linux_dsm_epyc7002/drivers/vdpa/ifcvf/ifcvf_base.c
Eli Cohen aac50c0bd4 net/vdpa: Use struct for set/get vq state
For now VQ state involves 16 bit available index value encoded in u64
variable. In the future it will be extended to contain more fields. Use
struct to contain the state, now containing only a single u16 for the
available index. In the future we can add fields to this struct.

Reviewed-by: Parav Pandit <parav@mellanox.com>
Acked-by: Jason Wang <jasowang@redhat.com>
Signed-off-by: Eli Cohen <eli@mellanox.com>
Link: https://lore.kernel.org/r/20200804162048.22587-8-eli@mellanox.com
Signed-off-by: Michael S. Tsirkin <mst@redhat.com>
2020-08-05 18:39:19 -04:00

391 lines
9.1 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* Intel IFC VF NIC driver for virtio dataplane offloading
*
* Copyright (C) 2020 Intel Corporation.
*
* Author: Zhu Lingshan <lingshan.zhu@intel.com>
*
*/
#include "ifcvf_base.h"
static inline u8 ifc_ioread8(u8 __iomem *addr)
{
return ioread8(addr);
}
static inline u16 ifc_ioread16 (__le16 __iomem *addr)
{
return ioread16(addr);
}
static inline u32 ifc_ioread32(__le32 __iomem *addr)
{
return ioread32(addr);
}
static inline void ifc_iowrite8(u8 value, u8 __iomem *addr)
{
iowrite8(value, addr);
}
static inline void ifc_iowrite16(u16 value, __le16 __iomem *addr)
{
iowrite16(value, addr);
}
static inline void ifc_iowrite32(u32 value, __le32 __iomem *addr)
{
iowrite32(value, addr);
}
static void ifc_iowrite64_twopart(u64 val,
__le32 __iomem *lo, __le32 __iomem *hi)
{
ifc_iowrite32((u32)val, lo);
ifc_iowrite32(val >> 32, hi);
}
struct ifcvf_adapter *vf_to_adapter(struct ifcvf_hw *hw)
{
return container_of(hw, struct ifcvf_adapter, vf);
}
static void __iomem *get_cap_addr(struct ifcvf_hw *hw,
struct virtio_pci_cap *cap)
{
struct ifcvf_adapter *ifcvf;
struct pci_dev *pdev;
u32 length, offset;
u8 bar;
length = le32_to_cpu(cap->length);
offset = le32_to_cpu(cap->offset);
bar = cap->bar;
ifcvf= vf_to_adapter(hw);
pdev = ifcvf->pdev;
if (bar >= IFCVF_PCI_MAX_RESOURCE) {
IFCVF_DBG(pdev,
"Invalid bar number %u to get capabilities\n", bar);
return NULL;
}
if (offset + length > pci_resource_len(pdev, bar)) {
IFCVF_DBG(pdev,
"offset(%u) + len(%u) overflows bar%u's capability\n",
offset, length, bar);
return NULL;
}
return hw->base[bar] + offset;
}
static int ifcvf_read_config_range(struct pci_dev *dev,
uint32_t *val, int size, int where)
{
int ret, i;
for (i = 0; i < size; i += 4) {
ret = pci_read_config_dword(dev, where + i, val + i / 4);
if (ret < 0)
return ret;
}
return 0;
}
int ifcvf_init_hw(struct ifcvf_hw *hw, struct pci_dev *pdev)
{
struct virtio_pci_cap cap;
u16 notify_off;
int ret;
u8 pos;
u32 i;
ret = pci_read_config_byte(pdev, PCI_CAPABILITY_LIST, &pos);
if (ret < 0) {
IFCVF_ERR(pdev, "Failed to read PCI capability list\n");
return -EIO;
}
while (pos) {
ret = ifcvf_read_config_range(pdev, (u32 *)&cap,
sizeof(cap), pos);
if (ret < 0) {
IFCVF_ERR(pdev,
"Failed to get PCI capability at %x\n", pos);
break;
}
if (cap.cap_vndr != PCI_CAP_ID_VNDR)
goto next;
switch (cap.cfg_type) {
case VIRTIO_PCI_CAP_COMMON_CFG:
hw->common_cfg = get_cap_addr(hw, &cap);
IFCVF_DBG(pdev, "hw->common_cfg = %p\n",
