linux_dsm_epyc7002/drivers/net/ethernet/intel/igb/igb_ptp.c
Carolyn Wyborny ceb5f13b70 igb: Add support for i354 devices
This patch adds base support for new i354 devices.  Loopback test is
unsupported for this release.

Signed-off-by: Carolyn Wyborny <carolyn.wyborny@intel.com>
Signed-off-by: Jeff Kirsher <jeffrey.t.kirsher@intel.com>
2013-04-18 16:40:35 -07:00

897 lines
25 KiB
C

/* PTP Hardware Clock (PHC) driver for the Intel 82576 and 82580
*
* Copyright (C) 2011 Richard Cochran <richardcochran@gmail.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*/
#include <linux/module.h>
#include <linux/device.h>
#include <linux/pci.h>
#include <linux/ptp_classify.h>
#include "igb.h"
#define INCVALUE_MASK 0x7fffffff
#define ISGN 0x80000000
/* The 82580 timesync updates the system timer every 8ns by 8ns,
* and this update value cannot be reprogrammed.
*
* Neither the 82576 nor the 82580 offer registers wide enough to hold
* nanoseconds time values for very long. For the 82580, SYSTIM always
* counts nanoseconds, but the upper 24 bits are not availible. The
* frequency is adjusted by changing the 32 bit fractional nanoseconds
* register, TIMINCA.
*
* For the 82576, the SYSTIM register time unit is affect by the
* choice of the 24 bit TININCA:IV (incvalue) field. Five bits of this
* field are needed to provide the nominal 16 nanosecond period,
* leaving 19 bits for fractional nanoseconds.
*
* We scale the NIC clock cycle by a large factor so that relatively
* small clock corrections can be added or subtracted at each clock
* tick. The drawbacks of a large factor are a) that the clock
* register overflows more quickly (not such a big deal) and b) that
* the increment per tick has to fit into 24 bits. As a result we
* need to use a shift of 19 so we can fit a value of 16 into the
* TIMINCA register.
*
*
* SYSTIMH SYSTIML
* +--------------+ +---+---+------+
* 82576 | 32 | | 8 | 5 | 19 |
* +--------------+ +---+---+------+
* \________ 45 bits _______/ fract
*
* +----------+---+ +--------------+
* 82580 | 24 | 8 | | 32 |
* +----------+---+ +--------------+
* reserved \______ 40 bits _____/
*
*
* The 45 bit 82576 SYSTIM overflows every
* 2^45 * 10^-9 / 3600 = 9.77 hours.
*
* The 40 bit 82580 SYSTIM overflows every
* 2^40 * 10^-9 / 60 = 18.3 minutes.
*/
#define IGB_SYSTIM_OVERFLOW_PERIOD (HZ * 60 * 9)
#define IGB_PTP_TX_TIMEOUT (HZ * 15)
#define INCPERIOD_82576 (1 << E1000_TIMINCA_16NS_SHIFT)
#define INCVALUE_82576_MASK ((1 << E1000_TIMINCA_16NS_SHIFT) - 1)
#define INCVALUE_82576 (16 << IGB_82576_TSYNC_SHIFT)
#define IGB_NBITS_82580 40
/* SYSTIM read access for the 82576 */
static cycle_t igb_ptp_read_82576(const struct cyclecounter *cc)
{
struct igb_adapter *igb = container_of(cc, struct igb_adapter, cc);
struct e1000_hw *hw = &igb->hw;
u64 val;
u32 lo, hi;
lo = rd32(E1000_SYSTIML);
hi = rd32(E1000_SYSTIMH);
val = ((u64) hi) << 32;
val |= lo;
return val;
}
/* SYSTIM read access for the 82580 */
static cycle_t igb_ptp_read_82580(const struct cyclecounter *cc)
{
struct igb_adapter *igb = container_of(cc, struct igb_adapter, cc);
struct e1000_hw *hw = &igb->hw;
u64 val;
u32 lo, hi, jk;
/* The timestamp latches on lowest register read. For the 82580
* the lowest register is SYSTIMR instead of SYSTIML. However we only
* need to provide nanosecond resolution, so we just ignore it.
