linux_dsm_epyc7002/drivers/gpu/drm/i915/intel_display.c
Jani Nikula 7c10a2b587 drm/i915: add new intel audio file to group DP/HDMI audio
In preparation for some additional cleanup. No functional changes.

Signed-off-by: Jani Nikula <jani.nikula@intel.com>
Reviewed-by: Rodrigo Vivi <rodrigo.vivi@intel.com>
Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2014-11-04 23:21:56 +01:00

13425 lines
370 KiB
C

/*
* Copyright © 2006-2007 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*
* Authors:
* Eric Anholt <eric@anholt.net>
*/
#include <linux/dmi.h>
#include <linux/module.h>
#include <linux/input.h>
#include <linux/i2c.h>
#include <linux/kernel.h>
#include <linux/slab.h>
#include <linux/vgaarb.h>
#include <drm/drm_edid.h>
#include <drm/drmP.h>
#include "intel_drv.h"
#include <drm/i915_drm.h>
#include "i915_drv.h"
#include "i915_trace.h"
#include <drm/drm_dp_helper.h>
#include <drm/drm_crtc_helper.h>
#include <drm/drm_plane_helper.h>
#include <drm/drm_rect.h>
#include <linux/dma_remapping.h>
/* Primary plane formats supported by all gen */
#define COMMON_PRIMARY_FORMATS \
DRM_FORMAT_C8, \
DRM_FORMAT_RGB565, \
DRM_FORMAT_XRGB8888, \
DRM_FORMAT_ARGB8888
/* Primary plane formats for gen <= 3 */
static const uint32_t intel_primary_formats_gen2[] = {
COMMON_PRIMARY_FORMATS,
DRM_FORMAT_XRGB1555,
DRM_FORMAT_ARGB1555,
};
/* Primary plane formats for gen >= 4 */
static const uint32_t intel_primary_formats_gen4[] = {
COMMON_PRIMARY_FORMATS, \
DRM_FORMAT_XBGR8888,
DRM_FORMAT_ABGR8888,
DRM_FORMAT_XRGB2101010,
DRM_FORMAT_ARGB2101010,
DRM_FORMAT_XBGR2101010,
DRM_FORMAT_ABGR2101010,
};
/* Cursor formats */
static const uint32_t intel_cursor_formats[] = {
DRM_FORMAT_ARGB8888,
};
static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
struct intel_crtc_config *pipe_config);
static void ironlake_pch_clock_get(struct intel_crtc *crtc,
struct intel_crtc_config *pipe_config);
static int intel_set_mode(struct drm_crtc *crtc, struct drm_display_mode *mode,
int x, int y, struct drm_framebuffer *old_fb);
static int intel_framebuffer_init(struct drm_device *dev,
struct intel_framebuffer *ifb,
struct drm_mode_fb_cmd2 *mode_cmd,
struct drm_i915_gem_object *obj);
static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc);
static void intel_set_pipe_timings(struct intel_crtc *intel_crtc);
static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
struct intel_link_m_n *m_n,
struct intel_link_m_n *m2_n2);
static void ironlake_set_pipeconf(struct drm_crtc *crtc);
static void haswell_set_pipeconf(struct drm_crtc *crtc);
static void intel_set_pipe_csc(struct drm_crtc *crtc);
static void vlv_prepare_pll(struct intel_crtc *crtc);
static void chv_prepare_pll(struct intel_crtc *crtc);
static struct intel_encoder *intel_find_encoder(struct intel_connector *connector, int pipe)
{
if (!connector->mst_port)
return connector->encoder;
else
return &connector->mst_port->mst_encoders[pipe]->base;
}
typedef struct {
int min, max;
} intel_range_t;
typedef struct {
int dot_limit;
int p2_slow, p2_fast;
} intel_p2_t;
typedef struct intel_limit intel_limit_t;
struct intel_limit {
intel_range_t dot, vco, n, m, m1, m2, p, p1;
intel_p2_t p2;
};
int
intel_pch_rawclk(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
WARN_ON(!HAS_PCH_SPLIT(dev));
return I915_READ(PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK;
}
static inline u32 /* units of 100MHz */
intel_fdi_link_freq(struct drm_device *dev)
{
if (IS_GEN5(dev)) {
struct drm_i915_private *dev_priv = dev->dev_private;
return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
} else
return 27;
}
static const intel_limit_t intel_limits_i8xx_dac = {
.dot = { .min = 25000, .max = 350000 },
.vco = { .min = 908000, .max = 1512000 },
.n = { .min = 2, .max = 16 },
.m = { .min = 96, .max = 140 },
.m1 = { .min = 18, .max = 26 },
.m2 = { .min = 6, .max = 16 },
.p = { .min = 4, .max = 128 },
.p1 = { .min = 2, .max = 33 },
.p2 = { .dot_limit = 165000,
.p2_slow = 4, .p2_fast = 2 },
};
static const intel_limit_t intel_limits_i8xx_dvo = {
.dot = { .min = 25000, .max = 350000 },
.vco = { .min = 908000, .max = 1512000 },
.n = { .min = 2, .max = 16 },
.m = { .min = 96, .max = 140 },
.m1 = { .min = 18, .max = 26 },
.m2 = { .min = 6, .max = 16 },
.p = { .min = 4, .max = 128 },
.p1 = { .min = 2, .max = 33 },
.p2 = { .dot_limit = 165000,
.p2_slow = 4, .p2_fast = 4 },
};
static const intel_limit_t intel_limits_i8xx_lvds = {
.dot = { .min = 25000, .max = 350000 },
.vco = { .min = 908000, .max = 1512000 },
.n = { .min = 2, .max = 16 },
.m = { .min = 96, .max = 140 },
.m1 = { .min = 18, .max = 26 },
.m2 = { .min = 6, .max = 16 },
.p = { .min = 4, .max = 128 },
.p1 = { .min = 1, .max = 6 },
.p2 = { .dot_limit = 165000,
.p2_slow = 14, .p2_fast = 7 },
};
static const intel_limit_t intel_limits_i9xx_sdvo = {
.dot = { .min = 20000, .max = 400000 },
.vco = { .min = 1400000, .max = 2800000 },
.n = { .min = 1, .max = 6 },
.m = { .min = 70, .max = 120 },
.m1 = { .min = 8, .max = 18 },
.m2 = { .min = 3, .max = 7 },
.p = { .min = 5, .max = 80 },
.p1 = { .min = 1, .max = 8 },
.p2 = { .dot_limit = 200000,
.p2_slow = 10, .p2_fast = 5 },
};
static const intel_limit_t intel_limits_i9xx_lvds = {
.dot = { .min = 20000, .max = 400000 },
.vco = { .min = 1400000, .max = 2800000 },
.n = { .min = 1, .max = 6 },
.m = { .min = 70, .max = 120 },
.m1 = { .min = 8, .max = 18 },
.m2 = { .min = 3, .max = 7 },
.p = { .min = 7, .max = 98 },
.p1 = { .min = 1, .max = 8 },
.p2 = { .dot_limit = 112000,
.p2_slow = 14, .p2_fast = 7 },
};
static const intel_limit_t intel_limits_g4x_sdvo = {
.dot = { .min = 25000, .max = 270000 },
.vco = { .min = 1750000, .max = 3500000},
.n = { .min = 1, .max = 4 },
.m = { .min = 104, .max = 138 },
.m1 = { .min = 17, .max = 23 },
.m2 = { .min = 5, .max = 11 },
.p = { .min = 10, .max = 30 },
.p1 = { .min = 1, .max = 3},
.p2 = { .dot_limit = 270000,
.p2_slow = 10,
.p2_fast = 10
},
};
static const intel_limit_t intel_limits_g4x_hdmi = {
.dot = { .min = 22000, .max = 400000 },
.vco = { .min = 1750000, .max = 3500000},
.n = { .min = 1, .max = 4 },
.m = { .min = 104, .max = 138 },
.m1 = { .min = 16, .max = 23 },
.m2 = { .min = 5, .max = 11 },
.p = { .min = 5, .max = 80 },
.p1 = { .min = 1, .max = 8},
.p2 = { .dot_limit = 165000,
.p2_slow = 10, .p2_fast = 5 },
};
static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
.dot = { .min = 20000, .max = 115000 },
.vco = { .min = 1750000, .max = 3500000 },
.n = { .min = 1, .max = 3 },
.m = { .min = 104, .max = 138 },
.m1 = { .min = 17, .max = 23 },
.m2 = { .min = 5, .max = 11 },
.p = { .min = 28, .max = 112 },
.p1 = { .min = 2, .max = 8 },
.p2 = { .dot_limit = 0,
.p2_slow = 14, .p2_fast = 14
},
};
static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
.dot = { .min = 80000, .max = 224000 },
.vco = { .min = 1750000, .max = 3500000 },
.n = { .min = 1, .max = 3 },
.m = { .min = 104, .max = 138 },
.m1 = { .min = 17, .max = 23 },
.m2 = { .min = 5, .max = 11 },
.p = { .min = 14, .max = 42 },
.p1 = { .min = 2, .max = 6 },
.p2 = { .dot_limit = 0,
.p2_slow = 7, .p2_fast = 7
},
};
static const intel_limit_t intel_limits_pineview_sdvo = {
.dot = { .min = 20000, .max = 400000},
.vco = { .min = 1700000, .max = 3500000 },
/* Pineview's Ncounter is a ring counter */
.n = { .min = 3, .max = 6 },
.m = { .min = 2, .max = 256 },
/* Pineview only has one combined m divider, which we treat as m2. */
.m1 = { .min = 0, .max = 0 },
.m2 = { .min = 0, .max = 254 },
.p = { .min = 5, .max = 80 },
.p1 = { .min = 1, .max = 8 },
.p2 = { .dot_limit = 200000,
.p2_slow = 10, .p2_fast = 5 },
};
static const intel_limit_t intel_limits_pineview_lvds = {
.dot = { .min = 20000, .max = 400000 },
.vco = { .min = 1700000, .max = 3500000 },
.n = { .min = 3, .max = 6 },
.m = { .min = 2, .max = 256 },
.m1 = { .min = 0, .max = 0 },
.m2 = { .min = 0, .max = 254 },
.p = { .min = 7, .max = 112 },
.p1 = { .min = 1, .max = 8 },
.p2 = { .dot_limit = 112000,
.p2_slow = 14, .p2_fast = 14 },
};
/* Ironlake / Sandybridge
*
* We calculate clock using (register_value + 2) for N/M1/M2, so here
* the range value for them is (actual_value - 2).
*/
static const intel_limit_t intel_limits_ironlake_dac = {
.dot = { .min = 25000, .max = 350000 },
.vco = { .min = 1760000, .max = 3510000 },
.n = { .min = 1, .max = 5 },
.m = { .min = 79, .max = 127 },
.m1 = { .min = 12, .max = 22 },
.m2 = { .min = 5, .max = 9 },
.p = { .min = 5, .max = 80 },
.p1 = { .min = 1, .max = 8 },
.p2 = { .dot_limit = 225000,
.p2_slow = 10, .p2_fast = 5 },
};
static const intel_limit_t intel_limits_ironlake_single_lvds = {
.dot = { .min = 25000, .max = 350000 },
.vco = { .min = 1760000, .max = 3510000 },
.n = { .min = 1, .max = 3 },
.m = { .min = 79, .max = 118 },
.m1 = { .min = 12, .max = 22 },
.m2 = { .min = 5, .max = 9 },
.p = { .min = 28, .max = 112 },
.p1 = { .min = 2, .max = 8 },
.p2 = { .dot_limit = 225000,
.p2_slow = 14, .p2_fast = 14 },
};
static const intel_limit_t intel_limits_ironlake_dual_lvds = {
.dot = { .min = 25000, .max = 350000 },
.vco = { .min = 1760000, .max = 3510000 },
.n = { .min = 1, .max = 3 },
.m = { .min = 79, .max = 127 },
.m1 = { .min = 12, .max = 22 },
.m2 = { .min = 5, .max = 9 },
.p = { .min = 14, .max = 56 },
.p1 = { .min = 2, .max = 8 },
.p2 = { .dot_limit = 225000,
.p2_slow = 7, .p2_fast = 7 },
};
/* LVDS 100mhz refclk limits. */
static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
.dot = { .min = 25000, .max = 350000 },
.vco = { .min = 1760000, .max = 3510000 },
.n = { .min = 1, .max = 2 },
.m = { .min = 79, .max = 126 },
.m1 = { .min = 12, .max = 22 },
.m2 = { .min = 5, .max = 9 },
.p = { .min = 28, .max = 112 },
.p1 = { .min = 2, .max = 8 },
.p2 = { .dot_limit = 225000,
.p2_slow = 14, .p2_fast = 14 },
};
static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
.dot = { .min = 25000, .max = 350000 },
.vco = { .min = 1760000, .max = 3510000 },
.n = { .min = 1, .max = 3 },
.m = { .min = 79, .max = 126 },
.m1 = { .min = 12, .max = 22 },
.m2 = { .min = 5, .max = 9 },
.p = { .min = 14, .max = 42 },
.p1 = { .min = 2, .max = 6 },
.p2 = { .dot_limit = 225000,
.p2_slow = 7, .p2_fast = 7 },
};
static const intel_limit_t intel_limits_vlv = {
/*
* These are the data rate limits (measured in fast clocks)
* since those are the strictest limits we have. The fast
* clock and actual rate limits are more relaxed, so checking
* them would make no difference.
*/
.dot = { .min = 25000 * 5, .max = 270000 * 5 },
.vco = { .min = 4000000, .max = 6000000 },
.n = { .min = 1, .max = 7 },
.m1 = { .min = 2, .max = 3 },
.m2 = { .min = 11, .max = 156 },
.p1 = { .min = 2, .max = 3 },
.p2 = { .p2_slow = 2, .p2_fast = 20 }, /* slow=min, fast=max */
};
static const intel_limit_t intel_limits_chv = {
/*
* These are the data rate limits (measured in fast clocks)
* since those are the strictest limits we have. The fast
* clock and actual rate limits are more relaxed, so checking
* them would make no difference.
*/
.dot = { .min = 25000 * 5, .max = 540000 * 5},
.vco = { .min = 4860000, .max = 6700000 },
.n = { .min = 1, .max = 1 },
.m1 = { .min = 2, .max = 2 },
.m2 = { .min = 24 << 22, .max = 175 << 22 },
.p1 = { .min = 2, .max = 4 },
.p2 = { .p2_slow = 1, .p2_fast = 14 },
};
static void vlv_clock(int refclk, intel_clock_t *clock)
{
clock->m = clock->m1 * clock->m2;
clock->p = clock->p1 * clock->p2;
if (WARN_ON(clock->n == 0 || clock->p == 0))
return;
clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
}
/**
* Returns whether any output on the specified pipe is of the specified type
*/
bool intel_pipe_has_type(struct intel_crtc *crtc, int type)
{
struct drm_device *dev = crtc->base.dev;
struct intel_encoder *encoder;
for_each_encoder_on_crtc(dev, &crtc->base, encoder)
if (encoder->type == type)
return true;
return false;
}
static const intel_limit_t *intel_ironlake_limit(struct intel_crtc *crtc,
int refclk)
{
struct drm_device *dev = crtc->base.dev;
const intel_limit_t *limit;
if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
if (intel_is_dual_link_lvds(dev)) {
if (refclk == 100000)
limit = &intel_limits_ironlake_dual_lvds_100m;
else
limit = &intel_limits_ironlake_dual_lvds;
} else {
if (refclk == 100000)
limit = &intel_limits_ironlake_single_lvds_100m;
else
limit = &intel_limits_ironlake_single_lvds;
}
} else
limit = &intel_limits_ironlake_dac;
return limit;
}
static const intel_limit_t *intel_g4x_limit(struct intel_crtc *crtc)
{
struct drm_device *dev = crtc->base.dev;
const intel_limit_t *limit;
if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
if (intel_is_dual_link_lvds(dev))
limit = &intel_limits_g4x_dual_channel_lvds;
else
limit = &intel_limits_g4x_single_channel_lvds;
} else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
limit = &intel_limits_g4x_hdmi;
} else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
limit = &intel_limits_g4x_sdvo;
} else /* The option is for other outputs */
limit = &intel_limits_i9xx_sdvo;
return limit;
}
static const intel_limit_t *intel_limit(struct intel_crtc *crtc, int refclk)
{
struct drm_device *dev = crtc->base.dev;
const intel_limit_t *limit;
if (HAS_PCH_SPLIT(dev))
limit = intel_ironlake_limit(crtc, refclk);
else if (IS_G4X(dev)) {
limit = intel_g4x_limit(crtc);
} else if (IS_PINEVIEW(dev)) {
if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
limit = &intel_limits_pineview_lvds;
else
limit = &intel_limits_pineview_sdvo;
} else if (IS_CHERRYVIEW(dev)) {
limit = &intel_limits_chv;
} else if (IS_VALLEYVIEW(dev)) {
limit = &intel_limits_vlv;
} else if (!IS_GEN2(dev)) {
if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
limit = &intel_limits_i9xx_lvds;
else
limit = &intel_limits_i9xx_sdvo;
} else {
if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
limit = &intel_limits_i8xx_lvds;
else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO))
limit = &intel_limits_i8xx_dvo;
else
limit = &intel_limits_i8xx_dac;
}
return limit;
}
/* m1 is reserved as 0 in Pineview, n is a ring counter */
static void pineview_clock(int refclk, intel_clock_t *clock)
{
clock->m = clock->m2 + 2;
clock->p = clock->p1 * clock->p2;
if (WARN_ON(clock->n == 0 || clock->p == 0))
return;
clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
}
static uint32_t i9xx_dpll_compute_m(struct dpll *dpll)
{
return 5 * (dpll->m1 + 2) + (dpll->m2 + 2);
}
static void i9xx_clock(int refclk, intel_clock_t *clock)
{
clock->m = i9xx_dpll_compute_m(clock);
clock->p = clock->p1 * clock->p2;
if (WARN_ON(clock->n + 2 == 0 || clock->p == 0))
return;
clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n + 2);
clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
}
static void chv_clock(int refclk, intel_clock_t *clock)
{
clock->m = clock->m1 * clock->m2;
clock->p = clock->p1 * clock->p2;
if (WARN_ON(clock->n == 0 || clock->p == 0))
return;
clock->vco = DIV_ROUND_CLOSEST_ULL((uint64_t)refclk * clock->m,
clock->n << 22);
clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
}
#define INTELPllInvalid(s) do { /* DRM_DEBUG(s); */ return false; } while (0)
/**
* Returns whether the given set of divisors are valid for a given refclk with
* the given connectors.
*/
static bool intel_PLL_is_valid(struct drm_device *dev,
const intel_limit_t *limit,
const intel_clock_t *clock)
{
if (clock->n < limit->n.min || limit->n.max < clock->n)
INTELPllInvalid("n out of range\n");
if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
INTELPllInvalid("p1 out of range\n");
if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2)
INTELPllInvalid("m2 out of range\n");
if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1)
INTELPllInvalid("m1 out of range\n");
if (!IS_PINEVIEW(dev) && !IS_VALLEYVIEW(dev))
if (clock->m1 <= clock->m2)
INTELPllInvalid("m1 <= m2\n");
if (!IS_VALLEYVIEW(dev)) {
if (clock->p < limit->p.min || limit->p.max < clock->p)
INTELPllInvalid("p out of range\n");
if (clock->m < limit->m.min || limit->m.max < clock->m)
INTELPllInvalid("m out of range\n");
}
if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
INTELPllInvalid("vco out of range\n");
/* XXX: We may need to be checking "Dot clock" depending on the multiplier,
* connector, etc., rather than just a single range.
*/
if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
INTELPllInvalid("dot out of range\n");
return true;
}
static bool
i9xx_find_best_dpll(const intel_limit_t *limit, struct intel_crtc *crtc,
int target, int refclk, intel_clock_t *match_clock,
intel_clock_t *best_clock)
{
struct drm_device *dev = crtc->base.dev;
intel_clock_t clock;
int err = target;
if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
/*
* For LVDS just rely on its current settings for dual-channel.
* We haven't figured out how to reliably set up different
* single/dual channel state, if we even can.
*/
if (intel_is_dual_link_lvds(dev))
clock.p2 = limit->p2.p2_fast;
else
clock.p2 = limit->p2.p2_slow;
} else {
if (target < limit->p2.dot_limit)
clock.p2 = limit->p2.p2_slow;
else
clock.p2 = limit->p2.p2_fast;
}
memset(best_clock, 0, sizeof(*best_clock));
for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
clock.m1++) {
for (clock.m2 = limit->m2.min;
clock.m2 <= limit->m2.max; clock.m2++) {
if (clock.m2 >= clock.m1)
break;
for (clock.n = limit->n.min;
clock.n <= limit->n.max; clock.n++) {
for (clock.p1 = limit->p1.min;
clock.p1 <= limit->p1.max; clock.p1++) {
int this_err;
i9xx_clock(refclk, &clock);
if (!intel_PLL_is_valid(dev, limit,
&clock))
continue;
if (match_clock &&
clock.p != match_clock->p)
continue;
this_err = abs(clock.dot - target);
if (this_err < err) {
*best_clock = clock;
err = this_err;
}
}
}
}
}
return (err != target);
}
static bool
pnv_find_best_dpll(const intel_limit_t *limit, struct intel_crtc *crtc,
int target, int refclk, intel_clock_t *match_clock,
intel_clock_t *best_clock)
{
struct drm_device *dev = crtc->base.dev;
intel_clock_t clock;
int err = target;
if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
/*
* For LVDS just rely on its current settings for dual-channel.
* We haven't figured out how to reliably set up different
* single/dual channel state, if we even can.
