linux_dsm_epyc7002/drivers/net/ethernet/neterion/vxge/vxge-traffic.c
Fabian Frederick f60a8b3d19 vxge: use swap() in vxge_hw_channel_dtr_alloc()
Use kernel.h macro definition.

Thanks to Julia Lawall for Coccinelle scripting support.

Signed-off-by: Fabian Frederick <fabf@skynet.be>
Signed-off-by: David S. Miller <davem@davemloft.net>
2015-06-11 15:19:41 -07:00

2476 lines
66 KiB
C

/******************************************************************************
* This software may be used and distributed according to the terms of
* the GNU General Public License (GPL), incorporated herein by reference.
* Drivers based on or derived from this code fall under the GPL and must
* retain the authorship, copyright and license notice. This file is not
* a complete program and may only be used when the entire operating
* system is licensed under the GPL.
* See the file COPYING in this distribution for more information.
*
* vxge-traffic.c: Driver for Exar Corp's X3100 Series 10GbE PCIe I/O
* Virtualized Server Adapter.
* Copyright(c) 2002-2010 Exar Corp.
******************************************************************************/
#include <linux/etherdevice.h>
#include <linux/prefetch.h>
#include "vxge-traffic.h"
#include "vxge-config.h"
#include "vxge-main.h"
/*
* vxge_hw_vpath_intr_enable - Enable vpath interrupts.
* @vp: Virtual Path handle.
*
* Enable vpath interrupts. The function is to be executed the last in
* vpath initialization sequence.
*
* See also: vxge_hw_vpath_intr_disable()
*/
enum vxge_hw_status vxge_hw_vpath_intr_enable(struct __vxge_hw_vpath_handle *vp)
{
u64 val64;
struct __vxge_hw_virtualpath *vpath;
struct vxge_hw_vpath_reg __iomem *vp_reg;
enum vxge_hw_status status = VXGE_HW_OK;
if (vp == NULL) {
status = VXGE_HW_ERR_INVALID_HANDLE;
goto exit;
}
vpath = vp->vpath;
if (vpath->vp_open == VXGE_HW_VP_NOT_OPEN) {
status = VXGE_HW_ERR_VPATH_NOT_OPEN;
goto exit;
}
vp_reg = vpath->vp_reg;
writeq(VXGE_HW_INTR_MASK_ALL, &vp_reg->kdfcctl_errors_reg);
__vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
&vp_reg->general_errors_reg);
__vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
&vp_reg->pci_config_errors_reg);
__vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
&vp_reg->mrpcim_to_vpath_alarm_reg);
__vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
&vp_reg->srpcim_to_vpath_alarm_reg);
__vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
&vp_reg->vpath_ppif_int_status);
__vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
&vp_reg->srpcim_msg_to_vpath_reg);
__vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
&vp_reg->vpath_pcipif_int_status);
__vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
&vp_reg->prc_alarm_reg);
__vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
&vp_reg->wrdma_alarm_status);
__vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
&vp_reg->asic_ntwk_vp_err_reg);
__vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
&vp_reg->xgmac_vp_int_status);
val64 = readq(&vp_reg->vpath_general_int_status);
/* Mask unwanted interrupts */
__vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
&vp_reg->vpath_pcipif_int_mask);
__vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
&vp_reg->srpcim_msg_to_vpath_mask);
__vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
&vp_reg->srpcim_to_vpath_alarm_mask);
__vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
&vp_reg->mrpcim_to_vpath_alarm_mask);
__vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
&vp_reg->pci_config_errors_mask);
/* Unmask the individual interrupts */
writeq((u32)vxge_bVALn((VXGE_HW_GENERAL_ERRORS_REG_DBLGEN_FIFO1_OVRFLOW|
VXGE_HW_GENERAL_ERRORS_REG_DBLGEN_FIFO2_OVRFLOW|
VXGE_HW_GENERAL_ERRORS_REG_STATSB_DROP_TIMEOUT_REQ|
VXGE_HW_GENERAL_ERRORS_REG_STATSB_PIF_CHAIN_ERR), 0, 32),
&vp_reg->general_errors_mask);
__vxge_hw_pio_mem_write32_upper(
(u32)vxge_bVALn((VXGE_HW_KDFCCTL_ERRORS_REG_KDFCCTL_FIFO1_OVRWR|
VXGE_HW_KDFCCTL_ERRORS_REG_KDFCCTL_FIFO2_OVRWR|
VXGE_HW_KDFCCTL_ERRORS_REG_KDFCCTL_FIFO1_POISON|
VXGE_HW_KDFCCTL_ERRORS_REG_KDFCCTL_FIFO2_POISON|
VXGE_HW_KDFCCTL_ERRORS_REG_KDFCCTL_FIFO1_DMA_ERR|
VXGE_HW_KDFCCTL_ERRORS_REG_KDFCCTL_FIFO2_DMA_ERR), 0, 32),
&vp_reg->kdfcctl_errors_mask);
__vxge_hw_pio_mem_write32_upper(0, &vp_reg->vpath_ppif_int_mask);
__vxge_hw_pio_mem_write32_upper(
(u32)vxge_bVALn(VXGE_HW_PRC_ALARM_REG_PRC_RING_BUMP, 0, 32),
&vp_reg->prc_alarm_mask);
__vxge_hw_pio_mem_write32_upper(0, &vp_reg->wrdma_alarm_mask);
__vxge_hw_pio_mem_write32_upper(0, &vp_reg->xgmac_vp_int_mask);
if (vpath->hldev->first_vp_id != vpath->vp_id)
__vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
&vp_reg->asic_ntwk_vp_err_mask);
else
__vxge_hw_pio_mem_write32_upper((u32)vxge_bVALn((
VXGE_HW_ASIC_NTWK_VP_ERR_REG_XMACJ_NTWK_REAFFIRMED_FAULT |
VXGE_HW_ASIC_NTWK_VP_ERR_REG_XMACJ_NTWK_REAFFIRMED_OK), 0, 32),
&vp_reg->asic_ntwk_vp_err_mask);
__vxge_hw_pio_mem_write32_upper(0,
&vp_reg->vpath_general_int_mask);
exit:
return status;
}
/*
* vxge_hw_vpath_intr_disable - Disable vpath interrupts.
* @vp: Virtual Path handle.
*
* Disable vpath interrupts. The function is to be executed the last in
* vpath initialization sequence.
*
* See also: vxge_hw_vpath_intr_enable()
*/
enum vxge_hw_status vxge_hw_vpath_intr_disable(
struct __vxge_hw_vpath_handle *vp)
{
u64 val64;
struct __vxge_hw_virtualpath *vpath;
enum vxge_hw_status status = VXGE_HW_OK;
struct vxge_hw_vpath_reg __iomem *vp_reg;
if (vp == NULL) {
status = VXGE_HW_ERR_INVALID_HANDLE;
goto exit;
}
vpath = vp->vpath;
if (vpath->vp_open == VXGE_HW_VP_NOT_OPEN) {
status = VXGE_HW_ERR_VPATH_NOT_OPEN;
goto exit;
}
vp_reg = vpath->vp_reg;
__vxge_hw_pio_mem_write32_upper(
(u32)VXGE_HW_INTR_MASK_ALL,
&vp_reg->vpath_general_int_mask);
val64 = VXGE_HW_TIM_CLR_INT_EN_VP(1 << (16 - vpath->vp_id));
writeq(VXGE_HW_INTR_MASK_ALL, &vp_reg->kdfcctl_errors_mask);
__vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
&vp_reg->general_errors_mask);
__vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
&vp_reg->pci_config_errors_mask);
__vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
&vp_reg->mrpcim_to_vpath_alarm_mask);
__vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
&vp_reg->srpcim_to_vpath_alarm_mask);
__vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
&vp_reg->vpath_ppif_int_mask);
__vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
&vp_reg->srpcim_msg_to_vpath_mask);
__vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
&vp_reg->vpath_pcipif_int_mask);
__vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
&vp_reg->wrdma_alarm_mask);
__vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
&vp_reg->prc_alarm_mask);
__vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
&vp_reg->xgmac_vp_int_mask);
__vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
&vp_reg->asic_ntwk_vp_err_mask);
exit:
return status;
}
void vxge_hw_vpath_tti_ci_set(struct __vxge_hw_fifo *fifo)
{
struct vxge_hw_vpath_reg __iomem *vp_reg;
struct vxge_hw_vp_config *config;
u64 val64;
if (fifo->config->enable != VXGE_HW_FIFO_ENABLE)
return;
vp_reg = fifo->vp_reg;
config = container_of(fifo->config, struct vxge_hw_vp_config, fifo);
if (config->tti.timer_ci_en != VXGE_HW_TIM_TIMER_CI_ENABLE) {
config->tti.timer_ci_en = VXGE_HW_TIM_TIMER_CI_ENABLE;
val64 = readq(&vp_reg->tim_cfg1_int_num[VXGE_HW_VPATH_INTR_TX]);
val64 |= VXGE_HW_TIM_CFG1_INT_NUM_TIMER_CI;
fifo->tim_tti_cfg1_saved = val64;
writeq(val64, &vp_reg->tim_cfg1_int_num[VXGE_HW_VPATH_INTR_TX]);
}
}
void vxge_hw_vpath_dynamic_rti_ci_set(struct __vxge_hw_ring *ring)
{
u64 val64 = ring->tim_rti_cfg1_saved;
val64 |= VXGE_HW_TIM_CFG1_INT_NUM_TIMER_CI;
ring->tim_rti_cfg1_saved = val64;
writeq(val64, &ring->vp_reg->tim_cfg1_int_num[VXGE_HW_VPATH_INTR_RX]);
}
void vxge_hw_vpath_dynamic_tti_rtimer_set(struct __vxge_hw_fifo *fifo)
{
u64 val64 = fifo->tim_tti_cfg3_saved;
u64 timer = (fifo->rtimer * 1000) / 272;
val64 &= ~VXGE_HW_TIM_CFG3_INT_NUM_RTIMER_VAL(0x3ffffff);
if (timer)
val64 |= VXGE_HW_TIM_CFG3_INT_NUM_RTIMER_VAL(timer) |
VXGE_HW_TIM_CFG3_INT_NUM_RTIMER_EVENT_SF(5);
writeq(val64, &fifo->vp_reg->tim_cfg3_int_num[VXGE_HW_VPATH_INTR_TX]);
/* tti_cfg3_saved is not updated again because it is
* initialized at one place only - init time.
*/
}
void vxge_hw_vpath_dynamic_rti_rtimer_set(struct __vxge_hw_ring *ring)
{
u64 val64 = ring->tim_rti_cfg3_saved;
u64 timer = (ring->rtimer * 1000) / 272;
val64 &= ~VXGE_HW_TIM_CFG3_INT_NUM_RTIMER_VAL(0x3ffffff);
if (timer)
val64 |= VXGE_HW_TIM_CFG3_INT_NUM_RTIMER_VAL(timer) |
VXGE_HW_TIM_CFG3_INT_NUM_RTIMER_EVENT_SF(4);
writeq(val64, &ring->vp_reg->tim_cfg3_int_num[VXGE_HW_VPATH_INTR_RX]);
/* rti_cfg3_saved is not updated again because it is
* initialized at one place only - init time.
