mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2024-12-12 04:46:58 +07:00
53292cdb06
WaIdleLiteRestore is an execlists-only workaround, and requires the driver to ensure that any context always has HEAD!=TAIL when attempting lite restore. Add two extra MI_NOOP instructions at the end of each request, but keep the requests tail pointing before the MI_NOOPs. We may not need to executed them, and this is why request->tail is sampled before adding these extra instructions. If we submit a context to the ELSP which has previously been submitted, move the tail pointer past the MI_NOOPs. This ensures HEAD!=TAIL. v2: Move overallocation to gen8_emit_request, and added note about sampling request->tail in commit message (Chris). v3: Remove redundant request->tail assignment in __i915_add_request, in lrc mode this is already set in execlists_context_queue. Do not add wa implementation details inside gem (Chris). v4: Apply the wa whenever the req has been resubmitted and update comment (Chris). Cc: Chris Wilson <chris@chris-wilson.co.uk> Reviewed-by: Chris Wilson <chris@chris-wilson.co.uk> Signed-off-by: Thomas Daniel <thomas.daniel@intel.com> Signed-off-by: Michel Thierry <michel.thierry@intel.com> Signed-off-by: Jani Nikula <jani.nikula@intel.com>
2063 lines
60 KiB
C
2063 lines
60 KiB
C
/*
|
|
* Copyright © 2014 Intel Corporation
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a
|
|
* copy of this software and associated documentation files (the "Software"),
|
|
* to deal in the Software without restriction, including without limitation
|
|
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
|
|
* and/or sell copies of the Software, and to permit persons to whom the
|
|
* Software is furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice (including the next
|
|
* paragraph) shall be included in all copies or substantial portions of the
|
|
* Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
|
|
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
|
|
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
|
|
* IN THE SOFTWARE.
|
|
*
|
|
* Authors:
|
|
* Ben Widawsky <ben@bwidawsk.net>
|
|
* Michel Thierry <michel.thierry@intel.com>
|
|
* Thomas Daniel <thomas.daniel@intel.com>
|
|
* Oscar Mateo <oscar.mateo@intel.com>
|
|
*
|
|
*/
|
|
|
|
/**
|
|
* DOC: Logical Rings, Logical Ring Contexts and Execlists
|
|
*
|
|
* Motivation:
|
|
* GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
|
|
* These expanded contexts enable a number of new abilities, especially
|
|
* "Execlists" (also implemented in this file).
|
|
*
|
|
* One of the main differences with the legacy HW contexts is that logical
|
|
* ring contexts incorporate many more things to the context's state, like
|
|
* PDPs or ringbuffer control registers:
|
|
*
|
|
* The reason why PDPs are included in the context is straightforward: as
|
|
* PPGTTs (per-process GTTs) are actually per-context, having the PDPs
|
|
* contained there mean you don't need to do a ppgtt->switch_mm yourself,
|
|
* instead, the GPU will do it for you on the context switch.
|
|
*
|
|
* But, what about the ringbuffer control registers (head, tail, etc..)?
|
|
* shouldn't we just need a set of those per engine command streamer? This is
|
|
* where the name "Logical Rings" starts to make sense: by virtualizing the
|
|
* rings, the engine cs shifts to a new "ring buffer" with every context
|
|
* switch. When you want to submit a workload to the GPU you: A) choose your
|
|
* context, B) find its appropriate virtualized ring, C) write commands to it
|
|
* and then, finally, D) tell the GPU to switch to that context.
|
|
*
|
|
* Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
|
|
* to a contexts is via a context execution list, ergo "Execlists".
|
|
*
|
|
* LRC implementation:
|
|
* Regarding the creation of contexts, we have:
|
|
*
|
|
* - One global default context.
|
|
* - One local default context for each opened fd.
|
|
* - One local extra context for each context create ioctl call.
|
|
*
|
|
* Now that ringbuffers belong per-context (and not per-engine, like before)
|
|
* and that contexts are uniquely tied to a given engine (and not reusable,
|
|
* like before) we need:
|
|
*
|
|
* - One ringbuffer per-engine inside each context.
|
|
* - One backing object per-engine inside each context.
|
|
*
|
|
* The global default context starts its life with these new objects fully
|
|
* allocated and populated. The local default context for each opened fd is
|
|
* more complex, because we don't know at creation time which engine is going
|
|
* to use them. To handle this, we have implemented a deferred creation of LR
|
|
* contexts:
|
|
*
|
|
* The local context starts its life as a hollow or blank holder, that only
|
|
* gets populated for a given engine once we receive an execbuffer. If later
|
|
* on we receive another execbuffer ioctl for the same context but a different
|
|
* engine, we allocate/populate a new ringbuffer and context backing object and
|
|
* so on.
|
|
*
|
|
* Finally, regarding local contexts created using the ioctl call: as they are
|
|
* only allowed with the render ring, we can allocate & populate them right
|
|
* away (no need to defer anything, at least for now).
|
|
*
|
|
* Execlists implementation:
|
|
* Execlists are the new method by which, on gen8+ hardware, workloads are
|
|
* submitted for execution (as opposed to the legacy, ringbuffer-based, method).
|
|
* This method works as follows:
|
|
*
|
|
* When a request is committed, its commands (the BB start and any leading or
|
|
* trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
|
|
* for the appropriate context. The tail pointer in the hardware context is not
|
|
* updated at this time, but instead, kept by the driver in the ringbuffer
|
|
* structure. A structure representing this request is added to a request queue
|
|
* for the appropriate engine: this structure contains a copy of the context's
|
|
* tail after the request was written to the ring buffer and a pointer to the
|
|
* context itself.
|
|
*
|
|
* If the engine's request queue was empty before the request was added, the
|
|
* queue is processed immediately. Otherwise the queue will be processed during
|
|
* a context switch interrupt. In any case, elements on the queue will get sent
|
|
* (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
|
|
* globally unique 20-bits submission ID.
|
|
*
|
|
* When execution of a request completes, the GPU updates the context status
|
|
* buffer with a context complete event and generates a context switch interrupt.
|
|
* During the interrupt handling, the driver examines the events in the buffer:
|
|
* for each context complete event, if the announced ID matches that on the head
|
|
* of the request queue, then that request is retired and removed from the queue.
|
|
*
|
|
* After processing, if any requests were retired and the queue is not empty
|
|
* then a new execution list can be submitted. The two requests at the front of
|
|
* the queue are next to be submitted but since a context may not occur twice in
|
|
* an execution list, if subsequent requests have the same ID as the first then
|
|
* the two requests must be combined. This is done simply by discarding requests
|
|
* at the head of the queue until either only one requests is left (in which case
|
|
* we use a NULL second context) or the first two requests have unique IDs.
|
|
*
|
|
* By always executing the first two requests in the queue the driver ensures
|
|
* that the GPU is kept as busy as possible. In the case where a single context
|
|
* completes but a second context is still executing, the request for this second
|
|
* context will be at the head of the queue when we remove the first one. This
|
|
* request will then be resubmitted along with a new request for a different context,
|
|
* which will cause the hardware to continue executing the second request and queue
|
|
* the new request (the GPU detects the condition of a context getting preempted
|
|
* with the same context and optimizes the context switch flow by not doing
|
|
* preemption, but just sampling the new tail pointer).
|
|
*
|
|
*/
|
|
|
|
#include <drm/drmP.h>
|
|
#include <drm/i915_drm.h>
|
|
#include "i915_drv.h"
|
|
|
|
#define GEN9_LR_CONTEXT_RENDER_SIZE (22 * PAGE_SIZE)
|
|
#define GEN8_LR_CONTEXT_RENDER_SIZE (20 * PAGE_SIZE)
|
|
#define GEN8_LR_CONTEXT_OTHER_SIZE (2 * PAGE_SIZE)
|
|
|
|
#define RING_EXECLIST_QFULL (1 << 0x2)
|
|
#define RING_EXECLIST1_VALID (1 << 0x3)
|
|
#define RING_EXECLIST0_VALID (1 << 0x4)
|
|
#define RING_EXECLIST_ACTIVE_STATUS (3 << 0xE)
|
|
#define RING_EXECLIST1_ACTIVE (1 << 0x11)
|
|
#define RING_EXECLIST0_ACTIVE (1 << 0x12)
|
|
|
|
#define GEN8_CTX_STATUS_IDLE_ACTIVE (1 << 0)
|
|
#define GEN8_CTX_STATUS_PREEMPTED (1 << 1)
|
|
#define GEN8_CTX_STATUS_ELEMENT_SWITCH (1 << 2)
|
|
#define GEN8_CTX_STATUS_ACTIVE_IDLE (1 << 3)
|
|
#define GEN8_CTX_STATUS_COMPLETE (1 << 4)
|
|
#define GEN8_CTX_STATUS_LITE_RESTORE (1 << 15)
|
|
|
|
#define CTX_LRI_HEADER_0 0x01
|
|
#define CTX_CONTEXT_CONTROL 0x02
|
|
#define CTX_RING_HEAD 0x04
|
|
#define CTX_RING_TAIL 0x06
|
|
#define CTX_RING_BUFFER_START 0x08
|
|
#define CTX_RING_BUFFER_CONTROL 0x0a
|
|
#define CTX_BB_HEAD_U 0x0c
|
|
#define CTX_BB_HEAD_L 0x0e
|
|
#define CTX_BB_STATE 0x10
|
|
#define CTX_SECOND_BB_HEAD_U 0x12
|
|
#define CTX_SECOND_BB_HEAD_L 0x14
|
|
#define CTX_SECOND_BB_STATE 0x16
|
|
#define CTX_BB_PER_CTX_PTR 0x18
|
|
#define CTX_RCS_INDIRECT_CTX 0x1a
|
|
#define CTX_RCS_INDIRECT_CTX_OFFSET 0x1c
|
|
#define CTX_LRI_HEADER_1 0x21
|
|
#define CTX_CTX_TIMESTAMP 0x22
|
|
#define CTX_PDP3_UDW 0x24
|
|
#define CTX_PDP3_LDW 0x26
|
|
#define CTX_PDP2_UDW 0x28
|
|
#define CTX_PDP2_LDW 0x2a
|
|
#define CTX_PDP1_UDW 0x2c
|
|
#define CTX_PDP1_LDW 0x2e
|
|
#define CTX_PDP0_UDW 0x30
|
|
#define CTX_PDP0_LDW 0x32
|
|
#define CTX_LRI_HEADER_2 0x41
|
|
#define CTX_R_PWR_CLK_STATE 0x42
|
|
#define CTX_GPGPU_CSR_BASE_ADDRESS 0x44
|
|
|
|
#define GEN8_CTX_VALID (1<<0)
|
|
#define GEN8_CTX_FORCE_PD_RESTORE (1<<1)
|
|
#define GEN8_CTX_FORCE_RESTORE (1<<2)
|
|
#define GEN8_CTX_L3LLC_COHERENT (1<<5)
|
|
#define GEN8_CTX_PRIVILEGE (1<<8)
|
|
enum {
|
|
ADVANCED_CONTEXT = 0,
|
|
LEGACY_CONTEXT,
|
|
ADVANCED_AD_CONTEXT,
|
|
LEGACY_64B_CONTEXT
|
|
};
|
|
#define GEN8_CTX_MODE_SHIFT 3
|
|
enum {
|
|
FAULT_AND_HANG = 0,
|
|
FAULT_AND_HALT, /* Debug only */
|
|
FAULT_AND_STREAM,
|
|
FAULT_AND_CONTINUE /* Unsupported */
|
|
};
|
|
#define GEN8_CTX_ID_SHIFT 32
|
|
|
|
static int intel_lr_context_pin(struct intel_engine_cs *ring,
|
|
struct intel_context *ctx);
|
|
|
|
/**
|
|
* intel_sanitize_enable_execlists() - sanitize i915.enable_execlists
|
|
* @dev: DRM device.