*/
if (intel_is_dual_link_lvds(dev))
clock.p2 = limit->p2.p2_fast;
else
clock.p2 = limit->p2.p2_slow;
} else {
if (target < limit->p2.dot_limit)
clock.p2 = limit->p2.p2_slow;
else
clock.p2 = limit->p2.p2_fast;
}
memset(best_clock, 0, sizeof(*best_clock));
for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
clock.m1++) {
for (clock.m2 = limit->m2.min;
clock.m2 <= limit->m2.max; clock.m2++) {
for (clock.n = limit->n.min;
clock.n <= limit->n.max; clock.n++) {
for (clock.p1 = limit->p1.min;
clock.p1 <= limit->p1.max; clock.p1++) {
int this_err;
pineview_clock(refclk, &clock);
if (!intel_PLL_is_valid(dev, limit,
&clock))
continue;
if (match_clock &&
clock.p != match_clock->p)
continue;
this_err = abs(clock.dot - target);
if (this_err < err) {
*best_clock = clock;
err = this_err;
}
}
}
}
}
return (err != target);
}
static bool
g4x_find_best_dpll(const intel_limit_t *limit, struct intel_crtc *crtc,
int target, int refclk, intel_clock_t *match_clock,
intel_clock_t *best_clock)
{
struct drm_device *dev = crtc->base.dev;
intel_clock_t clock;
int max_n;
bool found;
/* approximately equals target * 0.00585 */
int err_most = (target >> 8) + (target >> 9);
found = false;
if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
if (intel_is_dual_link_lvds(dev))
clock.p2 = limit->p2.p2_fast;
else
clock.p2 = limit->p2.p2_slow;
} else {
if (target < limit->p2.dot_limit)
clock.p2 = limit->p2.p2_slow;
else
clock.p2 = limit->p2.p2_fast;
}
memset(best_clock, 0, sizeof(*best_clock));
max_n = limit->n.max;
/* based on hardware requirement, prefer smaller n to precision */
for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
/* based on hardware requirement, prefere larger m1,m2 */
for (clock.m1 = limit->m1.max;
clock.m1 >= limit->m1.min; clock.m1--) {
for (clock.m2 = limit->m2.max;
clock.m2 >= limit->m2.min; clock.m2--) {
for (clock.p1 = limit->p1.max;
clock.p1 >= limit->p1.min; clock.p1--) {
int this_err;
i9xx_clock(refclk, &clock);
if (!intel_PLL_is_valid(dev, limit,
&clock))
continue;
this_err = abs(clock.dot - target);
if (this_err < err_most) {
*best_clock = clock;
err_most = this_err;
max_n = clock.n;
found = true;
}
}
}
}
}
return found;
}
static bool
vlv_find_best_dpll(const intel_limit_t *limit, struct intel_crtc *crtc,
int target, int refclk, intel_clock_t *match_clock,
intel_clock_t *best_clock)
{
struct drm_device *dev = crtc->base.dev;
intel_clock_t clock;
unsigned int bestppm = 1000000;
/* min update 19.2 MHz */
int max_n = min(limit->n.max, refclk / 19200);
bool found = false;
target *= 5; /* fast clock */
memset(best_clock, 0, sizeof(*best_clock));
/* based on hardware requirement, prefer smaller n to precision */
for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
for (clock.p2 = limit->p2.p2_fast; clock.p2 >= limit->p2.p2_slow;
clock.p2 -= clock.p2 > 10 ? 2 : 1) {
clock.p = clock.p1 * clock.p2;
/* based on hardware requirement, prefer bigger m1,m2 values */
for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; clock.m1++) {
unsigned int ppm, diff;
clock.m2 = DIV_ROUND_CLOSEST(target * clock.p * clock.n,
refclk * clock.m1);
vlv_clock(refclk, &clock);
if (!intel_PLL_is_valid(dev, limit,
&clock))
continue;
diff = abs(clock.dot - target);
ppm = div_u64(1000000ULL * diff, target);
if (ppm < 100 && clock.p > best_clock->p) {
bestppm = 0;
*best_clock = clock;
found = true;
}
if (bestppm >= 10 && ppm < bestppm - 10) {
bestppm = ppm;
*best_clock = clock;
found = true;
}
}
}
}
}
return found;
}
static bool
chv_find_best_dpll(const intel_limit_t *limit, struct intel_crtc *crtc,
int target, int refclk, intel_clock_t *match_clock,
intel_clock_t *best_clock)
{
struct drm_device *dev = crtc->base.dev;
intel_clock_t clock;
uint64_t m2;
int found = false;
memset(best_clock, 0, sizeof(*best_clock));
/*
* Based on hardware doc, the n always set to 1, and m1 always
* set to 2. If requires to support 200Mhz refclk, we need to
* revisit this because n may not 1 anymore.
*/
clock.n = 1, clock.m1 = 2;
target *= 5; /* fast clock */
for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
for (clock.p2 = limit->p2.p2_fast;
clock.p2 >= limit->p2.p2_slow;
clock.p2 -= clock.p2 > 10 ? 2 : 1) {
clock.p = clock.p1 * clock.p2;
m2 = DIV_ROUND_CLOSEST_ULL(((uint64_t)target * clock.p *
clock.n) << 22, refclk * clock.m1);
if (m2 > INT_MAX/clock.m1)
continue;
clock.m2 = m2;
chv_clock(refclk, &clock);
if (!intel_PLL_is_valid(dev, limit, &clock))
continue;
/* based on hardware requirement, prefer bigger p
*/
if (clock.p > best_clock->p) {
*best_clock = clock;
found = true;
}
}
}
return found;
}
bool intel_crtc_active(struct drm_crtc *crtc)
{
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
/* Be paranoid as we can arrive here with only partial
* state retrieved from the hardware during setup.
*
* We can ditch the adjusted_mode.crtc_clock check as soon
* as Haswell has gained clock readout/fastboot support.
*
* We can ditch the crtc->primary->fb check as soon as we can
* properly reconstruct framebuffers.
*/
return intel_crtc->active && crtc->primary->fb &&
intel_crtc->config.adjusted_mode.crtc_clock;
}
enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv,
enum pipe pipe)
{
struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
return intel_crtc->config.cpu_transcoder;
}
static bool pipe_dsl_stopped(struct drm_device *dev, enum pipe pipe)
{
struct drm_i915_private *dev_priv = dev->dev_private;
u32 reg = PIPEDSL(pipe);
u32 line1, line2;
u32 line_mask;
if (IS_GEN2(dev))
line_mask = DSL_LINEMASK_GEN2;
else
line_mask = DSL_LINEMASK_GEN3;
line1 = I915_READ(reg) & line_mask;
mdelay(5);
line2 = I915_READ(reg) & line_mask;
return line1 == line2;
}
/*
* intel_wait_for_pipe_off - wait for pipe to turn off
* @crtc: crtc whose pipe to wait for
*
* After disabling a pipe, we can't wait for vblank in the usual way,
* spinning on the vblank interrupt status bit, since we won't actually
* see an interrupt when the pipe is disabled.
*
* On Gen4 and above:
* wait for the pipe register state bit to turn off
*
* Otherwise:
* wait for the display line value to settle (it usually
* ends up stopping at the start of the next frame).
*
*/
static void intel_wait_for_pipe_off(struct intel_crtc *crtc)
{
struct drm_device *dev = crtc->base.dev;
struct drm_i915_private *dev_priv = dev->dev_private;
enum transcoder cpu_transcoder = crtc->config.cpu_transcoder;
enum pipe pipe = crtc->pipe;
if (INTEL_INFO(dev)->gen >= 4) {
int reg = PIPECONF(cpu_transcoder);
/* Wait for the Pipe State to go off */
if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
100))
WARN(1, "pipe_off wait timed out\n");
} else {
/* Wait for the display line to settle */
if (wait_for(pipe_dsl_stopped(dev, pipe), 100))
WARN(1, "pipe_off wait timed out\n");
}
}
/*
* ibx_digital_port_connected - is the specified port connected?
* @dev_priv: i915 private structure
* @port: the port to test
*
* Returns true if @port is connected, false otherwise.
*/
bool ibx_digital_port_connected(struct drm_i915_private *dev_priv,
struct intel_digital_port *port)
{
u32 bit;
if (HAS_PCH_IBX(dev_priv->dev)) {
switch (port->port) {
case PORT_B:
bit = SDE_PORTB_HOTPLUG;
break;
case PORT_C:
bit = SDE_PORTC_HOTPLUG;
break;
case PORT_D:
bit = SDE_PORTD_HOTPLUG;
break;
default:
return true;
}
} else {
switch (port->port) {
case PORT_B:
bit = SDE_PORTB_HOTPLUG_CPT;
break;
case PORT_C:
bit = SDE_PORTC_HOTPLUG_CPT;
break;
case PORT_D:
bit = SDE_PORTD_HOTPLUG_CPT;
break;
default:
return true;
}
}
return I915_READ(SDEISR) & bit;
}
static const char *state_string(bool enabled)
{
return enabled ? "on" : "off";
}
/* Only for pre-ILK configs */
void assert_pll(struct drm_i915_private *dev_priv,
enum pipe pipe, bool state)
{
int reg;
u32 val;
bool cur_state;
reg = DPLL(pipe);
val = I915_READ(reg);
cur_state = !!(val & DPLL_VCO_ENABLE);
WARN(cur_state != state,
"PLL state assertion failure (expected %s, current %s)\n",
state_string(state), state_string(cur_state));
}
/* XXX: the dsi pll is shared between MIPI DSI ports */
static void assert_dsi_pll(struct drm_i915_private *dev_priv, bool state)
{
u32 val;
bool cur_state;
mutex_lock(&dev_priv->dpio_lock);
val = vlv_cck_read(dev_priv, CCK_REG_DSI_PLL_CONTROL);
mutex_unlock(&dev_priv->dpio_lock);
cur_state = val & DSI_PLL_VCO_EN;
WARN(cur_state != state,
"DSI PLL state assertion failure (expected %s, current %s)\n",
state_string(state), state_string(cur_state));
}
#define assert_dsi_pll_enabled(d) assert_dsi_pll(d, true)
#define assert_dsi_pll_disabled(d) assert_dsi_pll(d, false)
struct intel_shared_dpll *
intel_crtc_to_shared_dpll(struct intel_crtc *crtc)
{
struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
if (crtc->config.shared_dpll < 0)
return NULL;
return &dev_priv->shared_dplls[crtc->config.shared_dpll];
}
/* For ILK+ */
void assert_shared_dpll(struct drm_i915_private *dev_priv,
struct intel_shared_dpll *pll,
bool state)
{
bool cur_state;
struct intel_dpll_hw_state hw_state;
if (WARN (!pll,
"asserting DPLL %s with no DPLL\n", state_string(state)))
return;
cur_state = pll->get_hw_state(dev_priv, pll, &hw_state);
WARN(cur_state != state,
"%s assertion failure (expected %s, current %s)\n",
pll->name, state_string(state), state_string(cur_state));
}
static void assert_fdi_tx(struct drm_i915_private *dev_priv,
enum pipe pipe, bool state)
{
int reg;
u32 val;
bool cur_state;
enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
pipe);
if (HAS_DDI(dev_priv->dev)) {
/* DDI does not have a specific FDI_TX register */
reg = TRANS_DDI_FUNC_CTL(cpu_transcoder);
val = I915_READ(reg);
cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
} else {
reg = FDI_TX_CTL(pipe);
val = I915_READ(reg);
cur_state = !!(val & FDI_TX_ENABLE);
}
WARN(cur_state != state,
"FDI TX state assertion failure (expected %s, current %s)\n",
state_string(state), state_string(cur_state));
}
#define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
#define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
static void assert_fdi_rx(struct drm_i915_private *dev_priv,
enum pipe pipe, bool state)
{
int reg;
u32 val;
bool cur_state;
reg = FDI_RX_CTL(pipe);
val = I915_READ(reg);
cur_state = !!(val & FDI_RX_ENABLE);
WARN(cur_state != state,
"FDI RX state assertion failure (expected %s, current %s)\n",
state_string(state), state_string(cur_state));
}
#define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
#define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
enum pipe pipe)
{
int reg;
u32 val;
/* ILK FDI PLL is always enabled */
if (INTEL_INFO(dev_priv->dev)->gen == 5)
return;
/* On Haswell, DDI ports are responsible for the FDI PLL setup */
if (HAS_DDI(dev_priv->dev))
return;
reg = FDI_TX_CTL(pipe);
val = I915_READ(reg);
WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
}
void assert_fdi_rx_pll(struct drm_i915_private *dev_priv,
enum pipe pipe, bool state)
{
int reg;
u32 val;
bool cur_state;
reg = FDI_RX_CTL(pipe);
val = I915_READ(reg);
cur_state = !!(val & FDI_RX_PLL_ENABLE);
WARN(cur_state != state,
"FDI RX PLL assertion failure (expected %s, current %s)\n",
state_string(state), state_string(cur_state));
}
void assert_panel_unlocked(struct drm_i915_private *dev_priv,
enum pipe pipe)
{
struct drm_device *dev = dev_priv->dev;
int pp_reg;
u32 val;
enum pipe panel_pipe = PIPE_A;
bool locked = true;
if (WARN_ON(HAS_DDI(dev)))
return;
if (HAS_PCH_SPLIT(dev)) {
u32 port_sel;
pp_reg = PCH_PP_CONTROL;
port_sel = I915_READ(PCH_PP_ON_DELAYS) & PANEL_PORT_SELECT_MASK;
if (port_sel == PANEL_PORT_SELECT_LVDS &&
I915_READ(PCH_LVDS) & LVDS_PIPEB_SELECT)
panel_pipe = PIPE_B;
/* XXX: else fix for eDP */
} else if (IS_VALLEYVIEW(dev)) {
/* presumably write lock depends on pipe, not port select */
pp_reg = VLV_PIPE_PP_CONTROL(pipe);
panel_pipe = pipe;
} else {
pp_reg = PP_CONTROL;
if (I915_READ(LVDS) & LVDS_PIPEB_SELECT)
panel_pipe = PIPE_B;
}
val = I915_READ(pp_reg);
if (!(val & PANEL_POWER_ON) ||
((val & PANEL_UNLOCK_MASK) == PANEL_UNLOCK_REGS))
locked = false;
WARN(panel_pipe == pipe && locked,
"panel assertion failure, pipe %c regs locked\n",
pipe_name(pipe));
}
static void assert_cursor(struct drm_i915_private *dev_priv,
enum pipe pipe, bool state)
{
struct drm_device *dev = dev_priv->dev;
bool cur_state;
if (IS_845G(dev) || IS_I865G(dev))
cur_state = I915_READ(_CURACNTR) & CURSOR_ENABLE;
else
cur_state = I915_READ(CURCNTR(pipe)) & CURSOR_MODE;
WARN(cur_state != state,
"cursor on pipe %c assertion failure (expected %s, current %s)\n",
pipe_name(pipe), state_string(state), state_string(cur_state));
}
#define assert_cursor_enabled(d, p) assert_cursor(d, p, true)
#define assert_cursor_disabled(d, p) assert_cursor(d, p, false)
void assert_pipe(struct drm_i915_private *dev_priv,
enum pipe pipe, bool state)
{
int reg;
u32 val;
bool cur_state;
enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
pipe);
/* if we need the pipe quirk it must be always on */
if ((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
(pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
state = true;
if (!intel_display_power_is_enabled(dev_priv,
POWER_DOMAIN_TRANSCODER(cpu_transcoder))) {
cur_state = false;
} else {
reg = PIPECONF(cpu_transcoder);
val = I915_READ(reg);
cur_state = !!(val & PIPECONF_ENABLE);
}
WARN(cur_state != state,
"pipe %c assertion failure (expected %s, current %s)\n",
pipe_name(pipe), state_string(state), state_string(cur_state));
}
static void assert_plane(struct drm_i915_private *dev_priv,
enum plane plane, bool state)
{
int reg;
u32 val;
bool cur_state;
reg = DSPCNTR(plane);
val = I915_READ(reg);
cur_state = !!(val & DISPLAY_PLANE_ENABLE);
WARN(cur_state != state,
"plane %c assertion failure (expected %s, current %s)\n",
plane_name(plane), state_string(state), state_string(cur_state));
}
#define assert_plane_enabled(d, p) assert_plane(d, p, true)
#define assert_plane_disabled(d, p) assert_plane(d, p, false)
static void assert_planes_disabled(struct drm_i915_private *dev_priv,
enum pipe pipe)
{
struct drm_device *dev = dev_priv->dev;
int reg, i;
u32 val;
int cur_pipe;
/* Primary planes are fixed to pipes on gen4+ */
if (INTEL_INFO(dev)->gen >= 4) {
reg = DSPCNTR(pipe);
val = I915_READ(reg);
WARN(val & DISPLAY_PLANE_ENABLE,
"plane %c assertion failure, should be disabled but not\n",
plane_name(pipe));
return;
}
/* Need to check both planes against the pipe */
for_each_pipe(dev_priv, i) {
reg = DSPCNTR(i);
val = I915_READ(reg);
cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
DISPPLANE_SEL_PIPE_SHIFT;
WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
"plane %c assertion failure, should be off on pipe %c but is still active\n",
plane_name(i), pipe_name(pipe));
}
}
static void assert_sprites_disabled(struct drm_i915_private *dev_priv,
enum pipe pipe)
{
struct drm_device *dev = dev_priv->dev;
int reg, sprite;
u32 val;
if (INTEL_INFO(dev)->gen >= 9) {
for_each_sprite(pipe, sprite) {
val = I915_READ(PLANE_CTL(pipe, sprite));
WARN(val & PLANE_CTL_ENABLE,
"plane %d assertion failure, should be off on pipe %c but is still active\n",
sprite, pipe_name(pipe));
}
} else if (IS_VALLEYVIEW(dev)) {
for_each_sprite(pipe, sprite) {
reg = SPCNTR(pipe, sprite);
val = I915_READ(reg);
WARN(val & SP_ENABLE,
"sprite %c assertion failure, should be off on pipe %c but is still active\n",
sprite_name(pipe, sprite), pipe_name(pipe));
}
} else if (INTEL_INFO(dev)->gen >= 7) {
reg = SPRCTL(pipe);
val = I915_READ(reg);
WARN(val & SPRITE_ENABLE,
"sprite %c assertion failure, should be off on pipe %c but is still active\n",
plane_name(pipe), pipe_name(pipe));
} else if (INTEL_INFO(dev)->gen >= 5) {
reg = DVSCNTR(pipe);
val = I915_READ(reg);
WARN(val & DVS_ENABLE,
"sprite %c assertion failure, should be off on pipe %c but is still active\n",
plane_name(pipe), pipe_name(pipe));
}
}
static void assert_vblank_disabled(struct drm_crtc *crtc)
{
if (WARN_ON(drm_crtc_vblank_get(crtc) == 0))
drm_crtc_vblank_put(crtc);
}
static void ibx_assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
{
u32 val;
bool enabled;
WARN_ON(!(HAS_PCH_IBX(dev_priv->dev) || HAS_PCH_CPT(dev_priv->dev)));
val = I915_READ(PCH_DREF_CONTROL);
enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
DREF_SUPERSPREAD_SOURCE_MASK));
WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
}
static void assert_pch_transcoder_disabled(struct drm_i915_private *dev_priv,
enum pipe pipe)
{
int reg;
u32 val;
bool enabled;
reg = PCH_TRANSCONF(pipe);
val = I915_READ(reg);
enabled = !!(val & TRANS_ENABLE);
WARN(enabled,
"transcoder assertion failed, should be off on pipe %c but is still active\n",
pipe_name(pipe));
}
static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
enum pipe pipe, u32 port_sel, u32 val)
{
if ((val & DP_PORT_EN) == 0)
return false;
if (HAS_PCH_CPT(dev_priv->dev)) {
u32 trans_dp_ctl_reg = TRANS_DP_CTL(pipe);
u32 trans_dp_ctl = I915_READ(trans_dp_ctl_reg);
if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
return false;
} else if (IS_CHERRYVIEW(dev_priv->dev)) {
if ((val & DP_PIPE_MASK_CHV) != DP_PIPE_SELECT_CHV(pipe))
return false;
} else {
if ((val & DP_PIPE_MASK) != (pipe << 30))
return false;
}
return true;
}
static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
enum pipe pipe, u32 val)
{
if ((val & SDVO_ENABLE) == 0)
return false;
if (HAS_PCH_CPT(dev_priv->dev)) {
if ((val & SDVO_PIPE_SEL_MASK_CPT) != SDVO_PIPE_SEL_CPT(pipe))
return false;
} else if (IS_CHERRYVIEW(dev_priv->dev)) {
if ((val & SDVO_PIPE_SEL_MASK_CHV) != SDVO_PIPE_SEL_CHV(pipe))
return false;
} else {
if ((val & SDVO_PIPE_SEL_MASK) != SDVO_PIPE_SEL(pipe))
return false;
}
return true;
}
static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
enum pipe pipe, u32 val)
{
if ((val & LVDS_PORT_EN) == 0)
return false;
if (HAS_PCH_CPT(dev_priv->dev)) {
if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
return false;
} else {
if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
return false;
}
return true;
}
static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
enum pipe pipe, u32 val)
{
if ((val & ADPA_DAC_ENABLE) == 0)
return false;
if (HAS_PCH_CPT(dev_priv->dev)) {
if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
return false;
} else {
if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
return false;
}
return true;
}
static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
enum pipe pipe, int reg, u32 port_sel)
{
u32 val = I915_READ(reg);
WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
"PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
reg, pipe_name(pipe));
WARN(HAS_PCH_IBX(dev_priv->dev) && (val & DP_PORT_EN) == 0
&& (val & DP_PIPEB_SELECT),
"IBX PCH dp port still using transcoder B\n");
}
static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
enum pipe pipe, int reg)
{
u32 val = I915_READ(reg);
WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
"PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
reg, pipe_name(pipe));
WARN(HAS_PCH_IBX(dev_priv->dev) && (val & SDVO_ENABLE) == 0
&& (val & SDVO_PIPE_B_SELECT),
"IBX PCH hdmi port still using transcoder B\n");
}
static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
enum pipe pipe)
{
int reg;
u32 val;
assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
reg = PCH_ADPA;
val = I915_READ(reg);
WARN(adpa_pipe_enabled(dev_priv, pipe, val),
"PCH VGA enabled on transcoder %c, should be disabled\n",
pipe_name(pipe));
reg = PCH_LVDS;
val = I915_READ(reg);
WARN(lvds_pipe_enabled(dev_priv, pipe, val),
"PCH LVDS enabled on transcoder %c, should be disabled\n",
pipe_name(pipe));
assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIB);
assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIC);
assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMID);
}
static void intel_init_dpio(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
if (!IS_VALLEYVIEW(dev))
return;
/*
* IOSF_PORT_DPIO is used for VLV x2 PHY (DP/HDMI B and C),
* CHV x1 PHY (DP/HDMI D)
* IOSF_PORT_DPIO_2 is used for CHV x2 PHY (DP/HDMI B and C)
*/
if (IS_CHERRYVIEW(dev)) {
DPIO_PHY_IOSF_PORT(DPIO_PHY0) = IOSF_PORT_DPIO_2;
DPIO_PHY_IOSF_PORT(DPIO_PHY1) = IOSF_PORT_DPIO;
} else {
DPIO_PHY_IOSF_PORT(DPIO_PHY0) = IOSF_PORT_DPIO;
}
}
static void vlv_enable_pll(struct intel_crtc *crtc)
{
struct drm_device *dev = crtc->base.dev;
struct drm_i915_private *dev_priv = dev->dev_private;
int reg = DPLL(crtc->pipe);
u32 dpll = crtc->config.dpll_hw_state.dpll;
assert_pipe_disabled(dev_priv, crtc->pipe);
/* No really, not for ILK+ */
BUG_ON(!IS_VALLEYVIEW(dev_priv->dev));
/* PLL is protected by panel, make sure we can write it */
if (IS_MOBILE(dev_priv->dev))
assert_panel_unlocked(dev_priv, crtc->pipe);
I915_WRITE(reg, dpll);
POSTING_READ(reg);
udelay(150);
if (wait_for(((I915_READ(reg) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
DRM_ERROR("DPLL %d failed to lock\n", crtc->pipe);
I915_WRITE(DPLL_MD(crtc->pipe), crtc->config.dpll_hw_state.dpll_md);
POSTING_READ(DPLL_MD(crtc->pipe));
/* We do this three times for luck */
I915_WRITE(reg, dpll);
POSTING_READ(reg);
udelay(150); /* wait for warmup */
I915_WRITE(reg, dpll);
POSTING_READ(reg);
udelay(150); /* wait for warmup */
I915_WRITE(reg, dpll);
POSTING_READ(reg);
udelay(150); /* wait for warmup */
}
static void chv_enable_pll(struct intel_crtc *crtc)
{
struct drm_device *dev = crtc->base.dev;
struct drm_i915_private *dev_priv = dev->dev_private;
int pipe = crtc->pipe;
enum dpio_channel port = vlv_pipe_to_channel(pipe);
u32 tmp;
assert_pipe_disabled(dev_priv, crtc->pipe);
BUG_ON(!IS_CHERRYVIEW(dev_priv->dev));
mutex_lock(&dev_priv->dpio_lock);
/* Enable back the 10bit clock to display controller */
tmp = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
tmp |= DPIO_DCLKP_EN;
vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), tmp);
/*
* Need to wait > 100ns between dclkp clock enable bit and PLL enable.