*/
}
/**
* vxge_hw_channel_msix_mask - Mask MSIX Vector.
* @channeh: Channel for rx or tx handle
* @msix_id: MSIX ID
*
* The function masks the msix interrupt for the given msix_id
*
* Returns: 0
*/
void vxge_hw_channel_msix_mask(struct __vxge_hw_channel *channel, int msix_id)
{
__vxge_hw_pio_mem_write32_upper(
(u32)vxge_bVALn(vxge_mBIT(msix_id >> 2), 0, 32),
&channel->common_reg->set_msix_mask_vect[msix_id%4]);
}
/**
* vxge_hw_channel_msix_unmask - Unmask the MSIX Vector.
* @channeh: Channel for rx or tx handle
* @msix_id: MSI ID
*
* The function unmasks the msix interrupt for the given msix_id
*
* Returns: 0
*/
void
vxge_hw_channel_msix_unmask(struct __vxge_hw_channel *channel, int msix_id)
{
__vxge_hw_pio_mem_write32_upper(
(u32)vxge_bVALn(vxge_mBIT(msix_id >> 2), 0, 32),
&channel->common_reg->clear_msix_mask_vect[msix_id%4]);
}
/**
* vxge_hw_channel_msix_clear - Unmask the MSIX Vector.
* @channel: Channel for rx or tx handle
* @msix_id: MSI ID
*
* The function unmasks the msix interrupt for the given msix_id
* if configured in MSIX oneshot mode
*
* Returns: 0
*/
void vxge_hw_channel_msix_clear(struct __vxge_hw_channel *channel, int msix_id)
{
__vxge_hw_pio_mem_write32_upper(
(u32) vxge_bVALn(vxge_mBIT(msix_id >> 2), 0, 32),
&channel->common_reg->clr_msix_one_shot_vec[msix_id % 4]);
}
/**
* vxge_hw_device_set_intr_type - Updates the configuration
* with new interrupt type.
* @hldev: HW device handle.
* @intr_mode: New interrupt type
*/
u32 vxge_hw_device_set_intr_type(struct __vxge_hw_device *hldev, u32 intr_mode)
{
if ((intr_mode != VXGE_HW_INTR_MODE_IRQLINE) &&
(intr_mode != VXGE_HW_INTR_MODE_MSIX) &&
(intr_mode != VXGE_HW_INTR_MODE_MSIX_ONE_SHOT) &&
(intr_mode != VXGE_HW_INTR_MODE_DEF))
intr_mode = VXGE_HW_INTR_MODE_IRQLINE;
hldev->config.intr_mode = intr_mode;
return intr_mode;
}
/**
* vxge_hw_device_intr_enable - Enable interrupts.
* @hldev: HW device handle.
* @op: One of the enum vxge_hw_device_intr enumerated values specifying
* the type(s) of interrupts to enable.
*
* Enable Titan interrupts. The function is to be executed the last in
* Titan initialization sequence.
*
* See also: vxge_hw_device_intr_disable()
*/
void vxge_hw_device_intr_enable(struct __vxge_hw_device *hldev)
{
u32 i;
u64 val64;
u32 val32;
vxge_hw_device_mask_all(hldev);
for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) {
if (!(hldev->vpaths_deployed & vxge_mBIT(i)))
continue;
vxge_hw_vpath_intr_enable(
VXGE_HW_VIRTUAL_PATH_HANDLE(&hldev->virtual_paths[i]));
}
if (hldev->config.intr_mode == VXGE_HW_INTR_MODE_IRQLINE) {
val64 = hldev->tim_int_mask0[VXGE_HW_VPATH_INTR_TX] |
hldev->tim_int_mask0[VXGE_HW_VPATH_INTR_RX];
if (val64 != 0) {
writeq(val64, &hldev->common_reg->tim_int_status0);
writeq(~val64, &hldev->common_reg->tim_int_mask0);
}
val32 = hldev->tim_int_mask1[VXGE_HW_VPATH_INTR_TX] |
hldev->tim_int_mask1[VXGE_HW_VPATH_INTR_RX];
if (val32 != 0) {
__vxge_hw_pio_mem_write32_upper(val32,
&hldev->common_reg->tim_int_status1);
__vxge_hw_pio_mem_write32_upper(~val32,
&hldev->common_reg->tim_int_mask1);
}
}
val64 = readq(&hldev->common_reg->titan_general_int_status);
vxge_hw_device_unmask_all(hldev);
}
/**
* vxge_hw_device_intr_disable - Disable Titan interrupts.
* @hldev: HW device handle.
* @op: One of the enum vxge_hw_device_intr enumerated values specifying
* the type(s) of interrupts to disable.
*
* Disable Titan interrupts.
*
* See also: vxge_hw_device_intr_enable()
*/
void vxge_hw_device_intr_disable(struct __vxge_hw_device *hldev)
{
u32 i;
vxge_hw_device_mask_all(hldev);
/* mask all the tim interrupts */
writeq(VXGE_HW_INTR_MASK_ALL, &hldev->common_reg->tim_int_mask0);
__vxge_hw_pio_mem_write32_upper(VXGE_HW_DEFAULT_32,
&hldev->common_reg->tim_int_mask1);
for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) {
if (!(hldev->vpaths_deployed & vxge_mBIT(i)))
continue;
vxge_hw_vpath_intr_disable(
VXGE_HW_VIRTUAL_PATH_HANDLE(&hldev->virtual_paths[i]));
}
}
/**
* vxge_hw_device_mask_all - Mask all device interrupts.
* @hldev: HW device handle.
*
* Mask all device interrupts.
*
* See also: vxge_hw_device_unmask_all()
*/
void vxge_hw_device_mask_all(struct __vxge_hw_device *hldev)
{
u64 val64;
val64 = VXGE_HW_TITAN_MASK_ALL_INT_ALARM |
VXGE_HW_TITAN_MASK_ALL_INT_TRAFFIC;
__vxge_hw_pio_mem_write32_upper((u32)vxge_bVALn(val64, 0, 32),
&hldev->common_reg->titan_mask_all_int);
}
/**
* vxge_hw_device_unmask_all - Unmask all device interrupts.
* @hldev: HW device handle.
*
* Unmask all device interrupts.
*
* See also: vxge_hw_device_mask_all()
*/
void vxge_hw_device_unmask_all(struct __vxge_hw_device *hldev)
{
u64 val64 = 0;
if (hldev->config.intr_mode == VXGE_HW_INTR_MODE_IRQLINE)
val64 = VXGE_HW_TITAN_MASK_ALL_INT_TRAFFIC;
__vxge_hw_pio_mem_write32_upper((u32)vxge_bVALn(val64, 0, 32),
&hldev->common_reg->titan_mask_all_int);
}
/**
* vxge_hw_device_flush_io - Flush io writes.
* @hldev: HW device handle.
*
* The function performs a read operation to flush io writes.
*
* Returns: void
*/
void vxge_hw_device_flush_io(struct __vxge_hw_device *hldev)
{
u32 val32;
val32 = readl(&hldev->common_reg->titan_general_int_status);
}
/**
* __vxge_hw_device_handle_error - Handle error
* @hldev: HW device
* @vp_id: Vpath Id
* @type: Error type. Please see enum vxge_hw_event{}
*
* Handle error.
*/
static enum vxge_hw_status
__vxge_hw_device_handle_error(struct __vxge_hw_device *hldev, u32 vp_id,
enum vxge_hw_event type)
{
switch (type) {
case VXGE_HW_EVENT_UNKNOWN:
break;
case VXGE_HW_EVENT_RESET_START:
case VXGE_HW_EVENT_RESET_COMPLETE:
case VXGE_HW_EVENT_LINK_DOWN:
case VXGE_HW_EVENT_LINK_UP:
goto out;
case VXGE_HW_EVENT_ALARM_CLEARED:
goto out;
case VXGE_HW_EVENT_ECCERR:
case VXGE_HW_EVENT_MRPCIM_ECCERR:
goto out;
case VXGE_HW_EVENT_FIFO_ERR:
case VXGE_HW_EVENT_VPATH_ERR:
case VXGE_HW_EVENT_CRITICAL_ERR:
case VXGE_HW_EVENT_SERR:
break;
case VXGE_HW_EVENT_SRPCIM_SERR:
case VXGE_HW_EVENT_MRPCIM_SERR:
goto out;
case VXGE_HW_EVENT_SLOT_FREEZE:
break;
default:
vxge_assert(0);
goto out;
}
/* notify driver */
if (hldev->uld_callbacks->crit_err)
hldev->uld_callbacks->crit_err(hldev,
type, vp_id);
out:
return VXGE_HW_OK;
}
/*
* __vxge_hw_device_handle_link_down_ind
* @hldev: HW device handle.
*
* Link down indication handler. The function is invoked by HW when
* Titan indicates that the link is down.
*/
static enum vxge_hw_status
__vxge_hw_device_handle_link_down_ind(struct __vxge_hw_device *hldev)
{
/*
* If the previous link state is not down, return.
*/
if (hldev->link_state == VXGE_HW_LINK_DOWN)
goto exit;
hldev->link_state = VXGE_HW_LINK_DOWN;
/* notify driver */
if (hldev->uld_callbacks->link_down)
hldev->uld_callbacks->link_down(hldev);
exit:
return VXGE_HW_OK;
}
/*
* __vxge_hw_device_handle_link_up_ind
* @hldev: HW device handle.
*
* Link up indication handler. The function is invoked by HW when
* Titan indicates that the link is up for programmable amount of time.
*/
static enum vxge_hw_status
__vxge_hw_device_handle_link_up_ind(struct __vxge_hw_device *hldev)
{
/*
* If the previous link state is not down, return.
*/
if (hldev->link_state == VXGE_HW_LINK_UP)
goto exit;
hldev->link_state = VXGE_HW_LINK_UP;
/* notify driver */
if (hldev->uld_callbacks->link_up)
hldev->uld_callbacks->link_up(hldev);
exit:
return VXGE_HW_OK;
}
/*
* __vxge_hw_vpath_alarm_process - Process Alarms.
* @vpath: Virtual Path.
* @skip_alarms: Do not clear the alarms
*
* Process vpath alarms.