|
|
* @enable_execlists: value of i915.enable_execlists module parameter.
|
|
*
|
|
* Only certain platforms support Execlists (the prerequisites being
|
|
* support for Logical Ring Contexts and Aliasing PPGTT or better).
|
|
*
|
|
* Return: 1 if Execlists is supported and has to be enabled.
|
|
*/
|
|
int intel_sanitize_enable_execlists(struct drm_device *dev, int enable_execlists)
|
|
{
|
|
WARN_ON(i915.enable_ppgtt == -1);
|
|
|
|
if (INTEL_INFO(dev)->gen >= 9)
|
|
return 1;
|
|
|
|
if (enable_execlists == 0)
|
|
return 0;
|
|
|
|
if (HAS_LOGICAL_RING_CONTEXTS(dev) && USES_PPGTT(dev) &&
|
|
i915.use_mmio_flip >= 0)
|
|
return 1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* intel_execlists_ctx_id() - get the Execlists Context ID
|
|
* @ctx_obj: Logical Ring Context backing object.
|
|
*
|
|
* Do not confuse with ctx->id! Unfortunately we have a name overload
|
|
* here: the old context ID we pass to userspace as a handler so that
|
|
* they can refer to a context, and the new context ID we pass to the
|
|
* ELSP so that the GPU can inform us of the context status via
|
|
* interrupts.
|
|
*
|
|
* Return: 20-bits globally unique context ID.
|
|
*/
|
|
u32 intel_execlists_ctx_id(struct drm_i915_gem_object *ctx_obj)
|
|
{
|
|
u32 lrca = i915_gem_obj_ggtt_offset(ctx_obj);
|
|
|
|
/* LRCA is required to be 4K aligned so the more significant 20 bits
|
|
* are globally unique */
|
|
return lrca >> 12;
|
|
}
|
|
|
|
static uint64_t execlists_ctx_descriptor(struct intel_engine_cs *ring,
|
|
struct drm_i915_gem_object *ctx_obj)
|
|
{
|
|
struct drm_device *dev = ring->dev;
|
|
uint64_t desc;
|
|
uint64_t lrca = i915_gem_obj_ggtt_offset(ctx_obj);
|
|
|
|
WARN_ON(lrca & 0xFFFFFFFF00000FFFULL);
|
|
|
|
desc = GEN8_CTX_VALID;
|
|
desc |= LEGACY_CONTEXT << GEN8_CTX_MODE_SHIFT;
|
|
desc |= GEN8_CTX_L3LLC_COHERENT;
|
|
desc |= GEN8_CTX_PRIVILEGE;
|
|
desc |= lrca;
|
|
desc |= (u64)intel_execlists_ctx_id(ctx_obj) << GEN8_CTX_ID_SHIFT;
|
|
|
|
/* TODO: WaDisableLiteRestore when we start using semaphore
|
|
* signalling between Command Streamers */
|
|
/* desc |= GEN8_CTX_FORCE_RESTORE; */
|
|
|
|
/* WaEnableForceRestoreInCtxtDescForVCS:skl */
|
|
if (IS_GEN9(dev) &&
|
|
INTEL_REVID(dev) <= SKL_REVID_B0 &&
|
|
(ring->id == BCS || ring->id == VCS ||
|
|
ring->id == VECS || ring->id == VCS2))
|
|
desc |= GEN8_CTX_FORCE_RESTORE;
|
|
|
|
return desc;
|
|
}
|
|
|
|
static void execlists_elsp_write(struct intel_engine_cs *ring,
|
|
struct drm_i915_gem_object *ctx_obj0,
|
|
struct drm_i915_gem_object *ctx_obj1)
|
|
{
|
|
struct drm_device *dev = ring->dev;
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
uint64_t temp = 0;
|
|
uint32_t desc[4];
|
|
|
|
/* XXX: You must always write both descriptors in the order below. */
|
|
if (ctx_obj1)
|
|
temp = execlists_ctx_descriptor(ring, ctx_obj1);
|
|
else
|
|
temp = 0;
|
|
desc[1] = (u32)(temp >> 32);
|
|
desc[0] = (u32)temp;
|
|
|
|
temp = execlists_ctx_descriptor(ring, ctx_obj0);
|
|
desc[3] = (u32)(temp >> 32);
|
|
desc[2] = (u32)temp;
|
|
|
|
intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
|
|
I915_WRITE(RING_ELSP(ring), desc[1]);
|
|
I915_WRITE(RING_ELSP(ring), desc[0]);
|
|
I915_WRITE(RING_ELSP(ring), desc[3]);
|
|
|
|
/* The context is automatically loaded after the following */
|
|
I915_WRITE(RING_ELSP(ring), desc[2]);
|
|
|
|
/* ELSP is a wo register, so use another nearby reg for posting instead */
|
|
POSTING_READ(RING_EXECLIST_STATUS(ring));
|
|
intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
|
|
}
|
|
|
|
static int execlists_update_context(struct drm_i915_gem_object *ctx_obj,
|
|
struct drm_i915_gem_object *ring_obj,
|
|
u32 tail)
|
|
{
|
|
struct page *page;
|
|
uint32_t *reg_state;
|
|
|
|
page = i915_gem_object_get_page(ctx_obj, 1);
|
|
reg_state = kmap_atomic(page);
|
|
|
|
reg_state[CTX_RING_TAIL+1] = tail;
|
|
reg_state[CTX_RING_BUFFER_START+1] = i915_gem_obj_ggtt_offset(ring_obj);
|
|
|
|
kunmap_atomic(reg_state);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void execlists_submit_contexts(struct intel_engine_cs *ring,
|
|
struct intel_context *to0, u32 tail0,
|
|
struct intel_context *to1, u32 tail1)
|
|
{
|
|
struct drm_i915_gem_object *ctx_obj0 = to0->engine[ring->id].state;
|
|
struct intel_ringbuffer *ringbuf0 = to0->engine[ring->id].ringbuf;
|
|
struct drm_i915_gem_object *ctx_obj1 = NULL;
|
|
struct intel_ringbuffer *ringbuf1 = NULL;
|
|
|
|
BUG_ON(!ctx_obj0);
|
|
WARN_ON(!i915_gem_obj_is_pinned(ctx_obj0));
|
|
WARN_ON(!i915_gem_obj_is_pinned(ringbuf0->obj));
|
|
|
|
execlists_update_context(ctx_obj0, ringbuf0->obj, tail0);
|
|
|
|
if (to1) {
|
|
ringbuf1 = to1->engine[ring->id].ringbuf;
|
|
ctx_obj1 = to1->engine[ring->id].state;
|
|
BUG_ON(!ctx_obj1);
|
|
WARN_ON(!i915_gem_obj_is_pinned(ctx_obj1));
|
|
WARN_ON(!i915_gem_obj_is_pinned(ringbuf1->obj));
|
|
|
|
execlists_update_context(ctx_obj1, ringbuf1->obj, tail1);
|
|
}
|
|
|
|
execlists_elsp_write(ring, ctx_obj0, ctx_obj1);
|
|
}
|
|
|
|
static void execlists_context_unqueue(struct intel_engine_cs *ring)
|
|
{
|
|
struct drm_i915_gem_request *req0 = NULL, *req1 = NULL;
|
|
struct drm_i915_gem_request *cursor = NULL, *tmp = NULL;
|
|
|
|
assert_spin_locked(&ring->execlist_lock);
|
|
|
|
if (list_empty(&ring->execlist_queue))
|
|
return;
|
|
|
|
/* Try to read in pairs */
|
|
list_for_each_entry_safe(cursor, tmp, &ring->execlist_queue,
|
|
execlist_link) {
|
|
if (!req0) {
|
|
req0 = cursor;
|
|
} else if (req0->ctx == cursor->ctx) {
|
|
/* Same ctx: ignore first request, as second request
|
|
* will update tail past first request's workload */
|
|
cursor->elsp_submitted = req0->elsp_submitted;
|
|
list_del(&req0->execlist_link);
|
|
list_add_tail(&req0->execlist_link,
|
|
&ring->execlist_retired_req_list);
|
|
req0 = cursor;
|
|
} else {
|
|
req1 = cursor;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (IS_GEN8(ring->dev) || IS_GEN9(ring->dev)) {
|
|
/*
|
|
* WaIdleLiteRestore: make sure we never cause a lite
|
|
* restore with HEAD==TAIL
|
|
*/
|
|
if (req0 && req0->elsp_submitted) {
|
|
/*
|
|
* Apply the wa NOOPS to prevent ring:HEAD == req:TAIL
|
|
* as we resubmit the request. See gen8_emit_request()
|
|
* for where we prepare the padding after the end of the
|
|
* request.
|
|
*/
|
|
struct intel_ringbuffer *ringbuf;
|
|
|
|
ringbuf = req0->ctx->engine[ring->id].ringbuf;
|
|
req0->tail += 8;
|
|
req0->tail &= ringbuf->size - 1;
|
|
}
|
|
}
|
|
|
|
WARN_ON(req1 && req1->elsp_submitted);
|
|
|
|
execlists_submit_contexts(ring, req0->ctx, req0->tail,
|
|
req1 ? req1->ctx : NULL,
|
|
req1 ? req1->tail : 0);
|
|
|
|
req0->elsp_submitted++;
|
|
if (req1)
|
|
req1->elsp_submitted++;
|
|
}
|
|
|
|
static bool execlists_check_remove_request(struct intel_engine_cs *ring,
|
|
u32 request_id)
|
|
{
|
|
struct drm_i915_gem_request *head_req;
|
|
|
|
assert_spin_locked(&ring->execlist_lock);
|
|
|
|
head_req = list_first_entry_or_null(&ring->execlist_queue,
|
|
struct drm_i915_gem_request,
|
|
execlist_link);
|
|
|
|
if (head_req != NULL) {
|
|
struct drm_i915_gem_object *ctx_obj =
|
|
head_req->ctx->engine[ring->id].state;
|
|
if (intel_execlists_ctx_id(ctx_obj) == request_id) {
|
|
WARN(head_req->elsp_submitted == 0,
|
|
"Never submitted head request\n");
|
|
|
|
if (--head_req->elsp_submitted <= 0) {
|
|
list_del(&head_req->execlist_link);
|
|
list_add_tail(&head_req->execlist_link,
|
|
&ring->execlist_retired_req_list);
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/**
|
|
* intel_lrc_irq_handler() - handle Context Switch interrupts
|
|
* @ring: Engine Command Streamer to handle.