*/
udelay(1);
/* Enable PLL */
I915_WRITE(DPLL(pipe), crtc->config.dpll_hw_state.dpll);
/* Check PLL is locked */
if (wait_for(((I915_READ(DPLL(pipe)) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
DRM_ERROR("PLL %d failed to lock\n", pipe);
/* not sure when this should be written */
I915_WRITE(DPLL_MD(pipe), crtc->config.dpll_hw_state.dpll_md);
POSTING_READ(DPLL_MD(pipe));
mutex_unlock(&dev_priv->dpio_lock);
}
static int intel_num_dvo_pipes(struct drm_device *dev)
{
struct intel_crtc *crtc;
int count = 0;
for_each_intel_crtc(dev, crtc)
count += crtc->active &&
intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO);
return count;
}
static void i9xx_enable_pll(struct intel_crtc *crtc)
{
struct drm_device *dev = crtc->base.dev;
struct drm_i915_private *dev_priv = dev->dev_private;
int reg = DPLL(crtc->pipe);
u32 dpll = crtc->config.dpll_hw_state.dpll;
assert_pipe_disabled(dev_priv, crtc->pipe);
/* No really, not for ILK+ */
BUG_ON(INTEL_INFO(dev)->gen >= 5);
/* PLL is protected by panel, make sure we can write it */
if (IS_MOBILE(dev) && !IS_I830(dev))
assert_panel_unlocked(dev_priv, crtc->pipe);
/* Enable DVO 2x clock on both PLLs if necessary */
if (IS_I830(dev) && intel_num_dvo_pipes(dev) > 0) {
/*
* It appears to be important that we don't enable this
* for the current pipe before otherwise configuring the
* PLL. No idea how this should be handled if multiple
* DVO outputs are enabled simultaneosly.
*/
dpll |= DPLL_DVO_2X_MODE;
I915_WRITE(DPLL(!crtc->pipe),
I915_READ(DPLL(!crtc->pipe)) | DPLL_DVO_2X_MODE);
}
/* Wait for the clocks to stabilize. */
POSTING_READ(reg);
udelay(150);
if (INTEL_INFO(dev)->gen >= 4) {
I915_WRITE(DPLL_MD(crtc->pipe),
crtc->config.dpll_hw_state.dpll_md);
} else {
/* The pixel multiplier can only be updated once the
* DPLL is enabled and the clocks are stable.
*
* So write it again.
*/
I915_WRITE(reg, dpll);
}
/* We do this three times for luck */
I915_WRITE(reg, dpll);
POSTING_READ(reg);
udelay(150); /* wait for warmup */
I915_WRITE(reg, dpll);
POSTING_READ(reg);
udelay(150); /* wait for warmup */
I915_WRITE(reg, dpll);
POSTING_READ(reg);
udelay(150); /* wait for warmup */
}
/**
* i9xx_disable_pll - disable a PLL
* @dev_priv: i915 private structure
* @pipe: pipe PLL to disable
*
* Disable the PLL for @pipe, making sure the pipe is off first.
*
* Note! This is for pre-ILK only.
*/
static void i9xx_disable_pll(struct intel_crtc *crtc)
{
struct drm_device *dev = crtc->base.dev;
struct drm_i915_private *dev_priv = dev->dev_private;
enum pipe pipe = crtc->pipe;
/* Disable DVO 2x clock on both PLLs if necessary */
if (IS_I830(dev) &&
intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO) &&
intel_num_dvo_pipes(dev) == 1) {
I915_WRITE(DPLL(PIPE_B),
I915_READ(DPLL(PIPE_B)) & ~DPLL_DVO_2X_MODE);
I915_WRITE(DPLL(PIPE_A),
I915_READ(DPLL(PIPE_A)) & ~DPLL_DVO_2X_MODE);
}
/* Don't disable pipe or pipe PLLs if needed */
if ((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
(pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
return;
/* Make sure the pipe isn't still relying on us */
assert_pipe_disabled(dev_priv, pipe);
I915_WRITE(DPLL(pipe), 0);
POSTING_READ(DPLL(pipe));
}
static void vlv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
{
u32 val = 0;
/* Make sure the pipe isn't still relying on us */
assert_pipe_disabled(dev_priv, pipe);
/*
* Leave integrated clock source and reference clock enabled for pipe B.
* The latter is needed for VGA hotplug / manual detection.
*/
if (pipe == PIPE_B)
val = DPLL_INTEGRATED_CRI_CLK_VLV | DPLL_REFA_CLK_ENABLE_VLV;
I915_WRITE(DPLL(pipe), val);
POSTING_READ(DPLL(pipe));
}
static void chv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
{
enum dpio_channel port = vlv_pipe_to_channel(pipe);
u32 val;
/* Make sure the pipe isn't still relying on us */
assert_pipe_disabled(dev_priv, pipe);
/* Set PLL en = 0 */
val = DPLL_SSC_REF_CLOCK_CHV | DPLL_REFA_CLK_ENABLE_VLV;
if (pipe != PIPE_A)
val |= DPLL_INTEGRATED_CRI_CLK_VLV;
I915_WRITE(DPLL(pipe), val);
POSTING_READ(DPLL(pipe));
mutex_lock(&dev_priv->dpio_lock);
/* Disable 10bit clock to display controller */
val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
val &= ~DPIO_DCLKP_EN;
vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), val);
/* disable left/right clock distribution */
if (pipe != PIPE_B) {
val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW5_CH0);
val &= ~(CHV_BUFLEFTENA1_MASK | CHV_BUFRIGHTENA1_MASK);
vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW5_CH0, val);
} else {
val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW1_CH1);
val &= ~(CHV_BUFLEFTENA2_MASK | CHV_BUFRIGHTENA2_MASK);
vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW1_CH1, val);
}
mutex_unlock(&dev_priv->dpio_lock);
}
void vlv_wait_port_ready(struct drm_i915_private *dev_priv,
struct intel_digital_port *dport)
{
u32 port_mask;
int dpll_reg;
switch (dport->port) {
case PORT_B:
port_mask = DPLL_PORTB_READY_MASK;
dpll_reg = DPLL(0);
break;
case PORT_C:
port_mask = DPLL_PORTC_READY_MASK;
dpll_reg = DPLL(0);
break;
case PORT_D:
port_mask = DPLL_PORTD_READY_MASK;
dpll_reg = DPIO_PHY_STATUS;
break;
default:
BUG();
}
if (wait_for((I915_READ(dpll_reg) & port_mask) == 0, 1000))
WARN(1, "timed out waiting for port %c ready: 0x%08x\n",
port_name(dport->port), I915_READ(dpll_reg));
}
static void intel_prepare_shared_dpll(struct intel_crtc *crtc)
{
struct drm_device *dev = crtc->base.dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
if (WARN_ON(pll == NULL))
return;
WARN_ON(!pll->refcount);
if (pll->active == 0) {
DRM_DEBUG_DRIVER("setting up %s\n", pll->name);
WARN_ON(pll->on);
assert_shared_dpll_disabled(dev_priv, pll);
pll->mode_set(dev_priv, pll);
}
}
/**
* intel_enable_shared_dpll - enable PCH PLL
* @dev_priv: i915 private structure
* @pipe: pipe PLL to enable
*
* The PCH PLL needs to be enabled before the PCH transcoder, since it
* drives the transcoder clock.
*/
static void intel_enable_shared_dpll(struct intel_crtc *crtc)
{
struct drm_device *dev = crtc->base.dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
if (WARN_ON(pll == NULL))
return;
if (WARN_ON(pll->refcount == 0))
return;
DRM_DEBUG_KMS("enable %s (active %d, on? %d) for crtc %d\n",
pll->name, pll->active, pll->on,
crtc->base.base.id);
if (pll->active++) {
WARN_ON(!pll->on);
assert_shared_dpll_enabled(dev_priv, pll);
return;
}
WARN_ON(pll->on);
intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
DRM_DEBUG_KMS("enabling %s\n", pll->name);
pll->enable(dev_priv, pll);
pll->on = true;
}
static void intel_disable_shared_dpll(struct intel_crtc *crtc)
{
struct drm_device *dev = crtc->base.dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
/* PCH only available on ILK+ */
BUG_ON(INTEL_INFO(dev)->gen < 5);
if (WARN_ON(pll == NULL))
return;
if (WARN_ON(pll->refcount == 0))
return;
DRM_DEBUG_KMS("disable %s (active %d, on? %d) for crtc %d\n",
pll->name, pll->active, pll->on,
crtc->base.base.id);
if (WARN_ON(pll->active == 0)) {
assert_shared_dpll_disabled(dev_priv, pll);
return;
}
assert_shared_dpll_enabled(dev_priv, pll);
WARN_ON(!pll->on);
if (--pll->active)
return;
DRM_DEBUG_KMS("disabling %s\n", pll->name);
pll->disable(dev_priv, pll);
pll->on = false;
intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS);
}
static void ironlake_enable_pch_transcoder(struct drm_i915_private *dev_priv,
enum pipe pipe)
{
struct drm_device *dev = dev_priv->dev;
struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
uint32_t reg, val, pipeconf_val;
/* PCH only available on ILK+ */
BUG_ON(!HAS_PCH_SPLIT(dev));
/* Make sure PCH DPLL is enabled */
assert_shared_dpll_enabled(dev_priv,
intel_crtc_to_shared_dpll(intel_crtc));
/* FDI must be feeding us bits for PCH ports */
assert_fdi_tx_enabled(dev_priv, pipe);
assert_fdi_rx_enabled(dev_priv, pipe);
if (HAS_PCH_CPT(dev)) {
/* Workaround: Set the timing override bit before enabling the
* pch transcoder. */
reg = TRANS_CHICKEN2(pipe);
val = I915_READ(reg);
val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
I915_WRITE(reg, val);
}
reg = PCH_TRANSCONF(pipe);
val = I915_READ(reg);
pipeconf_val = I915_READ(PIPECONF(pipe));
if (HAS_PCH_IBX(dev_priv->dev)) {
/*
* make the BPC in transcoder be consistent with
* that in pipeconf reg.
*/
val &= ~PIPECONF_BPC_MASK;
val |= pipeconf_val & PIPECONF_BPC_MASK;
}
val &= ~TRANS_INTERLACE_MASK;
if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
if (HAS_PCH_IBX(dev_priv->dev) &&
intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
val |= TRANS_LEGACY_INTERLACED_ILK;
else
val |= TRANS_INTERLACED;
else
val |= TRANS_PROGRESSIVE;
I915_WRITE(reg, val | TRANS_ENABLE);
if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
DRM_ERROR("failed to enable transcoder %c\n", pipe_name(pipe));
}
static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv,
enum transcoder cpu_transcoder)
{
u32 val, pipeconf_val;
/* PCH only available on ILK+ */
BUG_ON(!HAS_PCH_SPLIT(dev_priv->dev));
/* FDI must be feeding us bits for PCH ports */
assert_fdi_tx_enabled(dev_priv, (enum pipe) cpu_transcoder);
assert_fdi_rx_enabled(dev_priv, TRANSCODER_A);
/* Workaround: set timing override bit. */
val = I915_READ(_TRANSA_CHICKEN2);
val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
I915_WRITE(_TRANSA_CHICKEN2, val);
val = TRANS_ENABLE;
pipeconf_val = I915_READ(PIPECONF(cpu_transcoder));
if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) ==
PIPECONF_INTERLACED_ILK)
val |= TRANS_INTERLACED;
else
val |= TRANS_PROGRESSIVE;
I915_WRITE(LPT_TRANSCONF, val);
if (wait_for(I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE, 100))
DRM_ERROR("Failed to enable PCH transcoder\n");
}
static void ironlake_disable_pch_transcoder(struct drm_i915_private *dev_priv,
enum pipe pipe)
{
struct drm_device *dev = dev_priv->dev;
uint32_t reg, val;
/* FDI relies on the transcoder */
assert_fdi_tx_disabled(dev_priv, pipe);
assert_fdi_rx_disabled(dev_priv, pipe);
/* Ports must be off as well */
assert_pch_ports_disabled(dev_priv, pipe);
reg = PCH_TRANSCONF(pipe);
val = I915_READ(reg);
val &= ~TRANS_ENABLE;
I915_WRITE(reg, val);
/* wait for PCH transcoder off, transcoder state */
if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
DRM_ERROR("failed to disable transcoder %c\n", pipe_name(pipe));
if (!HAS_PCH_IBX(dev)) {
/* Workaround: Clear the timing override chicken bit again. */
reg = TRANS_CHICKEN2(pipe);
val = I915_READ(reg);
val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
I915_WRITE(reg, val);
}
}
static void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv)
{
u32 val;
val = I915_READ(LPT_TRANSCONF);
val &= ~TRANS_ENABLE;
I915_WRITE(LPT_TRANSCONF, val);
/* wait for PCH transcoder off, transcoder state */
if (wait_for((I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE) == 0, 50))
DRM_ERROR("Failed to disable PCH transcoder\n");
/* Workaround: clear timing override bit. */
val = I915_READ(_TRANSA_CHICKEN2);
val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
I915_WRITE(_TRANSA_CHICKEN2, val);
}
/**
* intel_enable_pipe - enable a pipe, asserting requirements
* @crtc: crtc responsible for the pipe
*
* Enable @crtc's pipe, making sure that various hardware specific requirements
* are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
*/
static void intel_enable_pipe(struct intel_crtc *crtc)
{
struct drm_device *dev = crtc->base.dev;
struct drm_i915_private *dev_priv = dev->dev_private;
enum pipe pipe = crtc->pipe;
enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
pipe);
enum pipe pch_transcoder;
int reg;
u32 val;
assert_planes_disabled(dev_priv, pipe);
assert_cursor_disabled(dev_priv, pipe);
assert_sprites_disabled(dev_priv, pipe);
if (HAS_PCH_LPT(dev_priv->dev))
pch_transcoder = TRANSCODER_A;
else
pch_transcoder = pipe;
/*
* A pipe without a PLL won't actually be able to drive bits from
* a plane. On ILK+ the pipe PLLs are integrated, so we don't
* need the check.
*/
if (!HAS_PCH_SPLIT(dev_priv->dev))
if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DSI))
assert_dsi_pll_enabled(dev_priv);
else
assert_pll_enabled(dev_priv, pipe);
else {
if (crtc->config.has_pch_encoder) {
/* if driving the PCH, we need FDI enabled */
assert_fdi_rx_pll_enabled(dev_priv, pch_transcoder);
assert_fdi_tx_pll_enabled(dev_priv,
(enum pipe) cpu_transcoder);
}
/* FIXME: assert CPU port conditions for SNB+ */
}
reg = PIPECONF(cpu_transcoder);
val = I915_READ(reg);
if (val & PIPECONF_ENABLE) {
WARN_ON(!((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
(pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE)));
return;
}
I915_WRITE(reg, val | PIPECONF_ENABLE);
POSTING_READ(reg);
}
/**
* intel_disable_pipe - disable a pipe, asserting requirements
* @crtc: crtc whose pipes is to be disabled
*
* Disable the pipe of @crtc, making sure that various hardware
* specific requirements are met, if applicable, e.g. plane
* disabled, panel fitter off, etc.
*
* Will wait until the pipe has shut down before returning.
*/
static void intel_disable_pipe(struct intel_crtc *crtc)
{
struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
enum transcoder cpu_transcoder = crtc->config.cpu_transcoder;
enum pipe pipe = crtc->pipe;
int reg;
u32 val;
/*
* Make sure planes won't keep trying to pump pixels to us,
* or we might hang the display.
*/
assert_planes_disabled(dev_priv, pipe);
assert_cursor_disabled(dev_priv, pipe);
assert_sprites_disabled(dev_priv, pipe);
reg = PIPECONF(cpu_transcoder);
val = I915_READ(reg);
if ((val & PIPECONF_ENABLE) == 0)
return;
/*
* Double wide has implications for planes
* so best keep it disabled when not needed.
*/
if (crtc->config.double_wide)
val &= ~PIPECONF_DOUBLE_WIDE;
/* Don't disable pipe or pipe PLLs if needed */
if (!(pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) &&
!(pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
val &= ~PIPECONF_ENABLE;
I915_WRITE(reg, val);
if ((val & PIPECONF_ENABLE) == 0)
intel_wait_for_pipe_off(crtc);
}
/*
* Plane regs are double buffered, going from enabled->disabled needs a
* trigger in order to latch. The display address reg provides this.
*/
void intel_flush_primary_plane(struct drm_i915_private *dev_priv,
enum plane plane)
{
struct drm_device *dev = dev_priv->dev;
u32 reg = INTEL_INFO(dev)->gen >= 4 ? DSPSURF(plane) : DSPADDR(plane);
I915_WRITE(reg, I915_READ(reg));
POSTING_READ(reg);
}
/**
* intel_enable_primary_hw_plane - enable the primary plane on a given pipe
* @plane: plane to be enabled
* @crtc: crtc for the plane
*
* Enable @plane on @crtc, making sure that the pipe is running first.
*/
static void intel_enable_primary_hw_plane(struct drm_plane *plane,
struct drm_crtc *crtc)
{
struct drm_device *dev = plane->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
/* If the pipe isn't enabled, we can't pump pixels and may hang */
assert_pipe_enabled(dev_priv, intel_crtc->pipe);
if (intel_crtc->primary_enabled)
return;
intel_crtc->primary_enabled = true;
dev_priv->display.update_primary_plane(crtc, plane->fb,
crtc->x, crtc->y);
/*
* BDW signals flip done immediately if the plane
* is disabled, even if the plane enable is already
* armed to occur at the next vblank :(
*/
if (IS_BROADWELL(dev))
intel_wait_for_vblank(dev, intel_crtc->pipe);
}
/**
* intel_disable_primary_hw_plane - disable the primary hardware plane
* @plane: plane to be disabled
* @crtc: crtc for the plane
*
* Disable @plane on @crtc, making sure that the pipe is running first.
