mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2024-12-26 05:15:11 +07:00
04d2ea92a1
Before8b7008620b
("net: Don't copy pfmemalloc flag in __copy_skb_ header()"), the pfmemalloc flag used to be between headers_start and headers_end, which is a region we clear when preparing the packet for encryption/decryption. This is a parameter we certainly want to preserve, which is why8b7008620b
moved it out of there. The code here was written in a world before8b7008620b
, though, where we had to manually account for it. This commit brings things up to speed. Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com> Signed-off-by: David S. Miller <davem@davemloft.net>
195 lines
6.0 KiB
C
195 lines
6.0 KiB
C
/* SPDX-License-Identifier: GPL-2.0 */
|
|
/*
|
|
* Copyright (C) 2015-2019 Jason A. Donenfeld <Jason@zx2c4.com>. All Rights Reserved.
|
|
*/
|
|
|
|
#ifndef _WG_QUEUEING_H
|
|
#define _WG_QUEUEING_H
|
|
|
|
#include "peer.h"
|
|
#include <linux/types.h>
|
|
#include <linux/skbuff.h>
|
|
#include <linux/ip.h>
|
|
#include <linux/ipv6.h>
|
|
|
|
struct wg_device;
|
|
struct wg_peer;
|
|
struct multicore_worker;
|
|
struct crypt_queue;
|
|
struct sk_buff;
|
|
|
|
/* queueing.c APIs: */
|
|
int wg_packet_queue_init(struct crypt_queue *queue, work_func_t function,
|
|
bool multicore, unsigned int len);
|
|
void wg_packet_queue_free(struct crypt_queue *queue, bool multicore);
|
|
struct multicore_worker __percpu *
|
|
wg_packet_percpu_multicore_worker_alloc(work_func_t function, void *ptr);
|
|
|
|
/* receive.c APIs: */
|
|
void wg_packet_receive(struct wg_device *wg, struct sk_buff *skb);
|
|
void wg_packet_handshake_receive_worker(struct work_struct *work);
|
|
/* NAPI poll function: */
|
|
int wg_packet_rx_poll(struct napi_struct *napi, int budget);
|
|
/* Workqueue worker: */
|
|
void wg_packet_decrypt_worker(struct work_struct *work);
|
|
|
|
/* send.c APIs: */
|
|
void wg_packet_send_queued_handshake_initiation(struct wg_peer *peer,
|
|
bool is_retry);
|
|
void wg_packet_send_handshake_response(struct wg_peer *peer);
|
|
void wg_packet_send_handshake_cookie(struct wg_device *wg,
|
|
struct sk_buff *initiating_skb,
|
|
__le32 sender_index);
|
|
void wg_packet_send_keepalive(struct wg_peer *peer);
|
|
void wg_packet_purge_staged_packets(struct wg_peer *peer);
|
|
void wg_packet_send_staged_packets(struct wg_peer *peer);
|
|
/* Workqueue workers: */
|
|
void wg_packet_handshake_send_worker(struct work_struct *work);
|
|
void wg_packet_tx_worker(struct work_struct *work);
|
|
void wg_packet_encrypt_worker(struct work_struct *work);
|
|
|
|
enum packet_state {
|
|
PACKET_STATE_UNCRYPTED,
|
|
PACKET_STATE_CRYPTED,
|
|
PACKET_STATE_DEAD
|
|
};
|
|
|
|
struct packet_cb {
|
|
u64 nonce;
|
|
struct noise_keypair *keypair;
|
|
atomic_t state;
|
|
u32 mtu;
|
|
u8 ds;
|
|
};
|
|
|
|
#define PACKET_CB(skb) ((struct packet_cb *)((skb)->cb))
|
|
#define PACKET_PEER(skb) (PACKET_CB(skb)->keypair->entry.peer)
|
|
|
|
/* Returns either the correct skb->protocol value, or 0 if invalid. */
|
|
static inline __be16 wg_skb_examine_untrusted_ip_hdr(struct sk_buff *skb)
|
|
{
|
|
if (skb_network_header(skb) >= skb->head &&
|
|
(skb_network_header(skb) + sizeof(struct iphdr)) <=
|
|
skb_tail_pointer(skb) &&
|
|
ip_hdr(skb)->version == 4)
|
|
return htons(ETH_P_IP);
|
|
if (skb_network_header(skb) >= skb->head &&
|
|
(skb_network_header(skb) + sizeof(struct ipv6hdr)) <=
|
|
skb_tail_pointer(skb) &&
|
|
ipv6_hdr(skb)->version == 6)
|
|
return htons(ETH_P_IPV6);
|
|
return 0;
|
|
}
|
|
|
|
static inline void wg_reset_packet(struct sk_buff *skb)
|
|
{
|
|
skb_scrub_packet(skb, true);
|
|
memset(&skb->headers_start, 0,
|
|
