linux_dsm_epyc7002/drivers/net/hyperv/netvsc_drv.c
Haiyang Zhang 9a33629ba6 hv_netvsc: Set probe mode to sync
For better consistency of synthetic NIC names, we set the probe mode to
PROBE_FORCE_SYNCHRONOUS. So the names can be aligned with the vmbus
channel offer sequence.

Fixes: af0a5646cb ("use the new async probing feature for the hyperv drivers")
Signed-off-by: Haiyang Zhang <haiyangz@microsoft.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2019-06-14 19:47:05 -07:00

2489 lines
62 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (c) 2009, Microsoft Corporation.
*
* Authors:
* Haiyang Zhang <haiyangz@microsoft.com>
* Hank Janssen <hjanssen@microsoft.com>
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/init.h>
#include <linux/atomic.h>
#include <linux/module.h>
#include <linux/highmem.h>
#include <linux/device.h>
#include <linux/io.h>
#include <linux/delay.h>
#include <linux/netdevice.h>
#include <linux/inetdevice.h>
#include <linux/etherdevice.h>
#include <linux/pci.h>
#include <linux/skbuff.h>
#include <linux/if_vlan.h>
#include <linux/in.h>
#include <linux/slab.h>
#include <linux/rtnetlink.h>
#include <linux/netpoll.h>
#include <net/arp.h>
#include <net/route.h>
#include <net/sock.h>
#include <net/pkt_sched.h>
#include <net/checksum.h>
#include <net/ip6_checksum.h>
#include "hyperv_net.h"
#define RING_SIZE_MIN 64
#define RETRY_US_LO 5000
#define RETRY_US_HI 10000
#define RETRY_MAX 2000 /* >10 sec */
#define LINKCHANGE_INT (2 * HZ)
#define VF_TAKEOVER_INT (HZ / 10)
static unsigned int ring_size __ro_after_init = 128;
module_param(ring_size, uint, 0444);
MODULE_PARM_DESC(ring_size, "Ring buffer size (# of pages)");
unsigned int netvsc_ring_bytes __ro_after_init;
static const u32 default_msg = NETIF_MSG_DRV | NETIF_MSG_PROBE |
NETIF_MSG_LINK | NETIF_MSG_IFUP |
NETIF_MSG_IFDOWN | NETIF_MSG_RX_ERR |
NETIF_MSG_TX_ERR;
static int debug = -1;
module_param(debug, int, 0444);
MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
static LIST_HEAD(netvsc_dev_list);
static void netvsc_change_rx_flags(struct net_device *net, int change)
{
struct net_device_context *ndev_ctx = netdev_priv(net);
struct net_device *vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev);
int inc;
if (!vf_netdev)
return;
if (change & IFF_PROMISC) {
inc = (net->flags & IFF_PROMISC) ? 1 : -1;
dev_set_promiscuity(vf_netdev, inc);
}
if (change & IFF_ALLMULTI) {
inc = (net->flags & IFF_ALLMULTI) ? 1 : -1;
dev_set_allmulti(vf_netdev, inc);
}
}
static void netvsc_set_rx_mode(struct net_device *net)
{
struct net_device_context *ndev_ctx = netdev_priv(net);
struct net_device *vf_netdev;
struct netvsc_device *nvdev;
rcu_read_lock();
vf_netdev = rcu_dereference(ndev_ctx->vf_netdev);
if (vf_netdev) {
dev_uc_sync(vf_netdev, net);
dev_mc_sync(vf_netdev, net);
}
nvdev = rcu_dereference(ndev_ctx->nvdev);
if (nvdev)
rndis_filter_update(nvdev);
rcu_read_unlock();
}
static void netvsc_tx_enable(struct netvsc_device *nvscdev,
struct net_device *ndev)
{
nvscdev->tx_disable = false;
virt_wmb(); /* ensure queue wake up mechanism is on */
netif_tx_wake_all_queues(ndev);
}
static int netvsc_open(struct net_device *net)
{
struct net_device_context *ndev_ctx = netdev_priv(net);
struct net_device *vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev);
struct netvsc_device *nvdev = rtnl_dereference(ndev_ctx->nvdev);
struct rndis_device *rdev;
int ret = 0;
netif_carrier_off(net);
/* Open up the device */
ret = rndis_filter_open(nvdev);
if (ret != 0) {
netdev_err(net, "unable to open device (ret %d).\n", ret);
return ret;
}
rdev = nvdev->extension;
if (!rdev->link_state) {
netif_carrier_on(net);
netvsc_tx_enable(nvdev, net);
}
if (vf_netdev) {
/* Setting synthetic device up transparently sets
* slave as up. If open fails, then slave will be
* still be offline (and not used).
*/
ret = dev_open(vf_netdev, NULL);
if (ret)
netdev_warn(net,
"unable to open slave: %s: %d\n",
vf_netdev->name, ret);
}
return 0;
}
static int netvsc_wait_until_empty(struct netvsc_device *nvdev)
{
unsigned int retry = 0;
int i;
/* Ensure pending bytes in ring are read */
for (;;) {
u32 aread = 0;
for (i = 0; i < nvdev->num_chn; i++) {
struct vmbus_channel *chn
= nvdev->chan_table[i].channel;
if (!chn)
continue;
/* make sure receive not running now */
napi_synchronize(&nvdev->chan_table[i].napi);
aread = hv_get_bytes_to_read(&chn->inbound);
if (aread)
break;
aread = hv_get_bytes_to_read(&chn->outbound);
if (aread)
break;
}
if (aread == 0)
return 0;
if (++retry > RETRY_MAX)
return -ETIMEDOUT;
usleep_range(RETRY_US_LO, RETRY_US_HI);
}
}
static void netvsc_tx_disable(struct netvsc_device *nvscdev,
struct net_device *ndev)
{
if (nvscdev) {
nvscdev->tx_disable = true;
virt_wmb(); /* ensure txq will not wake up after stop */
}
netif_tx_disable(ndev);
}
static int netvsc_close(struct net_device *net)
{
struct net_device_context *net_device_ctx = netdev_priv(net);
struct net_device *vf_netdev
= rtnl_dereference(net_device_ctx->vf_netdev);
struct netvsc_device *nvdev = rtnl_dereference(net_device_ctx->nvdev);
int ret;
netvsc_tx_disable(nvdev, net);
/* No need to close rndis filter if it is removed already */
if (!nvdev)
return 0;
ret = rndis_filter_close(nvdev);
if (ret != 0) {
netdev_err(net, "unable to close device (ret %d).\n", ret);
return ret;
}
ret = netvsc_wait_until_empty(nvdev);
if (ret)
netdev_err(net, "Ring buffer not empty after closing rndis\n");
if (vf_netdev)
dev_close(vf_netdev);
return ret;
}
static inline void *init_ppi_data(struct rndis_message *msg,
u32 ppi_size, u32 pkt_type)
{
struct rndis_packet *rndis_pkt = &msg->msg.pkt;
struct rndis_per_packet_info *ppi;
rndis_pkt->data_offset += ppi_size;
ppi = (void *)rndis_pkt + rndis_pkt->per_pkt_info_offset
+ rndis_pkt->per_pkt_info_len;
ppi->size = ppi_size;
ppi->type = pkt_type;
ppi->internal = 0;
ppi->ppi_offset = sizeof(struct rndis_per_packet_info);
rndis_pkt->per_pkt_info_len += ppi_size;
return ppi + 1;
}
/* Azure hosts don't support non-TCP port numbers in hashing for fragmented
* packets. We can use ethtool to change UDP hash level when necessary.
*/
static inline u32 netvsc_get_hash(
struct sk_buff *skb,
const struct net_device_context *ndc)
{
struct flow_keys flow;
u32 hash, pkt_proto = 0;
static u32 hashrnd __read_mostly;
net_get_random_once(&hashrnd, sizeof(hashrnd));
if (!skb_flow_dissect_flow_keys(skb, &flow, 0))
return 0;
switch (flow.basic.ip_proto) {
case IPPROTO_TCP:
if (flow.basic.n_proto == htons(ETH_P_IP))
pkt_proto = HV_TCP4_L4HASH;
else if (flow.basic.n_proto == htons(ETH_P_IPV6))
pkt_proto = HV_TCP6_L4HASH;
break;
case IPPROTO_UDP:
if (flow.basic.n_proto == htons(ETH_P_IP))
pkt_proto = HV_UDP4_L4HASH;
else if (flow.basic.n_proto == htons(ETH_P_IPV6))
pkt_proto = HV_UDP6_L4HASH;
break;
}
if (pkt_proto & ndc->l4_hash) {
return skb_get_hash(skb);
} else {
if (flow.basic.n_proto == htons(ETH_P_IP))
hash = jhash2((u32 *)&flow.addrs.v4addrs, 2, hashrnd);
else if (flow.basic.n_proto == htons(ETH_P_IPV6))
hash = jhash2((u32 *)&flow.addrs.v6addrs, 8, hashrnd);
else
hash = 0;
skb_set_hash(skb, hash, PKT_HASH_TYPE_L3);
}
return hash;
}
static inline int netvsc_get_tx_queue(struct net_device *ndev,
struct sk_buff *skb, int old_idx)
{
const struct net_device_context *ndc = netdev_priv(ndev);
struct sock *sk = skb->sk;
int q_idx;
q_idx = ndc->tx_table[netvsc_get_hash(skb, ndc) &
(VRSS_SEND_TAB_SIZE - 1)];
/* If queue index changed record the new value */
if (q_idx != old_idx &&
sk && sk_fullsock(sk) && rcu_access_pointer(sk->sk_dst_cache))
sk_tx_queue_set(sk, q_idx);
return q_idx;
}
/*
* Select queue for transmit.
*
* If a valid queue has already been assigned, then use that.
* Otherwise compute tx queue based on hash and the send table.
*
* This is basically similar to default (netdev_pick_tx) with the added step
* of using the host send_table when no other queue has been assigned.