|
|
*
|
|
* Check the unread Context Status Buffers and manage the submission of new
|
|
* contexts to the ELSP accordingly.
|
|
*/
|
|
void intel_lrc_irq_handler(struct intel_engine_cs *ring)
|
|
{
|
|
struct drm_i915_private *dev_priv = ring->dev->dev_private;
|
|
u32 status_pointer;
|
|
u8 read_pointer;
|
|
u8 write_pointer;
|
|
u32 status;
|
|
u32 status_id;
|
|
u32 submit_contexts = 0;
|
|
|
|
status_pointer = I915_READ(RING_CONTEXT_STATUS_PTR(ring));
|
|
|
|
read_pointer = ring->next_context_status_buffer;
|
|
write_pointer = status_pointer & 0x07;
|
|
if (read_pointer > write_pointer)
|
|
write_pointer += 6;
|
|
|
|
spin_lock(&ring->execlist_lock);
|
|
|
|
while (read_pointer < write_pointer) {
|
|
read_pointer++;
|
|
status = I915_READ(RING_CONTEXT_STATUS_BUF(ring) +
|
|
(read_pointer % 6) * 8);
|
|
status_id = I915_READ(RING_CONTEXT_STATUS_BUF(ring) +
|
|
(read_pointer % 6) * 8 + 4);
|
|
|
|
if (status & GEN8_CTX_STATUS_PREEMPTED) {
|
|
if (status & GEN8_CTX_STATUS_LITE_RESTORE) {
|
|
if (execlists_check_remove_request(ring, status_id))
|
|
WARN(1, "Lite Restored request removed from queue\n");
|
|
} else
|
|
WARN(1, "Preemption without Lite Restore\n");
|
|
}
|
|
|
|
if ((status & GEN8_CTX_STATUS_ACTIVE_IDLE) ||
|
|
(status & GEN8_CTX_STATUS_ELEMENT_SWITCH)) {
|
|
if (execlists_check_remove_request(ring, status_id))
|
|
submit_contexts++;
|
|
}
|
|
}
|
|
|
|
if (submit_contexts != 0)
|
|
execlists_context_unqueue(ring);
|
|
|
|
spin_unlock(&ring->execlist_lock);
|
|
|
|
WARN(submit_contexts > 2, "More than two context complete events?\n");
|
|
ring->next_context_status_buffer = write_pointer % 6;
|
|
|
|
I915_WRITE(RING_CONTEXT_STATUS_PTR(ring),
|
|
((u32)ring->next_context_status_buffer & 0x07) << 8);
|
|
}
|
|
|
|
static int execlists_context_queue(struct intel_engine_cs *ring,
|
|
struct intel_context *to,
|
|
u32 tail,
|
|
struct drm_i915_gem_request *request)
|
|
{
|
|
struct drm_i915_gem_request *cursor;
|
|
struct drm_i915_private *dev_priv = ring->dev->dev_private;
|
|
unsigned long flags;
|
|
int num_elements = 0;
|
|
|
|
if (to != ring->default_context)
|
|
intel_lr_context_pin(ring, to);
|
|
|
|
if (!request) {
|
|
/*
|
|
* If there isn't a request associated with this submission,
|
|
* create one as a temporary holder.
|
|
*/
|
|
request = kzalloc(sizeof(*request), GFP_KERNEL);
|
|
if (request == NULL)
|
|
return -ENOMEM;
|
|
request->ring = ring;
|
|
request->ctx = to;
|
|
kref_init(&request->ref);
|
|
request->uniq = dev_priv->request_uniq++;
|
|
i915_gem_context_reference(request->ctx);
|
|
} else {
|
|
i915_gem_request_reference(request);
|
|
WARN_ON(to != request->ctx);
|
|
}
|
|
request->tail = tail;
|
|
|
|
intel_runtime_pm_get(dev_priv);
|
|
|
|
spin_lock_irqsave(&ring->execlist_lock, flags);
|
|
|
|
list_for_each_entry(cursor, &ring->execlist_queue, execlist_link)
|
|
if (++num_elements > 2)
|
|
break;
|
|
|
|
if (num_elements > 2) {
|
|
struct drm_i915_gem_request *tail_req;
|
|
|
|
tail_req = list_last_entry(&ring->execlist_queue,
|
|
struct drm_i915_gem_request,
|
|
execlist_link);
|
|
|
|
if (to == tail_req->ctx) {
|
|
WARN(tail_req->elsp_submitted != 0,
|
|
"More than 2 already-submitted reqs queued\n");
|
|
list_del(&tail_req->execlist_link);
|
|
list_add_tail(&tail_req->execlist_link,
|
|
&ring->execlist_retired_req_list);
|
|
}
|
|
}
|
|
|
|
list_add_tail(&request->execlist_link, &ring->execlist_queue);
|
|
if (num_elements == 0)
|
|
execlists_context_unqueue(ring);
|
|
|
|
spin_unlock_irqrestore(&ring->execlist_lock, flags);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int logical_ring_invalidate_all_caches(struct intel_ringbuffer *ringbuf,
|
|
struct intel_context *ctx)
|
|
{
|
|
struct intel_engine_cs *ring = ringbuf->ring;
|
|
uint32_t flush_domains;
|
|
int ret;
|
|
|
|
flush_domains = 0;
|
|
if (ring->gpu_caches_dirty)
|
|
flush_domains = I915_GEM_GPU_DOMAINS;
|
|
|
|
ret = ring->emit_flush(ringbuf, ctx,
|
|
I915_GEM_GPU_DOMAINS, flush_domains);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ring->gpu_caches_dirty = false;
|
|
return 0;
|
|
}
|
|
|
|
static int execlists_move_to_gpu(struct intel_ringbuffer *ringbuf,
|
|
struct intel_context *ctx,
|
|
struct list_head *vmas)
|
|
{
|
|
struct intel_engine_cs *ring = ringbuf->ring;
|
|
struct i915_vma *vma;
|
|
uint32_t flush_domains = 0;
|
|
bool flush_chipset = false;
|
|
int ret;
|
|
|
|
list_for_each_entry(vma, vmas, exec_list) {
|
|
struct drm_i915_gem_object *obj = vma->obj;
|
|
|
|
ret = i915_gem_object_sync(obj, ring);
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (obj->base.write_domain & I915_GEM_DOMAIN_CPU)
|
|
flush_chipset |= i915_gem_clflush_object(obj, false);
|
|
|
|
flush_domains |= obj->base.write_domain;
|
|
}
|
|
|
|
if (flush_domains & I915_GEM_DOMAIN_GTT)
|
|
wmb();
|
|
|
|
/* Unconditionally invalidate gpu caches and ensure that we do flush
|
|
* any residual writes from the previous batch.
|
|
*/
|
|
return logical_ring_invalidate_all_caches(ringbuf, ctx);
|
|
}
|
|
|
|
/**
|
|
* execlists_submission() - submit a batchbuffer for execution, Execlists style
|
|
* @dev: DRM device.
|
|
* @file: DRM file.
|
|
* @ring: Engine Command Streamer to submit to.
|
|
* @ctx: Context to employ for this submission.
|
|
* @args: execbuffer call arguments.
|
|
* @vmas: list of vmas.
|
|
* @batch_obj: the batchbuffer to submit.
|
|
* @exec_start: batchbuffer start virtual address pointer.
|
|
* @dispatch_flags: translated execbuffer call flags.
|
|
*
|
|
* This is the evil twin version of i915_gem_ringbuffer_submission. It abstracts
|
|
* away the submission details of the execbuffer ioctl call.
|
|
*
|
|
* Return: non-zero if the submission fails.