*/
jk = rd32(E1000_SYSTIMR);
lo = rd32(E1000_SYSTIML);
hi = rd32(E1000_SYSTIMH);
val = ((u64) hi) << 32;
val |= lo;
return val;
}
/* SYSTIM read access for I210/I211 */
static void igb_ptp_read_i210(struct igb_adapter *adapter, struct timespec *ts)
{
struct e1000_hw *hw = &adapter->hw;
u32 sec, nsec, jk;
/* The timestamp latches on lowest register read. For I210/I211, the
* lowest register is SYSTIMR. Since we only need to provide nanosecond
* resolution, we can ignore it.
*/
jk = rd32(E1000_SYSTIMR);
nsec = rd32(E1000_SYSTIML);
sec = rd32(E1000_SYSTIMH);
ts->tv_sec = sec;
ts->tv_nsec = nsec;
}
static void igb_ptp_write_i210(struct igb_adapter *adapter,
const struct timespec *ts)
{
struct e1000_hw *hw = &adapter->hw;
/* Writing the SYSTIMR register is not necessary as it only provides
* sub-nanosecond resolution.
*/
wr32(E1000_SYSTIML, ts->tv_nsec);
wr32(E1000_SYSTIMH, ts->tv_sec);
}
/**
* igb_ptp_systim_to_hwtstamp - convert system time value to hw timestamp
* @adapter: board private structure
* @hwtstamps: timestamp structure to update
* @systim: unsigned 64bit system time value.
*
* We need to convert the system time value stored in the RX/TXSTMP registers
* into a hwtstamp which can be used by the upper level timestamping functions.
*
* The 'tmreg_lock' spinlock is used to protect the consistency of the
* system time value. This is needed because reading the 64 bit time
* value involves reading two (or three) 32 bit registers. The first
* read latches the value. Ditto for writing.
*
* In addition, here have extended the system time with an overflow
* counter in software.
**/
static void igb_ptp_systim_to_hwtstamp(struct igb_adapter *adapter,
struct skb_shared_hwtstamps *hwtstamps,
u64 systim)
{
unsigned long flags;
u64 ns;
switch (adapter->hw.mac.type) {
case e1000_82576:
case e1000_82580:
case e1000_i354:
case e1000_i350:
spin_lock_irqsave(&adapter->tmreg_lock, flags);
ns = timecounter_cyc2time(&adapter->tc, systim);
spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
memset(hwtstamps, 0, sizeof(*hwtstamps));
hwtstamps->hwtstamp = ns_to_ktime(ns);
break;
case e1000_i210:
case e1000_i211:
memset(hwtstamps, 0, sizeof(*hwtstamps));
/* Upper 32 bits contain s, lower 32 bits contain ns. */
hwtstamps->hwtstamp = ktime_set(systim >> 32,
systim & 0xFFFFFFFF);
break;
default:
break;
}
}
/* PTP clock operations */
static int igb_ptp_adjfreq_82576(struct ptp_clock_info *ptp, s32 ppb)
{
struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
ptp_caps);
struct e1000_hw *hw = &igb->hw;
int neg_adj = 0;
u64 rate;
u32 incvalue;
if (ppb < 0) {
neg_adj = 1;
ppb = -ppb;
}
rate = ppb;
rate <<= 14;
rate = div_u64(rate, 1953125);
incvalue = 16 << IGB_82576_TSYNC_SHIFT;
if (neg_adj)
incvalue -= rate;
else
incvalue += rate;
wr32(E1000_TIMINCA, INCPERIOD_82576 | (incvalue & INCVALUE_82576_MASK));
return 0;
}
static int igb_ptp_adjfreq_82580(struct ptp_clock_info *ptp, s32 ppb)
{
struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
ptp_caps);
struct e1000_hw *hw = &igb->hw;
int neg_adj = 0;
u64 rate;
u32 inca;
if (ppb < 0) {
neg_adj = 1;
ppb = -ppb;
}
rate = ppb;
rate <<= 26;
rate = div_u64(rate, 1953125);
inca = rate & INCVALUE_MASK;
if (neg_adj)
inca |= ISGN;
wr32(E1000_TIMINCA, inca);
return 0;
}
static int igb_ptp_adjtime_82576(struct ptp_clock_info *ptp, s64 delta)
{
struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
ptp_caps);
unsigned long flags;
s64 now;
spin_lock_irqsave(&igb->tmreg_lock, flags);
now = timecounter_read(&igb->tc);
now += delta;
timecounter_init(&igb->tc, &igb->cc, now);
spin_unlock_irqrestore(&igb->tmreg_lock, flags);