*
* TODO support XPS - but get_xps_queue not exported
*/
static u16 netvsc_pick_tx(struct net_device *ndev, struct sk_buff *skb)
{
int q_idx = sk_tx_queue_get(skb->sk);
if (q_idx < 0 || skb->ooo_okay || q_idx >= ndev->real_num_tx_queues) {
/* If forwarding a packet, we use the recorded queue when
* available for better cache locality.
*/
if (skb_rx_queue_recorded(skb))
q_idx = skb_get_rx_queue(skb);
else
q_idx = netvsc_get_tx_queue(ndev, skb, q_idx);
}
return q_idx;
}
static u16 netvsc_select_queue(struct net_device *ndev, struct sk_buff *skb,
struct net_device *sb_dev)
{
struct net_device_context *ndc = netdev_priv(ndev);
struct net_device *vf_netdev;
u16 txq;
rcu_read_lock();
vf_netdev = rcu_dereference(ndc->vf_netdev);
if (vf_netdev) {
const struct net_device_ops *vf_ops = vf_netdev->netdev_ops;
if (vf_ops->ndo_select_queue)
txq = vf_ops->ndo_select_queue(vf_netdev, skb, sb_dev);
else
txq = netdev_pick_tx(vf_netdev, skb, NULL);
/* Record the queue selected by VF so that it can be
* used for common case where VF has more queues than
* the synthetic device.
*/
qdisc_skb_cb(skb)->slave_dev_queue_mapping = txq;
} else {
txq = netvsc_pick_tx(ndev, skb);
}
rcu_read_unlock();
while (unlikely(txq >= ndev->real_num_tx_queues))
txq -= ndev->real_num_tx_queues;
return txq;
}
static u32 fill_pg_buf(struct page *page, u32 offset, u32 len,
struct hv_page_buffer *pb)
{
int j = 0;
/* Deal with compound pages by ignoring unused part
* of the page.
*/
page += (offset >> PAGE_SHIFT);
offset &= ~PAGE_MASK;
while (len > 0) {
unsigned long bytes;
bytes = PAGE_SIZE - offset;
if (bytes > len)
bytes = len;
pb[j].pfn = page_to_pfn(page);
pb[j].offset = offset;
pb[j].len = bytes;
offset += bytes;
len -= bytes;
if (offset == PAGE_SIZE && len) {
page++;
offset = 0;
j++;
}
}
return j + 1;
}
static u32 init_page_array(void *hdr, u32 len, struct sk_buff *skb,
struct hv_netvsc_packet *packet,
struct hv_page_buffer *pb)
{
u32 slots_used = 0;
char *data = skb->data;
int frags = skb_shinfo(skb)->nr_frags;
int i;
/* The packet is laid out thus:
* 1. hdr: RNDIS header and PPI
* 2. skb linear data
* 3. skb fragment data
*/
slots_used += fill_pg_buf(virt_to_page(hdr),
offset_in_page(hdr),
len, &pb[slots_used]);
packet->rmsg_size = len;
packet->rmsg_pgcnt = slots_used;
slots_used += fill_pg_buf(virt_to_page(data),
offset_in_page(data),
skb_headlen(skb), &pb[slots_used]);
for (i = 0; i < frags; i++) {
skb_frag_t *frag = skb_shinfo(skb)->frags + i;
slots_used += fill_pg_buf(skb_frag_page(frag),
frag->page_offset,
skb_frag_size(frag), &pb[slots_used]);
}
return slots_used;
}
static int count_skb_frag_slots(struct sk_buff *skb)
{
int i, frags = skb_shinfo(skb)->nr_frags;
int pages = 0;
for (i = 0; i < frags; i++) {
skb_frag_t *frag = skb_shinfo(skb)->frags + i;
unsigned long size = skb_frag_size(frag);
unsigned long offset = frag->page_offset;
/* Skip unused frames from start of page */
offset &= ~PAGE_MASK;
pages += PFN_UP(offset + size);
}
return pages;
}
static int netvsc_get_slots(struct sk_buff *skb)
{
char *data = skb->data;
unsigned int offset = offset_in_page(data);
unsigned int len = skb_headlen(skb);
int slots;
int frag_slots;
slots = DIV_ROUND_UP(offset + len, PAGE_SIZE);
frag_slots = count_skb_frag_slots(skb);
return slots + frag_slots;
}
static u32 net_checksum_info(struct sk_buff *skb)
{
if (skb->protocol == htons(ETH_P_IP)) {
struct iphdr *ip = ip_hdr(skb);
if (ip->protocol == IPPROTO_TCP)
return TRANSPORT_INFO_IPV4_TCP;
else if (ip->protocol == IPPROTO_UDP)
return TRANSPORT_INFO_IPV4_UDP;
} else {
struct ipv6hdr *ip6 = ipv6_hdr(skb);
if (ip6->nexthdr == IPPROTO_TCP)
return TRANSPORT_INFO_IPV6_TCP;
else if (ip6->nexthdr == IPPROTO_UDP)
return TRANSPORT_INFO_IPV6_UDP;
}
return TRANSPORT_INFO_NOT_IP;
}
/* Send skb on the slave VF device. */
static int netvsc_vf_xmit(struct net_device *net, struct net_device *vf_netdev,
struct sk_buff *skb)
{
struct net_device_context *ndev_ctx = netdev_priv(net);
unsigned int len = skb->len;
int rc;
skb->dev = vf_netdev;
skb->queue_mapping = qdisc_skb_cb(skb)->slave_dev_queue_mapping;
rc = dev_queue_xmit(skb);
if (likely(rc == NET_XMIT_SUCCESS || rc == NET_XMIT_CN)) {
struct netvsc_vf_pcpu_stats *pcpu_stats
= this_cpu_ptr(ndev_ctx->vf_stats);
u64_stats_update_begin(&pcpu_stats->syncp);
pcpu_stats->tx_packets++;
pcpu_stats->tx_bytes += len;
u64_stats_update_end(&pcpu_stats->syncp);
} else {
this_cpu_inc(ndev_ctx->vf_stats->tx_dropped);
}
return rc;
}
static int netvsc_start_xmit(struct sk_buff *skb, struct net_device *net)
{
struct net_device_context *net_device_ctx = netdev_priv(net);
struct hv_netvsc_packet *packet = NULL;
int ret;
unsigned int num_data_pgs;
struct rndis_message *rndis_msg;
struct net_device *vf_netdev;
u32 rndis_msg_size;
u32 hash;
struct hv_page_buffer pb[MAX_PAGE_BUFFER_COUNT];
/* if VF is present and up then redirect packets
* already called with rcu_read_lock_bh
*/
vf_netdev = rcu_dereference_bh(net_device_ctx->vf_netdev);
if (vf_netdev && netif_running(vf_netdev) &&
!netpoll_tx_running(net))
return netvsc_vf_xmit(net, vf_netdev, skb);
/* We will atmost need two pages to describe the rndis
* header. We can only transmit MAX_PAGE_BUFFER_COUNT number
* of pages in a single packet. If skb is scattered around
* more pages we try linearizing it.
*/
num_data_pgs = netvsc_get_slots(skb) + 2;
if (unlikely(num_data_pgs > MAX_PAGE_BUFFER_COUNT)) {
++net_device_ctx->eth_stats.tx_scattered;
if (skb_linearize(skb))
goto no_memory;
num_data_pgs = netvsc_get_slots(skb) + 2;
if (num_data_pgs > MAX_PAGE_BUFFER_COUNT) {
++net_device_ctx->eth_stats.tx_too_big;
goto drop;
}
}
/*
* Place the rndis header in the skb head room and
* the skb->cb will be used for hv_netvsc_packet
* structure.