|
|
*/
|
|
int intel_execlists_submission(struct drm_device *dev, struct drm_file *file,
|
|
struct intel_engine_cs *ring,
|
|
struct intel_context *ctx,
|
|
struct drm_i915_gem_execbuffer2 *args,
|
|
struct list_head *vmas,
|
|
struct drm_i915_gem_object *batch_obj,
|
|
u64 exec_start, u32 dispatch_flags)
|
|
{
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
struct intel_ringbuffer *ringbuf = ctx->engine[ring->id].ringbuf;
|
|
int instp_mode;
|
|
u32 instp_mask;
|
|
int ret;
|
|
|
|
instp_mode = args->flags & I915_EXEC_CONSTANTS_MASK;
|
|
instp_mask = I915_EXEC_CONSTANTS_MASK;
|
|
switch (instp_mode) {
|
|
case I915_EXEC_CONSTANTS_REL_GENERAL:
|
|
case I915_EXEC_CONSTANTS_ABSOLUTE:
|
|
case I915_EXEC_CONSTANTS_REL_SURFACE:
|
|
if (instp_mode != 0 && ring != &dev_priv->ring[RCS]) {
|
|
DRM_DEBUG("non-0 rel constants mode on non-RCS\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (instp_mode != dev_priv->relative_constants_mode) {
|
|
if (instp_mode == I915_EXEC_CONSTANTS_REL_SURFACE) {
|
|
DRM_DEBUG("rel surface constants mode invalid on gen5+\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* The HW changed the meaning on this bit on gen6 */
|
|
instp_mask &= ~I915_EXEC_CONSTANTS_REL_SURFACE;
|
|
}
|
|
break;
|
|
default:
|
|
DRM_DEBUG("execbuf with unknown constants: %d\n", instp_mode);
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (args->num_cliprects != 0) {
|
|
DRM_DEBUG("clip rectangles are only valid on pre-gen5\n");
|
|
return -EINVAL;
|
|
} else {
|
|
if (args->DR4 == 0xffffffff) {
|
|
DRM_DEBUG("UXA submitting garbage DR4, fixing up\n");
|
|
args->DR4 = 0;
|
|
}
|
|
|
|
if (args->DR1 || args->DR4 || args->cliprects_ptr) {
|
|
DRM_DEBUG("0 cliprects but dirt in cliprects fields\n");
|
|
return -EINVAL;
|
|
}
|
|
}
|
|
|
|
if (args->flags & I915_EXEC_GEN7_SOL_RESET) {
|
|
DRM_DEBUG("sol reset is gen7 only\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
ret = execlists_move_to_gpu(ringbuf, ctx, vmas);
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (ring == &dev_priv->ring[RCS] &&
|
|
instp_mode != dev_priv->relative_constants_mode) {
|
|
ret = intel_logical_ring_begin(ringbuf, ctx, 4);
|
|
if (ret)
|
|
return ret;
|
|
|
|
intel_logical_ring_emit(ringbuf, MI_NOOP);
|
|
intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(1));
|
|
intel_logical_ring_emit(ringbuf, INSTPM);
|
|
intel_logical_ring_emit(ringbuf, instp_mask << 16 | instp_mode);
|
|
intel_logical_ring_advance(ringbuf);
|
|
|
|
dev_priv->relative_constants_mode = instp_mode;
|
|
}
|
|
|
|
ret = ring->emit_bb_start(ringbuf, ctx, exec_start, dispatch_flags);
|
|
if (ret)
|
|
return ret;
|
|
|
|
trace_i915_gem_ring_dispatch(intel_ring_get_request(ring), dispatch_flags);
|
|
|
|
i915_gem_execbuffer_move_to_active(vmas, ring);
|
|
i915_gem_execbuffer_retire_commands(dev, file, ring, batch_obj);
|
|
|
|
return 0;
|
|
}
|
|
|
|
void intel_execlists_retire_requests(struct intel_engine_cs *ring)
|
|
{
|
|
struct drm_i915_gem_request *req, *tmp;
|
|
struct drm_i915_private *dev_priv = ring->dev->dev_private;
|
|
unsigned long flags;
|
|
struct list_head retired_list;
|
|
|
|
WARN_ON(!mutex_is_locked(&ring->dev->struct_mutex));
|
|
if (list_empty(&ring->execlist_retired_req_list))
|
|
return;
|
|
|
|
INIT_LIST_HEAD(&retired_list);
|
|
spin_lock_irqsave(&ring->execlist_lock, flags);
|
|
list_replace_init(&ring->execlist_retired_req_list, &retired_list);
|
|
spin_unlock_irqrestore(&ring->execlist_lock, flags);
|
|
|
|
list_for_each_entry_safe(req, tmp, &retired_list, execlist_link) {
|
|
struct intel_context *ctx = req->ctx;
|
|
struct drm_i915_gem_object *ctx_obj =
|
|
ctx->engine[ring->id].state;
|
|
|
|
if (ctx_obj && (ctx != ring->default_context))
|
|
intel_lr_context_unpin(ring, ctx);
|
|
intel_runtime_pm_put(dev_priv);
|
|
list_del(&req->execlist_link);
|
|
i915_gem_request_unreference(req);
|
|
}
|
|
}
|
|
|
|
void intel_logical_ring_stop(struct intel_engine_cs *ring)
|
|
{
|
|
struct drm_i915_private *dev_priv = ring->dev->dev_private;
|
|
int ret;
|
|
|
|
if (!intel_ring_initialized(ring))
|
|
return;
|
|
|
|
ret = intel_ring_idle(ring);
|
|
if (ret && !i915_reset_in_progress(&to_i915(ring->dev)->gpu_error))
|
|
DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
|
|
ring->name, ret);
|
|
|
|
/* TODO: Is this correct with Execlists enabled? */
|
|
I915_WRITE_MODE(ring, _MASKED_BIT_ENABLE(STOP_RING));
|
|
if (wait_for_atomic((I915_READ_MODE(ring) & MODE_IDLE) != 0, 1000)) {
|
|
DRM_ERROR("%s :timed out trying to stop ring\n", ring->name);
|
|
return;
|
|
}
|
|
I915_WRITE_MODE(ring, _MASKED_BIT_DISABLE(STOP_RING));
|
|
}
|
|
|
|
int logical_ring_flush_all_caches(struct intel_ringbuffer *ringbuf,
|
|
struct intel_context *ctx)
|
|
{
|
|
struct intel_engine_cs *ring = ringbuf->ring;
|
|
int ret;
|
|
|
|
if (!ring->gpu_caches_dirty)
|
|
return 0;
|
|
|
|
ret = ring->emit_flush(ringbuf, ctx, 0, I915_GEM_GPU_DOMAINS);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ring->gpu_caches_dirty = false;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* intel_logical_ring_advance_and_submit() - advance the tail and submit the workload
|
|
* @ringbuf: Logical Ringbuffer to advance.
|
|
*
|
|
* The tail is updated in our logical ringbuffer struct, not in the actual context. What
|
|
* really happens during submission is that the context and current tail will be placed
|
|
* on a queue waiting for the ELSP to be ready to accept a new context submission. At that
|
|
* point, the tail *inside* the context is updated and the ELSP written to.
|
|
*/
|
|
static void
|
|
intel_logical_ring_advance_and_submit(struct intel_ringbuffer *ringbuf,
|
|
struct intel_context *ctx,
|
|
struct drm_i915_gem_request *request)
|
|
{
|
|
struct intel_engine_cs *ring = ringbuf->ring;
|
|
|
|
intel_logical_ring_advance(ringbuf);
|
|
|
|
if (intel_ring_stopped(ring))
|
|
return;
|
|
|
|
execlists_context_queue(ring, ctx, ringbuf->tail, request);
|
|
}
|
|
|
|
static int intel_lr_context_pin(struct intel_engine_cs *ring,
|
|
struct intel_context *ctx)
|
|
{
|
|
struct drm_i915_gem_object *ctx_obj = ctx->engine[ring->id].state;
|
|
struct intel_ringbuffer *ringbuf = ctx->engine[ring->id].ringbuf;
|
|
int ret = 0;
|
|
|
|
WARN_ON(!mutex_is_locked(&ring->dev->struct_mutex));
|
|
if (ctx->engine[ring->id].pin_count++ == 0) {
|
|
ret = i915_gem_obj_ggtt_pin(ctx_obj,
|
|
GEN8_LR_CONTEXT_ALIGN, 0);
|
|
if (ret)
|
|
goto reset_pin_count;
|
|
|
|
ret = intel_pin_and_map_ringbuffer_obj(ring->dev, ringbuf);
|
|
if (ret)
|
|
goto unpin_ctx_obj;
|
|
}
|
|
|
|
return ret;
|
|
|
|
unpin_ctx_obj:
|
|
i915_gem_object_ggtt_unpin(ctx_obj);
|
|
reset_pin_count:
|
|
ctx->engine[ring->id].pin_count = 0;
|
|
|
|
return ret;
|
|
}
|
|
|
|
void intel_lr_context_unpin(struct intel_engine_cs *ring,
|
|
struct intel_context *ctx)
|
|
{
|
|
struct drm_i915_gem_object *ctx_obj = ctx->engine[ring->id].state;
|
|
struct intel_ringbuffer *ringbuf = ctx->engine[ring->id].ringbuf;
|
|
|
|
if (ctx_obj) {
|
|
WARN_ON(!mutex_is_locked(&ring->dev->struct_mutex));
|
|
if (--ctx->engine[ring->id].pin_count == 0) {
|
|
intel_unpin_ringbuffer_obj(ringbuf);
|
|
i915_gem_object_ggtt_unpin(ctx_obj);
|
|
}
|
|
}
|
|
}
|
|
|
|
static int logical_ring_alloc_request(struct intel_engine_cs *ring,
|
|
struct intel_context *ctx)
|
|
{
|
|
struct drm_i915_gem_request *request;
|
|
struct drm_i915_private *dev_private = ring->dev->dev_private;
|
|
int ret;
|
|
|
|
if (ring->outstanding_lazy_request)
|
|
return 0;
|
|
|
|
request = kzalloc(sizeof(*request), GFP_KERNEL);
|
|
if (request == NULL)
|
|
return -ENOMEM;
|
|
|
|
if (ctx != ring->default_context) {
|
|
ret = intel_lr_context_pin(ring, ctx);
|
|
if (ret) {
|
|
kfree(request);
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
kref_init(&request->ref);
|
|
request->ring = ring;
|
|
request->uniq = dev_private->request_uniq++;
|
|
|
|
ret = i915_gem_get_seqno(ring->dev, &request->seqno);
|
|
if (ret) {
|
|
intel_lr_context_unpin(ring, ctx);
|
|
kfree(request);
|
|
return ret;
|
|
}
|
|
|
|
request->ctx = ctx;
|
|
i915_gem_context_reference(request->ctx);
|
|
request->ringbuf = ctx->engine[ring->id].ringbuf;
|
|
|
|
ring->outstanding_lazy_request = request;
|
|
return 0;
|
|
}
|
|
|
|
static int logical_ring_wait_request(struct intel_ringbuffer *ringbuf,
|
|
int bytes)
|
|
{
|
|
struct intel_engine_cs *ring = ringbuf->ring;
|
|
struct drm_i915_gem_request *request;
|
|
int ret;
|
|
|
|
if (intel_ring_space(ringbuf) >= bytes)
|
|
return 0;
|
|
|
|
list_for_each_entry(request, &ring->request_list, list) {
|
|
/*
|
|
* The request queue is per-engine, so can contain requests
|
|
* from multiple ringbuffers. Here, we must ignore any that
|
|
* aren't from the ringbuffer we're considering.
|
|
*/
|
|
struct intel_context *ctx = request->ctx;
|
|
if (ctx->engine[ring->id].ringbuf != ringbuf)
|
|
continue;
|
|
|
|
/* Would completion of this request free enough space? */
|
|
if (__intel_ring_space(request->tail, ringbuf->tail,
|
|
ringbuf->size) >= bytes) {
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (&request->list == &ring->request_list)
|
|
return -ENOSPC;
|
|
|
|
ret = i915_wait_request(request);
|
|
if (ret)
|
|
return ret;
|
|
|
|
i915_gem_retire_requests_ring(ring);
|
|
|
|
return intel_ring_space(ringbuf) >= bytes ? 0 : -ENOSPC;
|
|
}
|
|
|
|
static int logical_ring_wait_for_space(struct intel_ringbuffer *ringbuf,
|
|
struct intel_context *ctx,
|
|
int bytes)
|
|
{
|
|
struct intel_engine_cs *ring = ringbuf->ring;
|
|
struct drm_device *dev = ring->dev;
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
unsigned long end;
|
|
int ret;
|
|
|
|
ret = logical_ring_wait_request(ringbuf, bytes);
|
|
if (ret != -ENOSPC)
|
|
return ret;
|
|
|
|
/* Force the context submission in case we have been skipping it */
|
|
intel_logical_ring_advance_and_submit(ringbuf, ctx, NULL);
|
|
|
|
/* With GEM the hangcheck timer should kick us out of the loop,
|
|
* leaving it early runs the risk of corrupting GEM state (due
|
|
* to running on almost untested codepaths). But on resume
|
|
* timers don't work yet, so prevent a complete hang in that
|
|
* case by choosing an insanely large timeout. */
|
|
end = jiffies + 60 * HZ;
|
|
|
|
ret = 0;
|
|
do {
|
|
if (intel_ring_space(ringbuf) >= bytes)
|
|
break;
|
|
|
|
msleep(1);
|
|
|
|
if (dev_priv->mm.interruptible && signal_pending(current)) {
|
|
ret = -ERESTARTSYS;
|
|
break;
|
|
}
|
|
|
|
ret = i915_gem_check_wedge(&dev_priv->gpu_error,
|
|
dev_priv->mm.interruptible);
|
|
if (ret)
|
|
break;
|
|
|
|
if (time_after(jiffies, end)) {
|
|
ret = -EBUSY;
|
|
break;
|
|
}
|
|
} while (1);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int logical_ring_wrap_buffer(struct intel_ringbuffer *ringbuf,
|
|
struct intel_context *ctx)
|
|
{
|
|
uint32_t __iomem *virt;
|
|
int rem = ringbuf->size - ringbuf->tail;
|
|
|
|
if (ringbuf->space < rem) {
|
|
int ret = logical_ring_wait_for_space(ringbuf, ctx, rem);
|
|
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
|
|
virt = ringbuf->virtual_start + ringbuf->tail;
|
|
rem /= 4;
|
|
while (rem--)
|
|
iowrite32(MI_NOOP, virt++);
|
|
|
|
ringbuf->tail = 0;
|
|
intel_ring_update_space(ringbuf);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int logical_ring_prepare(struct intel_ringbuffer *ringbuf,
|
|
struct intel_context *ctx, int bytes)
|
|
{
|
|
int ret;
|
|
|
|
if (unlikely(ringbuf->tail + bytes > ringbuf->effective_size)) {
|
|
ret = logical_ring_wrap_buffer(ringbuf, ctx);
|
|
if (unlikely(ret))
|
|
return ret;
|
|
}
|
|
|
|
if (unlikely(ringbuf->space < bytes)) {
|
|
ret = logical_ring_wait_for_space(ringbuf, ctx, bytes);
|
|
if (unlikely(ret))
|
|
return ret;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* intel_logical_ring_begin() - prepare the logical ringbuffer to accept some commands
|
|
*
|
|
* @ringbuf: Logical ringbuffer.