*/
static void intel_disable_primary_hw_plane(struct drm_plane *plane,
struct drm_crtc *crtc)
{
struct drm_device *dev = plane->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
assert_pipe_enabled(dev_priv, intel_crtc->pipe);
if (!intel_crtc->primary_enabled)
return;
intel_crtc->primary_enabled = false;
dev_priv->display.update_primary_plane(crtc, plane->fb,
crtc->x, crtc->y);
}
static bool need_vtd_wa(struct drm_device *dev)
{
#ifdef CONFIG_INTEL_IOMMU
if (INTEL_INFO(dev)->gen >= 6 && intel_iommu_gfx_mapped)
return true;
#endif
return false;
}
static int intel_align_height(struct drm_device *dev, int height, bool tiled)
{
int tile_height;
tile_height = tiled ? (IS_GEN2(dev) ? 16 : 8) : 1;
return ALIGN(height, tile_height);
}
int
intel_pin_and_fence_fb_obj(struct drm_device *dev,
struct drm_i915_gem_object *obj,
struct intel_engine_cs *pipelined)
{
struct drm_i915_private *dev_priv = dev->dev_private;
u32 alignment;
int ret;
WARN_ON(!mutex_is_locked(&dev->struct_mutex));
switch (obj->tiling_mode) {
case I915_TILING_NONE:
if (INTEL_INFO(dev)->gen >= 9)
alignment = 256 * 1024;
else if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
alignment = 128 * 1024;
else if (INTEL_INFO(dev)->gen >= 4)
alignment = 4 * 1024;
else
alignment = 64 * 1024;
break;
case I915_TILING_X:
if (INTEL_INFO(dev)->gen >= 9)
alignment = 256 * 1024;
else {
/* pin() will align the object as required by fence */
alignment = 0;
}
break;
case I915_TILING_Y:
WARN(1, "Y tiled bo slipped through, driver bug!\n");
return -EINVAL;
default:
BUG();
}
/* Note that the w/a also requires 64 PTE of padding following the
* bo. We currently fill all unused PTE with the shadow page and so
* we should always have valid PTE following the scanout preventing
* the VT-d warning.
*/
if (need_vtd_wa(dev) && alignment < 256 * 1024)
alignment = 256 * 1024;
/*
* Global gtt pte registers are special registers which actually forward
* writes to a chunk of system memory. Which means that there is no risk
* that the register values disappear as soon as we call
* intel_runtime_pm_put(), so it is correct to wrap only the
* pin/unpin/fence and not more.
*/
intel_runtime_pm_get(dev_priv);
dev_priv->mm.interruptible = false;
ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined);
if (ret)
goto err_interruptible;
/* Install a fence for tiled scan-out. Pre-i965 always needs a
* fence, whereas 965+ only requires a fence if using
* framebuffer compression. For simplicity, we always install
* a fence as the cost is not that onerous.
*/
ret = i915_gem_object_get_fence(obj);
if (ret)
goto err_unpin;
i915_gem_object_pin_fence(obj);
dev_priv->mm.interruptible = true;
intel_runtime_pm_put(dev_priv);
return 0;
err_unpin:
i915_gem_object_unpin_from_display_plane(obj);
err_interruptible:
dev_priv->mm.interruptible = true;
intel_runtime_pm_put(dev_priv);
return ret;
}
void intel_unpin_fb_obj(struct drm_i915_gem_object *obj)
{
WARN_ON(!mutex_is_locked(&obj->base.dev->struct_mutex));
i915_gem_object_unpin_fence(obj);
i915_gem_object_unpin_from_display_plane(obj);
}
/* Computes the linear offset to the base tile and adjusts x, y. bytes per pixel
* is assumed to be a power-of-two. */
unsigned long intel_gen4_compute_page_offset(int *x, int *y,
unsigned int tiling_mode,
unsigned int cpp,
unsigned int pitch)
{
if (tiling_mode != I915_TILING_NONE) {
unsigned int tile_rows, tiles;
tile_rows = *y / 8;
*y %= 8;
tiles = *x / (512/cpp);
*x %= 512/cpp;
return tile_rows * pitch * 8 + tiles * 4096;
} else {
unsigned int offset;
offset = *y * pitch + *x * cpp;
*y = 0;
*x = (offset & 4095) / cpp;
return offset & -4096;
}
}
int intel_format_to_fourcc(int format)
{
switch (format) {
case DISPPLANE_8BPP:
return DRM_FORMAT_C8;
case DISPPLANE_BGRX555:
return DRM_FORMAT_XRGB1555;
case DISPPLANE_BGRX565:
return DRM_FORMAT_RGB565;
default:
case DISPPLANE_BGRX888:
return DRM_FORMAT_XRGB8888;
case DISPPLANE_RGBX888:
return DRM_FORMAT_XBGR8888;
case DISPPLANE_BGRX101010:
return DRM_FORMAT_XRGB2101010;
case DISPPLANE_RGBX101010:
return DRM_FORMAT_XBGR2101010;
}
}
static bool intel_alloc_plane_obj(struct intel_crtc *crtc,
struct intel_plane_config *plane_config)
{
struct drm_device *dev = crtc->base.dev;
struct drm_i915_gem_object *obj = NULL;
struct drm_mode_fb_cmd2 mode_cmd = { 0 };
u32 base = plane_config->base;
if (plane_config->size == 0)
return false;
obj = i915_gem_object_create_stolen_for_preallocated(dev, base, base,
plane_config->size);
if (!obj)
return false;
if (plane_config->tiled) {
obj->tiling_mode = I915_TILING_X;
obj->stride = crtc->base.primary->fb->pitches[0];
}
mode_cmd.pixel_format = crtc->base.primary->fb->pixel_format;
mode_cmd.width = crtc->base.primary->fb->width;
mode_cmd.height = crtc->base.primary->fb->height;
mode_cmd.pitches[0] = crtc->base.primary->fb->pitches[0];
mutex_lock(&dev->struct_mutex);
if (intel_framebuffer_init(dev, to_intel_framebuffer(crtc->base.primary->fb),
&mode_cmd, obj)) {
DRM_DEBUG_KMS("intel fb init failed\n");
goto out_unref_obj;
}
obj->frontbuffer_bits = INTEL_FRONTBUFFER_PRIMARY(crtc->pipe);
mutex_unlock(&dev->struct_mutex);
DRM_DEBUG_KMS("plane fb obj %p\n", obj);
return true;
out_unref_obj:
drm_gem_object_unreference(&obj->base);
mutex_unlock(&dev->struct_mutex);
return false;
}
static void intel_find_plane_obj(struct intel_crtc *intel_crtc,
struct intel_plane_config *plane_config)
{
struct drm_device *dev = intel_crtc->base.dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct drm_crtc *c;
struct intel_crtc *i;
struct drm_i915_gem_object *obj;
if (!intel_crtc->base.primary->fb)
return;
if (intel_alloc_plane_obj(intel_crtc, plane_config))
return;
kfree(intel_crtc->base.primary->fb);
intel_crtc->base.primary->fb = NULL;
/*
* Failed to alloc the obj, check to see if we should share
* an fb with another CRTC instead
*/
for_each_crtc(dev, c) {
i = to_intel_crtc(c);
if (c == &intel_crtc->base)
continue;
if (!i->active)
continue;
obj = intel_fb_obj(c->primary->fb);
if (obj == NULL)
continue;
if (i915_gem_obj_ggtt_offset(obj) == plane_config->base) {
if (obj->tiling_mode != I915_TILING_NONE)
dev_priv->preserve_bios_swizzle = true;
drm_framebuffer_reference(c->primary->fb);
intel_crtc->base.primary->fb = c->primary->fb;
obj->frontbuffer_bits |= INTEL_FRONTBUFFER_PRIMARY(intel_crtc->pipe);
break;
}
}
}
static void i9xx_update_primary_plane(struct drm_crtc *crtc,
struct drm_framebuffer *fb,
int x, int y)
{
struct drm_device *dev = crtc->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
struct drm_i915_gem_object *obj;
int plane = intel_crtc->plane;
unsigned long linear_offset;
u32 dspcntr;
u32 reg = DSPCNTR(plane);
int pixel_size;
if (!intel_crtc->primary_enabled) {
I915_WRITE(reg, 0);
if (INTEL_INFO(dev)->gen >= 4)
I915_WRITE(DSPSURF(plane), 0);
else
I915_WRITE(DSPADDR(plane), 0);
POSTING_READ(reg);
return;
}
obj = intel_fb_obj(fb);
if (WARN_ON(obj == NULL))
return;
pixel_size = drm_format_plane_cpp(fb->pixel_format, 0);
dspcntr = DISPPLANE_GAMMA_ENABLE;
dspcntr |= DISPLAY_PLANE_ENABLE;
if (INTEL_INFO(dev)->gen < 4) {
if (intel_crtc->pipe == PIPE_B)
dspcntr |= DISPPLANE_SEL_PIPE_B;
/* pipesrc and dspsize control the size that is scaled from,
* which should always be the user's requested size.
*/
I915_WRITE(DSPSIZE(plane),
((intel_crtc->config.pipe_src_h - 1) << 16) |
(intel_crtc->config.pipe_src_w - 1));
I915_WRITE(DSPPOS(plane), 0);
}
switch (fb->pixel_format) {
case DRM_FORMAT_C8:
dspcntr |= DISPPLANE_8BPP;
break;
case DRM_FORMAT_XRGB1555:
case DRM_FORMAT_ARGB1555:
dspcntr |= DISPPLANE_BGRX555;
break;
case DRM_FORMAT_RGB565:
dspcntr |= DISPPLANE_BGRX565;
break;
case DRM_FORMAT_XRGB8888:
case DRM_FORMAT_ARGB8888:
dspcntr |= DISPPLANE_BGRX888;
break;
case DRM_FORMAT_XBGR8888:
case DRM_FORMAT_ABGR8888:
dspcntr |= DISPPLANE_RGBX888;
break;
case DRM_FORMAT_XRGB2101010:
case DRM_FORMAT_ARGB2101010:
dspcntr |= DISPPLANE_BGRX101010;
break;
case DRM_FORMAT_XBGR2101010:
case DRM_FORMAT_ABGR2101010:
dspcntr |= DISPPLANE_RGBX101010;
break;
default:
BUG();
}
if (INTEL_INFO(dev)->gen >= 4 &&
obj->tiling_mode != I915_TILING_NONE)
dspcntr |= DISPPLANE_TILED;
if (IS_G4X(dev))
dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
linear_offset = y * fb->pitches[0] + x * pixel_size;
if (INTEL_INFO(dev)->gen >= 4) {
intel_crtc->dspaddr_offset =
intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
pixel_size,
fb->pitches[0]);
linear_offset -= intel_crtc->dspaddr_offset;
} else {
intel_crtc->dspaddr_offset = linear_offset;
}
if (to_intel_plane(crtc->primary)->rotation == BIT(DRM_ROTATE_180)) {
dspcntr |= DISPPLANE_ROTATE_180;
x += (intel_crtc->config.pipe_src_w - 1);
y += (intel_crtc->config.pipe_src_h - 1);
/* Finding the last pixel of the last line of the display
data and adding to linear_offset*/
linear_offset +=
(intel_crtc->config.pipe_src_h - 1) * fb->pitches[0] +
(intel_crtc->config.pipe_src_w - 1) * pixel_size;
}
I915_WRITE(reg, dspcntr);
DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
i915_gem_obj_ggtt_offset(obj), linear_offset, x, y,
fb->pitches[0]);
I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
if (INTEL_INFO(dev)->gen >= 4) {
I915_WRITE(DSPSURF(plane),
i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
I915_WRITE(DSPLINOFF(plane), linear_offset);
} else
I915_WRITE(DSPADDR(plane), i915_gem_obj_ggtt_offset(obj) + linear_offset);
POSTING_READ(reg);
}
static void ironlake_update_primary_plane(struct drm_crtc *crtc,
struct drm_framebuffer *fb,
int x, int y)
{
struct drm_device *dev = crtc->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
struct drm_i915_gem_object *obj;
int plane = intel_crtc->plane;
unsigned long linear_offset;
u32 dspcntr;
u32 reg = DSPCNTR(plane);
int pixel_size;
if (!intel_crtc->primary_enabled) {
I915_WRITE(reg, 0);
I915_WRITE(DSPSURF(plane), 0);
POSTING_READ(reg);
return;
}
obj = intel_fb_obj(fb);
if (WARN_ON(obj == NULL))
return;
pixel_size = drm_format_plane_cpp(fb->pixel_format, 0);
dspcntr = DISPPLANE_GAMMA_ENABLE;
dspcntr |= DISPLAY_PLANE_ENABLE;
if (IS_HASWELL(dev) || IS_BROADWELL(dev))
dspcntr |= DISPPLANE_PIPE_CSC_ENABLE;
switch (fb->pixel_format) {
case DRM_FORMAT_C8:
dspcntr |= DISPPLANE_8BPP;
break;
case DRM_FORMAT_RGB565:
dspcntr |= DISPPLANE_BGRX565;
break;
case DRM_FORMAT_XRGB8888:
case DRM_FORMAT_ARGB8888:
dspcntr |= DISPPLANE_BGRX888;
break;
case DRM_FORMAT_XBGR8888:
case DRM_FORMAT_ABGR8888:
dspcntr |= DISPPLANE_RGBX888;
break;
case DRM_FORMAT_XRGB2101010:
case DRM_FORMAT_ARGB2101010:
dspcntr |= DISPPLANE_BGRX101010;
break;
case DRM_FORMAT_XBGR2101010:
case DRM_FORMAT_ABGR2101010:
dspcntr |= DISPPLANE_RGBX101010;
break;
default:
BUG();
}
if (obj->tiling_mode != I915_TILING_NONE)
dspcntr |= DISPPLANE_TILED;
if (!IS_HASWELL(dev) && !IS_BROADWELL(dev))
dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
linear_offset = y * fb->pitches[0] + x * pixel_size;
intel_crtc->dspaddr_offset =
intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
pixel_size,
fb->pitches[0]);
linear_offset -= intel_crtc->dspaddr_offset;
if (to_intel_plane(crtc->primary)->rotation == BIT(DRM_ROTATE_180)) {
dspcntr |= DISPPLANE_ROTATE_180;
if (!IS_HASWELL(dev) && !IS_BROADWELL(dev)) {
x += (intel_crtc->config.pipe_src_w - 1);
y += (intel_crtc->config.pipe_src_h - 1);
/* Finding the last pixel of the last line of the display
data and adding to linear_offset*/
linear_offset +=
(intel_crtc->config.pipe_src_h - 1) * fb->pitches[0] +
(intel_crtc->config.pipe_src_w - 1) * pixel_size;
}
}
I915_WRITE(reg, dspcntr);
DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
i915_gem_obj_ggtt_offset(obj), linear_offset, x, y,
fb->pitches[0]);
I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
I915_WRITE(DSPSURF(plane),
i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
I915_WRITE(DSPOFFSET(plane), (y << 16) | x);
} else {
I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
I915_WRITE(DSPLINOFF(plane), linear_offset);
}
POSTING_READ(reg);
}
static void skylake_update_primary_plane(struct drm_crtc *crtc,
struct drm_framebuffer *fb,
int x, int y)
{
struct drm_device *dev = crtc->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
struct intel_framebuffer *intel_fb;
struct drm_i915_gem_object *obj;
int pipe = intel_crtc->pipe;
u32 plane_ctl, stride;
if (!intel_crtc->primary_enabled) {
I915_WRITE(PLANE_CTL(pipe, 0), 0);
I915_WRITE(PLANE_SURF(pipe, 0), 0);
POSTING_READ(PLANE_CTL(pipe, 0));
return;
}
plane_ctl = PLANE_CTL_ENABLE |
PLANE_CTL_PIPE_GAMMA_ENABLE |
PLANE_CTL_PIPE_CSC_ENABLE;
switch (fb->pixel_format) {
case DRM_FORMAT_RGB565:
plane_ctl |= PLANE_CTL_FORMAT_RGB_565;
break;
case DRM_FORMAT_XRGB8888:
plane_ctl |= PLANE_CTL_FORMAT_XRGB_8888;
break;
case DRM_FORMAT_XBGR8888:
plane_ctl |= PLANE_CTL_ORDER_RGBX;
plane_ctl |= PLANE_CTL_FORMAT_XRGB_8888;
break;
case DRM_FORMAT_XRGB2101010:
plane_ctl |= PLANE_CTL_FORMAT_XRGB_2101010;
break;
case DRM_FORMAT_XBGR2101010:
plane_ctl |= PLANE_CTL_ORDER_RGBX;
plane_ctl |= PLANE_CTL_FORMAT_XRGB_2101010;
break;
default:
BUG();
}
intel_fb = to_intel_framebuffer(fb);
obj = intel_fb->obj;
/*
* The stride is either expressed as a multiple of 64 bytes chunks for
* linear buffers or in number of tiles for tiled buffers.
*/
switch (obj->tiling_mode) {
case I915_TILING_NONE:
stride = fb->pitches[0] >> 6;
break;
case I915_TILING_X:
plane_ctl |= PLANE_CTL_TILED_X;
stride = fb->pitches[0] >> 9;
break;
default:
BUG();
}
plane_ctl |= PLANE_CTL_PLANE_GAMMA_DISABLE;
if (to_intel_plane(crtc->primary)->rotation == BIT(DRM_ROTATE_180))
plane_ctl |= PLANE_CTL_ROTATE_180;
I915_WRITE(PLANE_CTL(pipe, 0), plane_ctl);
DRM_DEBUG_KMS("Writing base %08lX %d,%d,%d,%d pitch=%d\n",
i915_gem_obj_ggtt_offset(obj),
x, y, fb->width, fb->height,
fb->pitches[0]);
I915_WRITE(PLANE_POS(pipe, 0), 0);
I915_WRITE(PLANE_OFFSET(pipe, 0), (y << 16) | x);
I915_WRITE(PLANE_SIZE(pipe, 0),
(intel_crtc->config.pipe_src_h - 1) << 16 |
(intel_crtc->config.pipe_src_w - 1));
I915_WRITE(PLANE_STRIDE(pipe, 0), stride);
I915_WRITE(PLANE_SURF(pipe, 0), i915_gem_obj_ggtt_offset(obj));
POSTING_READ(PLANE_SURF(pipe, 0));
}
/* Assume fb object is pinned & idle & fenced and just update base pointers */
static int
intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
int x, int y, enum mode_set_atomic state)
{
struct drm_device *dev = crtc->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
if (dev_priv->display.disable_fbc)
dev_priv->display.disable_fbc(dev);
dev_priv->display.update_primary_plane(crtc, fb, x, y);
return 0;
}
void intel_display_handle_reset(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
struct drm_crtc *crtc;
/*
* Flips in the rings have been nuked by the reset,
* so complete all pending flips so that user space
* will get its events and not get stuck.
*
* Also update the base address of all primary
* planes to the the last fb to make sure we're
* showing the correct fb after a reset.
*
* Need to make two loops over the crtcs so that we
* don't try to grab a crtc mutex before the
* pending_flip_queue really got woken up.
*/
for_each_crtc(dev, crtc) {
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
enum plane plane = intel_crtc->plane;
intel_prepare_page_flip(dev, plane);
intel_finish_page_flip_plane(dev, plane);
}
for_each_crtc(dev, crtc) {
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
drm_modeset_lock(&crtc->mutex, NULL);
/*
* FIXME: Once we have proper support for primary planes (and
* disabling them without disabling the entire crtc) allow again
* a NULL crtc->primary->fb.
*/
if (intel_crtc->active && crtc->primary->fb)
dev_priv->display.update_primary_plane(crtc,
crtc->primary->fb,
crtc->x,
crtc->y);
drm_modeset_unlock(&crtc->mutex);
}
}
static int
intel_finish_fb(struct drm_framebuffer *old_fb)
{
struct drm_i915_gem_object *obj = intel_fb_obj(old_fb);
struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
bool was_interruptible = dev_priv->mm.interruptible;
int ret;
/* Big Hammer, we also need to ensure that any pending
* MI_WAIT_FOR_EVENT inside a user batch buffer on the
* current scanout is retired before unpinning the old
* framebuffer.
*
* This should only fail upon a hung GPU, in which case we
* can safely continue.
*/
dev_priv->mm.interruptible = false;
ret = i915_gem_object_finish_gpu(obj);
dev_priv->mm.interruptible = was_interruptible;
return ret;
}
static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc)
{
struct drm_device *dev = crtc->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
bool pending;
if (i915_reset_in_progress(&dev_priv->gpu_error) ||
intel_crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
return false;
spin_lock_irq(&dev->event_lock);
pending = to_intel_crtc(crtc)->unpin_work != NULL;
spin_unlock_irq(&dev->event_lock);
return pending;
}
static void intel_update_pipe_size(struct intel_crtc *crtc)
{
struct drm_device *dev = crtc->base.dev;
struct drm_i915_private *dev_priv = dev->dev_private;
const struct drm_display_mode *adjusted_mode;
if (!i915.fastboot)
return;
/*
* Update pipe size and adjust fitter if needed: the reason for this is
* that in compute_mode_changes we check the native mode (not the pfit
* mode) to see if we can flip rather than do a full mode set. In the
* fastboot case, we'll flip, but if we don't update the pipesrc and
* pfit state, we'll end up with a big fb scanned out into the wrong
* sized surface.
*
* To fix this properly, we need to hoist the checks up into
* compute_mode_changes (or above), check the actual pfit state and
* whether the platform allows pfit disable with pipe active, and only
* then update the pipesrc and pfit state, even on the flip path.