*
*/
static enum vxge_hw_status
__vxge_hw_vpath_alarm_process(struct __vxge_hw_virtualpath *vpath,
u32 skip_alarms)
{
u64 val64;
u64 alarm_status;
u64 pic_status;
struct __vxge_hw_device *hldev = NULL;
enum vxge_hw_event alarm_event = VXGE_HW_EVENT_UNKNOWN;
u64 mask64;
struct vxge_hw_vpath_stats_sw_info *sw_stats;
struct vxge_hw_vpath_reg __iomem *vp_reg;
if (vpath == NULL) {
alarm_event = VXGE_HW_SET_LEVEL(VXGE_HW_EVENT_UNKNOWN,
alarm_event);
goto out2;
}
hldev = vpath->hldev;
vp_reg = vpath->vp_reg;
alarm_status = readq(&vp_reg->vpath_general_int_status);
if (alarm_status == VXGE_HW_ALL_FOXES) {
alarm_event = VXGE_HW_SET_LEVEL(VXGE_HW_EVENT_SLOT_FREEZE,
alarm_event);
goto out;
}
sw_stats = vpath->sw_stats;
if (alarm_status & ~(
VXGE_HW_VPATH_GENERAL_INT_STATUS_PIC_INT |
VXGE_HW_VPATH_GENERAL_INT_STATUS_PCI_INT |
VXGE_HW_VPATH_GENERAL_INT_STATUS_WRDMA_INT |
VXGE_HW_VPATH_GENERAL_INT_STATUS_XMAC_INT)) {
sw_stats->error_stats.unknown_alarms++;
alarm_event = VXGE_HW_SET_LEVEL(VXGE_HW_EVENT_UNKNOWN,
alarm_event);
goto out;
}
if (alarm_status & VXGE_HW_VPATH_GENERAL_INT_STATUS_XMAC_INT) {
val64 = readq(&vp_reg->xgmac_vp_int_status);
if (val64 &
VXGE_HW_XGMAC_VP_INT_STATUS_ASIC_NTWK_VP_ERR_ASIC_NTWK_VP_INT) {
val64 = readq(&vp_reg->asic_ntwk_vp_err_reg);
if (((val64 &
VXGE_HW_ASIC_NW_VP_ERR_REG_XMACJ_STN_FLT) &&
(!(val64 &
VXGE_HW_ASIC_NW_VP_ERR_REG_XMACJ_STN_OK))) ||
((val64 &
VXGE_HW_ASIC_NW_VP_ERR_REG_XMACJ_STN_FLT_OCCURR) &&
(!(val64 &
VXGE_HW_ASIC_NW_VP_ERR_REG_XMACJ_STN_OK_OCCURR)
))) {
sw_stats->error_stats.network_sustained_fault++;
writeq(
VXGE_HW_ASIC_NW_VP_ERR_REG_XMACJ_STN_FLT,
&vp_reg->asic_ntwk_vp_err_mask);
__vxge_hw_device_handle_link_down_ind(hldev);
alarm_event = VXGE_HW_SET_LEVEL(
VXGE_HW_EVENT_LINK_DOWN, alarm_event);
}
if (((val64 &
VXGE_HW_ASIC_NW_VP_ERR_REG_XMACJ_STN_OK) &&
(!(val64 &
VXGE_HW_ASIC_NW_VP_ERR_REG_XMACJ_STN_FLT))) ||
((val64 &
VXGE_HW_ASIC_NW_VP_ERR_REG_XMACJ_STN_OK_OCCURR) &&
(!(val64 &
VXGE_HW_ASIC_NW_VP_ERR_REG_XMACJ_STN_FLT_OCCURR)
))) {
sw_stats->error_stats.network_sustained_ok++;
writeq(
VXGE_HW_ASIC_NW_VP_ERR_REG_XMACJ_STN_OK,
&vp_reg->asic_ntwk_vp_err_mask);
__vxge_hw_device_handle_link_up_ind(hldev);
alarm_event = VXGE_HW_SET_LEVEL(
VXGE_HW_EVENT_LINK_UP, alarm_event);
}
writeq(VXGE_HW_INTR_MASK_ALL,
&vp_reg->asic_ntwk_vp_err_reg);
alarm_event = VXGE_HW_SET_LEVEL(
VXGE_HW_EVENT_ALARM_CLEARED, alarm_event);
if (skip_alarms)
return VXGE_HW_OK;
}
}
if (alarm_status & VXGE_HW_VPATH_GENERAL_INT_STATUS_PIC_INT) {
pic_status = readq(&vp_reg->vpath_ppif_int_status);
if (pic_status &
VXGE_HW_VPATH_PPIF_INT_STATUS_GENERAL_ERRORS_GENERAL_INT) {
val64 = readq(&vp_reg->general_errors_reg);
mask64 = readq(&vp_reg->general_errors_mask);
if ((val64 &
VXGE_HW_GENERAL_ERRORS_REG_INI_SERR_DET) &
~mask64) {
sw_stats->error_stats.ini_serr_det++;
alarm_event = VXGE_HW_SET_LEVEL(
VXGE_HW_EVENT_SERR, alarm_event);
}
if ((val64 &
VXGE_HW_GENERAL_ERRORS_REG_DBLGEN_FIFO0_OVRFLOW) &
~mask64) {
sw_stats->error_stats.dblgen_fifo0_overflow++;
alarm_event = VXGE_HW_SET_LEVEL(
VXGE_HW_EVENT_FIFO_ERR, alarm_event);
}
if ((val64 &
VXGE_HW_GENERAL_ERRORS_REG_STATSB_PIF_CHAIN_ERR) &
~mask64)
sw_stats->error_stats.statsb_pif_chain_error++;
if ((val64 &
VXGE_HW_GENERAL_ERRORS_REG_STATSB_DROP_TIMEOUT_REQ) &
~mask64)
sw_stats->error_stats.statsb_drop_timeout++;
if ((val64 &
VXGE_HW_GENERAL_ERRORS_REG_TGT_ILLEGAL_ACCESS) &
~mask64)
sw_stats->error_stats.target_illegal_access++;
if (!skip_alarms) {
writeq(VXGE_HW_INTR_MASK_ALL,
&vp_reg->general_errors_reg);
alarm_event = VXGE_HW_SET_LEVEL(
VXGE_HW_EVENT_ALARM_CLEARED,
alarm_event);
}
}
if (pic_status &
VXGE_HW_VPATH_PPIF_INT_STATUS_KDFCCTL_ERRORS_KDFCCTL_INT) {
val64 = readq(&vp_reg->kdfcctl_errors_reg);
mask64 = readq(&vp_reg->kdfcctl_errors_mask);
if ((val64 &
VXGE_HW_KDFCCTL_ERRORS_REG_KDFCCTL_FIFO0_OVRWR) &
~mask64) {
sw_stats->error_stats.kdfcctl_fifo0_overwrite++;
alarm_event = VXGE_HW_SET_LEVEL(
VXGE_HW_EVENT_FIFO_ERR,
alarm_event);
}
if ((val64 &
VXGE_HW_KDFCCTL_ERRORS_REG_KDFCCTL_FIFO0_POISON) &
~mask64) {
sw_stats->error_stats.kdfcctl_fifo0_poison++;
alarm_event = VXGE_HW_SET_LEVEL(
VXGE_HW_EVENT_FIFO_ERR,
alarm_event);
}
if ((val64 &
VXGE_HW_KDFCCTL_ERRORS_REG_KDFCCTL_FIFO0_DMA_ERR) &
~mask64) {
sw_stats->error_stats.kdfcctl_fifo0_dma_error++;
alarm_event = VXGE_HW_SET_LEVEL(
VXGE_HW_EVENT_FIFO_ERR,
alarm_event);
}
if (!skip_alarms) {
writeq(VXGE_HW_INTR_MASK_ALL,
&vp_reg->kdfcctl_errors_reg);
alarm_event = VXGE_HW_SET_LEVEL(
VXGE_HW_EVENT_ALARM_CLEARED,
alarm_event);
}
}
}
if (alarm_status & VXGE_HW_VPATH_GENERAL_INT_STATUS_WRDMA_INT) {
val64 = readq(&vp_reg->wrdma_alarm_status);
if (val64 & VXGE_HW_WRDMA_ALARM_STATUS_PRC_ALARM_PRC_INT) {
val64 = readq(&vp_reg->prc_alarm_reg);
mask64 = readq(&vp_reg->prc_alarm_mask);
if ((val64 & VXGE_HW_PRC_ALARM_REG_PRC_RING_BUMP)&
~mask64)
sw_stats->error_stats.prc_ring_bumps++;
if ((val64 & VXGE_HW_PRC_ALARM_REG_PRC_RXDCM_SC_ERR) &
~mask64) {
sw_stats->error_stats.prc_rxdcm_sc_err++;
alarm_event = VXGE_HW_SET_LEVEL(
VXGE_HW_EVENT_VPATH_ERR,
alarm_event);
}
if ((val64 & VXGE_HW_PRC_ALARM_REG_PRC_RXDCM_SC_ABORT)
& ~mask64) {
sw_stats->error_stats.prc_rxdcm_sc_abort++;
alarm_event = VXGE_HW_SET_LEVEL(
VXGE_HW_EVENT_VPATH_ERR,
alarm_event);
}
if ((val64 & VXGE_HW_PRC_ALARM_REG_PRC_QUANTA_SIZE_ERR)
& ~mask64) {
sw_stats->error_stats.prc_quanta_size_err++;
alarm_event = VXGE_HW_SET_LEVEL(
VXGE_HW_EVENT_VPATH_ERR,
alarm_event);
}
if (!skip_alarms) {
writeq(VXGE_HW_INTR_MASK_ALL,
&vp_reg->prc_alarm_reg);
alarm_event = VXGE_HW_SET_LEVEL(
VXGE_HW_EVENT_ALARM_CLEARED,
alarm_event);
}
}
}
out:
hldev->stats.sw_dev_err_stats.vpath_alarms++;
out2:
if ((alarm_event == VXGE_HW_EVENT_ALARM_CLEARED) ||
(alarm_event == VXGE_HW_EVENT_UNKNOWN))
return VXGE_HW_OK;
__vxge_hw_device_handle_error(hldev, vpath->vp_id, alarm_event);
if (alarm_event == VXGE_HW_EVENT_SERR)
return VXGE_HW_ERR_CRITICAL;
return (alarm_event == VXGE_HW_EVENT_SLOT_FREEZE) ?
VXGE_HW_ERR_SLOT_FREEZE :
(alarm_event == VXGE_HW_EVENT_FIFO_ERR) ? VXGE_HW_ERR_FIFO :
VXGE_HW_ERR_VPATH;
}
/**
* vxge_hw_device_begin_irq - Begin IRQ processing.
* @hldev: HW device handle.
* @skip_alarms: Do not clear the alarms
* @reason: "Reason" for the interrupt, the value of Titan's
* general_int_status register.
*
* The function performs two actions, It first checks whether (shared IRQ) the
* interrupt was raised by the device. Next, it masks the device interrupts.
*
* Note:
* vxge_hw_device_begin_irq() does not flush MMIO writes through the
* bridge. Therefore, two back-to-back interrupts are potentially possible.
*
* Returns: 0, if the interrupt is not "ours" (note that in this case the
* device remain enabled).
* Otherwise, vxge_hw_device_begin_irq() returns 64bit general adapter
* status.