|
|
* @num_dwords: number of DWORDs that we plan to write to the ringbuffer.
|
|
*
|
|
* The ringbuffer might not be ready to accept the commands right away (maybe it needs to
|
|
* be wrapped, or wait a bit for the tail to be updated). This function takes care of that
|
|
* and also preallocates a request (every workload submission is still mediated through
|
|
* requests, same as it did with legacy ringbuffer submission).
|
|
*
|
|
* Return: non-zero if the ringbuffer is not ready to be written to.
|
|
*/
|
|
int intel_logical_ring_begin(struct intel_ringbuffer *ringbuf,
|
|
struct intel_context *ctx, int num_dwords)
|
|
{
|
|
struct intel_engine_cs *ring = ringbuf->ring;
|
|
struct drm_device *dev = ring->dev;
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
int ret;
|
|
|
|
ret = i915_gem_check_wedge(&dev_priv->gpu_error,
|
|
dev_priv->mm.interruptible);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = logical_ring_prepare(ringbuf, ctx, num_dwords * sizeof(uint32_t));
|
|
if (ret)
|
|
return ret;
|
|
|
|
/* Preallocate the olr before touching the ring */
|
|
ret = logical_ring_alloc_request(ring, ctx);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ringbuf->space -= num_dwords * sizeof(uint32_t);
|
|
return 0;
|
|
}
|
|
|
|
static int intel_logical_ring_workarounds_emit(struct intel_engine_cs *ring,
|
|
struct intel_context *ctx)
|
|
{
|
|
int ret, i;
|
|
struct intel_ringbuffer *ringbuf = ctx->engine[ring->id].ringbuf;
|
|
struct drm_device *dev = ring->dev;
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
struct i915_workarounds *w = &dev_priv->workarounds;
|
|
|
|
if (WARN_ON_ONCE(w->count == 0))
|
|
return 0;
|
|
|
|
ring->gpu_caches_dirty = true;
|
|
ret = logical_ring_flush_all_caches(ringbuf, ctx);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = intel_logical_ring_begin(ringbuf, ctx, w->count * 2 + 2);
|
|
if (ret)
|
|
return ret;
|
|
|
|
intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(w->count));
|
|
for (i = 0; i < w->count; i++) {
|
|
intel_logical_ring_emit(ringbuf, w->reg[i].addr);
|
|
intel_logical_ring_emit(ringbuf, w->reg[i].value);
|
|
}
|
|
intel_logical_ring_emit(ringbuf, MI_NOOP);
|
|
|
|
intel_logical_ring_advance(ringbuf);
|
|
|
|
ring->gpu_caches_dirty = true;
|
|
ret = logical_ring_flush_all_caches(ringbuf, ctx);
|
|
if (ret)
|
|
return ret;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int gen8_init_common_ring(struct intel_engine_cs *ring)
|
|
{
|
|
struct drm_device *dev = ring->dev;
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
|
|
I915_WRITE_IMR(ring, ~(ring->irq_enable_mask | ring->irq_keep_mask));
|
|
I915_WRITE(RING_HWSTAM(ring->mmio_base), 0xffffffff);
|
|
|
|
I915_WRITE(RING_MODE_GEN7(ring),
|
|
_MASKED_BIT_DISABLE(GFX_REPLAY_MODE) |
|
|
_MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE));
|
|
POSTING_READ(RING_MODE_GEN7(ring));
|
|
ring->next_context_status_buffer = 0;
|
|
DRM_DEBUG_DRIVER("Execlists enabled for %s\n", ring->name);
|
|
|
|
memset(&ring->hangcheck, 0, sizeof(ring->hangcheck));
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int gen8_init_render_ring(struct intel_engine_cs *ring)
|
|
{
|
|
struct drm_device *dev = ring->dev;
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
int ret;
|
|
|
|
ret = gen8_init_common_ring(ring);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/* We need to disable the AsyncFlip performance optimisations in order
|
|
* to use MI_WAIT_FOR_EVENT within the CS. It should already be
|
|
* programmed to '1' on all products.
|
|
*
|
|
* WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
|
|
*/
|
|
I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
|
|
|
|
I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
|
|
|
|
return init_workarounds_ring(ring);
|
|
}
|
|
|
|
static int gen9_init_render_ring(struct intel_engine_cs *ring)
|
|
{
|
|
int ret;
|
|
|
|
ret = gen8_init_common_ring(ring);
|
|
if (ret)
|
|
return ret;
|
|
|
|
return init_workarounds_ring(ring);
|
|
}
|
|
|
|
static int gen8_emit_bb_start(struct intel_ringbuffer *ringbuf,
|
|
struct intel_context *ctx,
|
|
u64 offset, unsigned dispatch_flags)
|
|
{
|
|
bool ppgtt = !(dispatch_flags & I915_DISPATCH_SECURE);
|
|
int ret;
|
|
|
|
ret = intel_logical_ring_begin(ringbuf, ctx, 4);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/* FIXME(BDW): Address space and security selectors. */
|
|
intel_logical_ring_emit(ringbuf, MI_BATCH_BUFFER_START_GEN8 | (ppgtt<<8));
|
|
intel_logical_ring_emit(ringbuf, lower_32_bits(offset));
|
|
intel_logical_ring_emit(ringbuf, upper_32_bits(offset));
|
|
intel_logical_ring_emit(ringbuf, MI_NOOP);
|
|
intel_logical_ring_advance(ringbuf);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static bool gen8_logical_ring_get_irq(struct intel_engine_cs *ring)
|
|
{
|
|
struct drm_device *dev = ring->dev;
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
unsigned long flags;
|
|
|
|
if (WARN_ON(!intel_irqs_enabled(dev_priv)))
|
|
return false;
|
|
|
|
spin_lock_irqsave(&dev_priv->irq_lock, flags);
|
|
if (ring->irq_refcount++ == 0) {
|
|
I915_WRITE_IMR(ring, ~(ring->irq_enable_mask | ring->irq_keep_mask));
|
|
POSTING_READ(RING_IMR(ring->mmio_base));
|
|
}
|
|
spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
|
|
|
|
return true;
|
|
}
|
|
|
|
static void gen8_logical_ring_put_irq(struct intel_engine_cs *ring)
|
|
{
|
|
struct drm_device *dev = ring->dev;
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&dev_priv->irq_lock, flags);
|
|
if (--ring->irq_refcount == 0) {
|
|
I915_WRITE_IMR(ring, ~ring->irq_keep_mask);
|
|
POSTING_READ(RING_IMR(ring->mmio_base));
|
|
}
|
|
spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
|
|
}
|
|
|
|
static int gen8_emit_flush(struct intel_ringbuffer *ringbuf,
|
|
struct intel_context *ctx,
|
|
u32 invalidate_domains,
|
|
u32 unused)
|
|
{
|
|
struct intel_engine_cs *ring = ringbuf->ring;
|
|
struct drm_device *dev = ring->dev;
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
uint32_t cmd;
|
|
int ret;
|
|
|
|
ret = intel_logical_ring_begin(ringbuf, ctx, 4);
|
|
if (ret)
|
|
return ret;
|
|
|
|
cmd = MI_FLUSH_DW + 1;
|
|
|
|
/* We always require a command barrier so that subsequent
|
|
* commands, such as breadcrumb interrupts, are strictly ordered
|
|
* wrt the contents of the write cache being flushed to memory
|
|
* (and thus being coherent from the CPU).
|
|
*/
|
|
cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
|
|
|
|
if (invalidate_domains & I915_GEM_GPU_DOMAINS) {
|
|
cmd |= MI_INVALIDATE_TLB;
|
|
if (ring == &dev_priv->ring[VCS])
|
|
cmd |= MI_INVALIDATE_BSD;
|
|
}
|
|
|
|
intel_logical_ring_emit(ringbuf, cmd);
|
|
intel_logical_ring_emit(ringbuf,
|
|
I915_GEM_HWS_SCRATCH_ADDR |
|
|
MI_FLUSH_DW_USE_GTT);
|
|
intel_logical_ring_emit(ringbuf, 0); /* upper addr */
|
|
intel_logical_ring_emit(ringbuf, 0); /* value */
|
|
intel_logical_ring_advance(ringbuf);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int gen8_emit_flush_render(struct intel_ringbuffer *ringbuf,
|
|
struct intel_context *ctx,
|
|
u32 invalidate_domains,
|
|
u32 flush_domains)
|
|
{
|
|
struct intel_engine_cs *ring = ringbuf->ring;
|
|
u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
|
|
u32 flags = 0;
|
|
int ret;
|
|
|
|
flags |= PIPE_CONTROL_CS_STALL;
|
|
|
|
if (flush_domains) {
|
|
flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
|
|
flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
|
|
}
|
|
|
|
if (invalidate_domains) {
|
|
flags |= PIPE_CONTROL_TLB_INVALIDATE;
|
|
flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
|
|
flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
|
|
flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
|
|
flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
|
|
flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
|
|
flags |= PIPE_CONTROL_QW_WRITE;
|
|
flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
|
|
}
|
|
|
|
ret = intel_logical_ring_begin(ringbuf, ctx, 6);
|
|
if (ret)
|
|
return ret;
|
|
|
|
intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
|
|
intel_logical_ring_emit(ringbuf, flags);
|
|
intel_logical_ring_emit(ringbuf, scratch_addr);
|
|
intel_logical_ring_emit(ringbuf, 0);
|
|
intel_logical_ring_emit(ringbuf, 0);
|
|
intel_logical_ring_emit(ringbuf, 0);
|
|
intel_logical_ring_advance(ringbuf);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static u32 gen8_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
|
|
{
|
|
return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
|
|
}
|
|
|
|
static void gen8_set_seqno(struct intel_engine_cs *ring, u32 seqno)
|
|
{
|
|
intel_write_status_page(ring, I915_GEM_HWS_INDEX, seqno);
|
|
}
|
|
|
|
static int gen8_emit_request(struct intel_ringbuffer *ringbuf,
|
|
struct drm_i915_gem_request *request)
|
|
{
|
|
struct intel_engine_cs *ring = ringbuf->ring;
|
|
u32 cmd;
|
|
int ret;
|
|
|
|
/*
|
|
* Reserve space for 2 NOOPs at the end of each request to be
|
|
* used as a workaround for not being allowed to do lite
|
|
* restore with HEAD==TAIL (WaIdleLiteRestore).