*/
adjusted_mode = &crtc->config.adjusted_mode;
I915_WRITE(PIPESRC(crtc->pipe),
((adjusted_mode->crtc_hdisplay - 1) << 16) |
(adjusted_mode->crtc_vdisplay - 1));
if (!crtc->config.pch_pfit.enabled &&
(intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) ||
intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
I915_WRITE(PF_CTL(crtc->pipe), 0);
I915_WRITE(PF_WIN_POS(crtc->pipe), 0);
I915_WRITE(PF_WIN_SZ(crtc->pipe), 0);
}
crtc->config.pipe_src_w = adjusted_mode->crtc_hdisplay;
crtc->config.pipe_src_h = adjusted_mode->crtc_vdisplay;
}
static int
intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
struct drm_framebuffer *fb)
{
struct drm_device *dev = crtc->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
enum pipe pipe = intel_crtc->pipe;
struct drm_framebuffer *old_fb = crtc->primary->fb;
struct drm_i915_gem_object *obj = intel_fb_obj(fb);
struct drm_i915_gem_object *old_obj = intel_fb_obj(old_fb);
int ret;
if (intel_crtc_has_pending_flip(crtc)) {
DRM_ERROR("pipe is still busy with an old pageflip\n");
return -EBUSY;
}
/* no fb bound */
if (!fb) {
DRM_ERROR("No FB bound\n");
return 0;
}
if (intel_crtc->plane > INTEL_INFO(dev)->num_pipes) {
DRM_ERROR("no plane for crtc: plane %c, num_pipes %d\n",
plane_name(intel_crtc->plane),
INTEL_INFO(dev)->num_pipes);
return -EINVAL;
}
mutex_lock(&dev->struct_mutex);
ret = intel_pin_and_fence_fb_obj(dev, obj, NULL);
if (ret == 0)
i915_gem_track_fb(old_obj, obj,
INTEL_FRONTBUFFER_PRIMARY(pipe));
mutex_unlock(&dev->struct_mutex);
if (ret != 0) {
DRM_ERROR("pin & fence failed\n");
return ret;
}
intel_update_pipe_size(intel_crtc);
dev_priv->display.update_primary_plane(crtc, fb, x, y);
if (intel_crtc->active)
intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_PRIMARY(pipe));
crtc->primary->fb = fb;
crtc->x = x;
crtc->y = y;
if (old_fb) {
if (intel_crtc->active && old_fb != fb)
intel_wait_for_vblank(dev, intel_crtc->pipe);
mutex_lock(&dev->struct_mutex);
intel_unpin_fb_obj(old_obj);
mutex_unlock(&dev->struct_mutex);
}
mutex_lock(&dev->struct_mutex);
intel_update_fbc(dev);
mutex_unlock(&dev->struct_mutex);
return 0;
}
static void intel_fdi_normal_train(struct drm_crtc *crtc)
{
struct drm_device *dev = crtc->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
int pipe = intel_crtc->pipe;
u32 reg, temp;
/* enable normal train */
reg = FDI_TX_CTL(pipe);
temp = I915_READ(reg);
if (IS_IVYBRIDGE(dev)) {
temp &= ~FDI_LINK_TRAIN_NONE_IVB;
temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
} else {
temp &= ~FDI_LINK_TRAIN_NONE;
temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
}
I915_WRITE(reg, temp);
reg = FDI_RX_CTL(pipe);
temp = I915_READ(reg);
if (HAS_PCH_CPT(dev)) {
temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
temp |= FDI_LINK_TRAIN_NORMAL_CPT;
} else {
temp &= ~FDI_LINK_TRAIN_NONE;
temp |= FDI_LINK_TRAIN_NONE;
}
I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
/* wait one idle pattern time */
POSTING_READ(reg);
udelay(1000);
/* IVB wants error correction enabled */
if (IS_IVYBRIDGE(dev))
I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
FDI_FE_ERRC_ENABLE);
}
static bool pipe_has_enabled_pch(struct intel_crtc *crtc)
{
return crtc->base.enabled && crtc->active &&
crtc->config.has_pch_encoder;
}
static void ivb_modeset_global_resources(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_crtc *pipe_B_crtc =
to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
struct intel_crtc *pipe_C_crtc =
to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_C]);
uint32_t temp;
/*
* When everything is off disable fdi C so that we could enable fdi B
* with all lanes. Note that we don't care about enabled pipes without
* an enabled pch encoder.
*/
if (!pipe_has_enabled_pch(pipe_B_crtc) &&
!pipe_has_enabled_pch(pipe_C_crtc)) {
WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
temp = I915_READ(SOUTH_CHICKEN1);
temp &= ~FDI_BC_BIFURCATION_SELECT;
DRM_DEBUG_KMS("disabling fdi C rx\n");
I915_WRITE(SOUTH_CHICKEN1, temp);
}
}
/* The FDI link training functions for ILK/Ibexpeak. */
static void ironlake_fdi_link_train(struct drm_crtc *crtc)
{
struct drm_device *dev = crtc->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
int pipe = intel_crtc->pipe;
u32 reg, temp, tries;
/* FDI needs bits from pipe first */
assert_pipe_enabled(dev_priv, pipe);
/* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
for train result */
reg = FDI_RX_IMR(pipe);
temp = I915_READ(reg);
temp &= ~FDI_RX_SYMBOL_LOCK;
temp &= ~FDI_RX_BIT_LOCK;
I915_WRITE(reg, temp);
I915_READ(reg);
udelay(150);
/* enable CPU FDI TX and PCH FDI RX */
reg = FDI_TX_CTL(pipe);
temp = I915_READ(reg);
temp &= ~FDI_DP_PORT_WIDTH_MASK;
temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
temp &= ~FDI_LINK_TRAIN_NONE;
temp |= FDI_LINK_TRAIN_PATTERN_1;
I915_WRITE(reg, temp | FDI_TX_ENABLE);
reg = FDI_RX_CTL(pipe);
temp = I915_READ(reg);
temp &= ~FDI_LINK_TRAIN_NONE;
temp |= FDI_LINK_TRAIN_PATTERN_1;
I915_WRITE(reg, temp | FDI_RX_ENABLE);
POSTING_READ(reg);
udelay(150);
/* Ironlake workaround, enable clock pointer after FDI enable*/
I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
FDI_RX_PHASE_SYNC_POINTER_EN);
reg = FDI_RX_IIR(pipe);
for (tries = 0; tries < 5; tries++) {
temp = I915_READ(reg);
DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
if ((temp & FDI_RX_BIT_LOCK)) {
DRM_DEBUG_KMS("FDI train 1 done.\n");
I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
break;
}
}
if (tries == 5)
DRM_ERROR("FDI train 1 fail!\n");
/* Train 2 */
reg = FDI_TX_CTL(pipe);
temp = I915_READ(reg);
temp &= ~FDI_LINK_TRAIN_NONE;
temp |= FDI_LINK_TRAIN_PATTERN_2;
I915_WRITE(reg, temp);
reg = FDI_RX_CTL(pipe);
temp = I915_READ(reg);
temp &= ~FDI_LINK_TRAIN_NONE;
temp |= FDI_LINK_TRAIN_PATTERN_2;
I915_WRITE(reg, temp);
POSTING_READ(reg);
udelay(150);
reg = FDI_RX_IIR(pipe);
for (tries = 0; tries < 5; tries++) {
temp = I915_READ(reg);
DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
if (temp & FDI_RX_SYMBOL_LOCK) {
I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
DRM_DEBUG_KMS("FDI train 2 done.\n");
break;
}
}
if (tries == 5)
DRM_ERROR("FDI train 2 fail!\n");
DRM_DEBUG_KMS("FDI train done\n");
}
static const int snb_b_fdi_train_param[] = {
FDI_LINK_TRAIN_400MV_0DB_SNB_B,
FDI_LINK_TRAIN_400MV_6DB_SNB_B,
FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
FDI_LINK_TRAIN_800MV_0DB_SNB_B,
};
/* The FDI link training functions for SNB/Cougarpoint. */
static void gen6_fdi_link_train(struct drm_crtc *crtc)
{
struct drm_device *dev = crtc->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
int pipe = intel_crtc->pipe;
u32 reg, temp, i, retry;
/* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
for train result */
reg = FDI_RX_IMR(pipe);
temp = I915_READ(reg);
temp &= ~FDI_RX_SYMBOL_LOCK;
temp &= ~FDI_RX_BIT_LOCK;
I915_WRITE(reg, temp);
POSTING_READ(reg);
udelay(150);
/* enable CPU FDI TX and PCH FDI RX */
reg = FDI_TX_CTL(pipe);
temp = I915_READ(reg);
temp &= ~FDI_DP_PORT_WIDTH_MASK;
temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
temp &= ~FDI_LINK_TRAIN_NONE;
temp |= FDI_LINK_TRAIN_PATTERN_1;
temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
/* SNB-B */
temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
I915_WRITE(reg, temp | FDI_TX_ENABLE);
I915_WRITE(FDI_RX_MISC(pipe),
FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
reg = FDI_RX_CTL(pipe);
temp = I915_READ(reg);
if (HAS_PCH_CPT(dev)) {
temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
} else {
temp &= ~FDI_LINK_TRAIN_NONE;
temp |= FDI_LINK_TRAIN_PATTERN_1;
}
I915_WRITE(reg, temp | FDI_RX_ENABLE);
POSTING_READ(reg);
udelay(150);
for (i = 0; i < 4; i++) {
reg = FDI_TX_CTL(pipe);
temp = I915_READ(reg);
temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
temp |= snb_b_fdi_train_param[i];
I915_WRITE(reg, temp);
POSTING_READ(reg);
udelay(500);
for (retry = 0; retry < 5; retry++) {
reg = FDI_RX_IIR(pipe);
temp = I915_READ(reg);
DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
if (temp & FDI_RX_BIT_LOCK) {
I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
DRM_DEBUG_KMS("FDI train 1 done.\n");
break;
}
udelay(50);
}
if (retry < 5)
break;
}
if (i == 4)
DRM_ERROR("FDI train 1 fail!\n");
/* Train 2 */
reg = FDI_TX_CTL(pipe);
temp = I915_READ(reg);
temp &= ~FDI_LINK_TRAIN_NONE;
temp |= FDI_LINK_TRAIN_PATTERN_2;
if (IS_GEN6(dev)) {
temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
/* SNB-B */
temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
}
I915_WRITE(reg, temp);
reg = FDI_RX_CTL(pipe);
temp = I915_READ(reg);
if (HAS_PCH_CPT(dev)) {
temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
} else {
temp &= ~FDI_LINK_TRAIN_NONE;
temp |= FDI_LINK_TRAIN_PATTERN_2;
}
I915_WRITE(reg, temp);
POSTING_READ(reg);
udelay(150);
for (i = 0; i < 4; i++) {
reg = FDI_TX_CTL(pipe);
temp = I915_READ(reg);
temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
temp |= snb_b_fdi_train_param[i];
I915_WRITE(reg, temp);
POSTING_READ(reg);
udelay(500);
for (retry = 0; retry < 5; retry++) {
reg = FDI_RX_IIR(pipe);
temp = I915_READ(reg);
DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
if (temp & FDI_RX_SYMBOL_LOCK) {
I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
DRM_DEBUG_KMS("FDI train 2 done.\n");
break;
}
udelay(50);
}
if (retry < 5)
break;
}
if (i == 4)
DRM_ERROR("FDI train 2 fail!\n");
DRM_DEBUG_KMS("FDI train done.\n");
}
/* Manual link training for Ivy Bridge A0 parts */
static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
{
struct drm_device *dev = crtc->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
int pipe = intel_crtc->pipe;
u32 reg, temp, i, j;
/* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
for train result */
reg = FDI_RX_IMR(pipe);
temp = I915_READ(reg);
temp &= ~FDI_RX_SYMBOL_LOCK;
temp &= ~FDI_RX_BIT_LOCK;
I915_WRITE(reg, temp);
POSTING_READ(reg);
udelay(150);
DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n",
I915_READ(FDI_RX_IIR(pipe)));
/* Try each vswing and preemphasis setting twice before moving on */
for (j = 0; j < ARRAY_SIZE(snb_b_fdi_train_param) * 2; j++) {
/* disable first in case we need to retry */
reg = FDI_TX_CTL(pipe);
temp = I915_READ(reg);
temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
temp &= ~FDI_TX_ENABLE;
I915_WRITE(reg, temp);
reg = FDI_RX_CTL(pipe);
temp = I915_READ(reg);
temp &= ~FDI_LINK_TRAIN_AUTO;
temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
temp &= ~FDI_RX_ENABLE;
I915_WRITE(reg, temp);
/* enable CPU FDI TX and PCH FDI RX */
reg = FDI_TX_CTL(pipe);
temp = I915_READ(reg);
temp &= ~FDI_DP_PORT_WIDTH_MASK;
temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
temp |= snb_b_fdi_train_param[j/2];
temp |= FDI_COMPOSITE_SYNC;
I915_WRITE(reg, temp | FDI_TX_ENABLE);
I915_WRITE(FDI_RX_MISC(pipe),
FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
reg = FDI_RX_CTL(pipe);
temp = I915_READ(reg);
temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
temp |= FDI_COMPOSITE_SYNC;
I915_WRITE(reg, temp | FDI_RX_ENABLE);
POSTING_READ(reg);
udelay(1); /* should be 0.5us */
for (i = 0; i < 4; i++) {
reg = FDI_RX_IIR(pipe);
temp = I915_READ(reg);
DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
if (temp & FDI_RX_BIT_LOCK ||
(I915_READ(reg) & FDI_RX_BIT_LOCK)) {
I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
DRM_DEBUG_KMS("FDI train 1 done, level %i.\n",
i);
break;
}
udelay(1); /* should be 0.5us */
}
if (i == 4) {
DRM_DEBUG_KMS("FDI train 1 fail on vswing %d\n", j / 2);
continue;
}
/* Train 2 */
reg = FDI_TX_CTL(pipe);
temp = I915_READ(reg);
temp &= ~FDI_LINK_TRAIN_NONE_IVB;
temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
I915_WRITE(reg, temp);
reg = FDI_RX_CTL(pipe);
temp = I915_READ(reg);
temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
I915_WRITE(reg, temp);
POSTING_READ(reg);
udelay(2); /* should be 1.5us */
for (i = 0; i < 4; i++) {
reg = FDI_RX_IIR(pipe);
temp = I915_READ(reg);
DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
if (temp & FDI_RX_SYMBOL_LOCK ||
(I915_READ(reg) & FDI_RX_SYMBOL_LOCK)) {
I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
DRM_DEBUG_KMS("FDI train 2 done, level %i.\n",
i);
goto train_done;
}
udelay(2); /* should be 1.5us */
}
if (i == 4)
DRM_DEBUG_KMS("FDI train 2 fail on vswing %d\n", j / 2);
}
train_done:
DRM_DEBUG_KMS("FDI train done.\n");
}
static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
{
struct drm_device *dev = intel_crtc->base.dev;
struct drm_i915_private *dev_priv = dev->dev_private;
int pipe = intel_crtc->pipe;
u32 reg, temp;
/* enable PCH FDI RX PLL, wait warmup plus DMI latency */
reg = FDI_RX_CTL(pipe);
temp = I915_READ(reg);
temp &= ~(FDI_DP_PORT_WIDTH_MASK | (0x7 << 16));
temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
POSTING_READ(reg);
udelay(200);
/* Switch from Rawclk to PCDclk */
temp = I915_READ(reg);
I915_WRITE(reg, temp | FDI_PCDCLK);
POSTING_READ(reg);
udelay(200);
/* Enable CPU FDI TX PLL, always on for Ironlake */
reg = FDI_TX_CTL(pipe);
temp = I915_READ(reg);
if ((temp & FDI_TX_PLL_ENABLE) == 0) {
I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
POSTING_READ(reg);
udelay(100);
}
}
static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
{
struct drm_device *dev = intel_crtc->base.dev;
struct drm_i915_private *dev_priv = dev->dev_private;
int pipe = intel_crtc->pipe;
u32 reg, temp;
/* Switch from PCDclk to Rawclk */
reg = FDI_RX_CTL(pipe);
temp = I915_READ(reg);
I915_WRITE(reg, temp & ~FDI_PCDCLK);
/* Disable CPU FDI TX PLL */
reg = FDI_TX_CTL(pipe);
temp = I915_READ(reg);
I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
POSTING_READ(reg);
udelay(100);
reg = FDI_RX_CTL(pipe);
temp = I915_READ(reg);
I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
/* Wait for the clocks to turn off. */
POSTING_READ(reg);
udelay(100);
}
static void ironlake_fdi_disable(struct drm_crtc *crtc)
{
struct drm_device *dev = crtc->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
int pipe = intel_crtc->pipe;
u32 reg, temp;
/* disable CPU FDI tx and PCH FDI rx */
reg = FDI_TX_CTL(pipe);
temp = I915_READ(reg);
I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
POSTING_READ(reg);
reg = FDI_RX_CTL(pipe);
temp = I915_READ(reg);
temp &= ~(0x7 << 16);
temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
POSTING_READ(reg);
udelay(100);
/* Ironlake workaround, disable clock pointer after downing FDI */
if (HAS_PCH_IBX(dev))
I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
/* still set train pattern 1 */
reg = FDI_TX_CTL(pipe);
temp = I915_READ(reg);
temp &= ~FDI_LINK_TRAIN_NONE;
temp |= FDI_LINK_TRAIN_PATTERN_1;
I915_WRITE(reg, temp);
reg = FDI_RX_CTL(pipe);
temp = I915_READ(reg);
if (HAS_PCH_CPT(dev)) {
temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
} else {
temp &= ~FDI_LINK_TRAIN_NONE;
temp |= FDI_LINK_TRAIN_PATTERN_1;
}
/* BPC in FDI rx is consistent with that in PIPECONF */
temp &= ~(0x07 << 16);
temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
I915_WRITE(reg, temp);
POSTING_READ(reg);
udelay(100);
}
bool intel_has_pending_fb_unpin(struct drm_device *dev)
{
struct intel_crtc *crtc;
/* Note that we don't need to be called with mode_config.lock here
* as our list of CRTC objects is static for the lifetime of the
* device and so cannot disappear as we iterate. Similarly, we can
* happily treat the predicates as racy, atomic checks as userspace
* cannot claim and pin a new fb without at least acquring the
* struct_mutex and so serialising with us.
*/
for_each_intel_crtc(dev, crtc) {
if (atomic_read(&crtc->unpin_work_count) == 0)
continue;
if (crtc->unpin_work)
intel_wait_for_vblank(dev, crtc->pipe);
return true;
}
return false;
}
static void page_flip_completed(struct intel_crtc *intel_crtc)
{
struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev);
struct intel_unpin_work *work = intel_crtc->unpin_work;
/* ensure that the unpin work is consistent wrt ->pending. */
smp_rmb();
intel_crtc->unpin_work = NULL;
if (work->event)
drm_send_vblank_event(intel_crtc->base.dev,
intel_crtc->pipe,
work->event);
drm_crtc_vblank_put(&intel_crtc->base);
wake_up_all(&dev_priv->pending_flip_queue);
queue_work(dev_priv->wq, &work->work);
trace_i915_flip_complete(intel_crtc->plane,
work->pending_flip_obj);
}
void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
{
struct drm_device *dev = crtc->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
WARN_ON(waitqueue_active(&dev_priv->pending_flip_queue));
if (WARN_ON(wait_event_timeout(dev_priv->pending_flip_queue,
!intel_crtc_has_pending_flip(crtc),
60*HZ) == 0)) {
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
spin_lock_irq(&dev->event_lock);
if (intel_crtc->unpin_work) {
WARN_ONCE(1, "Removing stuck page flip\n");
page_flip_completed(intel_crtc);
}
spin_unlock_irq(&dev->event_lock);
}
if (crtc->primary->fb) {
mutex_lock(&dev->struct_mutex);
intel_finish_fb(crtc->primary->fb);
mutex_unlock(&dev->struct_mutex);
}
}
/* Program iCLKIP clock to the desired frequency */
static void lpt_program_iclkip(struct drm_crtc *crtc)
{
struct drm_device *dev = crtc->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
int clock = to_intel_crtc(crtc)->config.adjusted_mode.crtc_clock;
u32 divsel, phaseinc, auxdiv, phasedir = 0;
u32 temp;
mutex_lock(&dev_priv->dpio_lock);
/* It is necessary to ungate the pixclk gate prior to programming
* the divisors, and gate it back when it is done.
*/
I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
/* Disable SSCCTL */
intel_sbi_write(dev_priv, SBI_SSCCTL6,
intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK) |
SBI_SSCCTL_DISABLE,
SBI_ICLK);
/* 20MHz is a corner case which is out of range for the 7-bit divisor */
if (clock == 20000) {
auxdiv = 1;
divsel = 0x41;
phaseinc = 0x20;
} else {
/* The iCLK virtual clock root frequency is in MHz,
* but the adjusted_mode->crtc_clock in in KHz. To get the
* divisors, it is necessary to divide one by another, so we
* convert the virtual clock precision to KHz here for higher
* precision.