*/
enum vxge_hw_status vxge_hw_device_begin_irq(struct __vxge_hw_device *hldev,
u32 skip_alarms, u64 *reason)
{
u32 i;
u64 val64;
u64 adapter_status;
u64 vpath_mask;
enum vxge_hw_status ret = VXGE_HW_OK;
val64 = readq(&hldev->common_reg->titan_general_int_status);
if (unlikely(!val64)) {
/* not Titan interrupt */
*reason = 0;
ret = VXGE_HW_ERR_WRONG_IRQ;
goto exit;
}
if (unlikely(val64 == VXGE_HW_ALL_FOXES)) {
adapter_status = readq(&hldev->common_reg->adapter_status);
if (adapter_status == VXGE_HW_ALL_FOXES) {
__vxge_hw_device_handle_error(hldev,
NULL_VPID, VXGE_HW_EVENT_SLOT_FREEZE);
*reason = 0;
ret = VXGE_HW_ERR_SLOT_FREEZE;
goto exit;
}
}
hldev->stats.sw_dev_info_stats.total_intr_cnt++;
*reason = val64;
vpath_mask = hldev->vpaths_deployed >>
(64 - VXGE_HW_MAX_VIRTUAL_PATHS);
if (val64 &
VXGE_HW_TITAN_GENERAL_INT_STATUS_VPATH_TRAFFIC_INT(vpath_mask)) {
hldev->stats.sw_dev_info_stats.traffic_intr_cnt++;
return VXGE_HW_OK;
}
hldev->stats.sw_dev_info_stats.not_traffic_intr_cnt++;
if (unlikely(val64 &
VXGE_HW_TITAN_GENERAL_INT_STATUS_VPATH_ALARM_INT)) {
enum vxge_hw_status error_level = VXGE_HW_OK;
hldev->stats.sw_dev_err_stats.vpath_alarms++;
for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) {
if (!(hldev->vpaths_deployed & vxge_mBIT(i)))
continue;
ret = __vxge_hw_vpath_alarm_process(
&hldev->virtual_paths[i], skip_alarms);
error_level = VXGE_HW_SET_LEVEL(ret, error_level);
if (unlikely((ret == VXGE_HW_ERR_CRITICAL) ||
(ret == VXGE_HW_ERR_SLOT_FREEZE)))
break;
}
ret = error_level;
}
exit:
return ret;
}
/**
* vxge_hw_device_clear_tx_rx - Acknowledge (that is, clear) the
* condition that has caused the Tx and RX interrupt.
* @hldev: HW device.
*
* Acknowledge (that is, clear) the condition that has caused
* the Tx and Rx interrupt.
* See also: vxge_hw_device_begin_irq(),
* vxge_hw_device_mask_tx_rx(), vxge_hw_device_unmask_tx_rx().
*/
void vxge_hw_device_clear_tx_rx(struct __vxge_hw_device *hldev)
{
if ((hldev->tim_int_mask0[VXGE_HW_VPATH_INTR_TX] != 0) ||
(hldev->tim_int_mask0[VXGE_HW_VPATH_INTR_RX] != 0)) {
writeq((hldev->tim_int_mask0[VXGE_HW_VPATH_INTR_TX] |
hldev->tim_int_mask0[VXGE_HW_VPATH_INTR_RX]),
&hldev->common_reg->tim_int_status0);
}
if ((hldev->tim_int_mask1[VXGE_HW_VPATH_INTR_TX] != 0) ||
(hldev->tim_int_mask1[VXGE_HW_VPATH_INTR_RX] != 0)) {
__vxge_hw_pio_mem_write32_upper(
(hldev->tim_int_mask1[VXGE_HW_VPATH_INTR_TX] |
hldev->tim_int_mask1[VXGE_HW_VPATH_INTR_RX]),
&hldev->common_reg->tim_int_status1);
}
}
/*
* vxge_hw_channel_dtr_alloc - Allocate a dtr from the channel
* @channel: Channel
* @dtrh: Buffer to return the DTR pointer
*
* Allocates a dtr from the reserve array. If the reserve array is empty,
* it swaps the reserve and free arrays.
*
*/
static enum vxge_hw_status
vxge_hw_channel_dtr_alloc(struct __vxge_hw_channel *channel, void **dtrh)
{
if (channel->reserve_ptr - channel->reserve_top > 0) {
_alloc_after_swap:
*dtrh = channel->reserve_arr[--channel->reserve_ptr];
return VXGE_HW_OK;
}
/* switch between empty and full arrays */
/* the idea behind such a design is that by having free and reserved
* arrays separated we basically separated irq and non-irq parts.
* i.e. no additional lock need to be done when we free a resource */
if (channel->length - channel->free_ptr > 0) {
swap(channel->reserve_arr, channel->free_arr);
channel->reserve_ptr = channel->length;
channel->reserve_top = channel->free_ptr;
channel->free_ptr = channel->length;
channel->stats->reserve_free_swaps_cnt++;
goto _alloc_after_swap;
}
channel->stats->full_cnt++;
*dtrh = NULL;
return VXGE_HW_INF_OUT_OF_DESCRIPTORS;
}
/*
* vxge_hw_channel_dtr_post - Post a dtr to the channel
* @channelh: Channel
* @dtrh: DTR pointer
*
* Posts a dtr to work array.
*
*/
static void
vxge_hw_channel_dtr_post(struct __vxge_hw_channel *channel, void *dtrh)
{
vxge_assert(channel->work_arr[channel->post_index] == NULL);
channel->work_arr[channel->post_index++] = dtrh;
/* wrap-around */
if (channel->post_index == channel->length)
channel->post_index = 0;
}
/*
* vxge_hw_channel_dtr_try_complete - Returns next completed dtr
* @channel: Channel
* @dtr: Buffer to return the next completed DTR pointer
*
* Returns the next completed dtr with out removing it from work array
*
*/
void
vxge_hw_channel_dtr_try_complete(struct __vxge_hw_channel *channel, void **dtrh)
{
vxge_assert(channel->compl_index < channel->length);
*dtrh = channel->work_arr[channel->compl_index];
prefetch(*dtrh);
}
/*
* vxge_hw_channel_dtr_complete - Removes next completed dtr from the work array
* @channel: Channel handle
*
* Removes the next completed dtr from work array
*
*/
void vxge_hw_channel_dtr_complete(struct __vxge_hw_channel *channel)
{
channel->work_arr[channel->compl_index] = NULL;
/* wrap-around */
if (++channel->compl_index == channel->length)
channel->compl_index = 0;
channel->stats->total_compl_cnt++;
}
/*
* vxge_hw_channel_dtr_free - Frees a dtr
* @channel: Channel handle
* @dtr: DTR pointer
*
* Returns the dtr to free array
*
*/
void vxge_hw_channel_dtr_free(struct __vxge_hw_channel *channel, void *dtrh)
{
channel->free_arr[--channel->free_ptr] = dtrh;
}
/*
* vxge_hw_channel_dtr_count
* @channel: Channel handle. Obtained via vxge_hw_channel_open().
*
* Retrieve number of DTRs available. This function can not be called
* from data path. ring_initial_replenishi() is the only user.
*/
int vxge_hw_channel_dtr_count(struct __vxge_hw_channel *channel)
{
return (channel->reserve_ptr - channel->reserve_top) +
(channel->length - channel->free_ptr);
}
/**
* vxge_hw_ring_rxd_reserve - Reserve ring descriptor.
* @ring: Handle to the ring object used for receive
* @rxdh: Reserved descriptor. On success HW fills this "out" parameter
* with a valid handle.
*
* Reserve Rx descriptor for the subsequent filling-in driver
* and posting on the corresponding channel (@channelh)
* via vxge_hw_ring_rxd_post().
*
* Returns: VXGE_HW_OK - success.
* VXGE_HW_INF_OUT_OF_DESCRIPTORS - Currently no descriptors available.
*
*/
enum vxge_hw_status vxge_hw_ring_rxd_reserve(struct __vxge_hw_ring *ring,
void **rxdh)
{
enum vxge_hw_status status;
struct __vxge_hw_channel *channel;
channel = &ring->channel;
status = vxge_hw_channel_dtr_alloc(channel, rxdh);
if (status == VXGE_HW_OK) {
struct vxge_hw_ring_rxd_1 *rxdp =
(struct vxge_hw_ring_rxd_1 *)*rxdh;
rxdp->control_0 = rxdp->control_1 = 0;
}
return status;
}
/**
* vxge_hw_ring_rxd_free - Free descriptor.
* @ring: Handle to the ring object used for receive
* @rxdh: Descriptor handle.
*
* Free the reserved descriptor. This operation is "symmetrical" to
* vxge_hw_ring_rxd_reserve. The "free-ing" completes the descriptor's
* lifecycle.
*
* After free-ing (see vxge_hw_ring_rxd_free()) the descriptor again can
* be:
*
* - reserved (vxge_hw_ring_rxd_reserve);
*
* - posted (vxge_hw_ring_rxd_post);
*
* - completed (vxge_hw_ring_rxd_next_completed);
*
* - and recycled again (vxge_hw_ring_rxd_free).
*
* For alternative state transitions and more details please refer to
* the design doc.
*
*/
void vxge_hw_ring_rxd_free(struct __vxge_hw_ring *ring, void *rxdh)
{
struct __vxge_hw_channel *channel;
channel = &ring->channel;
vxge_hw_channel_dtr_free(channel, rxdh);
}
/**
* vxge_hw_ring_rxd_pre_post - Prepare rxd and post
* @ring: Handle to the ring object used for receive
* @rxdh: Descriptor handle.
*
* This routine prepares a rxd and posts
*/
void vxge_hw_ring_rxd_pre_post(struct __vxge_hw_ring *ring, void *rxdh)
{
struct __vxge_hw_channel *channel;
channel = &ring->channel;
vxge_hw_channel_dtr_post(channel, rxdh);
}
/**
* vxge_hw_ring_rxd_post_post - Process rxd after post.
* @ring: Handle to the ring object used for receive
* @rxdh: Descriptor handle.
*
* Processes rxd after post
*/
void vxge_hw_ring_rxd_post_post(struct __vxge_hw_ring *ring, void *rxdh)
{
struct vxge_hw_ring_rxd_1 *rxdp = (struct vxge_hw_ring_rxd_1 *)rxdh;
struct __vxge_hw_channel *channel;
channel = &ring->channel;
rxdp->control_0 = VXGE_HW_RING_RXD_LIST_OWN_ADAPTER;
if (ring->stats->common_stats.usage_cnt > 0)
ring->stats->common_stats.usage_cnt--;
}
/**
* vxge_hw_ring_rxd_post - Post descriptor on the ring.
* @ring: Handle to the ring object used for receive
* @rxdh: Descriptor obtained via vxge_hw_ring_rxd_reserve().
*
* Post descriptor on the ring.
* Prior to posting the descriptor should be filled in accordance with
* Host/Titan interface specification for a given service (LL, etc.).
*
*/
void vxge_hw_ring_rxd_post(struct __vxge_hw_ring *ring, void *rxdh)
{
struct vxge_hw_ring_rxd_1 *rxdp = (struct vxge_hw_ring_rxd_1 *)rxdh;
struct __vxge_hw_channel *channel;
channel = &ring->channel;
wmb();
rxdp->control_0 = VXGE_HW_RING_RXD_LIST_OWN_ADAPTER;
vxge_hw_channel_dtr_post(channel, rxdh);
if (ring->stats->common_stats.usage_cnt > 0)
ring->stats->common_stats.usage_cnt--;
}
/**
* vxge_hw_ring_rxd_post_post_wmb - Process rxd after post with memory barrier.
* @ring: Handle to the ring object used for receive
* @rxdh: Descriptor handle.
*
* Processes rxd after post with memory barrier.