|
|
*/
|
|
ret = intel_logical_ring_begin(ringbuf, request->ctx, 8);
|
|
if (ret)
|
|
return ret;
|
|
|
|
cmd = MI_STORE_DWORD_IMM_GEN4;
|
|
cmd |= MI_GLOBAL_GTT;
|
|
|
|
intel_logical_ring_emit(ringbuf, cmd);
|
|
intel_logical_ring_emit(ringbuf,
|
|
(ring->status_page.gfx_addr +
|
|
(I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT)));
|
|
intel_logical_ring_emit(ringbuf, 0);
|
|
intel_logical_ring_emit(ringbuf,
|
|
i915_gem_request_get_seqno(ring->outstanding_lazy_request));
|
|
intel_logical_ring_emit(ringbuf, MI_USER_INTERRUPT);
|
|
intel_logical_ring_emit(ringbuf, MI_NOOP);
|
|
intel_logical_ring_advance_and_submit(ringbuf, request->ctx, request);
|
|
|
|
/*
|
|
* Here we add two extra NOOPs as padding to avoid
|
|
* lite restore of a context with HEAD==TAIL.
|
|
*/
|
|
intel_logical_ring_emit(ringbuf, MI_NOOP);
|
|
intel_logical_ring_emit(ringbuf, MI_NOOP);
|
|
intel_logical_ring_advance(ringbuf);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int intel_lr_context_render_state_init(struct intel_engine_cs *ring,
|
|
struct intel_context *ctx)
|
|
{
|
|
struct intel_ringbuffer *ringbuf = ctx->engine[ring->id].ringbuf;
|
|
struct render_state so;
|
|
struct drm_i915_file_private *file_priv = ctx->file_priv;
|
|
struct drm_file *file = file_priv ? file_priv->file : NULL;
|
|
int ret;
|
|
|
|
ret = i915_gem_render_state_prepare(ring, &so);
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (so.rodata == NULL)
|
|
return 0;
|
|
|
|
ret = ring->emit_bb_start(ringbuf,
|
|
ctx,
|
|
so.ggtt_offset,
|
|
I915_DISPATCH_SECURE);
|
|
if (ret)
|
|
goto out;
|
|
|
|
i915_vma_move_to_active(i915_gem_obj_to_ggtt(so.obj), ring);
|
|
|
|
ret = __i915_add_request(ring, file, so.obj);
|
|
/* intel_logical_ring_add_request moves object to inactive if it
|
|
* fails */
|
|
out:
|
|
i915_gem_render_state_fini(&so);
|
|
return ret;
|
|
}
|
|
|
|
static int gen8_init_rcs_context(struct intel_engine_cs *ring,
|
|
struct intel_context *ctx)
|
|
{
|
|
int ret;
|
|
|
|
ret = intel_logical_ring_workarounds_emit(ring, ctx);
|
|
if (ret)
|
|
return ret;
|
|
|
|
return intel_lr_context_render_state_init(ring, ctx);
|
|
}
|
|
|
|
/**
|
|
* intel_logical_ring_cleanup() - deallocate the Engine Command Streamer
|
|
*
|
|
* @ring: Engine Command Streamer.
|
|
*
|
|
*/
|
|
void intel_logical_ring_cleanup(struct intel_engine_cs *ring)
|
|
{
|
|
struct drm_i915_private *dev_priv;
|
|
|
|
if (!intel_ring_initialized(ring))
|
|
return;
|
|
|
|
dev_priv = ring->dev->dev_private;
|
|
|
|
intel_logical_ring_stop(ring);
|
|
WARN_ON((I915_READ_MODE(ring) & MODE_IDLE) == 0);
|
|
i915_gem_request_assign(&ring->outstanding_lazy_request, NULL);
|
|
|
|
if (ring->cleanup)
|
|
ring->cleanup(ring);
|
|
|
|
i915_cmd_parser_fini_ring(ring);
|
|
|
|
if (ring->status_page.obj) {
|
|
kunmap(sg_page(ring->status_page.obj->pages->sgl));
|
|
ring->status_page.obj = NULL;
|
|
}
|
|
}
|
|
|
|
static int logical_ring_init(struct drm_device *dev, struct intel_engine_cs *ring)
|
|
{
|
|
int ret;
|
|
|
|
/* Intentionally left blank. */
|
|
ring->buffer = NULL;
|
|
|
|
ring->dev = dev;
|
|
INIT_LIST_HEAD(&ring->active_list);
|
|
INIT_LIST_HEAD(&ring->request_list);
|
|
init_waitqueue_head(&ring->irq_queue);
|
|
|
|
INIT_LIST_HEAD(&ring->execlist_queue);
|
|
INIT_LIST_HEAD(&ring->execlist_retired_req_list);
|
|
spin_lock_init(&ring->execlist_lock);
|
|
|
|
ret = i915_cmd_parser_init_ring(ring);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = intel_lr_context_deferred_create(ring->default_context, ring);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int logical_render_ring_init(struct drm_device *dev)
|
|
{
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
struct intel_engine_cs *ring = &dev_priv->ring[RCS];
|
|
int ret;
|
|
|
|
ring->name = "render ring";
|
|
ring->id = RCS;
|
|
ring->mmio_base = RENDER_RING_BASE;
|
|
ring->irq_enable_mask =
|
|
GT_RENDER_USER_INTERRUPT << GEN8_RCS_IRQ_SHIFT;
|
|
ring->irq_keep_mask =
|
|
GT_CONTEXT_SWITCH_INTERRUPT << GEN8_RCS_IRQ_SHIFT;
|
|
if (HAS_L3_DPF(dev))
|
|
ring->irq_keep_mask |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
|
|
|
|
if (INTEL_INFO(dev)->gen >= 9)
|
|
ring->init_hw = gen9_init_render_ring;
|
|
else
|
|
ring->init_hw = gen8_init_render_ring;
|
|
ring->init_context = gen8_init_rcs_context;
|
|
ring->cleanup = intel_fini_pipe_control;
|
|
ring->get_seqno = gen8_get_seqno;
|
|
ring->set_seqno = gen8_set_seqno;
|
|
ring->emit_request = gen8_emit_request;
|
|
ring->emit_flush = gen8_emit_flush_render;
|
|
ring->irq_get = gen8_logical_ring_get_irq;
|
|
ring->irq_put = gen8_logical_ring_put_irq;
|
|
ring->emit_bb_start = gen8_emit_bb_start;
|
|
|
|
ring->dev = dev;
|
|
ret = logical_ring_init(dev, ring);
|
|
if (ret)
|
|
return ret;
|
|
|
|
return intel_init_pipe_control(ring);
|
|
}
|
|
|
|
static int logical_bsd_ring_init(struct drm_device *dev)
|
|
{
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
struct intel_engine_cs *ring = &dev_priv->ring[VCS];
|
|
|
|
ring->name = "bsd ring";
|
|
ring->id = VCS;
|
|
ring->mmio_base = GEN6_BSD_RING_BASE;
|
|
ring->irq_enable_mask =
|
|
GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
|
|
ring->irq_keep_mask =
|
|
GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
|
|
|
|
ring->init_hw = gen8_init_common_ring;
|
|
ring->get_seqno = gen8_get_seqno;
|
|
ring->set_seqno = gen8_set_seqno;
|
|
ring->emit_request = gen8_emit_request;
|
|
ring->emit_flush = gen8_emit_flush;
|
|
ring->irq_get = gen8_logical_ring_get_irq;
|
|
ring->irq_put = gen8_logical_ring_put_irq;
|
|
ring->emit_bb_start = gen8_emit_bb_start;
|
|
|
|
return logical_ring_init(dev, ring);
|
|
}
|
|
|
|
static int logical_bsd2_ring_init(struct drm_device *dev)
|
|
{
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
struct intel_engine_cs *ring = &dev_priv->ring[VCS2];
|
|
|
|
ring->name = "bds2 ring";
|
|
ring->id = VCS2;
|
|
ring->mmio_base = GEN8_BSD2_RING_BASE;
|
|
ring->irq_enable_mask =
|
|
GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT;
|
|
ring->irq_keep_mask =
|
|
GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS2_IRQ_SHIFT;
|
|
|
|
ring->init_hw = gen8_init_common_ring;
|
|
ring->get_seqno = gen8_get_seqno;
|
|
ring->set_seqno = gen8_set_seqno;
|
|
ring->emit_request = gen8_emit_request;
|
|
ring->emit_flush = gen8_emit_flush;
|
|
ring->irq_get = gen8_logical_ring_get_irq;
|
|
ring->irq_put = gen8_logical_ring_put_irq;
|
|
ring->emit_bb_start = gen8_emit_bb_start;
|
|
|
|
return logical_ring_init(dev, ring);
|
|
}
|
|
|
|
static int logical_blt_ring_init(struct drm_device *dev)
|
|
{
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
struct intel_engine_cs *ring = &dev_priv->ring[BCS];
|
|
|
|
ring->name = "blitter ring";
|
|
ring->id = BCS;
|
|
ring->mmio_base = BLT_RING_BASE;
|
|
ring->irq_enable_mask =
|
|
GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
|
|
ring->irq_keep_mask =
|
|
GT_CONTEXT_SWITCH_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
|
|
|
|
ring->init_hw = gen8_init_common_ring;
|
|
ring->get_seqno = gen8_get_seqno;
|
|
ring->set_seqno = gen8_set_seqno;
|
|
ring->emit_request = gen8_emit_request;
|
|
ring->emit_flush = gen8_emit_flush;
|
|
ring->irq_get = gen8_logical_ring_get_irq;
|
|
ring->irq_put = gen8_logical_ring_put_irq;
|
|
ring->emit_bb_start = gen8_emit_bb_start;
|
|
|
|
return logical_ring_init(dev, ring);
|
|
}
|
|
|
|
static int logical_vebox_ring_init(struct drm_device *dev)
|
|
{
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
struct intel_engine_cs *ring = &dev_priv->ring[VECS];
|
|
|
|
ring->name = "video enhancement ring";
|
|
ring->id = VECS;
|
|
ring->mmio_base = VEBOX_RING_BASE;
|
|
ring->irq_enable_mask =
|
|
GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
|
|
ring->irq_keep_mask =
|
|
GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
|
|
|
|
ring->init_hw = gen8_init_common_ring;
|
|
ring->get_seqno = gen8_get_seqno;
|
|
ring->set_seqno = gen8_set_seqno;
|
|
ring->emit_request = gen8_emit_request;
|
|
ring->emit_flush = gen8_emit_flush;
|
|
ring->irq_get = gen8_logical_ring_get_irq;
|
|
ring->irq_put = gen8_logical_ring_put_irq;
|
|
ring->emit_bb_start = gen8_emit_bb_start;
|
|
|
|
return logical_ring_init(dev, ring);
|
|
}
|
|
|
|
/**
|
|
* intel_logical_rings_init() - allocate, populate and init the Engine Command Streamers
|
|
* @dev: DRM device.