return 0;
}
static int igb_ptp_adjtime_i210(struct ptp_clock_info *ptp, s64 delta)
{
struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
ptp_caps);
unsigned long flags;
struct timespec now, then = ns_to_timespec(delta);
spin_lock_irqsave(&igb->tmreg_lock, flags);
igb_ptp_read_i210(igb, &now);
now = timespec_add(now, then);
igb_ptp_write_i210(igb, (const struct timespec *)&now);
spin_unlock_irqrestore(&igb->tmreg_lock, flags);
return 0;
}
static int igb_ptp_gettime_82576(struct ptp_clock_info *ptp,
struct timespec *ts)
{
struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
ptp_caps);
unsigned long flags;
u64 ns;
u32 remainder;
spin_lock_irqsave(&igb->tmreg_lock, flags);
ns = timecounter_read(&igb->tc);
spin_unlock_irqrestore(&igb->tmreg_lock, flags);
ts->tv_sec = div_u64_rem(ns, 1000000000, &remainder);
ts->tv_nsec = remainder;
return 0;
}
static int igb_ptp_gettime_i210(struct ptp_clock_info *ptp,
struct timespec *ts)
{
struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
ptp_caps);
unsigned long flags;
spin_lock_irqsave(&igb->tmreg_lock, flags);
igb_ptp_read_i210(igb, ts);
spin_unlock_irqrestore(&igb->tmreg_lock, flags);
return 0;
}
static int igb_ptp_settime_82576(struct ptp_clock_info *ptp,
const struct timespec *ts)
{
struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
ptp_caps);
unsigned long flags;
u64 ns;
ns = ts->tv_sec * 1000000000ULL;
ns += ts->tv_nsec;
spin_lock_irqsave(&igb->tmreg_lock, flags);
timecounter_init(&igb->tc, &igb->cc, ns);
spin_unlock_irqrestore(&igb->tmreg_lock, flags);
return 0;
}
static int igb_ptp_settime_i210(struct ptp_clock_info *ptp,
const struct timespec *ts)
{
struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
ptp_caps);
unsigned long flags;
spin_lock_irqsave(&igb->tmreg_lock, flags);
igb_ptp_write_i210(igb, ts);
spin_unlock_irqrestore(&igb->tmreg_lock, flags);
return 0;
}
static int igb_ptp_enable(struct ptp_clock_info *ptp,
struct ptp_clock_request *rq, int on)
{
return -EOPNOTSUPP;
}
/**
* igb_ptp_tx_work
* @work: pointer to work struct
*
* This work function polls the TSYNCTXCTL valid bit to determine when a
* timestamp has been taken for the current stored skb.
**/
void igb_ptp_tx_work(struct work_struct *work)
{
struct igb_adapter *adapter = container_of(work, struct igb_adapter,
ptp_tx_work);
struct e1000_hw *hw = &adapter->hw;
u32 tsynctxctl;
if (!adapter->ptp_tx_skb)
return;
if (time_is_before_jiffies(adapter->ptp_tx_start +
IGB_PTP_TX_TIMEOUT)) {
dev_kfree_skb_any(adapter->ptp_tx_skb);
adapter->ptp_tx_skb = NULL;
adapter->tx_hwtstamp_timeouts++;
dev_warn(&adapter->pdev->dev, "clearing Tx timestamp hang");
return;
}
tsynctxctl = rd32(E1000_TSYNCTXCTL);
if (tsynctxctl & E1000_TSYNCTXCTL_VALID)
igb_ptp_tx_hwtstamp(adapter);
else
/* reschedule to check later */
schedule_work(&adapter->ptp_tx_work);
}
static void igb_ptp_overflow_check(struct work_struct *work)
{
struct igb_adapter *igb =
container_of(work, struct igb_adapter, ptp_overflow_work.work);
struct timespec ts;
igb->ptp_caps.gettime(&igb->ptp_caps, &ts);
pr_debug("igb overflow check at %ld.%09lu\n", ts.tv_sec, ts.tv_nsec);
schedule_delayed_work(&igb->ptp_overflow_work,
IGB_SYSTIM_OVERFLOW_PERIOD);
}
/**
* igb_ptp_rx_hang - detect error case when Rx timestamp registers latched
* @adapter: private network adapter structure
*
* This watchdog task is scheduled to detect error case where hardware has
* dropped an Rx packet that was timestamped when the ring is full. The
* particular error is rare but leaves the device in a state unable to timestamp
* any future packets.