hw->common_cfg);
break;
case VIRTIO_PCI_CAP_NOTIFY_CFG:
pci_read_config_dword(pdev, pos + sizeof(cap),
&hw->notify_off_multiplier);
hw->notify_bar = cap.bar;
hw->notify_base = get_cap_addr(hw, &cap);
IFCVF_DBG(pdev, "hw->notify_base = %p\n",
hw->notify_base);
break;
case VIRTIO_PCI_CAP_ISR_CFG:
hw->isr = get_cap_addr(hw, &cap);
IFCVF_DBG(pdev, "hw->isr = %p\n", hw->isr);
break;
case VIRTIO_PCI_CAP_DEVICE_CFG:
hw->net_cfg = get_cap_addr(hw, &cap);
IFCVF_DBG(pdev, "hw->net_cfg = %p\n", hw->net_cfg);
break;
}
next:
pos = cap.cap_next;
}
if (hw->common_cfg == NULL || hw->notify_base == NULL ||
hw->isr == NULL || hw->net_cfg == NULL) {
IFCVF_ERR(pdev, "Incomplete PCI capabilities\n");
return -EIO;
}
for (i = 0; i < IFCVF_MAX_QUEUE_PAIRS * 2; i++) {
ifc_iowrite16(i, &hw->common_cfg->queue_select);
notify_off = ifc_ioread16(&hw->common_cfg->queue_notify_off);
hw->vring[i].notify_addr = hw->notify_base +
notify_off * hw->notify_off_multiplier;
}
hw->lm_cfg = hw->base[IFCVF_LM_BAR];
IFCVF_DBG(pdev,
"PCI capability mapping: common cfg: %p, notify base: %p\n, isr cfg: %p, device cfg: %p, multiplier: %u\n",
hw->common_cfg, hw->notify_base, hw->isr,
hw->net_cfg, hw->notify_off_multiplier);
return 0;
}
u8 ifcvf_get_status(struct ifcvf_hw *hw)
{
return ifc_ioread8(&hw->common_cfg->device_status);
}
void ifcvf_set_status(struct ifcvf_hw *hw, u8 status)
{
ifc_iowrite8(status, &hw->common_cfg->device_status);
}
void ifcvf_reset(struct ifcvf_hw *hw)
{
hw->config_cb.callback = NULL;
hw->config_cb.private = NULL;
ifcvf_set_status(hw, 0);
/* flush set_status, make sure VF is stopped, reset */
ifcvf_get_status(hw);
}
static void ifcvf_add_status(struct ifcvf_hw *hw, u8 status)
{
if (status != 0)
status |= ifcvf_get_status(hw);
ifcvf_set_status(hw, status);
ifcvf_get_status(hw);
}
u64 ifcvf_get_features(struct ifcvf_hw *hw)
{
struct virtio_pci_common_cfg __iomem *cfg = hw->common_cfg;
u32 features_lo, features_hi;
ifc_iowrite32(0, &cfg->device_feature_select);
features_lo = ifc_ioread32(&cfg->device_feature);
ifc_iowrite32(1, &cfg->device_feature_select);
features_hi = ifc_ioread32(&cfg->device_feature);
return ((u64)features_hi << 32) | features_lo;
}
void ifcvf_read_net_config(struct ifcvf_hw *hw, u64 offset,
void *dst, int length)
{
u8 old_gen, new_gen, *p;
int i;
WARN_ON(offset + length > sizeof(struct virtio_net_config));
do {
old_gen = ifc_ioread8(&hw->common_cfg->config_generation);
p = dst;
for (i = 0; i < length; i++)
*p++ = ifc_ioread8(hw->net_cfg + offset + i);
new_gen = ifc_ioread8(&hw->common_cfg->config_generation);
} while (old_gen != new_gen);
}
void ifcvf_write_net_config(struct ifcvf_hw *hw, u64 offset,
const void *src, int length)
{
const u8 *p;
int i;
p = src;
WARN_ON(offset + length > sizeof(struct virtio_net_config));
for (i = 0; i < length; i++)
ifc_iowrite8(*p++, hw->net_cfg + offset + i);
}
static void ifcvf_set_features(struct ifcvf_hw *hw, u64 features)
{
struct virtio_pci_common_cfg __iomem *cfg = hw->common_cfg;
ifc_iowrite32(0, &cfg->guest_feature_select);
ifc_iowrite32((u32)features, &cfg->guest_feature);
ifc_iowrite32(1, &cfg->guest_feature_select);
ifc_iowrite32(features >> 32, &cfg->guest_feature);