*/
ret = skb_cow_head(skb, RNDIS_AND_PPI_SIZE);
if (ret)
goto no_memory;
/* Use the skb control buffer for building up the packet */
BUILD_BUG_ON(sizeof(struct hv_netvsc_packet) >
FIELD_SIZEOF(struct sk_buff, cb));
packet = (struct hv_netvsc_packet *)skb->cb;
packet->q_idx = skb_get_queue_mapping(skb);
packet->total_data_buflen = skb->len;
packet->total_bytes = skb->len;
packet->total_packets = 1;
rndis_msg = (struct rndis_message *)skb->head;
/* Add the rndis header */
rndis_msg->ndis_msg_type = RNDIS_MSG_PACKET;
rndis_msg->msg_len = packet->total_data_buflen;
rndis_msg->msg.pkt = (struct rndis_packet) {
.data_offset = sizeof(struct rndis_packet),
.data_len = packet->total_data_buflen,
.per_pkt_info_offset = sizeof(struct rndis_packet),
};
rndis_msg_size = RNDIS_MESSAGE_SIZE(struct rndis_packet);
hash = skb_get_hash_raw(skb);
if (hash != 0 && net->real_num_tx_queues > 1) {
u32 *hash_info;
rndis_msg_size += NDIS_HASH_PPI_SIZE;
hash_info = init_ppi_data(rndis_msg, NDIS_HASH_PPI_SIZE,
NBL_HASH_VALUE);
*hash_info = hash;
}
if (skb_vlan_tag_present(skb)) {
struct ndis_pkt_8021q_info *vlan;
rndis_msg_size += NDIS_VLAN_PPI_SIZE;
vlan = init_ppi_data(rndis_msg, NDIS_VLAN_PPI_SIZE,
IEEE_8021Q_INFO);
vlan->value = 0;
vlan->vlanid = skb_vlan_tag_get_id(skb);
vlan->cfi = skb_vlan_tag_get_cfi(skb);
vlan->pri = skb_vlan_tag_get_prio(skb);
}
if (skb_is_gso(skb)) {
struct ndis_tcp_lso_info *lso_info;
rndis_msg_size += NDIS_LSO_PPI_SIZE;
lso_info = init_ppi_data(rndis_msg, NDIS_LSO_PPI_SIZE,
TCP_LARGESEND_PKTINFO);
lso_info->value = 0;
lso_info->lso_v2_transmit.type = NDIS_TCP_LARGE_SEND_OFFLOAD_V2_TYPE;
if (skb->protocol == htons(ETH_P_IP)) {
lso_info->lso_v2_transmit.ip_version =
NDIS_TCP_LARGE_SEND_OFFLOAD_IPV4;
ip_hdr(skb)->tot_len = 0;
ip_hdr(skb)->check = 0;
tcp_hdr(skb)->check =
~csum_tcpudp_magic(ip_hdr(skb)->saddr,
ip_hdr(skb)->daddr, 0, IPPROTO_TCP, 0);
} else {
lso_info->lso_v2_transmit.ip_version =
NDIS_TCP_LARGE_SEND_OFFLOAD_IPV6;
ipv6_hdr(skb)->payload_len = 0;
tcp_hdr(skb)->check =
~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
&ipv6_hdr(skb)->daddr, 0, IPPROTO_TCP, 0);
}
lso_info->lso_v2_transmit.tcp_header_offset = skb_transport_offset(skb);
lso_info->lso_v2_transmit.mss = skb_shinfo(skb)->gso_size;
} else if (skb->ip_summed == CHECKSUM_PARTIAL) {
if (net_checksum_info(skb) & net_device_ctx->tx_checksum_mask) {
struct ndis_tcp_ip_checksum_info *csum_info;
rndis_msg_size += NDIS_CSUM_PPI_SIZE;
csum_info = init_ppi_data(rndis_msg, NDIS_CSUM_PPI_SIZE,
TCPIP_CHKSUM_PKTINFO);
csum_info->value = 0;
csum_info->transmit.tcp_header_offset = skb_transport_offset(skb);
if (skb->protocol == htons(ETH_P_IP)) {
csum_info->transmit.is_ipv4 = 1;
if (ip_hdr(skb)->protocol == IPPROTO_TCP)
csum_info->transmit.tcp_checksum = 1;
else
csum_info->transmit.udp_checksum = 1;
} else {
csum_info->transmit.is_ipv6 = 1;
if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
csum_info->transmit.tcp_checksum = 1;
else
csum_info->transmit.udp_checksum = 1;
}
} else {
/* Can't do offload of this type of checksum */
if (skb_checksum_help(skb))
goto drop;
}
}
/* Start filling in the page buffers with the rndis hdr */
rndis_msg->msg_len += rndis_msg_size;
packet->total_data_buflen = rndis_msg->msg_len;
packet->page_buf_cnt = init_page_array(rndis_msg, rndis_msg_size,
skb, packet, pb);
/* timestamp packet in software */
skb_tx_timestamp(skb);
ret = netvsc_send(net, packet, rndis_msg, pb, skb);
if (likely(ret == 0))
return NETDEV_TX_OK;
if (ret == -EAGAIN) {
++net_device_ctx->eth_stats.tx_busy;
return NETDEV_TX_BUSY;
}
if (ret == -ENOSPC)
++net_device_ctx->eth_stats.tx_no_space;
drop:
dev_kfree_skb_any(skb);
net->stats.tx_dropped++;
return NETDEV_TX_OK;
no_memory:
++net_device_ctx->eth_stats.tx_no_memory;
goto drop;
}
/*
* netvsc_linkstatus_callback - Link up/down notification
*/
void netvsc_linkstatus_callback(struct net_device *net,
struct rndis_message *resp)
{
struct rndis_indicate_status *indicate = &resp->msg.indicate_status;
struct net_device_context *ndev_ctx = netdev_priv(net);
struct netvsc_reconfig *event;
unsigned long flags;
/* Update the physical link speed when changing to another vSwitch */
if (indicate->status == RNDIS_STATUS_LINK_SPEED_CHANGE) {
u32 speed;
speed = *(u32 *)((void *)indicate
+ indicate->status_buf_offset) / 10000;
ndev_ctx->speed = speed;
return;
}
/* Handle these link change statuses below */
if (indicate->status != RNDIS_STATUS_NETWORK_CHANGE &&
indicate->status != RNDIS_STATUS_MEDIA_CONNECT &&
indicate->status != RNDIS_STATUS_MEDIA_DISCONNECT)
return;
if (net->reg_state != NETREG_REGISTERED)
return;
event = kzalloc(sizeof(*event), GFP_ATOMIC);
if (!event)
return;
event->event = indicate->status;
spin_lock_irqsave(&ndev_ctx->lock, flags);
list_add_tail(&event->list, &ndev_ctx->reconfig_events);
spin_unlock_irqrestore(&ndev_ctx->lock, flags);
schedule_delayed_work(&ndev_ctx->dwork, 0);
}
static void netvsc_comp_ipcsum(struct sk_buff *skb)
{
struct iphdr *iph = (struct iphdr *)skb->data;
iph->check = 0;
iph->check = ip_fast_csum(iph, iph->ihl);
}
static struct sk_buff *netvsc_alloc_recv_skb(struct net_device *net,
struct netvsc_channel *nvchan)
{
struct napi_struct *napi = &nvchan->napi;
const struct ndis_pkt_8021q_info *vlan = nvchan->rsc.vlan;
const struct ndis_tcp_ip_checksum_info *csum_info =
nvchan->rsc.csum_info;
struct sk_buff *skb;
int i;
skb = napi_alloc_skb(napi, nvchan->rsc.pktlen);
if (!skb)
return skb;
/*
* Copy to skb. This copy is needed here since the memory pointed by
* hv_netvsc_packet cannot be deallocated
*/
for (i = 0; i < nvchan->rsc.cnt; i++)
skb_put_data(skb, nvchan->rsc.data[i], nvchan->rsc.len[i]);
skb->protocol = eth_type_trans(skb, net);
/* skb is already created with CHECKSUM_NONE */
skb_checksum_none_assert(skb);
/* Incoming packets may have IP header checksum verified by the host.
* They may not have IP header checksum computed after coalescing.
* We compute it here if the flags are set, because on Linux, the IP
* checksum is always checked.
*/
if (csum_info && csum_info->receive.ip_checksum_value_invalid &&
csum_info->receive.ip_checksum_succeeded &&
skb->protocol == htons(ETH_P_IP))
netvsc_comp_ipcsum(skb);
/* Do L4 checksum offload if enabled and present.
*/
if (csum_info && (net->features & NETIF_F_RXCSUM)) {
if (csum_info->receive.tcp_checksum_succeeded ||
csum_info->receive.udp_checksum_succeeded)
skb->ip_summed = CHECKSUM_UNNECESSARY;
}
if (vlan) {
u16 vlan_tci = vlan->vlanid | (vlan->pri << VLAN_PRIO_SHIFT) |
(vlan->cfi ? VLAN_CFI_MASK : 0);
__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
vlan_tci);
}
return skb;
}
/*
* netvsc_recv_callback - Callback when we receive a packet from the
* "wire" on the specified device.
*/
int netvsc_recv_callback(struct net_device *net,
struct netvsc_device *net_device,
struct netvsc_channel *nvchan)
{
struct net_device_context *net_device_ctx = netdev_priv(net);
struct vmbus_channel *channel = nvchan->channel;
u16 q_idx = channel->offermsg.offer.sub_channel_index;
struct sk_buff *skb;
struct netvsc_stats *rx_stats;
if (net->reg_state != NETREG_REGISTERED)
return NVSP_STAT_FAIL;
/* Allocate a skb - TODO direct I/O to pages? */
skb = netvsc_alloc_recv_skb(net, nvchan);
if (unlikely(!skb)) {
++net_device_ctx->eth_stats.rx_no_memory;
rcu_read_unlock();
return NVSP_STAT_FAIL;
}
skb_record_rx_queue(skb, q_idx);
/*
* Even if injecting the packet, record the statistics
* on the synthetic device because modifying the VF device
* statistics will not work correctly.
*/
rx_stats = &nvchan->rx_stats;
u64_stats_update_begin(&rx_stats->syncp);
rx_stats->packets++;
rx_stats->bytes += nvchan->rsc.pktlen;
if (skb->pkt_type == PACKET_BROADCAST)
++rx_stats->broadcast;
else if (skb->pkt_type == PACKET_MULTICAST)
++rx_stats->multicast;
u64_stats_update_end(&rx_stats->syncp);
napi_gro_receive(&nvchan->napi, skb);
return NVSP_STAT_SUCCESS;
}
static void netvsc_get_drvinfo(struct net_device *net,
struct ethtool_drvinfo *info)
{
strlcpy(info->driver, KBUILD_MODNAME, sizeof(info->driver));
strlcpy(info->fw_version, "N/A", sizeof(info->fw_version));
}
static void netvsc_get_channels(struct net_device *net,
struct ethtool_channels *channel)
{
struct net_device_context *net_device_ctx = netdev_priv(net);
struct netvsc_device *nvdev = rtnl_dereference(net_device_ctx->nvdev);
if (nvdev) {
channel->max_combined = nvdev->max_chn;
channel->combined_count = nvdev->num_chn;
}
}
/* Alloc struct netvsc_device_info, and initialize it from either existing
* struct netvsc_device, or from default values.