**/
void igb_ptp_rx_hang(struct igb_adapter *adapter)
{
struct e1000_hw *hw = &adapter->hw;
struct igb_ring *rx_ring;
u32 tsyncrxctl = rd32(E1000_TSYNCRXCTL);
unsigned long rx_event;
int n;
if (hw->mac.type != e1000_82576)
return;
/* If we don't have a valid timestamp in the registers, just update the
* timeout counter and exit
*/
if (!(tsyncrxctl & E1000_TSYNCRXCTL_VALID)) {
adapter->last_rx_ptp_check = jiffies;
return;
}
/* Determine the most recent watchdog or rx_timestamp event */
rx_event = adapter->last_rx_ptp_check;
for (n = 0; n < adapter->num_rx_queues; n++) {
rx_ring = adapter->rx_ring[n];
if (time_after(rx_ring->last_rx_timestamp, rx_event))
rx_event = rx_ring->last_rx_timestamp;
}
/* Only need to read the high RXSTMP register to clear the lock */
if (time_is_before_jiffies(rx_event + 5 * HZ)) {
rd32(E1000_RXSTMPH);
adapter->last_rx_ptp_check = jiffies;
adapter->rx_hwtstamp_cleared++;
dev_warn(&adapter->pdev->dev, "clearing Rx timestamp hang");
}
}
/**
* igb_ptp_tx_hwtstamp - utility function which checks for TX time stamp
* @adapter: Board private structure.
*
* If we were asked to do hardware stamping and such a time stamp is
* available, then it must have been for this skb here because we only
* allow only one such packet into the queue.
**/
void igb_ptp_tx_hwtstamp(struct igb_adapter *adapter)
{
struct e1000_hw *hw = &adapter->hw;
struct skb_shared_hwtstamps shhwtstamps;
u64 regval;
regval = rd32(E1000_TXSTMPL);
regval |= (u64)rd32(E1000_TXSTMPH) << 32;
igb_ptp_systim_to_hwtstamp(adapter, &shhwtstamps, regval);
skb_tstamp_tx(adapter->ptp_tx_skb, &shhwtstamps);
dev_kfree_skb_any(adapter->ptp_tx_skb);
adapter->ptp_tx_skb = NULL;
}
/**
* igb_ptp_rx_pktstamp - retrieve Rx per packet timestamp
* @q_vector: Pointer to interrupt specific structure
* @va: Pointer to address containing Rx buffer
* @skb: Buffer containing timestamp and packet
*
* This function is meant to retrieve a timestamp from the first buffer of an
* incoming frame. The value is stored in little endian format starting on
* byte 8.
**/
void igb_ptp_rx_pktstamp(struct igb_q_vector *q_vector,
unsigned char *va,
struct sk_buff *skb)
{
__le64 *regval = (__le64 *)va;
/* The timestamp is recorded in little endian format.
* DWORD: 0 1 2 3
* Field: Reserved Reserved SYSTIML SYSTIMH
*/
igb_ptp_systim_to_hwtstamp(q_vector->adapter, skb_hwtstamps(skb),
le64_to_cpu(regval[1]));
}
/**
* igb_ptp_rx_rgtstamp - retrieve Rx timestamp stored in register
* @q_vector: Pointer to interrupt specific structure
* @skb: Buffer containing timestamp and packet
*
* This function is meant to retrieve a timestamp from the internal registers
* of the adapter and store it in the skb.
**/
void igb_ptp_rx_rgtstamp(struct igb_q_vector *q_vector,
struct sk_buff *skb)
{
struct igb_adapter *adapter = q_vector->adapter;
struct e1000_hw *hw = &adapter->hw;
u64 regval;
/* If this bit is set, then the RX registers contain the time stamp. No
* other packet will be time stamped until we read these registers, so
* read the registers to make them available again. Because only one
* packet can be time stamped at a time, we know that the register
* values must belong to this one here and therefore we don't need to
* compare any of the additional attributes stored for it.
*
* If nothing went wrong, then it should have a shared tx_flags that we
* can turn into a skb_shared_hwtstamps.