offsetof(struct sk_buff, headers_end) -
|
|
offsetof(struct sk_buff, headers_start));
|
|
skb->queue_mapping = 0;
|
|
skb->nohdr = 0;
|
|
skb->peeked = 0;
|
|
skb->mac_len = 0;
|
|
skb->dev = NULL;
|
|
#ifdef CONFIG_NET_SCHED
|
|
skb->tc_index = 0;
|
|
skb_reset_tc(skb);
|
|
#endif
|
|
skb->hdr_len = skb_headroom(skb);
|
|
skb_reset_mac_header(skb);
|
|
skb_reset_network_header(skb);
|
|
skb_reset_transport_header(skb);
|
|
skb_probe_transport_header(skb);
|
|
skb_reset_inner_headers(skb);
|
|
}
|
|
|
|
static inline int wg_cpumask_choose_online(int *stored_cpu, unsigned int id)
|
|
{
|
|
unsigned int cpu = *stored_cpu, cpu_index, i;
|
|
|
|
if (unlikely(cpu == nr_cpumask_bits ||
|
|
!cpumask_test_cpu(cpu, cpu_online_mask))) {
|
|
cpu_index = id % cpumask_weight(cpu_online_mask);
|
|
cpu = cpumask_first(cpu_online_mask);
|
|
for (i = 0; i < cpu_index; ++i)
|
|
cpu = cpumask_next(cpu, cpu_online_mask);
|
|
*stored_cpu = cpu;
|
|
}
|
|
return cpu;
|
|
}
|
|
|
|
/* This function is racy, in the sense that next is unlocked, so it could return
|
|
* the same CPU twice. A race-free version of this would be to instead store an
|
|
* atomic sequence number, do an increment-and-return, and then iterate through
|
|
* every possible CPU until we get to that index -- choose_cpu. However that's
|
|
* a bit slower, and it doesn't seem like this potential race actually
|
|
* introduces any performance loss, so we live with it.
|
|
*/
|
|
static inline int wg_cpumask_next_online(int *next)
|
|
{
|
|
int cpu = *next;
|
|
|
|
while (unlikely(!cpumask_test_cpu(cpu, cpu_online_mask)))
|
|
cpu = cpumask_next(cpu, cpu_online_mask) % nr_cpumask_bits;
|
|
*next = cpumask_next(cpu, cpu_online_mask) % nr_cpumask_bits;
|
|
return cpu;
|
|
}
|
|
|
|
static inline int wg_queue_enqueue_per_device_and_peer(
|
|
struct crypt_queue *device_queue, struct crypt_queue *peer_queue,
|
|
struct sk_buff *skb, struct workqueue_struct *wq, int *next_cpu)
|
|
{
|
|
int cpu;
|
|
|
|
atomic_set_release(&PACKET_CB(skb)->state, PACKET_STATE_UNCRYPTED);
|
|
/* We first queue this up for the peer ingestion, but the consumer
|
|
* will wait for the state to change to CRYPTED or DEAD before.
|
|
*/
|
|
if (unlikely(ptr_ring_produce_bh(&peer_queue->ring, skb)))
|
|
return -ENOSPC;
|
|
/* Then we queue it up in the device queue, which consumes the
|
|
* packet as soon as it can.
|
|
*/
|
|
cpu = wg_cpumask_next_online(next_cpu);
|
|
if (unlikely(ptr_ring_produce_bh(&device_queue->ring, skb)))
|
|
return -EPIPE;
|
|
queue_work_on(cpu, wq, &per_cpu_ptr(device_queue->worker, cpu)->work);
|
|
return 0;
|
|
}
|
|
|
|
static inline void wg_queue_enqueue_per_peer(struct crypt_queue *queue,
|
|
struct sk_buff *skb,
|
|
enum packet_state state)
|
|
{
|
|
/* We take a reference, because as soon as we call atomic_set, the
|
|
* peer can be freed from below us.
|
|
*/
|
|
struct wg_peer *peer = wg_peer_get(PACKET_PEER(skb));
|
|
|
|
atomic_set_release(&PACKET_CB(skb)->state, state);
|
|
queue_work_on(wg_cpumask_choose_online(&peer->serial_work_cpu,
|
|
peer->internal_id),
|
|
peer->device->packet_crypt_wq, &queue->work);
|
|
wg_peer_put(peer);
|
|
}
|
|
|
|
static inline void wg_queue_enqueue_per_peer_napi(struct sk_buff *skb,
|
|
enum packet_state state)
|
|
{
|
|
/* We take a reference, because as soon as we call atomic_set, the
|
|
* peer can be freed from below us.
|
|
*/
|
|
struct wg_peer *peer = wg_peer_get(PACKET_PEER(skb));
|
|
|
|
atomic_set_release(&PACKET_CB(skb)->state, state);
|
|
napi_schedule(&peer->napi);
|
|
wg_peer_put(peer);
|
|
}
|
|
|
|
#ifdef DEBUG
|
|
bool wg_packet_counter_selftest(void);
|
|
#endif
|
|
|
|
#endif /* _WG_QUEUEING_H */
|