*/
static struct netvsc_device_info *netvsc_devinfo_get
(struct netvsc_device *nvdev)
{
struct netvsc_device_info *dev_info;
dev_info = kzalloc(sizeof(*dev_info), GFP_ATOMIC);
if (!dev_info)
return NULL;
if (nvdev) {
dev_info->num_chn = nvdev->num_chn;
dev_info->send_sections = nvdev->send_section_cnt;
dev_info->send_section_size = nvdev->send_section_size;
dev_info->recv_sections = nvdev->recv_section_cnt;
dev_info->recv_section_size = nvdev->recv_section_size;
memcpy(dev_info->rss_key, nvdev->extension->rss_key,
NETVSC_HASH_KEYLEN);
} else {
dev_info->num_chn = VRSS_CHANNEL_DEFAULT;
dev_info->send_sections = NETVSC_DEFAULT_TX;
dev_info->send_section_size = NETVSC_SEND_SECTION_SIZE;
dev_info->recv_sections = NETVSC_DEFAULT_RX;
dev_info->recv_section_size = NETVSC_RECV_SECTION_SIZE;
}
return dev_info;
}
static int netvsc_detach(struct net_device *ndev,
struct netvsc_device *nvdev)
{
struct net_device_context *ndev_ctx = netdev_priv(ndev);
struct hv_device *hdev = ndev_ctx->device_ctx;
int ret;
/* Don't try continuing to try and setup sub channels */
if (cancel_work_sync(&nvdev->subchan_work))
nvdev->num_chn = 1;
/* If device was up (receiving) then shutdown */
if (netif_running(ndev)) {
netvsc_tx_disable(nvdev, ndev);
ret = rndis_filter_close(nvdev);
if (ret) {
netdev_err(ndev,
"unable to close device (ret %d).\n", ret);
return ret;
}
ret = netvsc_wait_until_empty(nvdev);
if (ret) {
netdev_err(ndev,
"Ring buffer not empty after closing rndis\n");
return ret;
}
}
netif_device_detach(ndev);
rndis_filter_device_remove(hdev, nvdev);
return 0;
}
static int netvsc_attach(struct net_device *ndev,
struct netvsc_device_info *dev_info)
{
struct net_device_context *ndev_ctx = netdev_priv(ndev);
struct hv_device *hdev = ndev_ctx->device_ctx;
struct netvsc_device *nvdev;
struct rndis_device *rdev;
int ret;
nvdev = rndis_filter_device_add(hdev, dev_info);
if (IS_ERR(nvdev))
return PTR_ERR(nvdev);
if (nvdev->num_chn > 1) {
ret = rndis_set_subchannel(ndev, nvdev, dev_info);
/* if unavailable, just proceed with one queue */
if (ret) {
nvdev->max_chn = 1;
nvdev->num_chn = 1;
}
}
/* In any case device is now ready */
netif_device_attach(ndev);
/* Note: enable and attach happen when sub-channels setup */
netif_carrier_off(ndev);
if (netif_running(ndev)) {
ret = rndis_filter_open(nvdev);
if (ret)
return ret;
rdev = nvdev->extension;
if (!rdev->link_state)
netif_carrier_on(ndev);
}
return 0;
}
static int netvsc_set_channels(struct net_device *net,
struct ethtool_channels *channels)
{
struct net_device_context *net_device_ctx = netdev_priv(net);
struct netvsc_device *nvdev = rtnl_dereference(net_device_ctx->nvdev);
unsigned int orig, count = channels->combined_count;
struct netvsc_device_info *device_info;
int ret;
/* We do not support separate count for rx, tx, or other */
if (count == 0 ||
channels->rx_count || channels->tx_count || channels->other_count)
return -EINVAL;
if (!nvdev || nvdev->destroy)
return -ENODEV;
if (nvdev->nvsp_version < NVSP_PROTOCOL_VERSION_5)
return -EINVAL;
if (count > nvdev->max_chn)
return -EINVAL;
orig = nvdev->num_chn;
device_info = netvsc_devinfo_get(nvdev);
if (!device_info)
return -ENOMEM;
device_info->num_chn = count;
ret = netvsc_detach(net, nvdev);
if (ret)
goto out;
ret = netvsc_attach(net, device_info);
if (ret) {
device_info->num_chn = orig;
if (netvsc_attach(net, device_info))
netdev_err(net, "restoring channel setting failed\n");
}
out:
kfree(device_info);
return ret;
}
static bool
netvsc_validate_ethtool_ss_cmd(const struct ethtool_link_ksettings *cmd)
{
struct ethtool_link_ksettings diff1 = *cmd;
struct ethtool_link_ksettings diff2 = {};
diff1.base.speed = 0;
diff1.base.duplex = 0;
/* advertising and cmd are usually set */
ethtool_link_ksettings_zero_link_mode(&diff1, advertising);
diff1.base.cmd = 0;
/* We set port to PORT_OTHER */
diff2.base.port = PORT_OTHER;
return !memcmp(&diff1, &diff2, sizeof(diff1));
}
static void netvsc_init_settings(struct net_device *dev)
{
struct net_device_context *ndc = netdev_priv(dev);
ndc->l4_hash = HV_DEFAULT_L4HASH;
ndc->speed = SPEED_UNKNOWN;
ndc->duplex = DUPLEX_FULL;
dev->features = NETIF_F_LRO;
}
static int netvsc_get_link_ksettings(struct net_device *dev,
struct ethtool_link_ksettings *cmd)
{
struct net_device_context *ndc = netdev_priv(dev);
cmd->base.speed = ndc->speed;
cmd->base.duplex = ndc->duplex;
cmd->base.port = PORT_OTHER;
return 0;
}
static int netvsc_set_link_ksettings(struct net_device *dev,
const struct ethtool_link_ksettings *cmd)
{
struct net_device_context *ndc = netdev_priv(dev);
u32 speed;
speed = cmd->base.speed;
if (!ethtool_validate_speed(speed) ||
!ethtool_validate_duplex(cmd->base.duplex) ||
!netvsc_validate_ethtool_ss_cmd(cmd))
return -EINVAL;
ndc->speed = speed;
ndc->duplex = cmd->base.duplex;
return 0;
}
static int netvsc_change_mtu(struct net_device *ndev, int mtu)
{
struct net_device_context *ndevctx = netdev_priv(ndev);
struct net_device *vf_netdev = rtnl_dereference(ndevctx->vf_netdev);
struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev);
int orig_mtu = ndev->mtu;
struct netvsc_device_info *device_info;
int ret = 0;
if (!nvdev || nvdev->destroy)
return -ENODEV;
device_info = netvsc_devinfo_get(nvdev);
if (!device_info)
return -ENOMEM;
/* Change MTU of underlying VF netdev first. */
if (vf_netdev) {
ret = dev_set_mtu(vf_netdev, mtu);
if (ret)
goto out;
}
ret = netvsc_detach(ndev, nvdev);
if (ret)
goto rollback_vf;
ndev->mtu = mtu;
ret = netvsc_attach(ndev, device_info);
if (!ret)
goto out;
/* Attempt rollback to original MTU */
ndev->mtu = orig_mtu;
if (netvsc_attach(ndev, device_info))
netdev_err(ndev, "restoring mtu failed\n");
rollback_vf:
if (vf_netdev)
dev_set_mtu(vf_netdev, orig_mtu);
out:
kfree(device_info);
return ret;
}
static void netvsc_get_vf_stats(struct net_device *net,
struct netvsc_vf_pcpu_stats *tot)
{
struct net_device_context *ndev_ctx = netdev_priv(net);
int i;
memset(tot, 0, sizeof(*tot));
for_each_possible_cpu(i) {
const struct netvsc_vf_pcpu_stats *stats
= per_cpu_ptr(ndev_ctx->vf_stats, i);
u64 rx_packets, rx_bytes, tx_packets, tx_bytes;
unsigned int start;
do {
start = u64_stats_fetch_begin_irq(&stats->syncp);
rx_packets = stats->rx_packets;
tx_packets = stats->tx_packets;
rx_bytes = stats->rx_bytes;
tx_bytes = stats->tx_bytes;
} while (u64_stats_fetch_retry_irq(&stats->syncp, start));
tot->rx_packets += rx_packets;
tot->tx_packets += tx_packets;
tot->rx_bytes += rx_bytes;
tot->tx_bytes += tx_bytes;
tot->tx_dropped += stats->tx_dropped;
}
}
static void netvsc_get_pcpu_stats(struct net_device *net,
struct netvsc_ethtool_pcpu_stats *pcpu_tot)
{
struct net_device_context *ndev_ctx = netdev_priv(net);
struct netvsc_device *nvdev = rcu_dereference_rtnl(ndev_ctx->nvdev);
int i;
/* fetch percpu stats of vf */
for_each_possible_cpu(i) {
const struct netvsc_vf_pcpu_stats *stats =
per_cpu_ptr(ndev_ctx->vf_stats, i);
struct netvsc_ethtool_pcpu_stats *this_tot = &pcpu_tot[i];
unsigned int start;
do {
start = u64_stats_fetch_begin_irq(&stats->syncp);
this_tot->vf_rx_packets = stats->rx_packets;
this_tot->vf_tx_packets = stats->tx_packets;
this_tot->vf_rx_bytes = stats->rx_bytes;
this_tot->vf_tx_bytes = stats->tx_bytes;
} while (u64_stats_fetch_retry_irq(&stats->syncp, start));
this_tot->rx_packets = this_tot->vf_rx_packets;
this_tot->tx_packets = this_tot->vf_tx_packets;
this_tot->rx_bytes = this_tot->vf_rx_bytes;
this_tot->tx_bytes = this_tot->vf_tx_bytes;
}
/* fetch percpu stats of netvsc */
for (i = 0; i < nvdev->num_chn; i++) {
const struct netvsc_channel *nvchan = &nvdev->chan_table[i];
const struct netvsc_stats *stats;
struct netvsc_ethtool_pcpu_stats *this_tot =
&pcpu_tot[nvchan->channel->target_cpu];
u64 packets, bytes;
unsigned int start;
stats = &nvchan->tx_stats;
do {
start = u64_stats_fetch_begin_irq(&stats->syncp);
