mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2024-12-12 06:06:40 +07:00
816a8de001
Currently the topology code computes cpu capacity and stores it in the list along with hwid(which is MPIDR) as it parses the CPU nodes in the device tree. This is required as it needs to be mapped to the logical CPU later. Since the CPU device nodes can be retrieved in the logical ordering using DT/OF helpers, its possible to store cpu_capacity also in logical ordering and avoid storing hwid for each entry. This patch removes hwid by making use of of_get_cpu_node. Cc: Russell King <linux@arm.linux.org.uk> Cc: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com> Acked-by: Rob Herring <rob.herring@calxeda.com> Acked-by: Nicolas Pitre <nico@linaro.org> Signed-off-by: Sudeep KarkadaNagesha <sudeep.karkadanagesha@arm.com>
293 lines
7.9 KiB
C
293 lines
7.9 KiB
C
/*
|
|
* arch/arm/kernel/topology.c
|
|
*
|
|
* Copyright (C) 2011 Linaro Limited.
|
|
* Written by: Vincent Guittot
|
|
*
|
|
* based on arch/sh/kernel/topology.c
|
|
*
|
|
* This file is subject to the terms and conditions of the GNU General Public
|
|
* License. See the file "COPYING" in the main directory of this archive
|
|
* for more details.
|
|
*/
|
|
|
|
#include <linux/cpu.h>
|
|
#include <linux/cpumask.h>
|
|
#include <linux/export.h>
|
|
#include <linux/init.h>
|
|
#include <linux/percpu.h>
|
|
#include <linux/node.h>
|
|
#include <linux/nodemask.h>
|
|
#include <linux/of.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/slab.h>
|
|
|
|
#include <asm/cputype.h>
|
|
#include <asm/topology.h>
|
|
|
|
/*
|
|
* cpu power scale management
|
|
*/
|
|
|
|
/*
|
|
* cpu power table
|
|
* This per cpu data structure describes the relative capacity of each core.
|
|
* On a heteregenous system, cores don't have the same computation capacity
|
|
* and we reflect that difference in the cpu_power field so the scheduler can
|
|
* take this difference into account during load balance. A per cpu structure
|
|
* is preferred because each CPU updates its own cpu_power field during the
|
|
* load balance except for idle cores. One idle core is selected to run the
|
|
* rebalance_domains for all idle cores and the cpu_power can be updated
|
|
* during this sequence.
|
|
*/
|
|
static DEFINE_PER_CPU(unsigned long, cpu_scale);
|
|
|
|
unsigned long arch_scale_freq_power(struct sched_domain *sd, int cpu)
|
|
{
|
|
return per_cpu(cpu_scale, cpu);
|
|
}
|
|
|
|
static void set_power_scale(unsigned int cpu, unsigned long power)
|
|
{
|
|
per_cpu(cpu_scale, cpu) = power;
|
|
}
|
|
|
|
#ifdef CONFIG_OF
|
|
struct cpu_efficiency {
|
|
const char *compatible;
|
|
unsigned long efficiency;
|
|
};
|
|
|
|
/*
|
|
* Table of relative efficiency of each processors
|
|
* The efficiency value must fit in 20bit and the final
|
|
* cpu_scale value must be in the range
|
|
* 0 < cpu_scale < 3*SCHED_POWER_SCALE/2
|
|
* in order to return at most 1 when DIV_ROUND_CLOSEST
|
|
* is used to compute the capacity of a CPU.
|
|
* Processors that are not defined in the table,
|
|
* use the default SCHED_POWER_SCALE value for cpu_scale.
|
|
*/
|
|
struct cpu_efficiency table_efficiency[] = {
|
|
{"arm,cortex-a15", 3891},
|
|
{"arm,cortex-a7", 2048},
|
|
{NULL, },
|
|
};
|
|
|
|
unsigned long *__cpu_capacity;
|
|
#define cpu_capacity(cpu) __cpu_capacity[cpu]
|
|
|
|
unsigned long middle_capacity = 1;
|
|
|
|
/*
|
|
* Iterate all CPUs' descriptor in DT and compute the efficiency
|
|
* (as per table_efficiency). Also calculate a middle efficiency
|
|
* as close as possible to (max{eff_i} - min{eff_i}) / 2
|
|
* This is later used to scale the cpu_power field such that an
|
|
* 'average' CPU is of middle power. Also see the comments near
|
|
* table_efficiency[] and update_cpu_power().