|
|
*
|
|
* This function inits the engines for an Execlists submission style (the equivalent in the
|
|
* legacy ringbuffer submission world would be i915_gem_init_rings). It does it only for
|
|
* those engines that are present in the hardware.
|
|
*
|
|
* Return: non-zero if the initialization failed.
|
|
*/
|
|
int intel_logical_rings_init(struct drm_device *dev)
|
|
{
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
int ret;
|
|
|
|
ret = logical_render_ring_init(dev);
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (HAS_BSD(dev)) {
|
|
ret = logical_bsd_ring_init(dev);
|
|
if (ret)
|
|
goto cleanup_render_ring;
|
|
}
|
|
|
|
if (HAS_BLT(dev)) {
|
|
ret = logical_blt_ring_init(dev);
|
|
if (ret)
|
|
goto cleanup_bsd_ring;
|
|
}
|
|
|
|
if (HAS_VEBOX(dev)) {
|
|
ret = logical_vebox_ring_init(dev);
|
|
if (ret)
|
|
goto cleanup_blt_ring;
|
|
}
|
|
|
|
if (HAS_BSD2(dev)) {
|
|
ret = logical_bsd2_ring_init(dev);
|
|
if (ret)
|
|
goto cleanup_vebox_ring;
|
|
}
|
|
|
|
ret = i915_gem_set_seqno(dev, ((u32)~0 - 0x1000));
|
|
if (ret)
|
|
goto cleanup_bsd2_ring;
|
|
|
|
return 0;
|
|
|
|
cleanup_bsd2_ring:
|
|
intel_logical_ring_cleanup(&dev_priv->ring[VCS2]);
|
|
cleanup_vebox_ring:
|
|
intel_logical_ring_cleanup(&dev_priv->ring[VECS]);
|
|
cleanup_blt_ring:
|
|
intel_logical_ring_cleanup(&dev_priv->ring[BCS]);
|
|
cleanup_bsd_ring:
|
|
intel_logical_ring_cleanup(&dev_priv->ring[VCS]);
|
|
cleanup_render_ring:
|
|
intel_logical_ring_cleanup(&dev_priv->ring[RCS]);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static u32
|
|
make_rpcs(struct drm_device *dev)
|
|
{
|
|
u32 rpcs = 0;
|
|
|
|
/*
|
|
* No explicit RPCS request is needed to ensure full
|
|
* slice/subslice/EU enablement prior to Gen9.
|
|
*/
|
|
if (INTEL_INFO(dev)->gen < 9)
|
|
return 0;
|
|
|
|
/*
|
|
* Starting in Gen9, render power gating can leave
|
|
* slice/subslice/EU in a partially enabled state. We
|
|
* must make an explicit request through RPCS for full
|
|
* enablement.
|
|
*/
|
|
if (INTEL_INFO(dev)->has_slice_pg) {
|
|
rpcs |= GEN8_RPCS_S_CNT_ENABLE;
|
|
rpcs |= INTEL_INFO(dev)->slice_total <<
|
|
GEN8_RPCS_S_CNT_SHIFT;
|
|
rpcs |= GEN8_RPCS_ENABLE;
|
|
}
|
|
|
|
if (INTEL_INFO(dev)->has_subslice_pg) {
|
|
rpcs |= GEN8_RPCS_SS_CNT_ENABLE;
|
|
rpcs |= INTEL_INFO(dev)->subslice_per_slice <<
|
|
GEN8_RPCS_SS_CNT_SHIFT;
|
|
rpcs |= GEN8_RPCS_ENABLE;
|
|
}
|
|
|
|
if (INTEL_INFO(dev)->has_eu_pg) {
|
|
rpcs |= INTEL_INFO(dev)->eu_per_subslice <<
|
|
GEN8_RPCS_EU_MIN_SHIFT;
|
|
rpcs |= INTEL_INFO(dev)->eu_per_subslice <<
|
|
GEN8_RPCS_EU_MAX_SHIFT;
|
|
rpcs |= GEN8_RPCS_ENABLE;
|
|
}
|
|
|
|
return rpcs;
|
|
}
|
|
|
|
static int
|
|
populate_lr_context(struct intel_context *ctx, struct drm_i915_gem_object *ctx_obj,
|
|
struct intel_engine_cs *ring, struct intel_ringbuffer *ringbuf)
|
|
{
|
|
struct drm_device *dev = ring->dev;
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
struct i915_hw_ppgtt *ppgtt = ctx->ppgtt;
|
|
struct page *page;
|
|
uint32_t *reg_state;
|
|
int ret;
|
|
|
|
if (!ppgtt)
|
|
ppgtt = dev_priv->mm.aliasing_ppgtt;
|
|
|
|
ret = i915_gem_object_set_to_cpu_domain(ctx_obj, true);
|
|
if (ret) {
|
|
DRM_DEBUG_DRIVER("Could not set to CPU domain\n");
|
|
return ret;
|
|
}
|
|
|
|
ret = i915_gem_object_get_pages(ctx_obj);
|
|
if (ret) {
|
|
DRM_DEBUG_DRIVER("Could not get object pages\n");
|
|
return ret;
|
|
}
|
|
|
|
i915_gem_object_pin_pages(ctx_obj);
|
|
|
|
/* The second page of the context object contains some fields which must
|
|
* be set up prior to the first execution. */
|
|
page = i915_gem_object_get_page(ctx_obj, 1);
|
|
reg_state = kmap_atomic(page);
|
|
|
|
/* A context is actually a big batch buffer with several MI_LOAD_REGISTER_IMM
|
|
* commands followed by (reg, value) pairs. The values we are setting here are
|
|
* only for the first context restore: on a subsequent save, the GPU will
|
|
* recreate this batchbuffer with new values (including all the missing
|
|
* MI_LOAD_REGISTER_IMM commands that we are not initializing here). */
|
|
if (ring->id == RCS)
|
|
reg_state[CTX_LRI_HEADER_0] = MI_LOAD_REGISTER_IMM(14);
|
|
else
|
|
reg_state[CTX_LRI_HEADER_0] = MI_LOAD_REGISTER_IMM(11);
|
|
reg_state[CTX_LRI_HEADER_0] |= MI_LRI_FORCE_POSTED;
|
|
reg_state[CTX_CONTEXT_CONTROL] = RING_CONTEXT_CONTROL(ring);
|
|
reg_state[CTX_CONTEXT_CONTROL+1] =
|
|
_MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH |
|
|
CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT);
|
|
reg_state[CTX_RING_HEAD] = RING_HEAD(ring->mmio_base);
|
|
reg_state[CTX_RING_HEAD+1] = 0;
|
|
reg_state[CTX_RING_TAIL] = RING_TAIL(ring->mmio_base);
|
|
reg_state[CTX_RING_TAIL+1] = 0;
|
|
reg_state[CTX_RING_BUFFER_START] = RING_START(ring->mmio_base);
|
|
/* Ring buffer start address is not known until the buffer is pinned.
|
|
* It is written to the context image in execlists_update_context()
|
|
*/
|
|
reg_state[CTX_RING_BUFFER_CONTROL] = RING_CTL(ring->mmio_base);
|
|
reg_state[CTX_RING_BUFFER_CONTROL+1] =
|
|
((ringbuf->size - PAGE_SIZE) & RING_NR_PAGES) | RING_VALID;
|
|
reg_state[CTX_BB_HEAD_U] = ring->mmio_base + 0x168;
|
|
reg_state[CTX_BB_HEAD_U+1] = 0;
|
|
reg_state[CTX_BB_HEAD_L] = ring->mmio_base + 0x140;
|
|
reg_state[CTX_BB_HEAD_L+1] = 0;
|
|
reg_state[CTX_BB_STATE] = ring->mmio_base + 0x110;
|
|
reg_state[CTX_BB_STATE+1] = (1<<5);
|
|
reg_state[CTX_SECOND_BB_HEAD_U] = ring->mmio_base + 0x11c;
|
|
reg_state[CTX_SECOND_BB_HEAD_U+1] = 0;
|
|
reg_state[CTX_SECOND_BB_HEAD_L] = ring->mmio_base + 0x114;
|
|
reg_state[CTX_SECOND_BB_HEAD_L+1] = 0;
|
|
reg_state[CTX_SECOND_BB_STATE] = ring->mmio_base + 0x118;
|
|
reg_state[CTX_SECOND_BB_STATE+1] = 0;
|
|
if (ring->id == RCS) {
|
|
/* TODO: according to BSpec, the register state context
|
|
* for CHV does not have these. OTOH, these registers do
|
|
* exist in CHV. I'm waiting for a clarification */
|
|
reg_state[CTX_BB_PER_CTX_PTR] = ring->mmio_base + 0x1c0;
|
|
reg_state[CTX_BB_PER_CTX_PTR+1] = 0;
|
|
reg_state[CTX_RCS_INDIRECT_CTX] = ring->mmio_base + 0x1c4;
|
|
reg_state[CTX_RCS_INDIRECT_CTX+1] = 0;
|
|
reg_state[CTX_RCS_INDIRECT_CTX_OFFSET] = ring->mmio_base + 0x1c8;
|
|
reg_state[CTX_RCS_INDIRECT_CTX_OFFSET+1] = 0;
|
|
}
|
|
reg_state[CTX_LRI_HEADER_1] = MI_LOAD_REGISTER_IMM(9);
|
|
reg_state[CTX_LRI_HEADER_1] |= MI_LRI_FORCE_POSTED;
|
|
reg_state[CTX_CTX_TIMESTAMP] = ring->mmio_base + 0x3a8;
|
|
reg_state[CTX_CTX_TIMESTAMP+1] = 0;
|
|
reg_state[CTX_PDP3_UDW] = GEN8_RING_PDP_UDW(ring, 3);
|
|
reg_state[CTX_PDP3_LDW] = GEN8_RING_PDP_LDW(ring, 3);
|
|
reg_state[CTX_PDP2_UDW] = GEN8_RING_PDP_UDW(ring, 2);
|
|
reg_state[CTX_PDP2_LDW] = GEN8_RING_PDP_LDW(ring, 2);
|
|
reg_state[CTX_PDP1_UDW] = GEN8_RING_PDP_UDW(ring, 1);
|
|
reg_state[CTX_PDP1_LDW] = GEN8_RING_PDP_LDW(ring, 1);
|
|
reg_state[CTX_PDP0_UDW] = GEN8_RING_PDP_UDW(ring, 0);
|
|
reg_state[CTX_PDP0_LDW] = GEN8_RING_PDP_LDW(ring, 0);
|
|
reg_state[CTX_PDP3_UDW+1] = upper_32_bits(ppgtt->pdp.page_directory[3]->daddr);
|
|
reg_state[CTX_PDP3_LDW+1] = lower_32_bits(ppgtt->pdp.page_directory[3]->daddr);
|
|
reg_state[CTX_PDP2_UDW+1] = upper_32_bits(ppgtt->pdp.page_directory[2]->daddr);
|
|
reg_state[CTX_PDP2_LDW+1] = lower_32_bits(ppgtt->pdp.page_directory[2]->daddr);
|
|
reg_state[CTX_PDP1_UDW+1] = upper_32_bits(ppgtt->pdp.page_directory[1]->daddr);
|
|
reg_state[CTX_PDP1_LDW+1] = lower_32_bits(ppgtt->pdp.page_directory[1]->daddr);
|
|
reg_state[CTX_PDP0_UDW+1] = upper_32_bits(ppgtt->pdp.page_directory[0]->daddr);
|
|
reg_state[CTX_PDP0_LDW+1] = lower_32_bits(ppgtt->pdp.page_directory[0]->daddr);
|
|
if (ring->id == RCS) {
|
|
reg_state[CTX_LRI_HEADER_2] = MI_LOAD_REGISTER_IMM(1);
|
|
reg_state[CTX_R_PWR_CLK_STATE] = GEN8_R_PWR_CLK_STATE;
|
|
reg_state[CTX_R_PWR_CLK_STATE+1] = make_rpcs(dev);
|
|
}
|
|
|
|
kunmap_atomic(reg_state);
|
|
|
|
ctx_obj->dirty = 1;
|
|
set_page_dirty(page);
|
|
i915_gem_object_unpin_pages(ctx_obj);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* intel_lr_context_free() - free the LRC specific bits of a context
|
|
* @ctx: the LR context to free.