packets = stats->packets;
bytes = stats->bytes;
} while (u64_stats_fetch_retry_irq(&stats->syncp, start));
this_tot->tx_bytes += bytes;
this_tot->tx_packets += packets;
stats = &nvchan->rx_stats;
do {
start = u64_stats_fetch_begin_irq(&stats->syncp);
packets = stats->packets;
bytes = stats->bytes;
} while (u64_stats_fetch_retry_irq(&stats->syncp, start));
this_tot->rx_bytes += bytes;
this_tot->rx_packets += packets;
}
}
static void netvsc_get_stats64(struct net_device *net,
struct rtnl_link_stats64 *t)
{
struct net_device_context *ndev_ctx = netdev_priv(net);
struct netvsc_device *nvdev = rcu_dereference_rtnl(ndev_ctx->nvdev);
struct netvsc_vf_pcpu_stats vf_tot;
int i;
if (!nvdev)
return;
netdev_stats_to_stats64(t, &net->stats);
netvsc_get_vf_stats(net, &vf_tot);
t->rx_packets += vf_tot.rx_packets;
t->tx_packets += vf_tot.tx_packets;
t->rx_bytes += vf_tot.rx_bytes;
t->tx_bytes += vf_tot.tx_bytes;
t->tx_dropped += vf_tot.tx_dropped;
for (i = 0; i < nvdev->num_chn; i++) {
const struct netvsc_channel *nvchan = &nvdev->chan_table[i];
const struct netvsc_stats *stats;
u64 packets, bytes, multicast;
unsigned int start;
stats = &nvchan->tx_stats;
do {
start = u64_stats_fetch_begin_irq(&stats->syncp);
packets = stats->packets;
bytes = stats->bytes;
} while (u64_stats_fetch_retry_irq(&stats->syncp, start));
t->tx_bytes += bytes;
t->tx_packets += packets;
stats = &nvchan->rx_stats;
do {
start = u64_stats_fetch_begin_irq(&stats->syncp);
packets = stats->packets;
bytes = stats->bytes;
multicast = stats->multicast + stats->broadcast;
} while (u64_stats_fetch_retry_irq(&stats->syncp, start));
t->rx_bytes += bytes;
t->rx_packets += packets;
t->multicast += multicast;
}
}
static int netvsc_set_mac_addr(struct net_device *ndev, void *p)
{
struct net_device_context *ndc = netdev_priv(ndev);
struct net_device *vf_netdev = rtnl_dereference(ndc->vf_netdev);
struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
struct sockaddr *addr = p;
int err;
err = eth_prepare_mac_addr_change(ndev, p);
if (err)
return err;
if (!nvdev)
return -ENODEV;
if (vf_netdev) {
err = dev_set_mac_address(vf_netdev, addr, NULL);
if (err)
return err;
}
err = rndis_filter_set_device_mac(nvdev, addr->sa_data);
if (!err) {
eth_commit_mac_addr_change(ndev, p);
} else if (vf_netdev) {
/* rollback change on VF */
memcpy(addr->sa_data, ndev->dev_addr, ETH_ALEN);
dev_set_mac_address(vf_netdev, addr, NULL);
}
return err;
}
static const struct {
char name[ETH_GSTRING_LEN];
u16 offset;
} netvsc_stats[] = {
{ "tx_scattered", offsetof(struct netvsc_ethtool_stats, tx_scattered) },
{ "tx_no_memory", offsetof(struct netvsc_ethtool_stats, tx_no_memory) },
{ "tx_no_space", offsetof(struct netvsc_ethtool_stats, tx_no_space) },
{ "tx_too_big", offsetof(struct netvsc_ethtool_stats, tx_too_big) },
{ "tx_busy", offsetof(struct netvsc_ethtool_stats, tx_busy) },
{ "tx_send_full", offsetof(struct netvsc_ethtool_stats, tx_send_full) },
{ "rx_comp_busy", offsetof(struct netvsc_ethtool_stats, rx_comp_busy) },
{ "rx_no_memory", offsetof(struct netvsc_ethtool_stats, rx_no_memory) },
{ "stop_queue", offsetof(struct netvsc_ethtool_stats, stop_queue) },
{ "wake_queue", offsetof(struct netvsc_ethtool_stats, wake_queue) },
}, pcpu_stats[] = {
{ "cpu%u_rx_packets",
offsetof(struct netvsc_ethtool_pcpu_stats, rx_packets) },
{ "cpu%u_rx_bytes",
offsetof(struct netvsc_ethtool_pcpu_stats, rx_bytes) },
{ "cpu%u_tx_packets",
offsetof(struct netvsc_ethtool_pcpu_stats, tx_packets) },
{ "cpu%u_tx_bytes",
offsetof(struct netvsc_ethtool_pcpu_stats, tx_bytes) },
{ "cpu%u_vf_rx_packets",
offsetof(struct netvsc_ethtool_pcpu_stats, vf_rx_packets) },
{ "cpu%u_vf_rx_bytes",
offsetof(struct netvsc_ethtool_pcpu_stats, vf_rx_bytes) },
{ "cpu%u_vf_tx_packets",
offsetof(struct netvsc_ethtool_pcpu_stats, vf_tx_packets) },
{ "cpu%u_vf_tx_bytes",
offsetof(struct netvsc_ethtool_pcpu_stats, vf_tx_bytes) },
}, vf_stats[] = {
{ "vf_rx_packets", offsetof(struct netvsc_vf_pcpu_stats, rx_packets) },
{ "vf_rx_bytes", offsetof(struct netvsc_vf_pcpu_stats, rx_bytes) },
{ "vf_tx_packets", offsetof(struct netvsc_vf_pcpu_stats, tx_packets) },
{ "vf_tx_bytes", offsetof(struct netvsc_vf_pcpu_stats, tx_bytes) },
{ "vf_tx_dropped", offsetof(struct netvsc_vf_pcpu_stats, tx_dropped) },
};
#define NETVSC_GLOBAL_STATS_LEN ARRAY_SIZE(netvsc_stats)
#define NETVSC_VF_STATS_LEN ARRAY_SIZE(vf_stats)
/* statistics per queue (rx/tx packets/bytes) */
#define NETVSC_PCPU_STATS_LEN (num_present_cpus() * ARRAY_SIZE(pcpu_stats))
/* 4 statistics per queue (rx/tx packets/bytes) */
#define NETVSC_QUEUE_STATS_LEN(dev) ((dev)->num_chn * 4)
static int netvsc_get_sset_count(struct net_device *dev, int string_set)
{
struct net_device_context *ndc = netdev_priv(dev);
struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
if (!nvdev)
return -ENODEV;
switch (string_set) {
case ETH_SS_STATS:
return NETVSC_GLOBAL_STATS_LEN
+ NETVSC_VF_STATS_LEN
+ NETVSC_QUEUE_STATS_LEN(nvdev)
+ NETVSC_PCPU_STATS_LEN;
default:
return -EINVAL;
}
}
static void netvsc_get_ethtool_stats(struct net_device *dev,
struct ethtool_stats *stats, u64 *data)
{
struct net_device_context *ndc = netdev_priv(dev);
struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
const void *nds = &ndc->eth_stats;
const struct netvsc_stats *qstats;
struct netvsc_vf_pcpu_stats sum;
struct netvsc_ethtool_pcpu_stats *pcpu_sum;
unsigned int start;
u64 packets, bytes;
int i, j, cpu;
if (!nvdev)
return;
for (i = 0; i < NETVSC_GLOBAL_STATS_LEN; i++)
data[i] = *(unsigned long *)(nds + netvsc_stats[i].offset);
netvsc_get_vf_stats(dev, &sum);
for (j = 0; j < NETVSC_VF_STATS_LEN; j++)
data[i++] = *(u64 *)((void *)&sum + vf_stats[j].offset);
for (j = 0; j < nvdev->num_chn; j++) {
qstats = &nvdev->chan_table[j].tx_stats;
do {
start = u64_stats_fetch_begin_irq(&qstats->syncp);
packets = qstats->packets;
bytes = qstats->bytes;
} while (u64_stats_fetch_retry_irq(&qstats->syncp, start));
data[i++] = packets;
data[i++] = bytes;
qstats = &nvdev->chan_table[j].rx_stats;
do {
start = u64_stats_fetch_begin_irq(&qstats->syncp);
packets = qstats->packets;
bytes = qstats->bytes;
} while (u64_stats_fetch_retry_irq(&qstats->syncp, start));
data[i++] = packets;
data[i++] = bytes;
}
pcpu_sum = kvmalloc_array(num_possible_cpus(),
sizeof(struct netvsc_ethtool_pcpu_stats),
GFP_KERNEL);
netvsc_get_pcpu_stats(dev, pcpu_sum);
for_each_present_cpu(cpu) {
struct netvsc_ethtool_pcpu_stats *this_sum = &pcpu_sum[cpu];
for (j = 0; j < ARRAY_SIZE(pcpu_stats); j++)
data[i++] = *(u64 *)((void *)this_sum
+ pcpu_stats[j].offset);
}
kvfree(pcpu_sum);
}
static void netvsc_get_strings(struct net_device *dev, u32 stringset, u8 *data)
{
struct net_device_context *ndc = netdev_priv(dev);
struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
u8 *p = data;
int i, cpu;
if (!nvdev)
return;
switch (stringset) {
case ETH_SS_STATS:
for (i = 0; i < ARRAY_SIZE(netvsc_stats); i++) {
memcpy(p, netvsc_stats[i].name, ETH_GSTRING_LEN);
p += ETH_GSTRING_LEN;
}
for (i = 0; i < ARRAY_SIZE(vf_stats); i++) {
memcpy(p, vf_stats[i].name, ETH_GSTRING_LEN);
p += ETH_GSTRING_LEN;
}
for (i = 0; i < nvdev->num_chn; i++) {
sprintf(p, "tx_queue_%u_packets", i);
p += ETH_GSTRING_LEN;
sprintf(p, "tx_queue_%u_bytes", i);
p += ETH_GSTRING_LEN;
sprintf(p, "rx_queue_%u_packets", i);
p += ETH_GSTRING_LEN;
sprintf(p, "rx_queue_%u_bytes", i);
p += ETH_GSTRING_LEN;
}
for_each_present_cpu(cpu) {
for (i = 0; i < ARRAY_SIZE(pcpu_stats); i++) {
sprintf(p, pcpu_stats[i].name, cpu);
p += ETH_GSTRING_LEN;
}
}
break;
}
}
static int
netvsc_get_rss_hash_opts(struct net_device_context *ndc,
struct ethtool_rxnfc *info)
{
const u32 l4_flag = RXH_L4_B_0_1 | RXH_L4_B_2_3;
info->data = RXH_IP_SRC | RXH_IP_DST;
switch (info->flow_type) {
case TCP_V4_FLOW:
if (ndc->l4_hash & HV_TCP4_L4HASH)
info->data |= l4_flag;
break;
case TCP_V6_FLOW:
