants. */
typedef int (*ssb_invariants_func_t)(struct ssb_bus *bus,
struct ssb_init_invariants *iv);
/* Register a SSB system bus. get_invariants() is called after the
* basic system devices are initialized.
* The invariants are usually fetched from some NVRAM.
* Put the invariants into the struct pointed to by iv. */
extern int ssb_bus_ssbbus_register(struct ssb_bus *bus,
unsigned long baseaddr,
ssb_invariants_func_t get_invariants);
#ifdef CONFIG_SSB_PCIHOST
extern int ssb_bus_pcibus_register(struct ssb_bus *bus,
struct pci_dev *host_pci);
#endif /* CONFIG_SSB_PCIHOST */
#ifdef CONFIG_SSB_PCMCIAHOST
extern int ssb_bus_pcmciabus_register(struct ssb_bus *bus,
struct pcmcia_device *pcmcia_dev,
unsigned long baseaddr);
#endif /* CONFIG_SSB_PCMCIAHOST */
extern void ssb_bus_unregister(struct ssb_bus *bus);
/* Set a fallback SPROM.
* See kdoc at the function definition for complete documentation. */
extern int ssb_arch_set_fallback_sprom(const struct ssb_sprom *sprom);
/* Suspend a SSB bus.
* Call this from the parent bus suspend routine. */
extern int ssb_bus_suspend(struct ssb_bus *bus);
/* Resume a SSB bus.
* Call this from the parent bus resume routine. */
extern int ssb_bus_resume(struct ssb_bus *bus);
extern u32 ssb_clockspeed(struct ssb_bus *bus);
/* Is the device enabled in hardware? */
int ssb_device_is_enabled(struct ssb_device *dev);
/* Enable a device and pass device-specific SSB_TMSLOW flags.
* If no device-specific flags are available, use 0. */
void ssb_device_enable(struct ssb_device *dev, u32 core_specific_flags);
/* Disable a device in hardware and pass SSB_TMSLOW flags (if any). */
void ssb_device_disable(struct ssb_device *dev, u32 core_specific_flags);
/* Device MMIO register read/write functions. */
static inline u8 ssb_read8(struct ssb_device *dev, u16 offset)
{
return dev->ops->read8(dev, offset);
}
static inline u16 ssb_read16(struct ssb_device *dev, u16 offset)
{
return dev->ops->read16(dev, offset);
}
static inline u32 ssb_read32(struct ssb_device *dev, u16 offset)
{
return dev->ops->read32(dev, offset);
}
static inline void ssb_write8(struct ssb_device *dev, u16 offset, u8 value)
{
dev->ops->write8(dev, offset, value);
}
static inline void ssb_write16(struct ssb_device *dev, u16 offset, u16 value)
{
dev->ops->write16(dev, offset, value);
}
static inline void ssb_write32(struct ssb_device *dev, u16 offset, u32 value)
{
dev->ops->write32(dev, offset, value);
}
#ifdef CONFIG_SSB_BLOCKIO
static inline void ssb_block_read(struct ssb_device *dev, void *buffer,
size_t count, u16 offset, u8 reg_width)
{
dev->ops->block_read(dev, buffer, count, offset, reg_width);
}
static inline void ssb_block_write(struct ssb_device *dev, const void *buffer,
size_t count, u16 offset, u8 reg_width)
{
dev->ops->block_write(dev, buffer, count, offset, reg_width);
}
#endif /* CONFIG_SSB_BLOCKIO */
/* The SSB DMA API. Use this API for any DMA operation on the device.
* This API basically is a wrapper that calls the correct DMA API for
* the host device type the SSB device is attached to. */
/* Translation (routing) bits that need to be ORed to DMA
* addresses before they are given to a device. */
extern u32 ssb_dma_translation(struct ssb_device *dev);
#define SSB_DMA_TRANSLATION_MASK 0xC0000000
#define SSB_DMA_TRANSLATION_SHIFT 30
extern int ssb_dma_set_mask(struct ssb_device *dev, u64 mask);
extern void * ssb_dma_alloc_consistent(struct ssb_device *dev, size_t size,
dma_addr_t *dma_handle, gfp_t gfp_flags);
extern void ssb_dma_free_consistent(struct ssb_device *dev, size_t size,
void *vaddr, dma_addr_t dma_handle,
gfp_t gfp_flags);
static inline void __cold __ssb_dma_not_implemented(struct ssb_device *dev)
{
#ifdef CONFIG_SSB_DEBUG
printk(KERN_ERR "SSB: BUG! Calling DMA API for "
"unsupported bustype %d\n", dev->bus->bustype);
#endif /* DEBUG */
}
static inline int ssb_dma_mapping_error(struct ssb_device *dev, dma_addr_t addr)
{
switch (dev->bus->bustype) {
case SSB_BUSTYPE_PCI:
#ifdef CONFIG_SSB_PCIHOST
return pci_dma_mapping_error(dev->bus->host_pci, addr);
#endif
break;
case SSB_BUSTYPE_SSB:
return dma_mapping_error(dev->dev, addr);
default:
break;
}
__ssb_dma_not_implemented(dev);
return -ENOSYS;
}
static inline dma_addr_t ssb_dma_map_single(struct ssb_device *dev, void *p,
size_t size, enum dma_data_direction dir)
{
switch (dev->bus->bustype) {