*/
void vxge_hw_ring_rxd_post_post_wmb(struct __vxge_hw_ring *ring, void *rxdh)
{
wmb();
vxge_hw_ring_rxd_post_post(ring, rxdh);
}
/**
* vxge_hw_ring_rxd_next_completed - Get the _next_ completed descriptor.
* @ring: Handle to the ring object used for receive
* @rxdh: Descriptor handle. Returned by HW.
* @t_code: Transfer code, as per Titan User Guide,
* Receive Descriptor Format. Returned by HW.
*
* Retrieve the _next_ completed descriptor.
* HW uses ring callback (*vxge_hw_ring_callback_f) to notifiy
* driver of new completed descriptors. After that
* the driver can use vxge_hw_ring_rxd_next_completed to retrieve the rest
* completions (the very first completion is passed by HW via
* vxge_hw_ring_callback_f).
*
* Implementation-wise, the driver is free to call
* vxge_hw_ring_rxd_next_completed either immediately from inside the
* ring callback, or in a deferred fashion and separate (from HW)
* context.
*
* Non-zero @t_code means failure to fill-in receive buffer(s)
* of the descriptor.
* For instance, parity error detected during the data transfer.
* In this case Titan will complete the descriptor and indicate
* for the host that the received data is not to be used.
* For details please refer to Titan User Guide.
*
* Returns: VXGE_HW_OK - success.
* VXGE_HW_INF_NO_MORE_COMPLETED_DESCRIPTORS - No completed descriptors
* are currently available for processing.
*
* See also: vxge_hw_ring_callback_f{},
* vxge_hw_fifo_rxd_next_completed(), enum vxge_hw_status{}.
*/
enum vxge_hw_status vxge_hw_ring_rxd_next_completed(
struct __vxge_hw_ring *ring, void **rxdh, u8 *t_code)
{
struct __vxge_hw_channel *channel;
struct vxge_hw_ring_rxd_1 *rxdp;
enum vxge_hw_status status = VXGE_HW_OK;
u64 control_0, own;
channel = &ring->channel;
vxge_hw_channel_dtr_try_complete(channel, rxdh);
rxdp = *rxdh;
if (rxdp == NULL) {
status = VXGE_HW_INF_NO_MORE_COMPLETED_DESCRIPTORS;
goto exit;
}
control_0 = rxdp->control_0;
own = control_0 & VXGE_HW_RING_RXD_LIST_OWN_ADAPTER;
*t_code = (u8)VXGE_HW_RING_RXD_T_CODE_GET(control_0);
/* check whether it is not the end */
if (!own || *t_code == VXGE_HW_RING_T_CODE_FRM_DROP) {
vxge_assert((rxdp)->host_control !=
0);
++ring->cmpl_cnt;
vxge_hw_channel_dtr_complete(channel);
vxge_assert(*t_code != VXGE_HW_RING_RXD_T_CODE_UNUSED);
ring->stats->common_stats.usage_cnt++;
if (ring->stats->common_stats.usage_max <
ring->stats->common_stats.usage_cnt)
ring->stats->common_stats.usage_max =
ring->stats->common_stats.usage_cnt;
status = VXGE_HW_OK;
goto exit;
}
/* reset it. since we don't want to return
* garbage to the driver */
*rxdh = NULL;
status = VXGE_HW_INF_NO_MORE_COMPLETED_DESCRIPTORS;
exit:
return status;
}
/**
* vxge_hw_ring_handle_tcode - Handle transfer code.
* @ring: Handle to the ring object used for receive
* @rxdh: Descriptor handle.
* @t_code: One of the enumerated (and documented in the Titan user guide)
* "transfer codes".
*
* Handle descriptor's transfer code. The latter comes with each completed
* descriptor.
*
* Returns: one of the enum vxge_hw_status{} enumerated types.
* VXGE_HW_OK - for success.
* VXGE_HW_ERR_CRITICAL - when encounters critical error.
*/
enum vxge_hw_status vxge_hw_ring_handle_tcode(
struct __vxge_hw_ring *ring, void *rxdh, u8 t_code)
{
struct __vxge_hw_channel *channel;
enum vxge_hw_status status = VXGE_HW_OK;
channel = &ring->channel;
/* If the t_code is not supported and if the
* t_code is other than 0x5 (unparseable packet
* such as unknown UPV6 header), Drop it !!!
*/
if (t_code == VXGE_HW_RING_T_CODE_OK ||
t_code == VXGE_HW_RING_T_CODE_L3_PKT_ERR) {
status = VXGE_HW_OK;
goto exit;
}
if (t_code > VXGE_HW_RING_T_CODE_MULTI_ERR) {
status = VXGE_HW_ERR_INVALID_TCODE;
goto exit;
}
ring->stats->rxd_t_code_err_cnt[t_code]++;
exit:
return status;
}
/**
* __vxge_hw_non_offload_db_post - Post non offload doorbell
*
* @fifo: fifohandle
* @txdl_ptr: The starting location of the TxDL in host memory
* @num_txds: The highest TxD in this TxDL (0 to 255 means 1 to 256)
* @no_snoop: No snoop flags
*
* This function posts a non-offload doorbell to doorbell FIFO
*
*/
static void __vxge_hw_non_offload_db_post(struct __vxge_hw_fifo *fifo,
u64 txdl_ptr, u32 num_txds, u32 no_snoop)
{
struct __vxge_hw_channel *channel;
channel = &fifo->channel;
writeq(VXGE_HW_NODBW_TYPE(VXGE_HW_NODBW_TYPE_NODBW) |
VXGE_HW_NODBW_LAST_TXD_NUMBER(num_txds) |
VXGE_HW_NODBW_GET_NO_SNOOP(no_snoop),
&fifo->nofl_db->control_0);
mmiowb();
writeq(txdl_ptr, &fifo->nofl_db->txdl_ptr);
mmiowb();
}
/**
* vxge_hw_fifo_free_txdl_count_get - returns the number of txdls available in
* the fifo
* @fifoh: Handle to the fifo object used for non offload send
*/
u32 vxge_hw_fifo_free_txdl_count_get(struct __vxge_hw_fifo *fifoh)
{
return vxge_hw_channel_dtr_count(&fifoh->channel);
}
/**
* vxge_hw_fifo_txdl_reserve - Reserve fifo descriptor.
* @fifoh: Handle to the fifo object used for non offload send
* @txdlh: Reserved descriptor. On success HW fills this "out" parameter
* with a valid handle.
* @txdl_priv: Buffer to return the pointer to per txdl space
*
* Reserve a single TxDL (that is, fifo descriptor)
* for the subsequent filling-in by driver)
* and posting on the corresponding channel (@channelh)
* via vxge_hw_fifo_txdl_post().
*
* Note: it is the responsibility of driver to reserve multiple descriptors
* for lengthy (e.g., LSO) transmit operation. A single fifo descriptor
* carries up to configured number (fifo.max_frags) of contiguous buffers.
*
* Returns: VXGE_HW_OK - success;
* VXGE_HW_INF_OUT_OF_DESCRIPTORS - Currently no descriptors available
*
*/
enum vxge_hw_status vxge_hw_fifo_txdl_reserve(
struct __vxge_hw_fifo *fifo,
void **txdlh, void **txdl_priv)
{
struct __vxge_hw_channel *channel;
enum vxge_hw_status status;
int i;
channel = &fifo->channel;
status = vxge_hw_channel_dtr_alloc(channel, txdlh);
if (status == VXGE_HW_OK) {
struct vxge_hw_fifo_txd *txdp =
(struct vxge_hw_fifo_txd *)*txdlh;
struct __vxge_hw_fifo_txdl_priv *priv;
priv = __vxge_hw_fifo_txdl_priv(fifo, txdp);
/* reset the TxDL's private */
priv->align_dma_offset = 0;
priv->align_vaddr_start = priv->align_vaddr;
priv->align_used_frags = 0;
priv->frags = 0;
priv->alloc_frags = fifo->config->max_frags;
priv->next_txdl_priv = NULL;
*txdl_priv = (void *)(size_t)txdp->host_control;
for (i = 0; i < fifo->config->max_frags; i++) {
txdp = ((struct vxge_hw_fifo_txd *)*txdlh) + i;
txdp->control_0 = txdp->control_1 = 0;
}
}
return status;
}
/**
* vxge_hw_fifo_txdl_buffer_set - Set transmit buffer pointer in the
* descriptor.
* @fifo: Handle to the fifo object used for non offload send
* @txdlh: Descriptor handle.
* @frag_idx: Index of the data buffer in the caller's scatter-gather list
* (of buffers).
* @dma_pointer: DMA address of the data buffer referenced by @frag_idx.
* @size: Size of the data buffer (in bytes).
*
* This API is part of the preparation of the transmit descriptor for posting
* (via vxge_hw_fifo_txdl_post()). The related "preparation" APIs include
* vxge_hw_fifo_txdl_mss_set() and vxge_hw_fifo_txdl_cksum_set_bits().
* All three APIs fill in the fields of the fifo descriptor,
* in accordance with the Titan specification.
*
*/
void vxge_hw_fifo_txdl_buffer_set(struct __vxge_hw_fifo *fifo,
void *txdlh, u32 frag_idx,
dma_addr_t dma_pointer, u32 size)
{
struct __vxge_hw_fifo_txdl_priv *txdl_priv;
struct vxge_hw_fifo_txd *txdp, *txdp_last;
struct __vxge_hw_channel *channel;
channel = &fifo->channel;
txdl_priv = __vxge_hw_fifo_txdl_priv(fifo, txdlh);
txdp = (struct vxge_hw_fifo_txd *)txdlh + txdl_priv->frags;
if (frag_idx != 0)
txdp->control_0 = txdp->control_1 = 0;
else {
txdp->control_0 |= VXGE_HW_FIFO_TXD_GATHER_CODE(
VXGE_HW_FIFO_TXD_GATHER_CODE_FIRST);
txdp->control_1 |= fifo->interrupt_type;
txdp->control_1 |= VXGE_HW_FIFO_TXD_INT_NUMBER(
fifo->tx_intr_num);
if (txdl_priv->frags) {
txdp_last = (struct vxge_hw_fifo_txd *)txdlh +
(txdl_priv->frags - 1);
txdp_last->control_0 |= VXGE_HW_FIFO_TXD_GATHER_CODE(
VXGE_HW_FIFO_TXD_GATHER_CODE_LAST);
}
}
vxge_assert(frag_idx < txdl_priv->alloc_frags);
txdp->buffer_pointer = (u64)dma_pointer;
txdp->control_0 |= VXGE_HW_FIFO_TXD_BUFFER_SIZE(size);
fifo->stats->total_buffers++;
txdl_priv->frags++;
}
/**
* vxge_hw_fifo_txdl_post - Post descriptor on the fifo channel.
* @fifo: Handle to the fifo object used for non offload send
* @txdlh: Descriptor obtained via vxge_hw_fifo_txdl_reserve()
* @frags: Number of contiguous buffers that are part of a single
* transmit operation.
*
* Post descriptor on the 'fifo' type channel for transmission.
* Prior to posting the descriptor should be filled in accordance with
* Host/Titan interface specification for a given service (LL, etc.).