if (ndc->l4_hash & HV_TCP6_L4HASH)
info->data |= l4_flag;
break;
case UDP_V4_FLOW:
if (ndc->l4_hash & HV_UDP4_L4HASH)
info->data |= l4_flag;
break;
case UDP_V6_FLOW:
if (ndc->l4_hash & HV_UDP6_L4HASH)
info->data |= l4_flag;
break;
case IPV4_FLOW:
case IPV6_FLOW:
break;
default:
info->data = 0;
break;
}
return 0;
}
static int
netvsc_get_rxnfc(struct net_device *dev, struct ethtool_rxnfc *info,
u32 *rules)
{
struct net_device_context *ndc = netdev_priv(dev);
struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
if (!nvdev)
return -ENODEV;
switch (info->cmd) {
case ETHTOOL_GRXRINGS:
info->data = nvdev->num_chn;
return 0;
case ETHTOOL_GRXFH:
return netvsc_get_rss_hash_opts(ndc, info);
}
return -EOPNOTSUPP;
}
static int netvsc_set_rss_hash_opts(struct net_device_context *ndc,
struct ethtool_rxnfc *info)
{
if (info->data == (RXH_IP_SRC | RXH_IP_DST |
RXH_L4_B_0_1 | RXH_L4_B_2_3)) {
switch (info->flow_type) {
case TCP_V4_FLOW:
ndc->l4_hash |= HV_TCP4_L4HASH;
break;
case TCP_V6_FLOW:
ndc->l4_hash |= HV_TCP6_L4HASH;
break;
case UDP_V4_FLOW:
ndc->l4_hash |= HV_UDP4_L4HASH;
break;
case UDP_V6_FLOW:
ndc->l4_hash |= HV_UDP6_L4HASH;
break;
default:
return -EOPNOTSUPP;
}
return 0;
}
if (info->data == (RXH_IP_SRC | RXH_IP_DST)) {
switch (info->flow_type) {
case TCP_V4_FLOW:
ndc->l4_hash &= ~HV_TCP4_L4HASH;
break;
case TCP_V6_FLOW:
ndc->l4_hash &= ~HV_TCP6_L4HASH;
break;
case UDP_V4_FLOW:
ndc->l4_hash &= ~HV_UDP4_L4HASH;
break;
case UDP_V6_FLOW:
ndc->l4_hash &= ~HV_UDP6_L4HASH;
break;
default:
return -EOPNOTSUPP;
}
return 0;
}
return -EOPNOTSUPP;
}
static int
netvsc_set_rxnfc(struct net_device *ndev, struct ethtool_rxnfc *info)
{
struct net_device_context *ndc = netdev_priv(ndev);
if (info->cmd == ETHTOOL_SRXFH)
return netvsc_set_rss_hash_opts(ndc, info);
return -EOPNOTSUPP;
}
static u32 netvsc_get_rxfh_key_size(struct net_device *dev)
{
return NETVSC_HASH_KEYLEN;
}
static u32 netvsc_rss_indir_size(struct net_device *dev)
{
return ITAB_NUM;
}
static int netvsc_get_rxfh(struct net_device *dev, u32 *indir, u8 *key,
u8 *hfunc)
{
struct net_device_context *ndc = netdev_priv(dev);
struct netvsc_device *ndev = rtnl_dereference(ndc->nvdev);
struct rndis_device *rndis_dev;
int i;
if (!ndev)
return -ENODEV;
if (hfunc)
*hfunc = ETH_RSS_HASH_TOP; /* Toeplitz */
rndis_dev = ndev->extension;
if (indir) {
for (i = 0; i < ITAB_NUM; i++)
indir[i] = rndis_dev->rx_table[i];
}
if (key)
memcpy(key, rndis_dev->rss_key, NETVSC_HASH_KEYLEN);
return 0;
}
static int netvsc_set_rxfh(struct net_device *dev, const u32 *indir,
const u8 *key, const u8 hfunc)
{
struct net_device_context *ndc = netdev_priv(dev);
struct netvsc_device *ndev = rtnl_dereference(ndc->nvdev);
struct rndis_device *rndis_dev;
int i;
if (!ndev)
return -ENODEV;
if (hfunc != ETH_RSS_HASH_NO_CHANGE && hfunc != ETH_RSS_HASH_TOP)
return -EOPNOTSUPP;
rndis_dev = ndev->extension;
if (indir) {
for (i = 0; i < ITAB_NUM; i++)
if (indir[i] >= ndev->num_chn)
return -EINVAL;
for (i = 0; i < ITAB_NUM; i++)
rndis_dev->rx_table[i] = indir[i];
}
if (!key) {
if (!indir)
return 0;
key = rndis_dev->rss_key;
}
return rndis_filter_set_rss_param(rndis_dev, key);
}
/* Hyper-V RNDIS protocol does not have ring in the HW sense.
* It does have pre-allocated receive area which is divided into sections.
*/
static void __netvsc_get_ringparam(struct netvsc_device *nvdev,
struct ethtool_ringparam *ring)
{
u32 max_buf_size;
ring->rx_pending = nvdev->recv_section_cnt;
ring->tx_pending = nvdev->send_section_cnt;
if (nvdev->nvsp_version <= NVSP_PROTOCOL_VERSION_2)
max_buf_size = NETVSC_RECEIVE_BUFFER_SIZE_LEGACY;
else
max_buf_size = NETVSC_RECEIVE_BUFFER_SIZE;
ring->rx_max_pending = max_buf_size / nvdev->recv_section_size;
ring->tx_max_pending = NETVSC_SEND_BUFFER_SIZE
/ nvdev->send_section_size;
}
static void netvsc_get_ringparam(struct net_device *ndev,
struct ethtool_ringparam *ring)
{
struct net_device_context *ndevctx = netdev_priv(ndev);
struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev);
if (!nvdev)
return;
__netvsc_get_ringparam(nvdev, ring);
}
static int netvsc_set_ringparam(struct net_device *ndev,
struct ethtool_ringparam *ring)
{
struct net_device_context *ndevctx = netdev_priv(ndev);
struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev);
struct netvsc_device_info *device_info;
struct ethtool_ringparam orig;
u32 new_tx, new_rx;
int ret = 0;
if (!nvdev || nvdev->destroy)
return -ENODEV;
memset(&orig, 0, sizeof(orig));
__netvsc_get_ringparam(nvdev, &orig);
new_tx = clamp_t(u32, ring->tx_pending,
NETVSC_MIN_TX_SECTIONS, orig.tx_max_pending);
new_rx = clamp_t(u32, ring->rx_pending,
NETVSC_MIN_RX_SECTIONS, orig.rx_max_pending);
if (new_tx == orig.tx_pending &&
new_rx == orig.rx_pending)
return 0; /* no change */
device_info = netvsc_devinfo_get(nvdev);
if (!device_info)
return -ENOMEM;
device_info->send_sections = new_tx;
device_info->recv_sections = new_rx;
ret = netvsc_detach(ndev, nvdev);
if (ret)
goto out;
ret = netvsc_attach(ndev, device_info);
if (ret) {
device_info->send_sections = orig.tx_pending;
device_info->recv_sections = orig.rx_pending;
if (netvsc_attach(ndev, device_info))
netdev_err(ndev, "restoring ringparam failed");
}
out:
kfree(device_info);
return ret;
}
static int netvsc_set_features(struct net_device *ndev,
netdev_features_t features)
{
netdev_features_t change = features ^ ndev->features;
struct net_device_context *ndevctx = netdev_priv(ndev);
struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev);
struct ndis_offload_params offloads;
if (!nvdev || nvdev->destroy)
return -ENODEV;
if (!(change & NETIF_F_LRO))
return 0;
memset(&offloads, 0, sizeof(struct ndis_offload_params));
if (features & NETIF_F_LRO) {
offloads.rsc_ip_v4 = NDIS_OFFLOAD_PARAMETERS_RSC_ENABLED;
offloads.rsc_ip_v6 = NDIS_OFFLOAD_PARAMETERS_RSC_ENABLED;
} else {
offloads.rsc_ip_v4 = NDIS_OFFLOAD_PARAMETERS_RSC_DISABLED;
offloads.rsc_ip_v6 = NDIS_OFFLOAD_PARAMETERS_RSC_DISABLED;
}
return rndis_filter_set_offload_params(ndev, nvdev, &offloads);
}
static u32 netvsc_get_msglevel(struct net_device *ndev)
{
struct net_device_context *ndev_ctx = netdev_priv(ndev);
return ndev_ctx->msg_enable;
}
static void netvsc_set_msglevel(struct net_device *ndev, u32 val)
{
struct net_device_context *ndev_ctx = netdev_priv(ndev);
ndev_ctx->msg_enable = val;
}
static const struct ethtool_ops ethtool_ops = {
.get_drvinfo = netvsc_get_drvinfo,
.get_msglevel = netvsc_get_msglevel,
.set_msglevel = netvsc_set_msglevel,
.get_link = ethtool_op_get_link,
.get_ethtool_stats = netvsc_get_ethtool_stats,
.get_sset_count = netvsc_get_sset_count,
.get_strings = netvsc_get_strings,
.get_channels = netvsc_get_channels,
.set_channels = netvsc_set_channels,
.get_ts_info = ethtool_op_get_ts_info,
.get_rxnfc = netvsc_get_rxnfc,
.set_rxnfc = netvsc_set_rxnfc,
.get_rxfh_key_size = netvsc_get_rxfh_key_size,
.get_rxfh_indir_size = netvsc_rss_indir_size,
.get_rxfh = netvsc_get_rxfh,
.set_rxfh = netvsc_set_rxfh,
.get_link_ksettings = netvsc_get_link_ksettings,
.set_link_ksettings = netvsc_set_link_ksettings,
.get_ringparam = netvsc_get_ringparam,
.set_ringparam = netvsc_set_ringparam,
};
static const struct net_device_ops device_ops = {
.ndo_open = netvsc_open,
.ndo_stop = netvsc_close,
.ndo_start_xmit = netvsc_start_xmit,
.ndo_change_rx_flags = netvsc_change_rx_flags,
.ndo_set_rx_mode = netvsc_set_rx_mode,
.ndo_set_features = netvsc_set_features,
.ndo_change_mtu = netvsc_change_mtu,
.ndo_validate_addr = eth_validate_addr,
.ndo_set_mac_address = netvsc_set_mac_addr,
.ndo_select_queue = netvsc_select_queue,
.ndo_get_stats64 = netvsc_get_stats64,
};
/*
* Handle link status changes. For RNDIS_STATUS_NETWORK_CHANGE emulate link
* down/up sequence. In case of RNDIS_STATUS_MEDIA_CONNECT when carrier is
* present send GARP packet to network peers with netif_notify_peers().