|
|
*/
|
|
static void __init parse_dt_topology(void)
|
|
{
|
|
struct cpu_efficiency *cpu_eff;
|
|
struct device_node *cn = NULL;
|
|
unsigned long min_capacity = (unsigned long)(-1);
|
|
unsigned long max_capacity = 0;
|
|
unsigned long capacity = 0;
|
|
int alloc_size, cpu = 0;
|
|
|
|
alloc_size = nr_cpu_ids * sizeof(*__cpu_capacity);
|
|
__cpu_capacity = kzalloc(alloc_size, GFP_NOWAIT);
|
|
|
|
for_each_possible_cpu(cpu) {
|
|
const u32 *rate;
|
|
int len;
|
|
|
|
/* too early to use cpu->of_node */
|
|
cn = of_get_cpu_node(cpu, NULL);
|
|
if (!cn) {
|
|
pr_err("missing device node for CPU %d\n", cpu);
|
|
continue;
|
|
}
|
|
|
|
for (cpu_eff = table_efficiency; cpu_eff->compatible; cpu_eff++)
|
|
if (of_device_is_compatible(cn, cpu_eff->compatible))
|
|
break;
|
|
|
|
if (cpu_eff->compatible == NULL)
|
|
continue;
|
|
|
|
rate = of_get_property(cn, "clock-frequency", &len);
|
|
if (!rate || len != 4) {
|
|
pr_err("%s missing clock-frequency property\n",
|
|
cn->full_name);
|
|
continue;
|
|
}
|
|
|
|
capacity = ((be32_to_cpup(rate)) >> 20) * cpu_eff->efficiency;
|
|
|
|
/* Save min capacity of the system */
|
|
if (capacity < min_capacity)
|
|
min_capacity = capacity;
|
|
|
|
/* Save max capacity of the system */
|
|
if (capacity > max_capacity)
|
|
max_capacity = capacity;
|
|
|
|
cpu_capacity(cpu) = capacity;
|
|
}
|
|
|
|
/* If min and max capacities are equals, we bypass the update of the
|
|
* cpu_scale because all CPUs have the same capacity. Otherwise, we
|
|
* compute a middle_capacity factor that will ensure that the capacity
|
|
* of an 'average' CPU of the system will be as close as possible to
|
|
* SCHED_POWER_SCALE, which is the default value, but with the
|
|
* constraint explained near table_efficiency[].
|
|
*/
|
|
if (4*max_capacity < (3*(max_capacity + min_capacity)))
|
|
middle_capacity = (min_capacity + max_capacity)
|
|
>> (SCHED_POWER_SHIFT+1);
|
|
else
|
|
middle_capacity = ((max_capacity / 3)
|
|
>> (SCHED_POWER_SHIFT-1)) + 1;
|
|
|
|
}
|
|
|
|
/*
|
|
* Look for a customed capacity of a CPU in the cpu_capacity table during the
|
|
* boot. The update of all CPUs is in O(n^2) for heteregeneous system but the
|
|
* function returns directly for SMP system.
|
|
*/
|
|
void update_cpu_power(unsigned int cpu)
|
|
{
|
|
if (!cpu_capacity(cpu))
|
|
return;
|
|
|
|
set_power_scale(cpu, cpu_capacity(cpu) / middle_capacity);
|
|
|
|
printk(KERN_INFO "CPU%u: update cpu_power %lu\n",
|
|
cpu, arch_scale_freq_power(NULL, cpu));
|
|
}
|
|
|
|
#else
|
|
static inline void parse_dt_topology(void) {}
|
|
static inline void update_cpu_power(unsigned int cpuid) {}
|
|
#endif
|
|
|
|
/*
|
|
* cpu topology table
|
|
*/
|
|
struct cputopo_arm cpu_topology[NR_CPUS];
|
|
EXPORT_SYMBOL_GPL(cpu_topology);
|
|
|
|
const struct cpumask *cpu_coregroup_mask(int cpu)
|
|
{
|
|
return &cpu_topology[cpu].core_sibling;
|
|
}
|
|
|
|
void update_siblings_masks(unsigned int cpuid)
|
|
{
|
|
struct cputopo_arm *cpu_topo, *cpuid_topo = &cpu_topology[cpuid];