*
*/
void vxge_hw_fifo_txdl_post(struct __vxge_hw_fifo *fifo, void *txdlh)
{
struct __vxge_hw_fifo_txdl_priv *txdl_priv;
struct vxge_hw_fifo_txd *txdp_last;
struct vxge_hw_fifo_txd *txdp_first;
struct __vxge_hw_channel *channel;
channel = &fifo->channel;
txdl_priv = __vxge_hw_fifo_txdl_priv(fifo, txdlh);
txdp_first = txdlh;
txdp_last = (struct vxge_hw_fifo_txd *)txdlh + (txdl_priv->frags - 1);
txdp_last->control_0 |=
VXGE_HW_FIFO_TXD_GATHER_CODE(VXGE_HW_FIFO_TXD_GATHER_CODE_LAST);
txdp_first->control_0 |= VXGE_HW_FIFO_TXD_LIST_OWN_ADAPTER;
vxge_hw_channel_dtr_post(&fifo->channel, txdlh);
__vxge_hw_non_offload_db_post(fifo,
(u64)txdl_priv->dma_addr,
txdl_priv->frags - 1,
fifo->no_snoop_bits);
fifo->stats->total_posts++;
fifo->stats->common_stats.usage_cnt++;
if (fifo->stats->common_stats.usage_max <
fifo->stats->common_stats.usage_cnt)
fifo->stats->common_stats.usage_max =
fifo->stats->common_stats.usage_cnt;
}
/**
* vxge_hw_fifo_txdl_next_completed - Retrieve next completed descriptor.
* @fifo: Handle to the fifo object used for non offload send
* @txdlh: Descriptor handle. Returned by HW.
* @t_code: Transfer code, as per Titan User Guide,
* Transmit Descriptor Format.
* Returned by HW.
*
* Retrieve the _next_ completed descriptor.
* HW uses channel callback (*vxge_hw_channel_callback_f) to notifiy
* driver of new completed descriptors. After that
* the driver can use vxge_hw_fifo_txdl_next_completed to retrieve the rest
* completions (the very first completion is passed by HW via
* vxge_hw_channel_callback_f).
*
* Implementation-wise, the driver is free to call
* vxge_hw_fifo_txdl_next_completed either immediately from inside the
* channel callback, or in a deferred fashion and separate (from HW)
* context.
*
* Non-zero @t_code means failure to process the descriptor.
* The failure could happen, for instance, when the link is
* down, in which case Titan completes the descriptor because it
* is not able to send the data out.
*
* For details please refer to Titan User Guide.
*
* Returns: VXGE_HW_OK - success.
* VXGE_HW_INF_NO_MORE_COMPLETED_DESCRIPTORS - No completed descriptors
* are currently available for processing.
*
*/
enum vxge_hw_status vxge_hw_fifo_txdl_next_completed(
struct __vxge_hw_fifo *fifo, void **txdlh,
enum vxge_hw_fifo_tcode *t_code)
{
struct __vxge_hw_channel *channel;
struct vxge_hw_fifo_txd *txdp;
enum vxge_hw_status status = VXGE_HW_OK;
channel = &fifo->channel;
vxge_hw_channel_dtr_try_complete(channel, txdlh);
txdp = *txdlh;
if (txdp == NULL) {
status = VXGE_HW_INF_NO_MORE_COMPLETED_DESCRIPTORS;
goto exit;
}
/* check whether host owns it */
if (!(txdp->control_0 & VXGE_HW_FIFO_TXD_LIST_OWN_ADAPTER)) {
vxge_assert(txdp->host_control != 0);
vxge_hw_channel_dtr_complete(channel);
*t_code = (u8)VXGE_HW_FIFO_TXD_T_CODE_GET(txdp->control_0);
if (fifo->stats->common_stats.usage_cnt > 0)
fifo->stats->common_stats.usage_cnt--;
status = VXGE_HW_OK;
goto exit;
}
/* no more completions */
*txdlh = NULL;
status = VXGE_HW_INF_NO_MORE_COMPLETED_DESCRIPTORS;
exit:
return status;
}
/**
* vxge_hw_fifo_handle_tcode - Handle transfer code.
* @fifo: Handle to the fifo object used for non offload send
* @txdlh: Descriptor handle.
* @t_code: One of the enumerated (and documented in the Titan user guide)
* "transfer codes".
*
* Handle descriptor's transfer code. The latter comes with each completed
* descriptor.
*
* Returns: one of the enum vxge_hw_status{} enumerated types.
* VXGE_HW_OK - for success.
* VXGE_HW_ERR_CRITICAL - when encounters critical error.
*/
enum vxge_hw_status vxge_hw_fifo_handle_tcode(struct __vxge_hw_fifo *fifo,
void *txdlh,
enum vxge_hw_fifo_tcode t_code)
{
struct __vxge_hw_channel *channel;
enum vxge_hw_status status = VXGE_HW_OK;
channel = &fifo->channel;
if (((t_code & 0x7) < 0) || ((t_code & 0x7) > 0x4)) {
status = VXGE_HW_ERR_INVALID_TCODE;
goto exit;
}
fifo->stats->txd_t_code_err_cnt[t_code]++;
exit:
return status;
}
/**
* vxge_hw_fifo_txdl_free - Free descriptor.
* @fifo: Handle to the fifo object used for non offload send
* @txdlh: Descriptor handle.
*
* Free the reserved descriptor. This operation is "symmetrical" to
* vxge_hw_fifo_txdl_reserve. The "free-ing" completes the descriptor's
* lifecycle.
*
* After free-ing (see vxge_hw_fifo_txdl_free()) the descriptor again can
* be:
*
* - reserved (vxge_hw_fifo_txdl_reserve);
*
* - posted (vxge_hw_fifo_txdl_post);
*
* - completed (vxge_hw_fifo_txdl_next_completed);
*
* - and recycled again (vxge_hw_fifo_txdl_free).
*
* For alternative state transitions and more details please refer to
* the design doc.
*
*/
void vxge_hw_fifo_txdl_free(struct __vxge_hw_fifo *fifo, void *txdlh)
{
struct __vxge_hw_fifo_txdl_priv *txdl_priv;
u32 max_frags;
struct __vxge_hw_channel *channel;
channel = &fifo->channel;
txdl_priv = __vxge_hw_fifo_txdl_priv(fifo,
(struct vxge_hw_fifo_txd *)txdlh);
max_frags = fifo->config->max_frags;
vxge_hw_channel_dtr_free(channel, txdlh);
}
/**
* vxge_hw_vpath_mac_addr_add - Add the mac address entry for this vpath
* to MAC address table.
* @vp: Vpath handle.
* @macaddr: MAC address to be added for this vpath into the list
* @macaddr_mask: MAC address mask for macaddr
* @duplicate_mode: Duplicate MAC address add mode. Please see
* enum vxge_hw_vpath_mac_addr_add_mode{}
*
* Adds the given mac address and mac address mask into the list for this
* vpath.
* see also: vxge_hw_vpath_mac_addr_delete, vxge_hw_vpath_mac_addr_get and
* vxge_hw_vpath_mac_addr_get_next
*
*/
enum vxge_hw_status
vxge_hw_vpath_mac_addr_add(
struct __vxge_hw_vpath_handle *vp,
u8 (macaddr)[ETH_ALEN],
u8 (macaddr_mask)[ETH_ALEN],
enum vxge_hw_vpath_mac_addr_add_mode duplicate_mode)
{
u32 i;
u64 data1 = 0ULL;
u64 data2 = 0ULL;
enum vxge_hw_status status = VXGE_HW_OK;
if (vp == NULL) {
status = VXGE_HW_ERR_INVALID_HANDLE;
goto exit;
}
for (i = 0; i < ETH_ALEN; i++) {
data1 <<= 8;
data1 |= (u8)macaddr[i];
data2 <<= 8;
data2 |= (u8)macaddr_mask[i];
}
switch (duplicate_mode) {
case VXGE_HW_VPATH_MAC_ADDR_ADD_DUPLICATE:
i = 0;
break;
case VXGE_HW_VPATH_MAC_ADDR_DISCARD_DUPLICATE:
i = 1;
break;
case VXGE_HW_VPATH_MAC_ADDR_REPLACE_DUPLICATE:
i = 2;
break;
default:
i = 0;
break;
}
status = __vxge_hw_vpath_rts_table_set(vp,
VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_ADD_ENTRY,
VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_DA,
0,
VXGE_HW_RTS_ACCESS_STEER_DATA0_DA_MAC_ADDR(data1),
VXGE_HW_RTS_ACCESS_STEER_DATA1_DA_MAC_ADDR_MASK(data2)|
VXGE_HW_RTS_ACCESS_STEER_DATA1_DA_MAC_ADDR_MODE(i));
exit:
return status;
}
/**
* vxge_hw_vpath_mac_addr_get - Get the first mac address entry for this vpath
* from MAC address table.
* @vp: Vpath handle.
* @macaddr: First MAC address entry for this vpath in the list
* @macaddr_mask: MAC address mask for macaddr
*
* Returns the first mac address and mac address mask in the list for this
* vpath.
* see also: vxge_hw_vpath_mac_addr_get_next
*
*/
enum vxge_hw_status
vxge_hw_vpath_mac_addr_get(
struct __vxge_hw_vpath_handle *vp,
u8 (macaddr)[ETH_ALEN],
u8 (macaddr_mask)[ETH_ALEN])
{
u32 i;
u64 data1 = 0ULL;
u64 data2 = 0ULL;
enum vxge_hw_status status = VXGE_HW_OK;
if (vp == NULL) {
status = VXGE_HW_ERR_INVALID_HANDLE;
goto exit;
}
status = __vxge_hw_vpath_rts_table_get(vp,
VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_LIST_FIRST_ENTRY,
VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_DA,
0, &data1, &data2);
if (status != VXGE_HW_OK)
goto exit;
data1 = VXGE_HW_RTS_ACCESS_STEER_DATA0_GET_DA_MAC_ADDR(data1);
data2 = VXGE_HW_RTS_ACCESS_STEER_DATA1_GET_DA_MAC_ADDR_MASK(data2);
for (i = ETH_ALEN; i > 0; i--) {
macaddr[i-1] = (u8)(data1 & 0xFF);
data1 >>= 8;
macaddr_mask[i-1] = (u8)(data2 & 0xFF);
data2 >>= 8;
}
exit:
return status;
}
/**
* vxge_hw_vpath_mac_addr_get_next - Get the next mac address entry for this
* vpath
* from MAC address table.
* @vp: Vpath handle.
* @macaddr: Next MAC address entry for this vpath in the list
* @macaddr_mask: MAC address mask for macaddr
*
* Returns the next mac address and mac address mask in the list for this
* vpath.