*/
static void netvsc_link_change(struct work_struct *w)
{
struct net_device_context *ndev_ctx =
container_of(w, struct net_device_context, dwork.work);
struct hv_device *device_obj = ndev_ctx->device_ctx;
struct net_device *net = hv_get_drvdata(device_obj);
struct netvsc_device *net_device;
struct rndis_device *rdev;
struct netvsc_reconfig *event = NULL;
bool notify = false, reschedule = false;
unsigned long flags, next_reconfig, delay;
/* if changes are happening, comeback later */
if (!rtnl_trylock()) {
schedule_delayed_work(&ndev_ctx->dwork, LINKCHANGE_INT);
return;
}
net_device = rtnl_dereference(ndev_ctx->nvdev);
if (!net_device)
goto out_unlock;
rdev = net_device->extension;
next_reconfig = ndev_ctx->last_reconfig + LINKCHANGE_INT;
if (time_is_after_jiffies(next_reconfig)) {
/* link_watch only sends one notification with current state
* per second, avoid doing reconfig more frequently. Handle
* wrap around.
*/
delay = next_reconfig - jiffies;
delay = delay < LINKCHANGE_INT ? delay : LINKCHANGE_INT;
schedule_delayed_work(&ndev_ctx->dwork, delay);
goto out_unlock;
}
ndev_ctx->last_reconfig = jiffies;
spin_lock_irqsave(&ndev_ctx->lock, flags);
if (!list_empty(&ndev_ctx->reconfig_events)) {
event = list_first_entry(&ndev_ctx->reconfig_events,
struct netvsc_reconfig, list);
list_del(&event->list);
reschedule = !list_empty(&ndev_ctx->reconfig_events);
}
spin_unlock_irqrestore(&ndev_ctx->lock, flags);
if (!event)
goto out_unlock;
switch (event->event) {
/* Only the following events are possible due to the check in
* netvsc_linkstatus_callback()
*/
case RNDIS_STATUS_MEDIA_CONNECT:
if (rdev->link_state) {
rdev->link_state = false;
netif_carrier_on(net);
netvsc_tx_enable(net_device, net);
} else {
notify = true;
}
kfree(event);
break;
case RNDIS_STATUS_MEDIA_DISCONNECT:
if (!rdev->link_state) {
rdev->link_state = true;
netif_carrier_off(net);
netvsc_tx_disable(net_device, net);
}
kfree(event);
break;
case RNDIS_STATUS_NETWORK_CHANGE:
/* Only makes sense if carrier is present */
if (!rdev->link_state) {
rdev->link_state = true;
netif_carrier_off(net);
netvsc_tx_disable(net_device, net);
event->event = RNDIS_STATUS_MEDIA_CONNECT;
spin_lock_irqsave(&ndev_ctx->lock, flags);
list_add(&event->list, &ndev_ctx->reconfig_events);
spin_unlock_irqrestore(&ndev_ctx->lock, flags);
reschedule = true;
}
break;
}
rtnl_unlock();
if (notify)
netdev_notify_peers(net);
/* link_watch only sends one notification with current state per
* second, handle next reconfig event in 2 seconds.
*/
if (reschedule)
schedule_delayed_work(&ndev_ctx->dwork, LINKCHANGE_INT);
return;
out_unlock:
rtnl_unlock();
}
static struct net_device *get_netvsc_byref(struct net_device *vf_netdev)
{
struct net_device_context *net_device_ctx;
struct net_device *dev;
dev = netdev_master_upper_dev_get(vf_netdev);
if (!dev || dev->netdev_ops != &device_ops)
return NULL; /* not a netvsc device */
net_device_ctx = netdev_priv(dev);
if (!rtnl_dereference(net_device_ctx->nvdev))
return NULL; /* device is removed */
return dev;
}
/* Called when VF is injecting data into network stack.
* Change the associated network device from VF to netvsc.
* note: already called with rcu_read_lock
*/
static rx_handler_result_t netvsc_vf_handle_frame(struct sk_buff **pskb)
{
struct sk_buff *skb = *pskb;
struct net_device *ndev = rcu_dereference(skb->dev->rx_handler_data);
struct net_device_context *ndev_ctx = netdev_priv(ndev);
struct netvsc_vf_pcpu_stats *pcpu_stats
= this_cpu_ptr(ndev_ctx->vf_stats);
skb = skb_share_check(skb, GFP_ATOMIC);
if (unlikely(!skb))
return RX_HANDLER_CONSUMED;
*pskb = skb;
skb->dev = ndev;
u64_stats_update_begin(&pcpu_stats->syncp);
pcpu_stats->rx_packets++;
pcpu_stats->rx_bytes += skb->len;
u64_stats_update_end(&pcpu_stats->syncp);
return RX_HANDLER_ANOTHER;
}
static int netvsc_vf_join(struct net_device *vf_netdev,
struct net_device *ndev)
{
struct net_device_context *ndev_ctx = netdev_priv(ndev);
int ret;
ret = netdev_rx_handler_register(vf_netdev,
netvsc_vf_handle_frame, ndev);
if (ret != 0) {
netdev_err(vf_netdev,
"can not register netvsc VF receive handler (err = %d)\n",
ret);
goto rx_handler_failed;
}
ret = netdev_master_upper_dev_link(vf_netdev, ndev,
NULL, NULL, NULL);
if (ret != 0) {
netdev_err(vf_netdev,
"can not set master device %s (err = %d)\n",
ndev->name, ret);
goto upper_link_failed;
}
/* set slave flag before open to prevent IPv6 addrconf */
vf_netdev->flags |= IFF_SLAVE;
schedule_delayed_work(&ndev_ctx->vf_takeover, VF_TAKEOVER_INT);
call_netdevice_notifiers(NETDEV_JOIN, vf_netdev);
netdev_info(vf_netdev, "joined to %s\n", ndev->name);
return 0;
upper_link_failed:
netdev_rx_handler_unregister(vf_netdev);
rx_handler_failed:
return ret;
}
static void __netvsc_vf_setup(struct net_device *ndev,
struct net_device *vf_netdev)
{
int ret;
/* Align MTU of VF with master */
ret = dev_set_mtu(vf_netdev, ndev->mtu);
if (ret)
netdev_warn(vf_netdev,
"unable to change mtu to %u\n", ndev->mtu);
/* set multicast etc flags on VF */
dev_change_flags(vf_netdev, ndev->flags | IFF_SLAVE, NULL);
/* sync address list from ndev to VF */
netif_addr_lock_bh(ndev);
dev_uc_sync(vf_netdev, ndev);
dev_mc_sync(vf_netdev, ndev);
netif_addr_unlock_bh(ndev);
if (netif_running(ndev)) {
ret = dev_open(vf_netdev, NULL);
if (ret)
netdev_warn(vf_netdev,
"unable to open: %d\n", ret);
}
}
/* Setup VF as slave of the synthetic device.
* Runs in workqueue to avoid recursion in netlink callbacks.
*/
static void netvsc_vf_setup(struct work_struct *w)
{
struct net_device_context *ndev_ctx
= container_of(w, struct net_device_context, vf_takeover.work);
struct net_device *ndev = hv_get_drvdata(ndev_ctx->device_ctx);
struct net_device *vf_netdev;
if (!rtnl_trylock()) {
schedule_delayed_work(&ndev_ctx->vf_takeover, 0);
return;
}
vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev);
if (vf_netdev)
__netvsc_vf_setup(ndev, vf_netdev);
rtnl_unlock();
}
/* Find netvsc by VF serial number.
* The PCI hyperv controller records the serial number as the slot kobj name.
*/
static struct net_device *get_netvsc_byslot(const struct net_device *vf_netdev)
{
struct device *parent = vf_netdev->dev.parent;
struct net_device_context *ndev_ctx;
struct pci_dev *pdev;
u32 serial;
if (!parent || !dev_is_pci(parent))
return NULL; /* not a PCI device */
pdev = to_pci_dev(parent);
if (!pdev->slot) {
netdev_notice(vf_netdev, "no PCI slot information\n");
return NULL;
}
if (kstrtou32(pci_slot_name(pdev->slot), 10, &serial)) {
netdev_notice(vf_netdev, "Invalid vf serial:%s\n",
pci_slot_name(pdev->slot));
return NULL;
}
list_for_each_entry(ndev_ctx, &netvsc_dev_list, list) {
if (!ndev_ctx->vf_alloc)
continue;
if (ndev_ctx->vf_serial == serial)
return hv_get_drvdata(ndev_ctx->device_ctx);
}
netdev_notice(vf_netdev,
"no netdev found for vf serial:%u\n", serial);
return NULL;
}
static int netvsc_register_vf(struct net_device *vf_netdev)
{
struct net_device_context *net_device_ctx;
struct netvsc_device *netvsc_dev;
struct net_device *ndev;
int ret;
if (vf_netdev->addr_len != ETH_ALEN)
return NOTIFY_DONE;
ndev = get_netvsc_byslot(vf_netdev);
if (!ndev)
return NOTIFY_DONE;
net_device_ctx = netdev_priv(ndev);
netvsc_dev = rtnl_dereference(net_device_ctx->nvdev);
if (!netvsc_dev || rtnl_dereference(net_device_ctx->vf_netdev))
return NOTIFY_DONE;
/* if synthetic interface is a different namespace,
* then move the VF to that namespace; join will be
* done again in that context.