|
|
*
|
|
* The real context freeing is done in i915_gem_context_free: this only
|
|
* takes care of the bits that are LRC related: the per-engine backing
|
|
* objects and the logical ringbuffer.
|
|
*/
|
|
void intel_lr_context_free(struct intel_context *ctx)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < I915_NUM_RINGS; i++) {
|
|
struct drm_i915_gem_object *ctx_obj = ctx->engine[i].state;
|
|
|
|
if (ctx_obj) {
|
|
struct intel_ringbuffer *ringbuf =
|
|
ctx->engine[i].ringbuf;
|
|
struct intel_engine_cs *ring = ringbuf->ring;
|
|
|
|
if (ctx == ring->default_context) {
|
|
intel_unpin_ringbuffer_obj(ringbuf);
|
|
i915_gem_object_ggtt_unpin(ctx_obj);
|
|
}
|
|
WARN_ON(ctx->engine[ring->id].pin_count);
|
|
intel_destroy_ringbuffer_obj(ringbuf);
|
|
kfree(ringbuf);
|
|
drm_gem_object_unreference(&ctx_obj->base);
|
|
}
|
|
}
|
|
}
|
|
|
|
static uint32_t get_lr_context_size(struct intel_engine_cs *ring)
|
|
{
|
|
int ret = 0;
|
|
|
|
WARN_ON(INTEL_INFO(ring->dev)->gen < 8);
|
|
|
|
switch (ring->id) {
|
|
case RCS:
|
|
if (INTEL_INFO(ring->dev)->gen >= 9)
|
|
ret = GEN9_LR_CONTEXT_RENDER_SIZE;
|
|
else
|
|
ret = GEN8_LR_CONTEXT_RENDER_SIZE;
|
|
break;
|
|
case VCS:
|
|
case BCS:
|
|
case VECS:
|
|
case VCS2:
|
|
ret = GEN8_LR_CONTEXT_OTHER_SIZE;
|
|
break;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void lrc_setup_hardware_status_page(struct intel_engine_cs *ring,
|
|
struct drm_i915_gem_object *default_ctx_obj)
|
|
{
|
|
struct drm_i915_private *dev_priv = ring->dev->dev_private;
|
|
|
|
/* The status page is offset 0 from the default context object
|
|
* in LRC mode. */
|
|
ring->status_page.gfx_addr = i915_gem_obj_ggtt_offset(default_ctx_obj);
|
|
ring->status_page.page_addr =
|
|
kmap(sg_page(default_ctx_obj->pages->sgl));
|
|
ring->status_page.obj = default_ctx_obj;
|
|
|
|
I915_WRITE(RING_HWS_PGA(ring->mmio_base),
|
|
(u32)ring->status_page.gfx_addr);
|
|
POSTING_READ(RING_HWS_PGA(ring->mmio_base));
|
|
}
|
|
|
|
/**
|
|
* intel_lr_context_deferred_create() - create the LRC specific bits of a context
|
|
* @ctx: LR context to create.
|
|
* @ring: engine to be used with the context.
|
|
*
|
|
* This function can be called more than once, with different engines, if we plan
|
|
* to use the context with them. The context backing objects and the ringbuffers
|
|
* (specially the ringbuffer backing objects) suck a lot of memory up, and that's why
|
|
* the creation is a deferred call: it's better to make sure first that we need to use
|
|
* a given ring with the context.
|
|
*
|
|
* Return: non-zero on error.
|
|
*/
|
|
int intel_lr_context_deferred_create(struct intel_context *ctx,
|
|
struct intel_engine_cs *ring)
|
|
{
|
|
const bool is_global_default_ctx = (ctx == ring->default_context);
|
|
struct drm_device *dev = ring->dev;
|
|
struct drm_i915_gem_object *ctx_obj;
|
|
uint32_t context_size;
|
|
struct intel_ringbuffer *ringbuf;
|
|
int ret;
|
|
|
|
WARN_ON(ctx->legacy_hw_ctx.rcs_state != NULL);
|
|
WARN_ON(ctx->engine[ring->id].state);
|
|
|
|
context_size = round_up(get_lr_context_size(ring), 4096);
|
|
|
|
ctx_obj = i915_gem_alloc_context_obj(dev, context_size);
|
|
if (IS_ERR(ctx_obj)) {
|
|
ret = PTR_ERR(ctx_obj);
|
|
DRM_DEBUG_DRIVER("Alloc LRC backing obj failed: %d\n", ret);
|
|
return ret;
|
|
}
|
|
|
|
if (is_global_default_ctx) {
|
|
ret = i915_gem_obj_ggtt_pin(ctx_obj, GEN8_LR_CONTEXT_ALIGN, 0);
|
|
if (ret) {
|
|
DRM_DEBUG_DRIVER("Pin LRC backing obj failed: %d\n",
|
|
ret);
|
|
drm_gem_object_unreference(&ctx_obj->base);
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
ringbuf = kzalloc(sizeof(*ringbuf), GFP_KERNEL);
|
|
if (!ringbuf) {
|
|
DRM_DEBUG_DRIVER("Failed to allocate ringbuffer %s\n",
|
|
ring->name);
|
|
ret = -ENOMEM;
|
|
goto error_unpin_ctx;
|
|
}
|
|
|
|
ringbuf->ring = ring;
|
|
|
|
ringbuf->size = 32 * PAGE_SIZE;
|
|
ringbuf->effective_size = ringbuf->size;
|
|
ringbuf->head = 0;
|
|
ringbuf->tail = 0;
|
|
ringbuf->last_retired_head = -1;
|
|
intel_ring_update_space(ringbuf);
|
|
|
|
if (ringbuf->obj == NULL) {
|
|
ret = intel_alloc_ringbuffer_obj(dev, ringbuf);
|
|
if (ret) {
|
|
DRM_DEBUG_DRIVER(
|
|
"Failed to allocate ringbuffer obj %s: %d\n",
|
|
ring->name, ret);
|
|
goto error_free_rbuf;
|
|
}
|
|
|
|
if (is_global_default_ctx) {
|
|
ret = intel_pin_and_map_ringbuffer_obj(dev, ringbuf);
|
|
if (ret) {
|
|
DRM_ERROR(
|
|
"Failed to pin and map ringbuffer %s: %d\n",
|
|
ring->name, ret);
|
|
goto error_destroy_rbuf;
|
|
}
|
|
}
|
|
|
|
}
|
|
|
|
ret = populate_lr_context(ctx, ctx_obj, ring, ringbuf);
|
|
if (ret) {
|
|
DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret);
|
|
goto error;
|
|
}
|
|
|
|
ctx->engine[ring->id].ringbuf = ringbuf;
|
|
ctx->engine[ring->id].state = ctx_obj;
|
|
|
|
if (ctx == ring->default_context)
|
|
lrc_setup_hardware_status_page(ring, ctx_obj);
|
|
else if (ring->id == RCS && !ctx->rcs_initialized) {
|
|
if (ring->init_context) {
|
|
ret = ring->init_context(ring, ctx);
|
|
if (ret) {
|
|
DRM_ERROR("ring init context: %d\n", ret);
|
|
ctx->engine[ring->id].ringbuf = NULL;
|
|
ctx->engine[ring->id].state = NULL;
|
|
goto error;
|
|
}
|
|
}
|
|
|
|
ctx->rcs_initialized = true;
|
|
}
|
|
|
|
return 0;
|
|
|
|
error:
|
|
if (is_global_default_ctx)
|
|
intel_unpin_ringbuffer_obj(ringbuf);
|
|
error_destroy_rbuf:
|
|
intel_destroy_ringbuffer_obj(ringbuf);
|
|
error_free_rbuf:
|
|
kfree(ringbuf);
|
|
error_unpin_ctx:
|
|
if (is_global_default_ctx)
|
|
i915_gem_object_ggtt_unpin(ctx_obj);
|
|
drm_gem_object_unreference(&ctx_obj->base);
|
|
return ret;
|
|
}
|
|
|
|
void intel_lr_context_reset(struct drm_device *dev,
|
|
struct intel_context *ctx)
|
|
{
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
struct intel_engine_cs *ring;
|
|
int i;
|
|
|
|
for_each_ring(ring, dev_priv, i) {
|
|
struct drm_i915_gem_object *ctx_obj =
|
|
ctx->engine[ring->id].state;
|
|
struct intel_ringbuffer *ringbuf =
|
|
ctx->engine[ring->id].ringbuf;
|
|
uint32_t *reg_state;
|
|
struct page *page;
|
|
|
|
if (!ctx_obj)
|
|
continue;
|
|
|
|
if (i915_gem_object_get_pages(ctx_obj)) {
|
|
WARN(1, "Failed get_pages for context obj\n");
|
|
continue;
|
|
}
|
|
page = i915_gem_object_get_page(ctx_obj, 1);
|
|
reg_state = kmap_atomic(page);
|
|
|
|
reg_state[CTX_RING_HEAD+1] = 0;
|
|
reg_state[CTX_RING_TAIL+1] = 0;
|
|
|
|
kunmap_atomic(reg_state);
|
|
|
|
ringbuf->head = 0;
|
|
ringbuf->tail = 0;
|
|
}
|
|
}
|