* see also: vxge_hw_vpath_mac_addr_get
*
*/
enum vxge_hw_status
vxge_hw_vpath_mac_addr_get_next(
struct __vxge_hw_vpath_handle *vp,
u8 (macaddr)[ETH_ALEN],
u8 (macaddr_mask)[ETH_ALEN])
{
u32 i;
u64 data1 = 0ULL;
u64 data2 = 0ULL;
enum vxge_hw_status status = VXGE_HW_OK;
if (vp == NULL) {
status = VXGE_HW_ERR_INVALID_HANDLE;
goto exit;
}
status = __vxge_hw_vpath_rts_table_get(vp,
VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_LIST_NEXT_ENTRY,
VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_DA,
0, &data1, &data2);
if (status != VXGE_HW_OK)
goto exit;
data1 = VXGE_HW_RTS_ACCESS_STEER_DATA0_GET_DA_MAC_ADDR(data1);
data2 = VXGE_HW_RTS_ACCESS_STEER_DATA1_GET_DA_MAC_ADDR_MASK(data2);
for (i = ETH_ALEN; i > 0; i--) {
macaddr[i-1] = (u8)(data1 & 0xFF);
data1 >>= 8;
macaddr_mask[i-1] = (u8)(data2 & 0xFF);
data2 >>= 8;
}
exit:
return status;
}
/**
* vxge_hw_vpath_mac_addr_delete - Delete the mac address entry for this vpath
* to MAC address table.
* @vp: Vpath handle.
* @macaddr: MAC address to be added for this vpath into the list
* @macaddr_mask: MAC address mask for macaddr
*
* Delete the given mac address and mac address mask into the list for this
* vpath.
* see also: vxge_hw_vpath_mac_addr_add, vxge_hw_vpath_mac_addr_get and
* vxge_hw_vpath_mac_addr_get_next
*
*/
enum vxge_hw_status
vxge_hw_vpath_mac_addr_delete(
struct __vxge_hw_vpath_handle *vp,
u8 (macaddr)[ETH_ALEN],
u8 (macaddr_mask)[ETH_ALEN])
{
u32 i;
u64 data1 = 0ULL;
u64 data2 = 0ULL;
enum vxge_hw_status status = VXGE_HW_OK;
if (vp == NULL) {
status = VXGE_HW_ERR_INVALID_HANDLE;
goto exit;
}
for (i = 0; i < ETH_ALEN; i++) {
data1 <<= 8;
data1 |= (u8)macaddr[i];
data2 <<= 8;
data2 |= (u8)macaddr_mask[i];
}
status = __vxge_hw_vpath_rts_table_set(vp,
VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_DELETE_ENTRY,
VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_DA,
0,
VXGE_HW_RTS_ACCESS_STEER_DATA0_DA_MAC_ADDR(data1),
VXGE_HW_RTS_ACCESS_STEER_DATA1_DA_MAC_ADDR_MASK(data2));
exit:
return status;
}
/**
* vxge_hw_vpath_vid_add - Add the vlan id entry for this vpath
* to vlan id table.
* @vp: Vpath handle.
* @vid: vlan id to be added for this vpath into the list
*
* Adds the given vlan id into the list for this vpath.
* see also: vxge_hw_vpath_vid_delete
*
*/
enum vxge_hw_status
vxge_hw_vpath_vid_add(struct __vxge_hw_vpath_handle *vp, u64 vid)
{
enum vxge_hw_status status = VXGE_HW_OK;
if (vp == NULL) {
status = VXGE_HW_ERR_INVALID_HANDLE;
goto exit;
}
status = __vxge_hw_vpath_rts_table_set(vp,
VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_ADD_ENTRY,
VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_VID,
0, VXGE_HW_RTS_ACCESS_STEER_DATA0_VLAN_ID(vid), 0);
exit:
return status;
}
/**
* vxge_hw_vpath_vid_delete - Delete the vlan id entry for this vpath
* to vlan id table.
* @vp: Vpath handle.
* @vid: vlan id to be added for this vpath into the list
*
* Adds the given vlan id into the list for this vpath.
* see also: vxge_hw_vpath_vid_add
*
*/
enum vxge_hw_status
vxge_hw_vpath_vid_delete(struct __vxge_hw_vpath_handle *vp, u64 vid)
{
enum vxge_hw_status status = VXGE_HW_OK;
if (vp == NULL) {
status = VXGE_HW_ERR_INVALID_HANDLE;
goto exit;
}
status = __vxge_hw_vpath_rts_table_set(vp,
VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_DELETE_ENTRY,
VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_VID,
0, VXGE_HW_RTS_ACCESS_STEER_DATA0_VLAN_ID(vid), 0);
exit:
return status;
}
/**
* vxge_hw_vpath_promisc_enable - Enable promiscuous mode.
* @vp: Vpath handle.
*
* Enable promiscuous mode of Titan-e operation.
*
* See also: vxge_hw_vpath_promisc_disable().
*/
enum vxge_hw_status vxge_hw_vpath_promisc_enable(
struct __vxge_hw_vpath_handle *vp)
{
u64 val64;
struct __vxge_hw_virtualpath *vpath;
enum vxge_hw_status status = VXGE_HW_OK;
if ((vp == NULL) || (vp->vpath->ringh == NULL)) {
status = VXGE_HW_ERR_INVALID_HANDLE;
goto exit;
}
vpath = vp->vpath;
/* Enable promiscuous mode for function 0 only */
if (!(vpath->hldev->access_rights &
VXGE_HW_DEVICE_ACCESS_RIGHT_MRPCIM))
return VXGE_HW_OK;
val64 = readq(&vpath->vp_reg->rxmac_vcfg0);
if (!(val64 & VXGE_HW_RXMAC_VCFG0_UCAST_ALL_ADDR_EN)) {
val64 |= VXGE_HW_RXMAC_VCFG0_UCAST_ALL_ADDR_EN |
VXGE_HW_RXMAC_VCFG0_MCAST_ALL_ADDR_EN |
VXGE_HW_RXMAC_VCFG0_BCAST_EN |
VXGE_HW_RXMAC_VCFG0_ALL_VID_EN;
writeq(val64, &vpath->vp_reg->rxmac_vcfg0);
}
exit:
return status;
}
/**
* vxge_hw_vpath_promisc_disable - Disable promiscuous mode.
* @vp: Vpath handle.
*
* Disable promiscuous mode of Titan-e operation.
*
* See also: vxge_hw_vpath_promisc_enable().
*/
enum vxge_hw_status vxge_hw_vpath_promisc_disable(
struct __vxge_hw_vpath_handle *vp)
{
u64 val64;
struct __vxge_hw_virtualpath *vpath;
enum vxge_hw_status status = VXGE_HW_OK;
if ((vp == NULL) || (vp->vpath->ringh == NULL)) {
status = VXGE_HW_ERR_INVALID_HANDLE;
goto exit;
}
vpath = vp->vpath;
val64 = readq(&vpath->vp_reg->rxmac_vcfg0);
if (val64 & VXGE_HW_RXMAC_VCFG0_UCAST_ALL_ADDR_EN) {
val64 &= ~(VXGE_HW_RXMAC_VCFG0_UCAST_ALL_ADDR_EN |
VXGE_HW_RXMAC_VCFG0_MCAST_ALL_ADDR_EN |
VXGE_HW_RXMAC_VCFG0_ALL_VID_EN);
writeq(val64, &vpath->vp_reg->rxmac_vcfg0);
}
exit:
return status;
}
/*
* vxge_hw_vpath_bcast_enable - Enable broadcast
* @vp: Vpath handle.
*
* Enable receiving broadcasts.
*/
enum vxge_hw_status vxge_hw_vpath_bcast_enable(
struct __vxge_hw_vpath_handle *vp)
{
u64 val64;
struct __vxge_hw_virtualpath *vpath;
enum vxge_hw_status status = VXGE_HW_OK;
if ((vp == NULL) || (vp->vpath->ringh == NULL)) {
status = VXGE_HW_ERR_INVALID_HANDLE;
goto exit;
}
vpath = vp->vpath;
val64 = readq(&vpath->vp_reg->rxmac_vcfg0);
if (!(val64 & VXGE_HW_RXMAC_VCFG0_BCAST_EN)) {
val64 |= VXGE_HW_RXMAC_VCFG0_BCAST_EN;
writeq(val64, &vpath->vp_reg->rxmac_vcfg0);
}
exit:
return status;
}
/**
* vxge_hw_vpath_mcast_enable - Enable multicast addresses.
* @vp: Vpath handle.
*
* Enable Titan-e multicast addresses.
* Returns: VXGE_HW_OK on success.
*
*/
enum vxge_hw_status vxge_hw_vpath_mcast_enable(
struct __vxge_hw_vpath_handle *vp)
{
u64 val64;
struct __vxge_hw_virtualpath *vpath;
enum vxge_hw_status status = VXGE_HW_OK;
if ((vp == NULL) || (vp->vpath->ringh == NULL)) {
status = VXGE_HW_ERR_INVALID_HANDLE;
goto exit;
}
vpath = vp->vpath;
val64 = readq(&vpath->vp_reg->rxmac_vcfg0);
if (!(val64 & VXGE_HW_RXMAC_VCFG0_MCAST_ALL_ADDR_EN)) {
val64 |= VXGE_HW_RXMAC_VCFG0_MCAST_ALL_ADDR_EN;
writeq(val64, &vpath->vp_reg->rxmac_vcfg0);
}
exit:
return status;
}
/**
* vxge_hw_vpath_mcast_disable - Disable multicast addresses.
* @vp: Vpath handle.
*
* Disable Titan-e multicast addresses.
* Returns: VXGE_HW_OK - success.
* VXGE_HW_ERR_INVALID_HANDLE - Invalid handle
*
*/
enum vxge_hw_status
vxge_hw_vpath_mcast_disable(struct __vxge_hw_vpath_handle *vp)
{
u64 val64;
struct __vxge_hw_virtualpath *vpath;
enum vxge_hw_status status = VXGE_HW_OK;
if ((vp == NULL) || (vp->vpath->ringh == NULL)) {
status = VXGE_HW_ERR_INVALID_HANDLE;
goto exit;
}
vpath = vp->vpath;
val64 = readq(&vpath->vp_reg->rxmac_vcfg0);
if (val64 & VXGE_HW_RXMAC_VCFG0_MCAST_ALL_ADDR_EN) {
val64 &= ~VXGE_HW_RXMAC_VCFG0_MCAST_ALL_ADDR_EN;
writeq(val64, &vpath->vp_reg->rxmac_vcfg0);
}
exit:
return status;
}
/*
* vxge_hw_vpath_alarm_process - Process Alarms.
* @vpath: Virtual Path.
* @skip_alarms: Do not clear the alarms
*
* Process vpath alarms.
*
*/
enum vxge_hw_status vxge_hw_vpath_alarm_process(
struct __vxge_hw_vpath_handle *vp,
u32 skip_alarms)
{
enum vxge_hw_status status = VXGE_HW_OK;
if (vp == NULL) {
status = VXGE_HW_ERR_INVALID_HANDLE;
goto exit;
}
status = __vxge_hw_vpath_alarm_process(vp->vpath, skip_alarms);
exit:
return status;
}
/**
* vxge_hw_vpath_msix_set - Associate MSIX vectors with TIM interrupts and
* alrms
* @vp: Virtual Path handle.
* @tim_msix_id: MSIX vectors associated with VXGE_HW_MAX_INTR_PER_VP number of
* interrupts(Can be repeated). If fifo or ring are not enabled
* the MSIX vector for that should be set to 0
* @alarm_msix_id: MSIX vector for alarm.
*
* This API will associate a given MSIX vector numbers with the four TIM
* interrupts and alarm interrupt.