|
|
int cpu;
|
|
|
|
/* update core and thread sibling masks */
|
|
for_each_possible_cpu(cpu) {
|
|
cpu_topo = &cpu_topology[cpu];
|
|
|
|
if (cpuid_topo->socket_id != cpu_topo->socket_id)
|
|
continue;
|
|
|
|
cpumask_set_cpu(cpuid, &cpu_topo->core_sibling);
|
|
if (cpu != cpuid)
|
|
cpumask_set_cpu(cpu, &cpuid_topo->core_sibling);
|
|
|
|
if (cpuid_topo->core_id != cpu_topo->core_id)
|
|
continue;
|
|
|
|
cpumask_set_cpu(cpuid, &cpu_topo->thread_sibling);
|
|
if (cpu != cpuid)
|
|
cpumask_set_cpu(cpu, &cpuid_topo->thread_sibling);
|
|
}
|
|
smp_wmb();
|
|
}
|
|
|
|
/*
|
|
* store_cpu_topology is called at boot when only one cpu is running
|
|
* and with the mutex cpu_hotplug.lock locked, when several cpus have booted,
|
|
* which prevents simultaneous write access to cpu_topology array
|
|
*/
|
|
void store_cpu_topology(unsigned int cpuid)
|
|
{
|
|
struct cputopo_arm *cpuid_topo = &cpu_topology[cpuid];
|
|
unsigned int mpidr;
|
|
|
|
/* If the cpu topology has been already set, just return */
|
|
if (cpuid_topo->core_id != -1)
|
|
return;
|
|
|
|
mpidr = read_cpuid_mpidr();
|
|
|
|
/* create cpu topology mapping */
|
|
if ((mpidr & MPIDR_SMP_BITMASK) == MPIDR_SMP_VALUE) {
|
|
/*
|
|
* This is a multiprocessor system
|
|
* multiprocessor format & multiprocessor mode field are set
|
|
*/
|
|
|
|
if (mpidr & MPIDR_MT_BITMASK) {
|
|
/* core performance interdependency */
|
|
cpuid_topo->thread_id = MPIDR_AFFINITY_LEVEL(mpidr, 0);
|
|
cpuid_topo->core_id = MPIDR_AFFINITY_LEVEL(mpidr, 1);
|
|
cpuid_topo->socket_id = MPIDR_AFFINITY_LEVEL(mpidr, 2);
|
|
} else {
|
|
/* largely independent cores */
|
|
cpuid_topo->thread_id = -1;
|
|
cpuid_topo->core_id = MPIDR_AFFINITY_LEVEL(mpidr, 0);
|
|
cpuid_topo->socket_id = MPIDR_AFFINITY_LEVEL(mpidr, 1);
|
|
}
|
|
} else {
|
|
/*
|
|
* This is an uniprocessor system
|
|
* we are in multiprocessor format but uniprocessor system
|
|
* or in the old uniprocessor format
|
|
*/
|
|
cpuid_topo->thread_id = -1;
|
|
cpuid_topo->core_id = 0;
|
|
cpuid_topo->socket_id = -1;
|
|
}
|
|
|
|
update_siblings_masks(cpuid);
|
|
|
|
update_cpu_power(cpuid);
|
|
|
|
printk(KERN_INFO "CPU%u: thread %d, cpu %d, socket %d, mpidr %x\n",
|
|
cpuid, cpu_topology[cpuid].thread_id,
|
|
cpu_topology[cpuid].core_id,
|
|
cpu_topology[cpuid].socket_id, mpidr);
|
|
}
|
|
|
|
/*
|
|
* init_cpu_topology is called at boot when only one cpu is running
|
|
* which prevent simultaneous write access to cpu_topology array
|
|
*/
|
|
void __init init_cpu_topology(void)
|
|
{
|
|
unsigned int cpu;
|
|
|
|
/* init core mask and power*/
|
|
for_each_possible_cpu(cpu) {
|
|
struct cputopo_arm *cpu_topo = &(cpu_topology[cpu]);
|
|
|
|
cpu_topo->thread_id = -1;
|
|
cpu_topo->core_id = -1;
|
|
cpu_topo->socket_id = -1;
|
|
cpumask_clear(&cpu_topo->core_sibling);
|
|
cpumask_clear(&cpu_topo->thread_sibling);
|
|
|
|
set_power_scale(cpu, SCHED_POWER_SCALE);
|
|
}
|
|
smp_wmb();
|
|
|
|
parse_dt_topology();
|
|
}
|