case SSB_BUSTYPE_PCI:
#ifdef CONFIG_SSB_PCIHOST
return pci_map_single(dev->bus->host_pci, p, size, dir);
#endif
break;
case SSB_BUSTYPE_SSB:
return dma_map_single(dev->dev, p, size, dir);
default:
break;
}
__ssb_dma_not_implemented(dev);
return 0;
}
static inline void ssb_dma_unmap_single(struct ssb_device *dev, dma_addr_t dma_addr,
size_t size, enum dma_data_direction dir)
{
switch (dev->bus->bustype) {
case SSB_BUSTYPE_PCI:
#ifdef CONFIG_SSB_PCIHOST
pci_unmap_single(dev->bus->host_pci, dma_addr, size, dir);
return;
#endif
break;
case SSB_BUSTYPE_SSB:
dma_unmap_single(dev->dev, dma_addr, size, dir);
return;
default:
break;
}
__ssb_dma_not_implemented(dev);
}
static inline void ssb_dma_sync_single_for_cpu(struct ssb_device *dev,
dma_addr_t dma_addr,
size_t size,
enum dma_data_direction dir)
{
switch (dev->bus->bustype) {
case SSB_BUSTYPE_PCI:
#ifdef CONFIG_SSB_PCIHOST
pci_dma_sync_single_for_cpu(dev->bus->host_pci, dma_addr,
size, dir);
return;
#endif
break;
case SSB_BUSTYPE_SSB:
dma_sync_single_for_cpu(dev->dev, dma_addr, size, dir);
return;
default:
break;
}
__ssb_dma_not_implemented(dev);
}
static inline void ssb_dma_sync_single_for_device(struct ssb_device *dev,
dma_addr_t dma_addr,
size_t size,
enum dma_data_direction dir)
{
switch (dev->bus->bustype) {
case SSB_BUSTYPE_PCI:
#ifdef CONFIG_SSB_PCIHOST
pci_dma_sync_single_for_device(dev->bus->host_pci, dma_addr,
size, dir);
return;
#endif
break;
case SSB_BUSTYPE_SSB:
dma_sync_single_for_device(dev->dev, dma_addr, size, dir);
return;
default:
break;
}
__ssb_dma_not_implemented(dev);
}
static inline void ssb_dma_sync_single_range_for_cpu(struct ssb_device *dev,
dma_addr_t dma_addr,
unsigned long offset,
size_t size,
enum dma_data_direction dir)
{
switch (dev->bus->bustype) {
case SSB_BUSTYPE_PCI:
#ifdef CONFIG_SSB_PCIHOST
/* Just sync everything. That's all the PCI API can do. */
pci_dma_sync_single_for_cpu(dev->bus->host_pci, dma_addr,
offset + size, dir);
return;
#endif
break;
case SSB_BUSTYPE_SSB:
dma_sync_single_range_for_cpu(dev->dev, dma_addr, offset,
size, dir);
return;
default:
break;
}
__ssb_dma_not_implemented(dev);
}
static inline void ssb_dma_sync_single_range_for_device(struct ssb_device *dev,
dma_addr_t dma_addr,
unsigned long offset,
size_t size,
enum dma_data_direction dir)
{
switch (dev->bus->bustype) {
case SSB_BUSTYPE_PCI:
#ifdef CONFIG_SSB_PCIHOST
/* Just sync everything. That's all the PCI API can do. */
pci_dma_sync_single_for_device(dev->bus->host_pci, dma_addr,
offset + size, dir);
return;
#endif
break;
case SSB_BUSTYPE_SSB:
dma_sync_single_range_for_device(dev->dev, dma_addr, offset,
size, dir);
return;
default:
break;
}
__ssb_dma_not_implemented(dev);
}
#ifdef CONFIG_SSB_PCIHOST
/* PCI-host wrapper driver */
extern int ssb_pcihost_register(struct pci_driver *driver);
static inline void ssb_pcihost_unregister(struct pci_driver *driver)
{
pci_unregister_driver(driver);
}
static inline
void ssb_pcihost_set_power_state(struct ssb_device *sdev, pci_power_t state)
{
if (sdev->bus->bustype == SSB_BUSTYPE_PCI)
pci_set_power_state(sdev->bus->host_pci, state);
}
#else
static inline void ssb_pcihost_unregister(struct pci_driver *driver)
{
}
static inline
void ssb_pcihost_set_power_state(struct ssb_device *sdev, pci_power_t state)
{
}
#endif /* CONFIG_SSB_PCIHOST */
/* If a driver is shutdown or suspended, call this to signal
* that the bus may be completely powered down. SSB will decide,
* if it's really time to power down the bus, based on if there
* are other devices that want to run. */
extern int ssb_bus_may_powerdown(struct ssb_bus *bus);
/* Before initializing and enabling a device, call this to power-up the bus.
* If you want to allow use of dynamic-power-control, pass the flag.
* Otherwise static always-on powercontrol will be used. */
extern int ssb_bus_powerup(struct ssb_bus *bus, bool dynamic_pctl);
/* Various helper functions */
extern u32 ssb_admatch_base(u32 adm);
extern u32 ssb_admatch_size(u32 adm);
/* PCI device mapping and fixup routines.
* Called from the architecture pcibios init code.
* These are only available on SSB_EMBEDDED configurations. */
#ifdef CONFIG_SSB_EMBEDDED
int ssb_pcibios_plat_dev_init(struct pci_dev *dev);
int ssb_pcibios_map_irq(const struct pci_dev *dev, u8 slot, u8 pin);
#endif /* CONFIG_SSB_EMBEDDED */
#endif /* LINUX_SSB_H_ */