*/
if (!(rd32(E1000_TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID))
return;
regval = rd32(E1000_RXSTMPL);
regval |= (u64)rd32(E1000_RXSTMPH) << 32;
igb_ptp_systim_to_hwtstamp(adapter, skb_hwtstamps(skb), regval);
}
/**
* igb_ptp_hwtstamp_ioctl - control hardware time stamping
* @netdev:
* @ifreq:
* @cmd:
*
* Outgoing time stamping can be enabled and disabled. Play nice and
* disable it when requested, although it shouldn't case any overhead
* when no packet needs it. At most one packet in the queue may be
* marked for time stamping, otherwise it would be impossible to tell
* for sure to which packet the hardware time stamp belongs.
*
* Incoming time stamping has to be configured via the hardware
* filters. Not all combinations are supported, in particular event
* type has to be specified. Matching the kind of event packet is
* not supported, with the exception of "all V2 events regardless of
* level 2 or 4".
**/
int igb_ptp_hwtstamp_ioctl(struct net_device *netdev,
struct ifreq *ifr, int cmd)
{
struct igb_adapter *adapter = netdev_priv(netdev);
struct e1000_hw *hw = &adapter->hw;
struct hwtstamp_config config;
u32 tsync_tx_ctl = E1000_TSYNCTXCTL_ENABLED;
u32 tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
u32 tsync_rx_cfg = 0;
bool is_l4 = false;
bool is_l2 = false;
u32 regval;
if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
return -EFAULT;
/* reserved for future extensions */
if (config.flags)
return -EINVAL;
switch (config.tx_type) {
case HWTSTAMP_TX_OFF:
tsync_tx_ctl = 0;
case HWTSTAMP_TX_ON:
break;
default:
return -ERANGE;
}
switch (config.rx_filter) {
case HWTSTAMP_FILTER_NONE:
tsync_rx_ctl = 0;
break;
case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_SYNC_MESSAGE;
is_l4 = true;
break;
case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_DELAY_REQ_MESSAGE;
is_l4 = true;
break;
case HWTSTAMP_FILTER_PTP_V2_EVENT:
case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
case HWTSTAMP_FILTER_PTP_V2_SYNC:
case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_EVENT_V2;
config.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
is_l2 = true;
is_l4 = true;
break;
case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
case HWTSTAMP_FILTER_ALL:
/* 82576 cannot timestamp all packets, which it needs to do to
* support both V1 Sync and Delay_Req messages
*/
if (hw->mac.type != e1000_82576) {
tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
config.rx_filter = HWTSTAMP_FILTER_ALL;
break;
}
/* fall through */
default:
config.rx_filter = HWTSTAMP_FILTER_NONE;
return -ERANGE;
}
if (hw->mac.type == e1000_82575) {
if (tsync_rx_ctl | tsync_tx_ctl)
return -EINVAL;
return 0;
}
/* Per-packet timestamping only works if all packets are
* timestamped, so enable timestamping in all packets as
* long as one Rx filter was configured.
*/
if ((hw->mac.type >= e1000_82580) && tsync_rx_ctl) {
tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
config.rx_filter = HWTSTAMP_FILTER_ALL;
is_l2 = true;
is_l4 = true;
if ((hw->mac.type == e1000_i210) ||
(hw->mac.type == e1000_i211)) {
regval = rd32(E1000_RXPBS);
regval |= E1000_RXPBS_CFG_TS_EN;
wr32(E1000_RXPBS, regval);
}
}
/* enable/disable TX */
regval = rd32(E1000_TSYNCTXCTL);
regval &= ~E1000_TSYNCTXCTL_ENABLED;
regval |= tsync_tx_ctl;
