linux_dsm_epyc7002/drivers/gpu/drm/i915/intel_atomic.c
Matt Roper 1356837e55 drm/i915: Add crtc state duplication/destruction functions
The atomic helpers need these to prepare a new state object when
starting a new atomic operation.

Signed-off-by: Matt Roper <matthew.d.roper@intel.com>
Reviewed-by: Ander Conselvan de Oliveira <conselvan2@gmail.com>
Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2015-01-27 09:57:18 +01:00

238 lines
6.9 KiB
C

/*
* Copyright © 2015 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*/
/**
* DOC: atomic modeset support
*
* The functions here implement the state management and hardware programming
* dispatch required by the atomic modeset infrastructure.
* See intel_atomic_plane.c for the plane-specific atomic functionality.
*/
#include <drm/drmP.h>
#include <drm/drm_atomic.h>
#include <drm/drm_atomic_helper.h>
#include <drm/drm_plane_helper.h>
#include "intel_drv.h"
/**
* intel_atomic_check - validate state object
* @dev: drm device
* @state: state to validate
*/
int intel_atomic_check(struct drm_device *dev,
struct drm_atomic_state *state)
{
int nplanes = dev->mode_config.num_total_plane;
int ncrtcs = dev->mode_config.num_crtc;
int nconnectors = dev->mode_config.num_connector;
enum pipe nuclear_pipe = INVALID_PIPE;
int ret;
int i;
bool not_nuclear = false;
/*
* FIXME: At the moment, we only support "nuclear pageflip" on a
* single CRTC. Cross-crtc updates will be added later.
*/
for (i = 0; i < nplanes; i++) {
struct intel_plane *plane = to_intel_plane(state->planes[i]);
if (!plane)
continue;
if (nuclear_pipe == INVALID_PIPE) {
nuclear_pipe = plane->pipe;
} else if (nuclear_pipe != plane->pipe) {
DRM_DEBUG_KMS("i915 only support atomic plane operations on a single CRTC at the moment\n");
return -EINVAL;
}
}
/*
* FIXME: We only handle planes for now; make sure there are no CRTC's
* or connectors involved.
*/
state->allow_modeset = false;
for (i = 0; i < ncrtcs; i++) {
struct intel_crtc *crtc = to_intel_crtc(state->crtcs[i]);
if (crtc && crtc->pipe != nuclear_pipe)
not_nuclear = true;
}
for (i = 0; i < nconnectors; i++)
if (state->connectors[i] != NULL)
not_nuclear = true;
if (not_nuclear) {
DRM_DEBUG_KMS("i915 only supports atomic plane operations at the moment\n");
return -EINVAL;
}
ret = drm_atomic_helper_check_planes(dev, state);
if (ret)
return ret;
return ret;
}
/**
* intel_atomic_commit - commit validated state object
* @dev: DRM device
* @state: the top-level driver state object
* @async: asynchronous commit
*
* This function commits a top-level state object that has been validated
* with drm_atomic_helper_check().
*
* FIXME: Atomic modeset support for i915 is not yet complete. At the moment
* we can only handle plane-related operations and do not yet support
* asynchronous commit.
*
* RETURNS
* Zero for success or -errno.
*/
int intel_atomic_commit(struct drm_device *dev,
struct drm_atomic_state *state,
bool async)
{
int ret;
int i;
if (async) {
DRM_DEBUG_KMS("i915 does not yet support async commit\n");
return -EINVAL;
}
ret = drm_atomic_helper_prepare_planes(dev, state);
if (ret)
return ret;
/* Point of no return */
/*
* FIXME: The proper sequence here will eventually be:
*
* drm_atomic_helper_swap_state(dev, state)
* drm_atomic_helper_commit_pre_planes(dev, state);
* drm_atomic_helper_commit_planes(dev, state);
* drm_atomic_helper_commit_post_planes(dev, state);
* drm_atomic_helper_wait_for_vblanks(dev, state);
* drm_atomic_helper_cleanup_planes(dev, state);
* drm_atomic_state_free(state);
*
* once we have full atomic modeset. For now, just manually update
* plane states to avoid clobbering good states with dummy states
* while nuclear pageflipping.
*/
for (i = 0; i < dev->mode_config.num_total_plane; i++) {
struct drm_plane *plane = state->planes[i];
if (!plane)
continue;
plane->state->state = state;
swap(state->plane_states[i], plane->state);
plane->state->state = NULL;
}
drm_atomic_helper_commit_planes(dev, state);
drm_atomic_helper_wait_for_vblanks(dev, state);
drm_atomic_helper_cleanup_planes(dev, state);
drm_atomic_state_free(state);
return 0;
}
/**
* intel_connector_atomic_get_property - fetch connector property value
* @connector: connector to fetch property for
* @state: state containing the property value
* @property: property to look up
* @val: pointer to write property value into
*
* The DRM core does not store shadow copies of properties for
* atomic-capable drivers. This entrypoint is used to fetch
* the current value of a driver-specific connector property.
*/
int
intel_connector_atomic_get_property(struct drm_connector *connector,
const struct drm_connector_state *state,
struct drm_property *property,
uint64_t *val)
{
int i;
/*
* TODO: We only have atomic modeset for planes at the moment, so the
* crtc/connector code isn't quite ready yet. Until it's ready,
* continue to look up all property values in the DRM's shadow copy
* in obj->properties->values[].
*
* When the crtc/connector state work matures, this function should
* be updated to read the values out of the state structure instead.
*/
for (i = 0; i < connector->base.properties->count; i++) {
if (connector->base.properties->properties[i] == property) {
*val = connector->base.properties->values[i];
return 0;
}
}
return -EINVAL;
}
/*
* intel_crtc_duplicate_state - duplicate crtc state
* @crtc: drm crtc
*
* Allocates and returns a copy of the crtc state (both common and
* Intel-specific) for the specified crtc.
*
* Returns: The newly allocated crtc state, or NULL on failure.
*/
struct drm_crtc_state *
intel_crtc_duplicate_state(struct drm_crtc *crtc)
{
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
if (WARN_ON(!intel_crtc->config))
return kzalloc(sizeof(*intel_crtc->config), GFP_KERNEL);
return kmemdup(intel_crtc->config, sizeof(*intel_crtc->config),
GFP_KERNEL);
}
/**
* intel_crtc_destroy_state - destroy crtc state
* @crtc: drm crtc
*
* Destroys the crtc state (both common and Intel-specific) for the
* specified crtc.
*/
void
intel_crtc_destroy_state(struct drm_crtc *crtc,
struct drm_crtc_state *state)
{
drm_atomic_helper_crtc_destroy_state(crtc, state);
}