*/
void
vxge_hw_vpath_msix_set(struct __vxge_hw_vpath_handle *vp, int *tim_msix_id,
int alarm_msix_id)
{
u64 val64;
struct __vxge_hw_virtualpath *vpath = vp->vpath;
struct vxge_hw_vpath_reg __iomem *vp_reg = vpath->vp_reg;
u32 vp_id = vp->vpath->vp_id;
val64 = VXGE_HW_INTERRUPT_CFG0_GROUP0_MSIX_FOR_TXTI(
(vp_id * 4) + tim_msix_id[0]) |
VXGE_HW_INTERRUPT_CFG0_GROUP1_MSIX_FOR_TXTI(
(vp_id * 4) + tim_msix_id[1]);
writeq(val64, &vp_reg->interrupt_cfg0);
writeq(VXGE_HW_INTERRUPT_CFG2_ALARM_MAP_TO_MSG(
(vpath->hldev->first_vp_id * 4) + alarm_msix_id),
&vp_reg->interrupt_cfg2);
if (vpath->hldev->config.intr_mode ==
VXGE_HW_INTR_MODE_MSIX_ONE_SHOT) {
__vxge_hw_pio_mem_write32_upper((u32)vxge_bVALn(
VXGE_HW_ONE_SHOT_VECT0_EN_ONE_SHOT_VECT0_EN,
0, 32), &vp_reg->one_shot_vect0_en);
__vxge_hw_pio_mem_write32_upper((u32)vxge_bVALn(
VXGE_HW_ONE_SHOT_VECT1_EN_ONE_SHOT_VECT1_EN,
0, 32), &vp_reg->one_shot_vect1_en);
__vxge_hw_pio_mem_write32_upper((u32)vxge_bVALn(
VXGE_HW_ONE_SHOT_VECT2_EN_ONE_SHOT_VECT2_EN,
0, 32), &vp_reg->one_shot_vect2_en);
}
}
/**
* vxge_hw_vpath_msix_mask - Mask MSIX Vector.
* @vp: Virtual Path handle.
* @msix_id: MSIX ID
*
* The function masks the msix interrupt for the given msix_id
*
* Returns: 0,
* Otherwise, VXGE_HW_ERR_WRONG_IRQ if the msix index is out of range
* status.
* See also:
*/
void
vxge_hw_vpath_msix_mask(struct __vxge_hw_vpath_handle *vp, int msix_id)
{
struct __vxge_hw_device *hldev = vp->vpath->hldev;
__vxge_hw_pio_mem_write32_upper(
(u32) vxge_bVALn(vxge_mBIT(msix_id >> 2), 0, 32),
&hldev->common_reg->set_msix_mask_vect[msix_id % 4]);
}
/**
* vxge_hw_vpath_msix_clear - Clear MSIX Vector.
* @vp: Virtual Path handle.
* @msix_id: MSI ID
*
* The function clears the msix interrupt for the given msix_id
*
* Returns: 0,
* Otherwise, VXGE_HW_ERR_WRONG_IRQ if the msix index is out of range
* status.
* See also:
*/
void vxge_hw_vpath_msix_clear(struct __vxge_hw_vpath_handle *vp, int msix_id)
{
struct __vxge_hw_device *hldev = vp->vpath->hldev;
if ((hldev->config.intr_mode == VXGE_HW_INTR_MODE_MSIX_ONE_SHOT))
__vxge_hw_pio_mem_write32_upper(
(u32) vxge_bVALn(vxge_mBIT((msix_id >> 2)), 0, 32),
&hldev->common_reg->clr_msix_one_shot_vec[msix_id % 4]);
else
__vxge_hw_pio_mem_write32_upper(
(u32) vxge_bVALn(vxge_mBIT((msix_id >> 2)), 0, 32),
&hldev->common_reg->clear_msix_mask_vect[msix_id % 4]);
}
/**
* vxge_hw_vpath_msix_unmask - Unmask the MSIX Vector.
* @vp: Virtual Path handle.
* @msix_id: MSI ID
*
* The function unmasks the msix interrupt for the given msix_id
*
* Returns: 0,
* Otherwise, VXGE_HW_ERR_WRONG_IRQ if the msix index is out of range
* status.
* See also:
*/
void
vxge_hw_vpath_msix_unmask(struct __vxge_hw_vpath_handle *vp, int msix_id)
{
struct __vxge_hw_device *hldev = vp->vpath->hldev;
__vxge_hw_pio_mem_write32_upper(
(u32)vxge_bVALn(vxge_mBIT(msix_id >> 2), 0, 32),
&hldev->common_reg->clear_msix_mask_vect[msix_id%4]);
}
/**
* vxge_hw_vpath_inta_mask_tx_rx - Mask Tx and Rx interrupts.
* @vp: Virtual Path handle.
*
* Mask Tx and Rx vpath interrupts.
*
* See also: vxge_hw_vpath_inta_mask_tx_rx()
*/
void vxge_hw_vpath_inta_mask_tx_rx(struct __vxge_hw_vpath_handle *vp)
{
u64 tim_int_mask0[4] = {[0 ...3] = 0};
u32 tim_int_mask1[4] = {[0 ...3] = 0};
u64 val64;
struct __vxge_hw_device *hldev = vp->vpath->hldev;
VXGE_HW_DEVICE_TIM_INT_MASK_SET(tim_int_mask0,
tim_int_mask1, vp->vpath->vp_id);
val64 = readq(&hldev->common_reg->tim_int_mask0);
if ((tim_int_mask0[VXGE_HW_VPATH_INTR_TX] != 0) ||
(tim_int_mask0[VXGE_HW_VPATH_INTR_RX] != 0)) {
writeq((tim_int_mask0[VXGE_HW_VPATH_INTR_TX] |
tim_int_mask0[VXGE_HW_VPATH_INTR_RX] | val64),
&hldev->common_reg->tim_int_mask0);
}
val64 = readl(&hldev->common_reg->tim_int_mask1);
if ((tim_int_mask1[VXGE_HW_VPATH_INTR_TX] != 0) ||
(tim_int_mask1[VXGE_HW_VPATH_INTR_RX] != 0)) {
__vxge_hw_pio_mem_write32_upper(
(tim_int_mask1[VXGE_HW_VPATH_INTR_TX] |
tim_int_mask1[VXGE_HW_VPATH_INTR_RX] | val64),
&hldev->common_reg->tim_int_mask1);
}
}
/**
* vxge_hw_vpath_inta_unmask_tx_rx - Unmask Tx and Rx interrupts.
* @vp: Virtual Path handle.
*
* Unmask Tx and Rx vpath interrupts.
*
* See also: vxge_hw_vpath_inta_mask_tx_rx()
*/
void vxge_hw_vpath_inta_unmask_tx_rx(struct __vxge_hw_vpath_handle *vp)
{
u64 tim_int_mask0[4] = {[0 ...3] = 0};
u32 tim_int_mask1[4] = {[0 ...3] = 0};
u64 val64;
struct __vxge_hw_device *hldev = vp->vpath->hldev;
VXGE_HW_DEVICE_TIM_INT_MASK_SET(tim_int_mask0,
tim_int_mask1, vp->vpath->vp_id);
val64 = readq(&hldev->common_reg->tim_int_mask0);
if ((tim_int_mask0[VXGE_HW_VPATH_INTR_TX] != 0) ||
(tim_int_mask0[VXGE_HW_VPATH_INTR_RX] != 0)) {
writeq((~(tim_int_mask0[VXGE_HW_VPATH_INTR_TX] |
tim_int_mask0[VXGE_HW_VPATH_INTR_RX])) & val64,
&hldev->common_reg->tim_int_mask0);
}
if ((tim_int_mask1[VXGE_HW_VPATH_INTR_TX] != 0) ||
(tim_int_mask1[VXGE_HW_VPATH_INTR_RX] != 0)) {
__vxge_hw_pio_mem_write32_upper(
(~(tim_int_mask1[VXGE_HW_VPATH_INTR_TX] |
tim_int_mask1[VXGE_HW_VPATH_INTR_RX])) & val64,
&hldev->common_reg->tim_int_mask1);
}
}
/**
* vxge_hw_vpath_poll_rx - Poll Rx Virtual Path for completed
* descriptors and process the same.
* @ring: Handle to the ring object used for receive
*
* The function polls the Rx for the completed descriptors and calls
* the driver via supplied completion callback.
*
* Returns: VXGE_HW_OK, if the polling is completed successful.
* VXGE_HW_COMPLETIONS_REMAIN: There are still more completed
* descriptors available which are yet to be processed.
*
* See also: vxge_hw_vpath_poll_rx()
*/
enum vxge_hw_status vxge_hw_vpath_poll_rx(struct __vxge_hw_ring *ring)
{
u8 t_code;
enum vxge_hw_status status = VXGE_HW_OK;
void *first_rxdh;
u64 val64 = 0;
int new_count = 0;
ring->cmpl_cnt = 0;
status = vxge_hw_ring_rxd_next_completed(ring, &first_rxdh, &t_code);
if (status == VXGE_HW_OK)
ring->callback(ring, first_rxdh,
t_code, ring->channel.userdata);
if (ring->cmpl_cnt != 0) {
ring->doorbell_cnt += ring->cmpl_cnt;
if (ring->doorbell_cnt >= ring->rxds_limit) {
/*
* Each RxD is of 4 qwords, update the number of
* qwords replenished
*/
new_count = (ring->doorbell_cnt * 4);
/* For each block add 4 more qwords */
ring->total_db_cnt += ring->doorbell_cnt;
if (ring->total_db_cnt >= ring->rxds_per_block) {
new_count += 4;
/* Reset total count */
ring->total_db_cnt %= ring->rxds_per_block;
}
writeq(VXGE_HW_PRC_RXD_DOORBELL_NEW_QW_CNT(new_count),
&ring->vp_reg->prc_rxd_doorbell);
val64 =
readl(&ring->common_reg->titan_general_int_status);
ring->doorbell_cnt = 0;
}
}
return status;
}
/**
* vxge_hw_vpath_poll_tx - Poll Tx for completed descriptors and process
* the same.
* @fifo: Handle to the fifo object used for non offload send
*
* The function polls the Tx for the completed descriptors and calls
* the driver via supplied completion callback.
*
* Returns: VXGE_HW_OK, if the polling is completed successful.
* VXGE_HW_COMPLETIONS_REMAIN: There are still more completed
* descriptors available which are yet to be processed.
*/
enum vxge_hw_status vxge_hw_vpath_poll_tx(struct __vxge_hw_fifo *fifo,
struct sk_buff ***skb_ptr, int nr_skb,
int *more)
{
enum vxge_hw_fifo_tcode t_code;
void *first_txdlh;
enum vxge_hw_status status = VXGE_HW_OK;
struct __vxge_hw_channel *channel;
channel = &fifo->channel;
status = vxge_hw_fifo_txdl_next_completed(fifo,
&first_txdlh, &t_code);
if (status == VXGE_HW_OK)
if (fifo->callback(fifo, first_txdlh, t_code,
channel->userdata, skb_ptr, nr_skb, more) != VXGE_HW_OK)
status = VXGE_HW_COMPLETIONS_REMAIN;
return status;
}