wr32(E1000_TSYNCTXCTL, regval);
/* enable/disable RX */
regval = rd32(E1000_TSYNCRXCTL);
regval &= ~(E1000_TSYNCRXCTL_ENABLED | E1000_TSYNCRXCTL_TYPE_MASK);
regval |= tsync_rx_ctl;
wr32(E1000_TSYNCRXCTL, regval);
/* define which PTP packets are time stamped */
wr32(E1000_TSYNCRXCFG, tsync_rx_cfg);
/* define ethertype filter for timestamped packets */
if (is_l2)
wr32(E1000_ETQF(3),
(E1000_ETQF_FILTER_ENABLE | /* enable filter */
E1000_ETQF_1588 | /* enable timestamping */
ETH_P_1588)); /* 1588 eth protocol type */
else
wr32(E1000_ETQF(3), 0);
/* L4 Queue Filter[3]: filter by destination port and protocol */
if (is_l4) {
u32 ftqf = (IPPROTO_UDP /* UDP */
| E1000_FTQF_VF_BP /* VF not compared */
| E1000_FTQF_1588_TIME_STAMP /* Enable Timestamping */
| E1000_FTQF_MASK); /* mask all inputs */
ftqf &= ~E1000_FTQF_MASK_PROTO_BP; /* enable protocol check */
wr32(E1000_IMIR(3), htons(PTP_EV_PORT));
wr32(E1000_IMIREXT(3),
(E1000_IMIREXT_SIZE_BP | E1000_IMIREXT_CTRL_BP));
if (hw->mac.type == e1000_82576) {
/* enable source port check */
wr32(E1000_SPQF(3), htons(PTP_EV_PORT));
ftqf &= ~E1000_FTQF_MASK_SOURCE_PORT_BP;
}
wr32(E1000_FTQF(3), ftqf);
} else {
wr32(E1000_FTQF(3), E1000_FTQF_MASK);
}
wrfl();
/* clear TX/RX time stamp registers, just to be sure */
regval = rd32(E1000_TXSTMPL);
regval = rd32(E1000_TXSTMPH);
regval = rd32(E1000_RXSTMPL);
regval = rd32(E1000_RXSTMPH);
return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
-EFAULT : 0;
}
void igb_ptp_init(struct igb_adapter *adapter)
{
struct e1000_hw *hw = &adapter->hw;
struct net_device *netdev = adapter->netdev;
switch (hw->mac.type) {
case e1000_82576:
snprintf(adapter->ptp_caps.name, 16, "%pm", netdev->dev_addr);
adapter->ptp_caps.owner = THIS_MODULE;
adapter->ptp_caps.max_adj = 999999881;
adapter->ptp_caps.n_ext_ts = 0;
adapter->ptp_caps.pps = 0;
adapter->ptp_caps.adjfreq = igb_ptp_adjfreq_82576;
adapter->ptp_caps.adjtime = igb_ptp_adjtime_82576;
adapter->ptp_caps.gettime = igb_ptp_gettime_82576;
adapter->ptp_caps.settime = igb_ptp_settime_82576;
adapter->ptp_caps.enable = igb_ptp_enable;
adapter->cc.read = igb_ptp_read_82576;
adapter->cc.mask = CLOCKSOURCE_MASK(64);
adapter->cc.mult = 1;
adapter->cc.shift = IGB_82576_TSYNC_SHIFT;
/* Dial the nominal frequency. */
wr32(E1000_TIMINCA, INCPERIOD_82576 | INCVALUE_82576);
break;
case e1000_82580:
case e1000_i354:
case e1000_i350:
snprintf(adapter->ptp_caps.name, 16, "%pm", netdev->dev_addr);
adapter->ptp_caps.owner = THIS_MODULE;
adapter->ptp_caps.max_adj = 62499999;
adapter->ptp_caps.n_ext_ts = 0;
adapter->ptp_caps.pps = 0;
adapter->ptp_caps.adjfreq = igb_ptp_adjfreq_82580;
adapter->ptp_caps.adjtime = igb_ptp_adjtime_82576;
adapter->ptp_caps.gettime = igb_ptp_gettime_82576;
adapter->ptp_caps.settime = igb_ptp_settime_82576;
adapter->ptp_caps.enable = igb_ptp_enable;
adapter->cc.read = igb_ptp_read_82580;
adapter->cc.mask = CLOCKSOURCE_MASK(IGB_NBITS_82580);
adapter->cc.mult = 1;
adapter->cc.shift = 0;
/* Enable the timer functions by clearing bit 31. */
wr32(E1000_TSAUXC, 0x0);
break;
case e1000_i210:
case e1000_i211:
snprintf(adapter->ptp_caps.name, 16, "%pm", netdev->dev_addr);
adapter->ptp_caps.owner = THIS_MODULE;
adapter->ptp_caps.max_adj = 62499999;
adapter->ptp_caps.n_ext_ts = 0;
adapter->ptp_caps.pps = 0;