*/
if (!net_eq(dev_net(ndev), dev_net(vf_netdev))) {
ret = dev_change_net_namespace(vf_netdev,
dev_net(ndev), "eth%d");
if (ret)
netdev_err(vf_netdev,
"could not move to same namespace as %s: %d\n",
ndev->name, ret);
else
netdev_info(vf_netdev,
"VF moved to namespace with: %s\n",
ndev->name);
return NOTIFY_DONE;
}
netdev_info(ndev, "VF registering: %s\n", vf_netdev->name);
if (netvsc_vf_join(vf_netdev, ndev) != 0)
return NOTIFY_DONE;
dev_hold(vf_netdev);
rcu_assign_pointer(net_device_ctx->vf_netdev, vf_netdev);
return NOTIFY_OK;
}
/* VF up/down change detected, schedule to change data path */
static int netvsc_vf_changed(struct net_device *vf_netdev)
{
struct net_device_context *net_device_ctx;
struct netvsc_device *netvsc_dev;
struct net_device *ndev;
bool vf_is_up = netif_running(vf_netdev);
ndev = get_netvsc_byref(vf_netdev);
if (!ndev)
return NOTIFY_DONE;
net_device_ctx = netdev_priv(ndev);
netvsc_dev = rtnl_dereference(net_device_ctx->nvdev);
if (!netvsc_dev)
return NOTIFY_DONE;
netvsc_switch_datapath(ndev, vf_is_up);
netdev_info(ndev, "Data path switched %s VF: %s\n",
vf_is_up ? "to" : "from", vf_netdev->name);
return NOTIFY_OK;
}
static int netvsc_unregister_vf(struct net_device *vf_netdev)
{
struct net_device *ndev;
struct net_device_context *net_device_ctx;
ndev = get_netvsc_byref(vf_netdev);
if (!ndev)
return NOTIFY_DONE;
net_device_ctx = netdev_priv(ndev);
cancel_delayed_work_sync(&net_device_ctx->vf_takeover);
netdev_info(ndev, "VF unregistering: %s\n", vf_netdev->name);
netdev_rx_handler_unregister(vf_netdev);
netdev_upper_dev_unlink(vf_netdev, ndev);
RCU_INIT_POINTER(net_device_ctx->vf_netdev, NULL);
dev_put(vf_netdev);
return NOTIFY_OK;
}
static int netvsc_probe(struct hv_device *dev,
const struct hv_vmbus_device_id *dev_id)
{
struct net_device *net = NULL;
struct net_device_context *net_device_ctx;
struct netvsc_device_info *device_info = NULL;
struct netvsc_device *nvdev;
int ret = -ENOMEM;
net = alloc_etherdev_mq(sizeof(struct net_device_context),
VRSS_CHANNEL_MAX);
if (!net)
goto no_net;
netif_carrier_off(net);
netvsc_init_settings(net);
net_device_ctx = netdev_priv(net);
net_device_ctx->device_ctx = dev;
net_device_ctx->msg_enable = netif_msg_init(debug, default_msg);
if (netif_msg_probe(net_device_ctx))
netdev_dbg(net, "netvsc msg_enable: %d\n",
net_device_ctx->msg_enable);
hv_set_drvdata(dev, net);
INIT_DELAYED_WORK(&net_device_ctx->dwork, netvsc_link_change);
spin_lock_init(&net_device_ctx->lock);
INIT_LIST_HEAD(&net_device_ctx->reconfig_events);
INIT_DELAYED_WORK(&net_device_ctx->vf_takeover, netvsc_vf_setup);
net_device_ctx->vf_stats
= netdev_alloc_pcpu_stats(struct netvsc_vf_pcpu_stats);
if (!net_device_ctx->vf_stats)
goto no_stats;
net->netdev_ops = &device_ops;
net->ethtool_ops = &ethtool_ops;
SET_NETDEV_DEV(net, &dev->device);
/* We always need headroom for rndis header */
net->needed_headroom = RNDIS_AND_PPI_SIZE;
/* Initialize the number of queues to be 1, we may change it if more
* channels are offered later.
*/
netif_set_real_num_tx_queues(net, 1);
netif_set_real_num_rx_queues(net, 1);
/* Notify the netvsc driver of the new device */
device_info = netvsc_devinfo_get(NULL);
if (!device_info) {
ret = -ENOMEM;
goto devinfo_failed;
}
nvdev = rndis_filter_device_add(dev, device_info);
if (IS_ERR(nvdev)) {
ret = PTR_ERR(nvdev);
netdev_err(net, "unable to add netvsc device (ret %d)\n", ret);
goto rndis_failed;
}
memcpy(net->dev_addr, device_info->mac_adr, ETH_ALEN);
/* We must get rtnl lock before scheduling nvdev->subchan_work,
* otherwise netvsc_subchan_work() can get rtnl lock first and wait
* all subchannels to show up, but that may not happen because
* netvsc_probe() can't get rtnl lock and as a result vmbus_onoffer()
* -> ... -> device_add() -> ... -> __device_attach() can't get
* the device lock, so all the subchannels can't be processed --
* finally netvsc_subchan_work() hangs forever.
*/
rtnl_lock();
if (nvdev->num_chn > 1)
schedule_work(&nvdev->subchan_work);
/* hw_features computed in rndis_netdev_set_hwcaps() */
net->features = net->hw_features |
NETIF_F_HIGHDMA | NETIF_F_SG |
NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX;
net->vlan_features = net->features;
netdev_lockdep_set_classes(net);
/* MTU range: 68 - 1500 or 65521 */
net->min_mtu = NETVSC_MTU_MIN;
if (nvdev->nvsp_version >= NVSP_PROTOCOL_VERSION_2)
net->max_mtu = NETVSC_MTU - ETH_HLEN;
else
net->max_mtu = ETH_DATA_LEN;
ret = register_netdevice(net);
if (ret != 0) {
pr_err("Unable to register netdev.\n");
goto register_failed;
}
list_add(&net_device_ctx->list, &netvsc_dev_list);
rtnl_unlock();
kfree(device_info);
return 0;
register_failed:
rtnl_unlock();
rndis_filter_device_remove(dev, nvdev);
rndis_failed:
kfree(device_info);
devinfo_failed:
free_percpu(net_device_ctx->vf_stats);
no_stats:
hv_set_drvdata(dev, NULL);
free_netdev(net);
no_net:
return ret;
}
static int netvsc_remove(struct hv_device *dev)
{
struct net_device_context *ndev_ctx;
struct net_device *vf_netdev, *net;
struct netvsc_device *nvdev;
net = hv_get_drvdata(dev);
if (net == NULL) {
dev_err(&dev->device, "No net device to remove\n");
return 0;
}
ndev_ctx = netdev_priv(net);
cancel_delayed_work_sync(&ndev_ctx->dwork);
rtnl_lock();
nvdev = rtnl_dereference(ndev_ctx->nvdev);
if (nvdev)
cancel_work_sync(&nvdev->subchan_work);
/*
* Call to the vsc driver to let it know that the device is being
* removed. Also blocks mtu and channel changes.
*/
vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev);
if (vf_netdev)
netvsc_unregister_vf(vf_netdev);
if (nvdev)
rndis_filter_device_remove(dev, nvdev);
unregister_netdevice(net);
list_del(&ndev_ctx->list);
rtnl_unlock();
hv_set_drvdata(dev, NULL);
free_percpu(ndev_ctx->vf_stats);
free_netdev(net);
return 0;
}
static const struct hv_vmbus_device_id id_table[] = {
/* Network guid */
{ HV_NIC_GUID, },
{ },
};
MODULE_DEVICE_TABLE(vmbus, id_table);
/* The one and only one */
static struct hv_driver netvsc_drv = {
.name = KBUILD_MODNAME,
.id_table = id_table,
.probe = netvsc_probe,
.remove = netvsc_remove,
.driver = {
.probe_type = PROBE_FORCE_SYNCHRONOUS,
},
};
/*
* On Hyper-V, every VF interface is matched with a corresponding
* synthetic interface. The synthetic interface is presented first
* to the guest. When the corresponding VF instance is registered,
* we will take care of switching the data path.
*/
static int netvsc_netdev_event(struct notifier_block *this,
unsigned long event, void *ptr)
{
struct net_device *event_dev = netdev_notifier_info_to_dev(ptr);
/* Skip our own events */
if (event_dev->netdev_ops == &device_ops)
return NOTIFY_DONE;
/* Avoid non-Ethernet type devices */
if (event_dev->type != ARPHRD_ETHER)
return NOTIFY_DONE;
/* Avoid Vlan dev with same MAC registering as VF */
if (is_vlan_dev(event_dev))
return NOTIFY_DONE;
/* Avoid Bonding master dev with same MAC registering as VF */
if ((event_dev->priv_flags & IFF_BONDING) &&
(event_dev->flags & IFF_MASTER))
return NOTIFY_DONE;
switch (event) {
case NETDEV_REGISTER:
return netvsc_register_vf(event_dev);
case NETDEV_UNREGISTER:
return netvsc_unregister_vf(event_dev);
case NETDEV_UP:
case NETDEV_DOWN:
return netvsc_vf_changed(event_dev);
default:
return NOTIFY_DONE;
}
}
static struct notifier_block netvsc_netdev_notifier = {
.notifier_call = netvsc_netdev_event,
};
static void __exit netvsc_drv_exit(void)
{
unregister_netdevice_notifier(&netvsc_netdev_notifier);
vmbus_driver_unregister(&netvsc_drv);
}
static int __init netvsc_drv_init(void)
{
int ret;
if (ring_size < RING_SIZE_MIN) {
ring_size = RING_SIZE_MIN;
pr_info("Increased ring_size to %u (min allowed)\n",
ring_size);
}
netvsc_ring_bytes = ring_size * PAGE_SIZE;
ret = vmbus_driver_register(&netvsc_drv);
if (ret)
return ret;
register_netdevice_notifier(&netvsc_netdev_notifier);
return 0;
}
MODULE_LICENSE("GPL");
MODULE_DESCRIPTION("Microsoft Hyper-V network driver");
module_init(netvsc_drv_init);
module_exit(netvsc_drv_exit);