*/
u32 iclk_virtual_root_freq = 172800 * 1000;
u32 iclk_pi_range = 64;
u32 desired_divisor, msb_divisor_value, pi_value;
desired_divisor = (iclk_virtual_root_freq / clock);
msb_divisor_value = desired_divisor / iclk_pi_range;
pi_value = desired_divisor % iclk_pi_range;
auxdiv = 0;
divsel = msb_divisor_value - 2;
phaseinc = pi_value;
}
/* This should not happen with any sane values */
WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
~SBI_SSCDIVINTPHASE_INCVAL_MASK);
DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
clock,
auxdiv,
divsel,
phasedir,
phaseinc);
/* Program SSCDIVINTPHASE6 */
temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE6, temp, SBI_ICLK);
/* Program SSCAUXDIV */
temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
intel_sbi_write(dev_priv, SBI_SSCAUXDIV6, temp, SBI_ICLK);
/* Enable modulator and associated divider */
temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
temp &= ~SBI_SSCCTL_DISABLE;
intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
/* Wait for initialization time */
udelay(24);
I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
mutex_unlock(&dev_priv->dpio_lock);
}
static void ironlake_pch_transcoder_set_timings(struct intel_crtc *crtc,
enum pipe pch_transcoder)
{
struct drm_device *dev = crtc->base.dev;
struct drm_i915_private *dev_priv = dev->dev_private;
enum transcoder cpu_transcoder = crtc->config.cpu_transcoder;
I915_WRITE(PCH_TRANS_HTOTAL(pch_transcoder),
I915_READ(HTOTAL(cpu_transcoder)));
I915_WRITE(PCH_TRANS_HBLANK(pch_transcoder),
I915_READ(HBLANK(cpu_transcoder)));
I915_WRITE(PCH_TRANS_HSYNC(pch_transcoder),
I915_READ(HSYNC(cpu_transcoder)));
I915_WRITE(PCH_TRANS_VTOTAL(pch_transcoder),
I915_READ(VTOTAL(cpu_transcoder)));
I915_WRITE(PCH_TRANS_VBLANK(pch_transcoder),
I915_READ(VBLANK(cpu_transcoder)));
I915_WRITE(PCH_TRANS_VSYNC(pch_transcoder),
I915_READ(VSYNC(cpu_transcoder)));
I915_WRITE(PCH_TRANS_VSYNCSHIFT(pch_transcoder),
I915_READ(VSYNCSHIFT(cpu_transcoder)));
}
static void cpt_enable_fdi_bc_bifurcation(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
uint32_t temp;
temp = I915_READ(SOUTH_CHICKEN1);
if (temp & FDI_BC_BIFURCATION_SELECT)
return;
WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
temp |= FDI_BC_BIFURCATION_SELECT;
DRM_DEBUG_KMS("enabling fdi C rx\n");
I915_WRITE(SOUTH_CHICKEN1, temp);
POSTING_READ(SOUTH_CHICKEN1);
}
static void ivybridge_update_fdi_bc_bifurcation(struct intel_crtc *intel_crtc)
{
struct drm_device *dev = intel_crtc->base.dev;
struct drm_i915_private *dev_priv = dev->dev_private;
switch (intel_crtc->pipe) {
case PIPE_A:
break;
case PIPE_B:
if (intel_crtc->config.fdi_lanes > 2)
WARN_ON(I915_READ(SOUTH_CHICKEN1) & FDI_BC_BIFURCATION_SELECT);
else
cpt_enable_fdi_bc_bifurcation(dev);
break;
case PIPE_C:
cpt_enable_fdi_bc_bifurcation(dev);
break;
default:
BUG();
}
}
/*
* Enable PCH resources required for PCH ports:
* - PCH PLLs
* - FDI training & RX/TX
* - update transcoder timings
* - DP transcoding bits
* - transcoder
*/
static void ironlake_pch_enable(struct drm_crtc *crtc)
{
struct drm_device *dev = crtc->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
int pipe = intel_crtc->pipe;
u32 reg, temp;
assert_pch_transcoder_disabled(dev_priv, pipe);
if (IS_IVYBRIDGE(dev))
ivybridge_update_fdi_bc_bifurcation(intel_crtc);
/* Write the TU size bits before fdi link training, so that error
* detection works. */
I915_WRITE(FDI_RX_TUSIZE1(pipe),
I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
/* For PCH output, training FDI link */
dev_priv->display.fdi_link_train(crtc);
/* We need to program the right clock selection before writing the pixel
* mutliplier into the DPLL. */
if (HAS_PCH_CPT(dev)) {
u32 sel;
temp = I915_READ(PCH_DPLL_SEL);
temp |= TRANS_DPLL_ENABLE(pipe);
sel = TRANS_DPLLB_SEL(pipe);
if (intel_crtc->config.shared_dpll == DPLL_ID_PCH_PLL_B)
temp |= sel;
else
temp &= ~sel;
I915_WRITE(PCH_DPLL_SEL, temp);
}
/* XXX: pch pll's can be enabled any time before we enable the PCH
* transcoder, and we actually should do this to not upset any PCH
* transcoder that already use the clock when we share it.
*
* Note that enable_shared_dpll tries to do the right thing, but
* get_shared_dpll unconditionally resets the pll - we need that to have
* the right LVDS enable sequence. */
intel_enable_shared_dpll(intel_crtc);
/* set transcoder timing, panel must allow it */
assert_panel_unlocked(dev_priv, pipe);
ironlake_pch_transcoder_set_timings(intel_crtc, pipe);
intel_fdi_normal_train(crtc);
/* For PCH DP, enable TRANS_DP_CTL */
if (HAS_PCH_CPT(dev) &&
(intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_DISPLAYPORT) ||
intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_EDP))) {
u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) >> 5;
reg = TRANS_DP_CTL(pipe);
temp = I915_READ(reg);
temp &= ~(TRANS_DP_PORT_SEL_MASK |
TRANS_DP_SYNC_MASK |
TRANS_DP_BPC_MASK);
temp |= (TRANS_DP_OUTPUT_ENABLE |
TRANS_DP_ENH_FRAMING);
temp |= bpc << 9; /* same format but at 11:9 */
if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
switch (intel_trans_dp_port_sel(crtc)) {
case PCH_DP_B:
temp |= TRANS_DP_PORT_SEL_B;
break;
case PCH_DP_C:
temp |= TRANS_DP_PORT_SEL_C;
break;
case PCH_DP_D:
temp |= TRANS_DP_PORT_SEL_D;
break;
default:
BUG();
}
I915_WRITE(reg, temp);
}
ironlake_enable_pch_transcoder(dev_priv, pipe);
}
static void lpt_pch_enable(struct drm_crtc *crtc)
{
struct drm_device *dev = crtc->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
assert_pch_transcoder_disabled(dev_priv, TRANSCODER_A);
lpt_program_iclkip(crtc);
/* Set transcoder timing. */
ironlake_pch_transcoder_set_timings(intel_crtc, PIPE_A);
lpt_enable_pch_transcoder(dev_priv, cpu_transcoder);
}
void intel_put_shared_dpll(struct intel_crtc *crtc)
{
struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
if (pll == NULL)
return;
if (pll->refcount == 0) {
WARN(1, "bad %s refcount\n", pll->name);
return;
}
if (--pll->refcount == 0) {
WARN_ON(pll->on);
WARN_ON(pll->active);
}
crtc->config.shared_dpll = DPLL_ID_PRIVATE;
}
struct intel_shared_dpll *intel_get_shared_dpll(struct intel_crtc *crtc)
{
struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
enum intel_dpll_id i;
if (pll) {
DRM_DEBUG_KMS("CRTC:%d dropping existing %s\n",
crtc->base.base.id, pll->name);
intel_put_shared_dpll(crtc);
}
if (HAS_PCH_IBX(dev_priv->dev)) {
/* Ironlake PCH has a fixed PLL->PCH pipe mapping. */
i = (enum intel_dpll_id) crtc->pipe;
pll = &dev_priv->shared_dplls[i];
DRM_DEBUG_KMS("CRTC:%d using pre-allocated %s\n",
crtc->base.base.id, pll->name);
WARN_ON(pll->refcount);
goto found;
}
for (i = 0; i < dev_priv->num_shared_dpll; i++) {
pll = &dev_priv->shared_dplls[i];
/* Only want to check enabled timings first */
if (pll->refcount == 0)
continue;
if (memcmp(&crtc->config.dpll_hw_state, &pll->hw_state,
sizeof(pll->hw_state)) == 0) {
DRM_DEBUG_KMS("CRTC:%d sharing existing %s (refcount %d, ative %d)\n",
crtc->base.base.id,
pll->name, pll->refcount, pll->active);
goto found;
}
}
/* Ok no matching timings, maybe there's a free one? */
for (i = 0; i < dev_priv->num_shared_dpll; i++) {
pll = &dev_priv->shared_dplls[i];
if (pll->refcount == 0) {
DRM_DEBUG_KMS("CRTC:%d allocated %s\n",
crtc->base.base.id, pll->name);
goto found;
}
}
return NULL;
found:
if (pll->refcount == 0)
pll->hw_state = crtc->config.dpll_hw_state;
crtc->config.shared_dpll = i;
DRM_DEBUG_DRIVER("using %s for pipe %c\n", pll->name,
pipe_name(crtc->pipe));
pll->refcount++;
return pll;
}
static void cpt_verify_modeset(struct drm_device *dev, int pipe)
{
struct drm_i915_private *dev_priv = dev->dev_private;
int dslreg = PIPEDSL(pipe);
u32 temp;
temp = I915_READ(dslreg);
udelay(500);
if (wait_for(I915_READ(dslreg) != temp, 5)) {
if (wait_for(I915_READ(dslreg) != temp, 5))
DRM_ERROR("mode set failed: pipe %c stuck\n", pipe_name(pipe));
}
}
static void ironlake_pfit_enable(struct intel_crtc *crtc)
{
struct drm_device *dev = crtc->base.dev;
struct drm_i915_private *dev_priv = dev->dev_private;
int pipe = crtc->pipe;
if (crtc->config.pch_pfit.enabled) {
/* Force use of hard-coded filter coefficients
* as some pre-programmed values are broken,
* e.g. x201.
*/
if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
PF_PIPE_SEL_IVB(pipe));
else
I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
I915_WRITE(PF_WIN_POS(pipe), crtc->config.pch_pfit.pos);
I915_WRITE(PF_WIN_SZ(pipe), crtc->config.pch_pfit.size);
}
}
static void intel_enable_planes(struct drm_crtc *crtc)
{
struct drm_device *dev = crtc->dev;
enum pipe pipe = to_intel_crtc(crtc)->pipe;
struct drm_plane *plane;
struct intel_plane *intel_plane;
drm_for_each_legacy_plane(plane, &dev->mode_config.plane_list) {
intel_plane = to_intel_plane(plane);
if (intel_plane->pipe == pipe)
intel_plane_restore(&intel_plane->base);
}
}
static void intel_disable_planes(struct drm_crtc *crtc)
{
struct drm_device *dev = crtc->dev;
enum pipe pipe = to_intel_crtc(crtc)->pipe;
struct drm_plane *plane;
struct intel_plane *intel_plane;
drm_for_each_legacy_plane(plane, &dev->mode_config.plane_list) {
intel_plane = to_intel_plane(plane);
if (intel_plane->pipe == pipe)
intel_plane_disable(&intel_plane->base);
}
}
void hsw_enable_ips(struct intel_crtc *crtc)
{
struct drm_device *dev = crtc->base.dev;
struct drm_i915_private *dev_priv = dev->dev_private;
if (!crtc->config.ips_enabled)
return;
/* We can only enable IPS after we enable a plane and wait for a vblank */
intel_wait_for_vblank(dev, crtc->pipe);
assert_plane_enabled(dev_priv, crtc->plane);
if (IS_BROADWELL(dev)) {
mutex_lock(&dev_priv->rps.hw_lock);
WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0xc0000000));
mutex_unlock(&dev_priv->rps.hw_lock);
/* Quoting Art Runyan: "its not safe to expect any particular
* value in IPS_CTL bit 31 after enabling IPS through the
* mailbox." Moreover, the mailbox may return a bogus state,
* so we need to just enable it and continue on.
*/
} else {
I915_WRITE(IPS_CTL, IPS_ENABLE);
/* The bit only becomes 1 in the next vblank, so this wait here
* is essentially intel_wait_for_vblank. If we don't have this
* and don't wait for vblanks until the end of crtc_enable, then
* the HW state readout code will complain that the expected
* IPS_CTL value is not the one we read. */
if (wait_for(I915_READ_NOTRACE(IPS_CTL) & IPS_ENABLE, 50))
DRM_ERROR("Timed out waiting for IPS enable\n");
}
}
void hsw_disable_ips(struct intel_crtc *crtc)
{
struct drm_device *dev = crtc->base.dev;
struct drm_i915_private *dev_priv = dev->dev_private;
if (!crtc->config.ips_enabled)
return;
assert_plane_enabled(dev_priv, crtc->plane);
if (IS_BROADWELL(dev)) {
mutex_lock(&dev_priv->rps.hw_lock);
WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0));
mutex_unlock(&dev_priv->rps.hw_lock);
/* wait for pcode to finish disabling IPS, which may take up to 42ms */
if (wait_for((I915_READ(IPS_CTL) & IPS_ENABLE) == 0, 42))
DRM_ERROR("Timed out waiting for IPS disable\n");
} else {
I915_WRITE(IPS_CTL, 0);
POSTING_READ(IPS_CTL);
}
/* We need to wait for a vblank before we can disable the plane. */
intel_wait_for_vblank(dev, crtc->pipe);
}
/** Loads the palette/gamma unit for the CRTC with the prepared values */
static void intel_crtc_load_lut(struct drm_crtc *crtc)
{
struct drm_device *dev = crtc->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
enum pipe pipe = intel_crtc->pipe;
int palreg = PALETTE(pipe);
int i;
bool reenable_ips = false;
/* The clocks have to be on to load the palette. */
if (!crtc->enabled || !intel_crtc->active)
return;
if (!HAS_PCH_SPLIT(dev_priv->dev)) {
if (intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_DSI))
assert_dsi_pll_enabled(dev_priv);
else
assert_pll_enabled(dev_priv, pipe);
}
/* use legacy palette for Ironlake */
if (!HAS_GMCH_DISPLAY(dev))
palreg = LGC_PALETTE(pipe);
/* Workaround : Do not read or write the pipe palette/gamma data while
* GAMMA_MODE is configured for split gamma and IPS_CTL has IPS enabled.
*/
if (IS_HASWELL(dev) && intel_crtc->config.ips_enabled &&
((I915_READ(GAMMA_MODE(pipe)) & GAMMA_MODE_MODE_MASK) ==
GAMMA_MODE_MODE_SPLIT)) {
hsw_disable_ips(intel_crtc);
reenable_ips = true;
}
for (i = 0; i < 256; i++) {
I915_WRITE(palreg + 4 * i,
(intel_crtc->lut_r[i] << 16) |
(intel_crtc->lut_g[i] << 8) |
intel_crtc->lut_b[i]);
}
if (reenable_ips)
hsw_enable_ips(intel_crtc);
}
static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
{
if (!enable && intel_crtc->overlay) {
struct drm_device *dev = intel_crtc->base.dev;
struct drm_i915_private *dev_priv = dev->dev_private;
mutex_lock(&dev->struct_mutex);
dev_priv->mm.interruptible = false;
(void) intel_overlay_switch_off(intel_crtc->overlay);
dev_priv->mm.interruptible = true;
mutex_unlock(&dev->struct_mutex);
}
/* Let userspace switch the overlay on again. In most cases userspace
* has to recompute where to put it anyway.
*/
}
static void intel_crtc_enable_planes(struct drm_crtc *crtc)
{
struct drm_device *dev = crtc->dev;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
int pipe = intel_crtc->pipe;
intel_enable_primary_hw_plane(crtc->primary, crtc);
intel_enable_planes(crtc);
intel_crtc_update_cursor(crtc, true);
intel_crtc_dpms_overlay(intel_crtc, true);
hsw_enable_ips(intel_crtc);
mutex_lock(&dev->struct_mutex);
intel_update_fbc(dev);
mutex_unlock(&dev->struct_mutex);
/*
* FIXME: Once we grow proper nuclear flip support out of this we need
* to compute the mask of flip planes precisely. For the time being
* consider this a flip from a NULL plane.
*/
intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_ALL_MASK(pipe));
}
static void intel_crtc_disable_planes(struct drm_crtc *crtc)
{
struct drm_device *dev = crtc->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
int pipe = intel_crtc->pipe;
int plane = intel_crtc->plane;
intel_crtc_wait_for_pending_flips(crtc);
if (dev_priv->fbc.plane == plane)
intel_disable_fbc(dev);
hsw_disable_ips(intel_crtc);
intel_crtc_dpms_overlay(intel_crtc, false);
intel_crtc_update_cursor(crtc, false);
intel_disable_planes(crtc);
intel_disable_primary_hw_plane(crtc->primary, crtc);
/*
* FIXME: Once we grow proper nuclear flip support out of this we need
* to compute the mask of flip planes precisely. For the time being
* consider this a flip to a NULL plane.
*/
intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_ALL_MASK(pipe));
}
static void ironlake_crtc_enable(struct drm_crtc *crtc)
{
struct drm_device *dev = crtc->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
struct intel_encoder *encoder;
int pipe = intel_crtc->pipe;
WARN_ON(!crtc->enabled);
if (intel_crtc->active)
return;
if (intel_crtc->config.has_pch_encoder)
intel_prepare_shared_dpll(intel_crtc);
if (intel_crtc->config.has_dp_encoder)
intel_dp_set_m_n(intel_crtc);
intel_set_pipe_timings(intel_crtc);
if (intel_crtc->config.has_pch_encoder) {
intel_cpu_transcoder_set_m_n(intel_crtc,
&intel_crtc->config.fdi_m_n, NULL);
}
ironlake_set_pipeconf(crtc);
intel_crtc->active = true;
intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, true);
for_each_encoder_on_crtc(dev, crtc, encoder)
if (encoder->pre_enable)
encoder->pre_enable(encoder);
if (intel_crtc->config.has_pch_encoder) {
/* Note: FDI PLL enabling _must_ be done before we enable the
* cpu pipes, hence this is separate from all the other fdi/pch
* enabling. */
ironlake_fdi_pll_enable(intel_crtc);
} else {
assert_fdi_tx_disabled(dev_priv, pipe);
assert_fdi_rx_disabled(dev_priv, pipe);
}
ironlake_pfit_enable(intel_crtc);
/*
* On ILK+ LUT must be loaded before the pipe is running but with
* clocks enabled
*/
intel_crtc_load_lut(crtc);
intel_update_watermarks(crtc);
intel_enable_pipe(intel_crtc);
if (intel_crtc->config.has_pch_encoder)
ironlake_pch_enable(crtc);
for_each_encoder_on_crtc(dev, crtc, encoder)
encoder->enable(encoder);
if (HAS_PCH_CPT(dev))
cpt_verify_modeset(dev, intel_crtc->pipe);
assert_vblank_disabled(crtc);
drm_crtc_vblank_on(crtc);
intel_crtc_enable_planes(crtc);
}
/* IPS only exists on ULT machines and is tied to pipe A. */
static bool hsw_crtc_supports_ips(struct intel_crtc *crtc)
{
return HAS_IPS(crtc->base.dev) && crtc->pipe == PIPE_A;
}
/*
* This implements the workaround described in the "notes" section of the mode
* set sequence documentation. When going from no pipes or single pipe to
* multiple pipes, and planes are enabled after the pipe, we need to wait at
* least 2 vblanks on the first pipe before enabling planes on the second pipe.
*/
static void haswell_mode_set_planes_workaround(struct intel_crtc *crtc)
{
struct drm_device *dev = crtc->base.dev;
struct intel_crtc *crtc_it, *other_active_crtc = NULL;
/* We want to get the other_active_crtc only if there's only 1 other
* active crtc. */
for_each_intel_crtc(dev, crtc_it) {
if (!crtc_it->active || crtc_it == crtc)
continue;
if (other_active_crtc)
return;
other_active_crtc = crtc_it;
}
if (!other_active_crtc)
return;
intel_wait_for_vblank(dev, other_active_crtc->pipe);
intel_wait_for_vblank(dev, other_active_crtc->pipe);
}
static void haswell_crtc_enable(struct drm_crtc *crtc)
{
struct drm_device *dev = crtc->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
struct intel_encoder *encoder;
int pipe = intel_crtc->pipe;
WARN_ON(!crtc->enabled);
if (intel_crtc->active)
return;
if (intel_crtc_to_shared_dpll(intel_crtc))
intel_enable_shared_dpll(intel_crtc);
if (intel_crtc->config.has_dp_encoder)
intel_dp_set_m_n(intel_crtc);
intel_set_pipe_timings(intel_crtc);
if (intel_crtc->config.cpu_transcoder != TRANSCODER_EDP) {
I915_WRITE(PIPE_MULT(intel_crtc->config.cpu_transcoder),
intel_crtc->config.pixel_multiplier - 1);
}
if (intel_crtc->config.has_pch_encoder) {
intel_cpu_transcoder_set_m_n(intel_crtc,
&intel_crtc->config.fdi_m_n, NULL);
}
haswell_set_pipeconf(crtc);
intel_set_pipe_csc(crtc);
intel_crtc->active = true;
intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
for_each_encoder_on_crtc(dev, crtc, encoder)
if (encoder->pre_enable)
encoder->pre_enable(encoder);
if (intel_crtc->config.has_pch_encoder) {
intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
true);
dev_priv->display.fdi_link_train(crtc);
}
intel_ddi_enable_pipe_clock(intel_crtc);
ironlake_pfit_enable(intel_crtc);
/*
* On ILK+ LUT must be loaded before the pipe is running but with
* clocks enabled
*/
intel_crtc_load_lut(crtc);
intel_ddi_set_pipe_settings(crtc);
intel_ddi_enable_transcoder_func(crtc);
intel_update_watermarks(crtc);
intel_enable_pipe(intel_crtc);
if (intel_crtc->config.has_pch_encoder)
lpt_pch_enable(crtc);
if (intel_crtc->config.dp_encoder_is_mst)
intel_ddi_set_vc_payload_alloc(crtc, true);
for_each_encoder_on_crtc(dev, crtc, encoder) {
encoder->enable(encoder);
intel_opregion_notify_encoder(encoder, true);
}
assert_vblank_disabled(crtc);
drm_crtc_vblank_on(crtc);
/* If we change the relative order between pipe/planes enabling, we need
* to change the workaround. */
haswell_mode_set_planes_workaround(intel_crtc);
intel_crtc_enable_planes(crtc);
}
static void ironlake_pfit_disable(struct intel_crtc *crtc)
{
struct drm_device *dev = crtc->base.dev;
struct drm_i915_private *dev_priv = dev->dev_private;
int pipe = crtc->pipe;
/* To avoid upsetting the power well on haswell only disable the pfit if
* it's in use. The hw state code will make sure we get this right. */
if (crtc->config.pch_pfit.enabled) {
I915_WRITE(PF_CTL(pipe), 0);
I915_WRITE(PF_WIN_POS(pipe), 0);
I915_WRITE(PF_WIN_SZ(pipe), 0);
}
}
static void ironlake_crtc_disable(struct drm_crtc *crtc)
{
struct drm_device *dev = crtc->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
struct intel_encoder *encoder;
int pipe = intel_crtc->pipe;
u32 reg, temp;
if (!intel_crtc->active)
return;
intel_crtc_disable_planes(crtc);
drm_crtc_vblank_off(crtc);
assert_vblank_disabled(crtc);
for_each_encoder_on_crtc(dev, crtc, encoder)
encoder->disable(encoder);
if (intel_crtc->config.has_pch_encoder)
intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, false);
intel_disable_pipe(intel_crtc);
ironlake_pfit_disable(intel_crtc);
for_each_encoder_on_crtc(dev, crtc, encoder)
if (encoder->post_disable)
encoder->post_disable(encoder);
if (intel_crtc->config.has_pch_encoder) {
ironlake_fdi_disable(crtc);
ironlake_disable_pch_transcoder(dev_priv, pipe);
intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, true);
if (HAS_PCH_CPT(dev)) {
/* disable TRANS_DP_CTL */
reg = TRANS_DP_CTL(pipe);
temp = I915_READ(reg);
temp &= ~(TRANS_DP_OUTPUT_ENABLE |
TRANS_DP_PORT_SEL_MASK);
temp |= TRANS_DP_PORT_SEL_NONE;
I915_WRITE(reg, temp);
/* disable DPLL_SEL */
temp = I915_READ(PCH_DPLL_SEL);
temp &= ~(TRANS_DPLL_ENABLE(pipe) | TRANS_DPLLB_SEL(pipe));
I915_WRITE(PCH_DPLL_SEL, temp);
}
/* disable PCH DPLL */
intel_disable_shared_dpll(intel_crtc);
ironlake_fdi_pll_disable(intel_crtc);
}
intel_crtc->active = false;
intel_update_watermarks(crtc);
mutex_lock(&dev->struct_mutex);
intel_update_fbc(dev);
mutex_unlock(&dev->struct_mutex);
}
static void haswell_crtc_disable(struct drm_crtc *crtc)
{
struct drm_device *dev = crtc->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
struct intel_encoder *encoder;
enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
if (!intel_crtc->active)
return;
intel_crtc_disable_planes(crtc);
drm_crtc_vblank_off(crtc);
assert_vblank_disabled(crtc);
for_each_encoder_on_crtc(dev, crtc, encoder) {
intel_opregion_notify_encoder(encoder, false);
encoder->disable(encoder);
}
if (intel_crtc->config.has_pch_encoder)
intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
false);
intel_disable_pipe(intel_crtc);
if (intel_crtc->config.dp_encoder_is_mst)
intel_ddi_set_vc_payload_alloc(crtc, false);
intel_ddi_disable_transcoder_func(dev_priv, cpu_transcoder);
ironlake_pfit_disable(intel_crtc);
intel_ddi_disable_pipe_clock(intel_crtc);
if (intel_crtc->config.has_pch_encoder) {
lpt_disable_pch_transcoder(dev_priv);
intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
true);
intel_ddi_fdi_disable(crtc);
}
for_each_encoder_on_crtc(dev, crtc, encoder)
if (encoder->post_disable)
encoder->post_disable(encoder);
intel_crtc->active = false;
intel_update_watermarks(crtc);
mutex_lock(&dev->struct_mutex);
intel_update_fbc(dev);
mutex_unlock(&dev->struct_mutex);
if (intel_crtc_to_shared_dpll(intel_crtc))
intel_disable_shared_dpll(intel_crtc);
}
static void ironlake_crtc_off(struct drm_crtc *crtc)
{
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
intel_put_shared_dpll(intel_crtc);
}
static void i9xx_pfit_enable(struct intel_crtc *crtc)
{
struct drm_device *dev = crtc->base.dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_crtc_config *pipe_config = &crtc->config;
if (!crtc->config.gmch_pfit.control)
return;
/*
* The panel fitter should only be adjusted whilst the pipe is disabled,
* according to register description and PRM.