}
static int ifcvf_config_features(struct ifcvf_hw *hw)
{
struct ifcvf_adapter *ifcvf;
ifcvf = vf_to_adapter(hw);
ifcvf_set_features(hw, hw->req_features);
ifcvf_add_status(hw, VIRTIO_CONFIG_S_FEATURES_OK);
if (!(ifcvf_get_status(hw) & VIRTIO_CONFIG_S_FEATURES_OK)) {
IFCVF_ERR(ifcvf->pdev, "Failed to set FEATURES_OK status\n");
return -EIO;
}
return 0;
}
u16 ifcvf_get_vq_state(struct ifcvf_hw *hw, u16 qid)
{
struct ifcvf_lm_cfg __iomem *ifcvf_lm;
void __iomem *avail_idx_addr;
u16 last_avail_idx;
u32 q_pair_id;
ifcvf_lm = (struct ifcvf_lm_cfg __iomem *)hw->lm_cfg;
q_pair_id = qid / (IFCVF_MAX_QUEUE_PAIRS * 2);
avail_idx_addr = &ifcvf_lm->vring_lm_cfg[q_pair_id].idx_addr[qid % 2];
last_avail_idx = ifc_ioread16(avail_idx_addr);
return last_avail_idx;
}
int ifcvf_set_vq_state(struct ifcvf_hw *hw, u16 qid, u16 num)
{
struct ifcvf_lm_cfg __iomem *ifcvf_lm;
void __iomem *avail_idx_addr;
u32 q_pair_id;
ifcvf_lm = (struct ifcvf_lm_cfg __iomem *)hw->lm_cfg;
q_pair_id = qid / (IFCVF_MAX_QUEUE_PAIRS * 2);
avail_idx_addr = &ifcvf_lm->vring_lm_cfg[q_pair_id].idx_addr[qid % 2];
hw->vring[qid].last_avail_idx = num;
ifc_iowrite16(num, avail_idx_addr);
return 0;
}
static int ifcvf_hw_enable(struct ifcvf_hw *hw)
{
struct virtio_pci_common_cfg __iomem *cfg;
struct ifcvf_adapter *ifcvf;
u32 i;
ifcvf = vf_to_adapter(hw);
cfg = hw->common_cfg;
ifc_iowrite16(IFCVF_MSI_CONFIG_OFF, &cfg->msix_config);
if (ifc_ioread16(&cfg->msix_config) == VIRTIO_MSI_NO_VECTOR) {
IFCVF_ERR(ifcvf->pdev, "No msix vector for device config\n");
return -EINVAL;
}
for (i = 0; i < hw->nr_vring; i++) {
if (!hw->vring[i].ready)
break;
ifc_iowrite16(i, &cfg->queue_select);
ifc_iowrite64_twopart(hw->vring[i].desc, &cfg->queue_desc_lo,
&cfg->queue_desc_hi);
ifc_iowrite64_twopart(hw->vring[i].avail, &cfg->queue_avail_lo,
&cfg->queue_avail_hi);
ifc_iowrite64_twopart(hw->vring[i].used, &cfg->queue_used_lo,
&cfg->queue_used_hi);
ifc_iowrite16(hw->vring[i].size, &cfg->queue_size);
ifc_iowrite16(i + IFCVF_MSI_QUEUE_OFF, &cfg->queue_msix_vector);
if (ifc_ioread16(&cfg->queue_msix_vector) ==
VIRTIO_MSI_NO_VECTOR) {
IFCVF_ERR(ifcvf->pdev,
"No msix vector for queue %u\n", i);
return -EINVAL;
}
ifcvf_set_vq_state(hw, i, hw->vring[i].last_avail_idx);
ifc_iowrite16(1, &cfg->queue_enable);
}
return 0;
}
static void ifcvf_hw_disable(struct ifcvf_hw *hw)
{
struct virtio_pci_common_cfg __iomem *cfg;
u32 i;
cfg = hw->common_cfg;
ifc_iowrite16(VIRTIO_MSI_NO_VECTOR, &cfg->msix_config);
for (i = 0; i < hw->nr_vring; i++) {
ifc_iowrite16(i, &cfg->queue_select);
ifc_iowrite16(VIRTIO_MSI_NO_VECTOR, &cfg->queue_msix_vector);
}
ifc_ioread16(&cfg->queue_msix_vector);
}
int ifcvf_start_hw(struct ifcvf_hw *hw)
{
ifcvf_reset(hw);
ifcvf_add_status(hw, VIRTIO_CONFIG_S_ACKNOWLEDGE);
ifcvf_add_status(hw, VIRTIO_CONFIG_S_DRIVER);
if (ifcvf_config_features(hw) < 0)
return -EINVAL;
if (ifcvf_hw_enable(hw) < 0)
return -EINVAL;
ifcvf_add_status(hw, VIRTIO_CONFIG_S_DRIVER_OK);
return 0;
}
void ifcvf_stop_hw(struct ifcvf_hw *hw)
{
ifcvf_hw_disable(hw);
ifcvf_reset(hw);
}
void ifcvf_notify_queue(struct ifcvf_hw *hw, u16 qid)
{
ifc_iowrite16(qid, hw->vring[qid].notify_addr);
}