adapter->ptp_caps.adjfreq = igb_ptp_adjfreq_82580;
adapter->ptp_caps.adjtime = igb_ptp_adjtime_i210;
adapter->ptp_caps.gettime = igb_ptp_gettime_i210;
adapter->ptp_caps.settime = igb_ptp_settime_i210;
adapter->ptp_caps.enable = igb_ptp_enable;
/* Enable the timer functions by clearing bit 31. */
wr32(E1000_TSAUXC, 0x0);
break;
default:
adapter->ptp_clock = NULL;
return;
}
wrfl();
spin_lock_init(&adapter->tmreg_lock);
INIT_WORK(&adapter->ptp_tx_work, igb_ptp_tx_work);
/* Initialize the clock and overflow work for devices that need it. */
if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211)) {
struct timespec ts = ktime_to_timespec(ktime_get_real());
igb_ptp_settime_i210(&adapter->ptp_caps, &ts);
} else {
timecounter_init(&adapter->tc, &adapter->cc,
ktime_to_ns(ktime_get_real()));
INIT_DELAYED_WORK(&adapter->ptp_overflow_work,
igb_ptp_overflow_check);
schedule_delayed_work(&adapter->ptp_overflow_work,
IGB_SYSTIM_OVERFLOW_PERIOD);
}
/* Initialize the time sync interrupts for devices that support it. */
if (hw->mac.type >= e1000_82580) {
wr32(E1000_TSIM, E1000_TSIM_TXTS);
wr32(E1000_IMS, E1000_IMS_TS);
}
adapter->ptp_clock = ptp_clock_register(&adapter->ptp_caps,
&adapter->pdev->dev);
if (IS_ERR(adapter->ptp_clock)) {
adapter->ptp_clock = NULL;
dev_err(&adapter->pdev->dev, "ptp_clock_register failed\n");
} else {
dev_info(&adapter->pdev->dev, "added PHC on %s\n",
adapter->netdev->name);
adapter->flags |= IGB_FLAG_PTP;
}
}
/**
* igb_ptp_stop - Disable PTP device and stop the overflow check.
* @adapter: Board private structure.
*
* This function stops the PTP support and cancels the delayed work.
**/
void igb_ptp_stop(struct igb_adapter *adapter)
{
switch (adapter->hw.mac.type) {
case e1000_82576:
case e1000_82580:
case e1000_i354:
case e1000_i350:
cancel_delayed_work_sync(&adapter->ptp_overflow_work);
break;
case e1000_i210:
case e1000_i211:
/* No delayed work to cancel. */
break;
default:
return;
}
cancel_work_sync(&adapter->ptp_tx_work);
if (adapter->ptp_tx_skb) {
dev_kfree_skb_any(adapter->ptp_tx_skb);
adapter->ptp_tx_skb = NULL;
}
if (adapter->ptp_clock) {
ptp_clock_unregister(adapter->ptp_clock);
dev_info(&adapter->pdev->dev, "removed PHC on %s\n",
adapter->netdev->name);
adapter->flags &= ~IGB_FLAG_PTP;
}
}
/**
* igb_ptp_reset - Re-enable the adapter for PTP following a reset.
* @adapter: Board private structure.
*
* This function handles the reset work required to re-enable the PTP device.
**/
void igb_ptp_reset(struct igb_adapter *adapter)
{
struct e1000_hw *hw = &adapter->hw;
if (!(adapter->flags & IGB_FLAG_PTP))
return;
switch (adapter->hw.mac.type) {
case e1000_82576:
/* Dial the nominal frequency. */
wr32(E1000_TIMINCA, INCPERIOD_82576 | INCVALUE_82576);
break;
case e1000_82580:
case e1000_i354:
case e1000_i350:
case e1000_i210:
case e1000_i211:
/* Enable the timer functions and interrupts. */
wr32(E1000_TSAUXC, 0x0);
wr32(E1000_TSIM, E1000_TSIM_TXTS);
wr32(E1000_IMS, E1000_IMS_TS);
break;
default:
/* No work to do. */
return;
}
/* Re-initialize the timer. */
if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211)) {
struct timespec ts = ktime_to_timespec(ktime_get_real());
igb_ptp_settime_i210(&adapter->ptp_caps, &ts);
} else {
timecounter_init(&adapter->tc, &adapter->cc,
ktime_to_ns(ktime_get_real()));
}
}