*/
WARN_ON(I915_READ(PFIT_CONTROL) & PFIT_ENABLE);
assert_pipe_disabled(dev_priv, crtc->pipe);
I915_WRITE(PFIT_PGM_RATIOS, pipe_config->gmch_pfit.pgm_ratios);
I915_WRITE(PFIT_CONTROL, pipe_config->gmch_pfit.control);
/* Border color in case we don't scale up to the full screen. Black by
* default, change to something else for debugging. */
I915_WRITE(BCLRPAT(crtc->pipe), 0);
}
static enum intel_display_power_domain port_to_power_domain(enum port port)
{
switch (port) {
case PORT_A:
return POWER_DOMAIN_PORT_DDI_A_4_LANES;
case PORT_B:
return POWER_DOMAIN_PORT_DDI_B_4_LANES;
case PORT_C:
return POWER_DOMAIN_PORT_DDI_C_4_LANES;
case PORT_D:
return POWER_DOMAIN_PORT_DDI_D_4_LANES;
default:
WARN_ON_ONCE(1);
return POWER_DOMAIN_PORT_OTHER;
}
}
#define for_each_power_domain(domain, mask) \
for ((domain) = 0; (domain) < POWER_DOMAIN_NUM; (domain)++) \
if ((1 << (domain)) & (mask))
enum intel_display_power_domain
intel_display_port_power_domain(struct intel_encoder *intel_encoder)
{
struct drm_device *dev = intel_encoder->base.dev;
struct intel_digital_port *intel_dig_port;
switch (intel_encoder->type) {
case INTEL_OUTPUT_UNKNOWN:
/* Only DDI platforms should ever use this output type */
WARN_ON_ONCE(!HAS_DDI(dev));
case INTEL_OUTPUT_DISPLAYPORT:
case INTEL_OUTPUT_HDMI:
case INTEL_OUTPUT_EDP:
intel_dig_port = enc_to_dig_port(&intel_encoder->base);
return port_to_power_domain(intel_dig_port->port);
case INTEL_OUTPUT_DP_MST:
intel_dig_port = enc_to_mst(&intel_encoder->base)->primary;
return port_to_power_domain(intel_dig_port->port);
case INTEL_OUTPUT_ANALOG:
return POWER_DOMAIN_PORT_CRT;
case INTEL_OUTPUT_DSI:
return POWER_DOMAIN_PORT_DSI;
default:
return POWER_DOMAIN_PORT_OTHER;
}
}
static unsigned long get_crtc_power_domains(struct drm_crtc *crtc)
{
struct drm_device *dev = crtc->dev;
struct intel_encoder *intel_encoder;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
enum pipe pipe = intel_crtc->pipe;
unsigned long mask;
enum transcoder transcoder;
transcoder = intel_pipe_to_cpu_transcoder(dev->dev_private, pipe);
mask = BIT(POWER_DOMAIN_PIPE(pipe));
mask |= BIT(POWER_DOMAIN_TRANSCODER(transcoder));
if (intel_crtc->config.pch_pfit.enabled ||
intel_crtc->config.pch_pfit.force_thru)
mask |= BIT(POWER_DOMAIN_PIPE_PANEL_FITTER(pipe));
for_each_encoder_on_crtc(dev, crtc, intel_encoder)
mask |= BIT(intel_display_port_power_domain(intel_encoder));
return mask;
}
static void modeset_update_crtc_power_domains(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
unsigned long pipe_domains[I915_MAX_PIPES] = { 0, };
struct intel_crtc *crtc;
/*
* First get all needed power domains, then put all unneeded, to avoid
* any unnecessary toggling of the power wells.
*/
for_each_intel_crtc(dev, crtc) {
enum intel_display_power_domain domain;
if (!crtc->base.enabled)
continue;
pipe_domains[crtc->pipe] = get_crtc_power_domains(&crtc->base);
for_each_power_domain(domain, pipe_domains[crtc->pipe])
intel_display_power_get(dev_priv, domain);
}
for_each_intel_crtc(dev, crtc) {
enum intel_display_power_domain domain;
for_each_power_domain(domain, crtc->enabled_power_domains)
intel_display_power_put(dev_priv, domain);
crtc->enabled_power_domains = pipe_domains[crtc->pipe];
}
intel_display_set_init_power(dev_priv, false);
}
/* returns HPLL frequency in kHz */
static int valleyview_get_vco(struct drm_i915_private *dev_priv)
{
int hpll_freq, vco_freq[] = { 800, 1600, 2000, 2400 };
/* Obtain SKU information */
mutex_lock(&dev_priv->dpio_lock);
hpll_freq = vlv_cck_read(dev_priv, CCK_FUSE_REG) &
CCK_FUSE_HPLL_FREQ_MASK;
mutex_unlock(&dev_priv->dpio_lock);
return vco_freq[hpll_freq] * 1000;
}
static void vlv_update_cdclk(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
dev_priv->vlv_cdclk_freq = dev_priv->display.get_display_clock_speed(dev);
DRM_DEBUG_DRIVER("Current CD clock rate: %d kHz\n",
dev_priv->vlv_cdclk_freq);
/*
* Program the gmbus_freq based on the cdclk frequency.
* BSpec erroneously claims we should aim for 4MHz, but
* in fact 1MHz is the correct frequency.
*/
I915_WRITE(GMBUSFREQ_VLV, dev_priv->vlv_cdclk_freq);
}
/* Adjust CDclk dividers to allow high res or save power if possible */
static void valleyview_set_cdclk(struct drm_device *dev, int cdclk)
{
struct drm_i915_private *dev_priv = dev->dev_private;
u32 val, cmd;
WARN_ON(dev_priv->display.get_display_clock_speed(dev) != dev_priv->vlv_cdclk_freq);
if (cdclk >= 320000) /* jump to highest voltage for 400MHz too */
cmd = 2;
else if (cdclk == 266667)
cmd = 1;
else
cmd = 0;
mutex_lock(&dev_priv->rps.hw_lock);
val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
val &= ~DSPFREQGUAR_MASK;
val |= (cmd << DSPFREQGUAR_SHIFT);
vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
DSPFREQSTAT_MASK) == (cmd << DSPFREQSTAT_SHIFT),
50)) {
DRM_ERROR("timed out waiting for CDclk change\n");
}
mutex_unlock(&dev_priv->rps.hw_lock);
if (cdclk == 400000) {
u32 divider, vco;
vco = valleyview_get_vco(dev_priv);
divider = DIV_ROUND_CLOSEST(vco << 1, cdclk) - 1;
mutex_lock(&dev_priv->dpio_lock);
/* adjust cdclk divider */
val = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL);
val &= ~DISPLAY_FREQUENCY_VALUES;
val |= divider;
vlv_cck_write(dev_priv, CCK_DISPLAY_CLOCK_CONTROL, val);
if (wait_for((vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL) &
DISPLAY_FREQUENCY_STATUS) == (divider << DISPLAY_FREQUENCY_STATUS_SHIFT),
50))
DRM_ERROR("timed out waiting for CDclk change\n");
mutex_unlock(&dev_priv->dpio_lock);
}
mutex_lock(&dev_priv->dpio_lock);
/* adjust self-refresh exit latency value */
val = vlv_bunit_read(dev_priv, BUNIT_REG_BISOC);
val &= ~0x7f;
/*
* For high bandwidth configs, we set a higher latency in the bunit
* so that the core display fetch happens in time to avoid underruns.
*/
if (cdclk == 400000)
val |= 4500 / 250; /* 4.5 usec */
else
val |= 3000 / 250; /* 3.0 usec */
vlv_bunit_write(dev_priv, BUNIT_REG_BISOC, val);
mutex_unlock(&dev_priv->dpio_lock);
vlv_update_cdclk(dev);
}
static void cherryview_set_cdclk(struct drm_device *dev, int cdclk)
{
struct drm_i915_private *dev_priv = dev->dev_private;
u32 val, cmd;
WARN_ON(dev_priv->display.get_display_clock_speed(dev) != dev_priv->vlv_cdclk_freq);
switch (cdclk) {
case 400000:
cmd = 3;
break;
case 333333:
case 320000:
cmd = 2;
break;
case 266667:
cmd = 1;
break;
case 200000:
cmd = 0;
break;
default:
WARN_ON(1);
return;
}
mutex_lock(&dev_priv->rps.hw_lock);
val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
val &= ~DSPFREQGUAR_MASK_CHV;
val |= (cmd << DSPFREQGUAR_SHIFT_CHV);
vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
DSPFREQSTAT_MASK_CHV) == (cmd << DSPFREQSTAT_SHIFT_CHV),
50)) {
DRM_ERROR("timed out waiting for CDclk change\n");
}
mutex_unlock(&dev_priv->rps.hw_lock);
vlv_update_cdclk(dev);
}
static int valleyview_calc_cdclk(struct drm_i915_private *dev_priv,
int max_pixclk)
{
int vco = valleyview_get_vco(dev_priv);
int freq_320 = (vco << 1) % 320000 != 0 ? 333333 : 320000;
/* FIXME: Punit isn't quite ready yet */
if (IS_CHERRYVIEW(dev_priv->dev))
return 400000;
/*
* Really only a few cases to deal with, as only 4 CDclks are supported:
* 200MHz
* 267MHz
* 320/333MHz (depends on HPLL freq)
* 400MHz
* So we check to see whether we're above 90% of the lower bin and
* adjust if needed.
*
* We seem to get an unstable or solid color picture at 200MHz.
* Not sure what's wrong. For now use 200MHz only when all pipes
* are off.
*/
if (max_pixclk > freq_320*9/10)
return 400000;
else if (max_pixclk > 266667*9/10)
return freq_320;
else if (max_pixclk > 0)
return 266667;
else
return 200000;
}
/* compute the max pixel clock for new configuration */
static int intel_mode_max_pixclk(struct drm_i915_private *dev_priv)
{
struct drm_device *dev = dev_priv->dev;
struct intel_crtc *intel_crtc;
int max_pixclk = 0;
for_each_intel_crtc(dev, intel_crtc) {
if (intel_crtc->new_enabled)
max_pixclk = max(max_pixclk,
intel_crtc->new_config->adjusted_mode.crtc_clock);
}
return max_pixclk;
}
static void valleyview_modeset_global_pipes(struct drm_device *dev,
unsigned *prepare_pipes)
{
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_crtc *intel_crtc;
int max_pixclk = intel_mode_max_pixclk(dev_priv);
if (valleyview_calc_cdclk(dev_priv, max_pixclk) ==
dev_priv->vlv_cdclk_freq)
return;
/* disable/enable all currently active pipes while we change cdclk */
for_each_intel_crtc(dev, intel_crtc)
if (intel_crtc->base.enabled)
*prepare_pipes |= (1 << intel_crtc->pipe);
}
static void valleyview_modeset_global_resources(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
int max_pixclk = intel_mode_max_pixclk(dev_priv);
int req_cdclk = valleyview_calc_cdclk(dev_priv, max_pixclk);
if (req_cdclk != dev_priv->vlv_cdclk_freq) {
if (IS_CHERRYVIEW(dev))
cherryview_set_cdclk(dev, req_cdclk);
else
valleyview_set_cdclk(dev, req_cdclk);
}
modeset_update_crtc_power_domains(dev);
}
static void valleyview_crtc_enable(struct drm_crtc *crtc)
{
struct drm_device *dev = crtc->dev;
struct drm_i915_private *dev_priv = to_i915(dev);
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
struct intel_encoder *encoder;
int pipe = intel_crtc->pipe;
bool is_dsi;
WARN_ON(!crtc->enabled);
if (intel_crtc->active)
return;
is_dsi = intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_DSI);
if (!is_dsi) {
if (IS_CHERRYVIEW(dev))
chv_prepare_pll(intel_crtc);
else
vlv_prepare_pll(intel_crtc);
}
if (intel_crtc->config.has_dp_encoder)
intel_dp_set_m_n(intel_crtc);
intel_set_pipe_timings(intel_crtc);
i9xx_set_pipeconf(intel_crtc);
intel_crtc->active = true;
intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
for_each_encoder_on_crtc(dev, crtc, encoder)
if (encoder->pre_pll_enable)
encoder->pre_pll_enable(encoder);
if (!is_dsi) {
if (IS_CHERRYVIEW(dev))
chv_enable_pll(intel_crtc);
else
vlv_enable_pll(intel_crtc);
}
for_each_encoder_on_crtc(dev, crtc, encoder)
if (encoder->pre_enable)
encoder->pre_enable(encoder);
i9xx_pfit_enable(intel_crtc);
intel_crtc_load_lut(crtc);
intel_update_watermarks(crtc);
intel_enable_pipe(intel_crtc);
for_each_encoder_on_crtc(dev, crtc, encoder)
encoder->enable(encoder);
assert_vblank_disabled(crtc);
drm_crtc_vblank_on(crtc);
intel_crtc_enable_planes(crtc);
/* Underruns don't raise interrupts, so check manually. */
i9xx_check_fifo_underruns(dev_priv);
}
static void i9xx_set_pll_dividers(struct intel_crtc *crtc)
{
struct drm_device *dev = crtc->base.dev;
struct drm_i915_private *dev_priv = dev->dev_private;
I915_WRITE(FP0(crtc->pipe), crtc->config.dpll_hw_state.fp0);
I915_WRITE(FP1(crtc->pipe), crtc->config.dpll_hw_state.fp1);
}
static void i9xx_crtc_enable(struct drm_crtc *crtc)
{
struct drm_device *dev = crtc->dev;
struct drm_i915_private *dev_priv = to_i915(dev);
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
struct intel_encoder *encoder;
int pipe = intel_crtc->pipe;
WARN_ON(!crtc->enabled);
if (intel_crtc->active)
return;
i9xx_set_pll_dividers(intel_crtc);
if (intel_crtc->config.has_dp_encoder)
intel_dp_set_m_n(intel_crtc);
intel_set_pipe_timings(intel_crtc);
i9xx_set_pipeconf(intel_crtc);
intel_crtc->active = true;
if (!IS_GEN2(dev))
intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
for_each_encoder_on_crtc(dev, crtc, encoder)
if (encoder->pre_enable)
encoder->pre_enable(encoder);
i9xx_enable_pll(intel_crtc);
i9xx_pfit_enable(intel_crtc);
intel_crtc_load_lut(crtc);
intel_update_watermarks(crtc);
intel_enable_pipe(intel_crtc);
for_each_encoder_on_crtc(dev, crtc, encoder)
encoder->enable(encoder);
assert_vblank_disabled(crtc);
drm_crtc_vblank_on(crtc);
intel_crtc_enable_planes(crtc);
/*
* Gen2 reports pipe underruns whenever all planes are disabled.
* So don't enable underrun reporting before at least some planes
* are enabled.
* FIXME: Need to fix the logic to work when we turn off all planes
* but leave the pipe running.
*/
if (IS_GEN2(dev))
intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
/* Underruns don't raise interrupts, so check manually. */
i9xx_check_fifo_underruns(dev_priv);
}
static void i9xx_pfit_disable(struct intel_crtc *crtc)
{
struct drm_device *dev = crtc->base.dev;
struct drm_i915_private *dev_priv = dev->dev_private;
if (!crtc->config.gmch_pfit.control)
return;
assert_pipe_disabled(dev_priv, crtc->pipe);
DRM_DEBUG_DRIVER("disabling pfit, current: 0x%08x\n",
I915_READ(PFIT_CONTROL));
I915_WRITE(PFIT_CONTROL, 0);
}
static void i9xx_crtc_disable(struct drm_crtc *crtc)
{
struct drm_device *dev = crtc->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
struct intel_encoder *encoder;
int pipe = intel_crtc->pipe;
if (!intel_crtc->active)
return;
/*
* Gen2 reports pipe underruns whenever all planes are disabled.
* So diasble underrun reporting before all the planes get disabled.
* FIXME: Need to fix the logic to work when we turn off all planes
* but leave the pipe running.
*/
if (IS_GEN2(dev))
intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
/*
* Vblank time updates from the shadow to live plane control register
* are blocked if the memory self-refresh mode is active at that
* moment. So to make sure the plane gets truly disabled, disable
* first the self-refresh mode. The self-refresh enable bit in turn
* will be checked/applied by the HW only at the next frame start
* event which is after the vblank start event, so we need to have a
* wait-for-vblank between disabling the plane and the pipe.
*/
intel_set_memory_cxsr(dev_priv, false);
intel_crtc_disable_planes(crtc);
/*
* On gen2 planes are double buffered but the pipe isn't, so we must
* wait for planes to fully turn off before disabling the pipe.
* We also need to wait on all gmch platforms because of the
* self-refresh mode constraint explained above.
*/
intel_wait_for_vblank(dev, pipe);
drm_crtc_vblank_off(crtc);
assert_vblank_disabled(crtc);
for_each_encoder_on_crtc(dev, crtc, encoder)
encoder->disable(encoder);
intel_disable_pipe(intel_crtc);
i9xx_pfit_disable(intel_crtc);
for_each_encoder_on_crtc(dev, crtc, encoder)
if (encoder->post_disable)
encoder->post_disable(encoder);
if (!intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_DSI)) {
if (IS_CHERRYVIEW(dev))
chv_disable_pll(dev_priv, pipe);
else if (IS_VALLEYVIEW(dev))
vlv_disable_pll(dev_priv, pipe);
else
i9xx_disable_pll(intel_crtc);
}
if (!IS_GEN2(dev))
intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
intel_crtc->active = false;
intel_update_watermarks(crtc);
mutex_lock(&dev->struct_mutex);
intel_update_fbc(dev);
mutex_unlock(&dev->struct_mutex);
}
static void i9xx_crtc_off(struct drm_crtc *crtc)
{
}
static void intel_crtc_update_sarea(struct drm_crtc *crtc,
bool enabled)
{
struct drm_device *dev = crtc->dev;
struct drm_i915_master_private *master_priv;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
int pipe = intel_crtc->pipe;
if (!dev->primary->master)
return;
master_priv = dev->primary->master->driver_priv;
if (!master_priv->sarea_priv)
return;
switch (pipe) {
case 0:
master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
break;
case 1:
master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
break;
default:
DRM_ERROR("Can't update pipe %c in SAREA\n", pipe_name(pipe));
break;
}
}
/* Master function to enable/disable CRTC and corresponding power wells */
void intel_crtc_control(struct drm_crtc *crtc, bool enable)
{
struct drm_device *dev = crtc->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
enum intel_display_power_domain domain;
unsigned long domains;
if (enable) {
if (!intel_crtc->active) {
domains = get_crtc_power_domains(crtc);
for_each_power_domain(domain, domains)
intel_display_power_get(dev_priv, domain);
intel_crtc->enabled_power_domains = domains;
dev_priv->display.crtc_enable(crtc);
}
} else {
if (intel_crtc->active) {
dev_priv->display.crtc_disable(crtc);
domains = intel_crtc->enabled_power_domains;
for_each_power_domain(domain, domains)
intel_display_power_put(dev_priv, domain);
intel_crtc->enabled_power_domains = 0;
}
}
}
/**
* Sets the power management mode of the pipe and plane.
*/
void intel_crtc_update_dpms(struct drm_crtc *crtc)
{
struct drm_device *dev = crtc->dev;
struct intel_encoder *intel_encoder;
bool enable = false;
for_each_encoder_on_crtc(dev, crtc, intel_encoder)
enable |= intel_encoder->connectors_active;
intel_crtc_control(crtc, enable);
intel_crtc_update_sarea(crtc, enable);
}
static void intel_crtc_disable(struct drm_crtc *crtc)
{
struct drm_device *dev = crtc->dev;
struct drm_connector *connector;
struct drm_i915_private *dev_priv = dev->dev_private;
struct drm_i915_gem_object *old_obj = intel_fb_obj(crtc->primary->fb);
enum pipe pipe = to_intel_crtc(crtc)->pipe;
/* crtc should still be enabled when we disable it. */
WARN_ON(!crtc->enabled);
dev_priv->display.crtc_disable(crtc);
intel_crtc_update_sarea(crtc, false);
dev_priv->display.off(crtc);
if (crtc->primary->fb) {
mutex_lock(&dev->struct_mutex);
intel_unpin_fb_obj(old_obj);
i915_gem_track_fb(old_obj, NULL,
INTEL_FRONTBUFFER_PRIMARY(pipe));
mutex_unlock(&dev->struct_mutex);
crtc->primary->fb = NULL;
}
/* Update computed state. */
list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
if (!connector->encoder || !connector->encoder->crtc)
continue;
if (connector->encoder->crtc != crtc)
continue;
connector->dpms = DRM_MODE_DPMS_OFF;
to_intel_encoder(connector->encoder)->connectors_active = false;
}
}
void intel_encoder_destroy(struct drm_encoder *encoder)
{
struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
drm_encoder_cleanup(encoder);
kfree(intel_encoder);
}
/* Simple dpms helper for encoders with just one connector, no cloning and only
* one kind of off state. It clamps all !ON modes to fully OFF and changes the
* state of the entire output pipe. */
static void intel_encoder_dpms(struct intel_encoder *encoder, int mode)
{
if (mode == DRM_MODE_DPMS_ON) {
encoder->connectors_active = true;
intel_crtc_update_dpms(encoder->base.crtc);
} else {
encoder->connectors_active = false;
intel_crtc_update_dpms(encoder->base.crtc);
}
}
/* Cross check the actual hw state with our own modeset state tracking (and it's
* internal consistency). */
static void intel_connector_check_state(struct intel_connector *connector)
{
if (connector->get_hw_state(connector)) {
struct intel_encoder *encoder = connector->encoder;
struct drm_crtc *crtc;
bool encoder_enabled;
enum pipe pipe;
DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
connector->base.base.id,
connector->base.name);
/* there is no real hw state for MST connectors */
if (connector->mst_port)
return;
WARN(connector->base.dpms == DRM_MODE_DPMS_OFF,
"wrong connector dpms state\n");
WARN(connector->base.encoder != &encoder->base,
"active connector not linked to encoder\n");
if (encoder) {
WARN(!encoder->connectors_active,
"encoder->connectors_active not set\n");
encoder_enabled = encoder->get_hw_state(encoder, &pipe);
WARN(!encoder_enabled, "encoder not enabled\n");
if (WARN_ON(!encoder->base.crtc))
return;
crtc = encoder->base.crtc;
WARN(!crtc->enabled, "crtc not enabled\n");
WARN(!to_intel_crtc(crtc)->active, "crtc not active\n");
WARN(pipe != to_intel_crtc(crtc)->pipe,
"encoder active on the wrong pipe\n");
}
}
}
/* Even simpler default implementation, if there's really no special case to
* consider. */
void intel_connector_dpms(struct drm_connector *connector, int mode)
{
/* All the simple cases only support two dpms states. */
if (mode != DRM_MODE_DPMS_ON)
mode = DRM_MODE_DPMS_OFF;
if (mode == connector->dpms)
return;
connector->dpms = mode;
/* Only need to change hw state when actually enabled */
if (connector->encoder)
intel_encoder_dpms(to_intel_encoder(connector->encoder), mode);
intel_modeset_check_state(connector->dev);
}
/* Simple connector->get_hw_state implementation for encoders that support only
* one connector and no cloning and hence the encoder state determines the state
* of the connector. */
bool intel_connector_get_hw_state(struct intel_connector *connector)
{
enum pipe pipe = 0;
struct intel_encoder *encoder = connector->encoder;
return encoder->get_hw_state(encoder, &pipe);
}
static bool ironlake_check_fdi_lanes(struct drm_device *dev, enum pipe pipe,
struct intel_crtc_config *pipe_config)
{
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_crtc *pipe_B_crtc =
to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
DRM_DEBUG_KMS("checking fdi config on pipe %c, lanes %i\n",
pipe_name(pipe), pipe_config->fdi_lanes);
if (pipe_config->fdi_lanes > 4) {
DRM_DEBUG_KMS("invalid fdi lane config on pipe %c: %i lanes\n",
pipe_name(pipe), pipe_config->fdi_lanes);
return false;
}
if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
if (pipe_config->fdi_lanes > 2) {
DRM_DEBUG_KMS("only 2 lanes on haswell, required: %i lanes\n",
pipe_config->fdi_lanes);
return false;
} else {
return true;
}
}
if (INTEL_INFO(dev)->num_pipes == 2)
return true;
/* Ivybridge 3 pipe is really complicated */
switch (pipe) {
case PIPE_A:
return true;
case PIPE_B:
if (dev_priv->pipe_to_crtc_mapping[PIPE_C]->enabled &&
pipe_config->fdi_lanes > 2) {
DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
pipe_name(pipe), pipe_config->fdi_lanes);
return false;
}
return true;
case PIPE_C:
if (!pipe_has_enabled_pch(pipe_B_crtc) ||
pipe_B_crtc->config.fdi_lanes <= 2) {
if (pipe_config->fdi_lanes > 2) {
DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
pipe_name(pipe), pipe_config->fdi_lanes);
return false;
}
} else {
DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n");
return false;
}
return true;
default:
BUG();
}
}
#define RETRY 1
static int ironlake_fdi_compute_config(struct intel_crtc *intel_crtc,
struct intel_crtc_config *pipe_config)
{
struct drm_device *dev = intel_crtc->base.dev;
struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
int lane, link_bw, fdi_dotclock;
bool setup_ok, needs_recompute = false;
retry:
/* FDI is a binary signal running at ~2.7GHz, encoding
* each output octet as 10 bits. The actual frequency
* is stored as a divider into a 100MHz clock, and the
* mode pixel clock is stored in units of 1KHz.
* Hence the bw of each lane in terms of the mode signal
* is:
*/
link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
fdi_dotclock = adjusted_mode->crtc_clock;
lane = ironlake_get_lanes_required(fdi_dotclock, link_bw,
pipe_config->pipe_bpp);
pipe_config->fdi_lanes = lane;
intel_link_compute_m_n(pipe_config->pipe_bpp, lane, fdi_dotclock,
link_bw, &pipe_config->fdi_m_n);
setup_ok = ironlake_check_fdi_lanes(intel_crtc->base.dev,
intel_crtc->pipe, pipe_config);
if (!setup_ok && pipe_config->pipe_bpp > 6*3) {
pipe_config->pipe_bpp -= 2*3;
DRM_DEBUG_KMS("fdi link bw constraint, reducing pipe bpp to %i\n",
pipe_config->pipe_bpp);
needs_recompute = true;
pipe_config->bw_constrained = true;
goto retry;
}
if (needs_recompute)
return RETRY;
return setup_ok ? 0 : -EINVAL;
}
static void hsw_compute_ips_config(struct intel_crtc *crtc,
struct intel_crtc_config *pipe_config)
{
pipe_config->ips_enabled = i915.enable_ips &&
hsw_crtc_supports_ips(crtc) &&
pipe_config->pipe_bpp <= 24;
}
static int intel_crtc_compute_config(struct intel_crtc *crtc,
struct intel_crtc_config *pipe_config)
{
struct drm_device *dev = crtc->base.dev;
struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
/* FIXME should check pixel clock limits on all platforms */
if (INTEL_INFO(dev)->gen < 4) {
struct drm_i915_private *dev_priv = dev->dev_private;
int clock_limit =
dev_priv->display.get_display_clock_speed(dev);
/*
* Enable pixel doubling when the dot clock
* is > 90% of the (display) core speed.
*
* GDG double wide on either pipe,
* otherwise pipe A only.
*/
if ((crtc->pipe == PIPE_A || IS_I915G(dev)) &&
adjusted_mode->crtc_clock > clock_limit * 9 / 10) {
clock_limit *= 2;
pipe_config->double_wide = true;
}
if (adjusted_mode->crtc_clock > clock_limit * 9 / 10)
return -EINVAL;
}
/*
* Pipe horizontal size must be even in:
* - DVO ganged mode
* - LVDS dual channel mode
* - Double wide pipe
*/
if ((intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
intel_is_dual_link_lvds(dev)) || pipe_config->double_wide)
pipe_config->pipe_src_w &= ~1;
/* Cantiga+ cannot handle modes with a hsync front porch of 0.
* WaPruneModeWithIncorrectHsyncOffset:ctg,elk,ilk,snb,ivb,vlv,hsw.
*/
if ((INTEL_INFO(dev)->gen > 4 || IS_G4X(dev)) &&
adjusted_mode->hsync_start == adjusted_mode->hdisplay)
return -EINVAL;
if ((IS_G4X(dev) || IS_VALLEYVIEW(dev)) && pipe_config->pipe_bpp > 10*3) {
pipe_config->pipe_bpp = 10*3; /* 12bpc is gen5+ */
} else if (INTEL_INFO(dev)->gen <= 4 && pipe_config->pipe_bpp > 8*3) {
/* only a 8bpc pipe, with 6bpc dither through the panel fitter
* for lvds. */
pipe_config->pipe_bpp = 8*3;
}
if (HAS_IPS(dev))
hsw_compute_ips_config(crtc, pipe_config);
/*
* XXX: PCH/WRPLL clock sharing is done in ->mode_set, so make sure the
* old clock survives for now.
*/
if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev) || HAS_DDI(dev))
pipe_config->shared_dpll = crtc->config.shared_dpll;
if (pipe_config->has_pch_encoder)
return ironlake_fdi_compute_config(crtc, pipe_config);
return 0;
}
static int valleyview_get_display_clock_speed(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
int vco = valleyview_get_vco(dev_priv);
u32 val;
int divider;
/* FIXME: Punit isn't quite ready yet */
if (IS_CHERRYVIEW(dev))
return 400000;
mutex_lock(&dev_priv->dpio_lock);
val = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL);
mutex_unlock(&dev_priv->dpio_lock);
divider = val & DISPLAY_FREQUENCY_VALUES;
WARN((val & DISPLAY_FREQUENCY_STATUS) !=
(divider << DISPLAY_FREQUENCY_STATUS_SHIFT),
"cdclk change in progress\n");
return DIV_ROUND_CLOSEST(vco << 1, divider + 1);
}
static int i945_get_display_clock_speed(struct drm_device *dev)
{
return 400000;
}
static int i915_get_display_clock_speed(struct drm_device *dev)
{
return 333000;
}
static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
{
return 200000;
}
static int pnv_get_display_clock_speed(struct drm_device *dev)
{
u16 gcfgc = 0;
pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
case GC_DISPLAY_CLOCK_267_MHZ_PNV:
return 267000;
case GC_DISPLAY_CLOCK_333_MHZ_PNV:
return 333000;
case GC_DISPLAY_CLOCK_444_MHZ_PNV:
return 444000;
case GC_DISPLAY_CLOCK_200_MHZ_PNV:
return 200000;
default:
DRM_ERROR("Unknown pnv display core clock 0x%04x\n", gcfgc);
case GC_DISPLAY_CLOCK_133_MHZ_PNV:
return 133000;
case GC_DISPLAY_CLOCK_167_MHZ_PNV:
return 167000;
}
}
static int i915gm_get_display_clock_speed(struct drm_device *dev)
{
u16 gcfgc = 0;
pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
return 133000;
else {
switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
case GC_DISPLAY_CLOCK_333_MHZ:
return 333000;
default:
case GC_DISPLAY_CLOCK_190_200_MHZ:
return 190000;
}
}
}
static int i865_get_display_clock_speed(struct drm_device *dev)
{
return 266000;
}
static int i855_get_display_clock_speed(struct drm_device *dev)
{
u16 hpllcc = 0;
/* Assume that the hardware is in the high speed state. This
* should be the default.
*/
switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
case GC_CLOCK_133_200:
case GC_CLOCK_100_200:
return 200000;
case GC_CLOCK_166_250:
return 250000;
case GC_CLOCK_100_133:
return 133000;
}
/* Shouldn't happen */
return 0;
}
static int i830_get_display_clock_speed(struct drm_device *dev)
{
return 133000;
}
static void
intel_reduce_m_n_ratio(uint32_t *num, uint32_t *den)
{
while (*num > DATA_LINK_M_N_MASK ||
*den > DATA_LINK_M_N_MASK) {
*num >>= 1;
*den >>= 1;
}
}
static void compute_m_n(unsigned int m, unsigned int n,
uint32_t *ret_m, uint32_t *ret_n)
{
*ret_n = min_t(unsigned int, roundup_pow_of_two(n), DATA_LINK_N_MAX);
*ret_m = div_u64((uint64_t) m * *ret_n, n);
intel_reduce_m_n_ratio(ret_m, ret_n);
}
void
intel_link_compute_m_n(int bits_per_pixel, int nlanes,
int pixel_clock, int link_clock,
struct intel_link_m_n *m_n)
{
m_n->tu = 64;
compute_m_n(bits_per_pixel * pixel_clock,
link_clock * nlanes * 8,
&m_n->gmch_m, &m_n->gmch_n);
compute_m_n(pixel_clock, link_clock,
&m_n->link_m, &m_n->link_n);
}
static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
{
if (i915.panel_use_ssc >= 0)
return i915.panel_use_ssc != 0;
return dev_priv->vbt.lvds_use_ssc
&& !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
}
static int i9xx_get_refclk(struct intel_crtc *crtc, int num_connectors)
{
struct drm_device *dev = crtc->base.dev;
struct drm_i915_private *dev_priv = dev->dev_private;
int refclk;
if (IS_VALLEYVIEW(dev)) {
refclk = 100000;
} else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
refclk = dev_priv->vbt.lvds_ssc_freq;
DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
} else if (!IS_GEN2(dev)) {
refclk = 96000;
} else {
refclk = 48000;
}
return refclk;
}
static uint32_t pnv_dpll_compute_fp(struct dpll *dpll)
{
return (1 << dpll->n) << 16 | dpll->m2;
}
static uint32_t i9xx_dpll_compute_fp(struct dpll *dpll)
{
return dpll->n << 16 | dpll->m1 << 8 | dpll->m2;
}
static void i9xx_update_pll_dividers(struct intel_crtc *crtc,
intel_clock_t *reduced_clock)
{
struct drm_device *dev = crtc->base.dev;
u32 fp, fp2 = 0;
if (IS_PINEVIEW(dev)) {
fp = pnv_dpll_compute_fp(&crtc->config.dpll);
if (reduced_clock)
fp2 = pnv_dpll_compute_fp(reduced_clock);
} else {
fp = i9xx_dpll_compute_fp(&crtc->config.dpll);
if (reduced_clock)
fp2 = i9xx_dpll_compute_fp(reduced_clock);
}
crtc->config.dpll_hw_state.fp0 = fp;
crtc->lowfreq_avail = false;
if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
reduced_clock && i915.powersave) {
crtc->config.dpll_hw_state.fp1 = fp2;
crtc->lowfreq_avail = true;
} else {
crtc->config.dpll_hw_state.fp1 = fp;
}
}
static void vlv_pllb_recal_opamp(struct drm_i915_private *dev_priv, enum pipe
pipe)
{
u32 reg_val;
/*
* PLLB opamp always calibrates to max value of 0x3f, force enable it
* and set it to a reasonable value instead.
*/
reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
reg_val &= 0xffffff00;
reg_val |= 0x00000030;
vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
reg_val &= 0x8cffffff;
reg_val = 0x8c000000;
vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
reg_val &= 0xffffff00;
vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
reg_val &= 0x00ffffff;
reg_val |= 0xb0000000;
vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
}
static void intel_pch_transcoder_set_m_n(struct intel_crtc *crtc,
struct intel_link_m_n *m_n)
{
struct drm_device *dev = crtc->base.dev;
struct drm_i915_private *dev_priv = dev->dev_private;
int pipe = crtc->pipe;
I915_WRITE(PCH_TRANS_DATA_M1(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
I915_WRITE(PCH_TRANS_DATA_N1(pipe), m_n->gmch_n);
I915_WRITE(PCH_TRANS_LINK_M1(pipe), m_n->link_m);
I915_WRITE(PCH_TRANS_LINK_N1(pipe), m_n->link_n);
}
static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
struct intel_link_m_n *m_n,
struct intel_link_m_n *m2_n2)
{
struct drm_device *dev = crtc->base.dev;
struct drm_i915_private *dev_priv = dev->dev_private;
int pipe = crtc->pipe;
enum transcoder transcoder = crtc->config.cpu_transcoder;
if (INTEL_INFO(dev)->gen >= 5) {
I915_WRITE(PIPE_DATA_M1(transcoder), TU_SIZE(m_n->tu) | m_n->gmch_m);
I915_WRITE(PIPE_DATA_N1(transcoder), m_n->gmch_n);
I915_WRITE(PIPE_LINK_M1(transcoder), m_n->link_m);
I915_WRITE(PIPE_LINK_N1(transcoder), m_n->link_n);
/* M2_N2 registers to be set only for gen < 8 (M2_N2 available
* for gen < 8) and if DRRS is supported (to make sure the
* registers are not unnecessarily accessed).
*/
if (m2_n2 && INTEL_INFO(dev)->gen < 8 &&
crtc->config.has_drrs) {
I915_WRITE(PIPE_DATA_M2(transcoder),
TU_SIZE(m2_n2->tu) | m2_n2->gmch_m);
I915_WRITE(PIPE_DATA_N2(transcoder), m2_n2->gmch_n);
I915_WRITE(PIPE_LINK_M2(transcoder), m2_n2->link_m);
I915_WRITE(PIPE_LINK_N2(transcoder), m2_n2->link_n);
}
} else {
I915_WRITE(PIPE_DATA_M_G4X(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
I915_WRITE(PIPE_DATA_N_G4X(pipe), m_n->gmch_n);
I915_WRITE(PIPE_LINK_M_G4X(pipe), m_n->link_m);
I915_WRITE(PIPE_LINK_N_G4X(pipe), m_n->link_n);
}
}
void intel_dp_set_m_n(struct intel_crtc *crtc)
{
if (crtc->config.has_pch_encoder)
intel_pch_transcoder_set_m_n(crtc, &crtc->config.dp_m_n);
else
intel_cpu_transcoder_set_m_n(crtc, &crtc->config.dp_m_n,
&crtc->config.dp_m2_n2);
}
static void vlv_update_pll(struct intel_crtc *crtc)
{
u32 dpll, dpll_md;
/*
* Enable DPIO clock input. We should never disable the reference
* clock for pipe B, since VGA hotplug / manual detection depends
* on it.
*/
dpll = DPLL_EXT_BUFFER_ENABLE_VLV | DPLL_REFA_CLK_ENABLE_VLV |
DPLL_VGA_MODE_DIS | DPLL_INTEGRATED_CLOCK_VLV;
/* We should never disable this, set it here for state tracking */
if (crtc->pipe == PIPE_B)
dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
dpll |= DPLL_VCO_ENABLE;
crtc->config.dpll_hw_state.dpll = dpll;
dpll_md = (crtc->config.pixel_multiplier - 1)
<< DPLL_MD_UDI_MULTIPLIER_SHIFT;
crtc->config.dpll_hw_state.dpll_md = dpll_md;
}
static void vlv_prepare_pll(struct intel_crtc *crtc)
{
struct drm_device *dev = crtc->base.dev;
struct drm_i915_private *dev_priv = dev->dev_private;
int pipe = crtc->pipe;
u32 mdiv;
u32 bestn, bestm1, bestm2, bestp1, bestp2;
u32 coreclk, reg_val;
mutex_lock(&dev_priv->dpio_lock);
bestn = crtc->config.dpll.n;
bestm1 = crtc->config.dpll.m1;
bestm2 = crtc->config.dpll.m2;
bestp1 = crtc->config.dpll.p1;
bestp2 = crtc->config.dpll.p2;
/* See eDP HDMI DPIO driver vbios notes doc */
/* PLL B needs special handling */
if (pipe == PIPE_B)
vlv_pllb_recal_opamp(dev_priv, pipe);
/* Set up Tx target for periodic Rcomp update */
vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9_BCAST, 0x0100000f);
/* Disable target IRef on PLL */
reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW8(pipe));
reg_val &= 0x00ffffff;
vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW8(pipe), reg_val);
/* Disable fast lock */
vlv_dpio_write(dev_priv, pipe, VLV_CMN_DW0, 0x610);
/* Set idtafcrecal before PLL is enabled */
mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
mdiv |= ((bestn << DPIO_N_SHIFT));
mdiv |= (1 << DPIO_K_SHIFT);
/*
* Post divider depends on pixel clock rate, DAC vs digital (and LVDS,
* but we don't support that).
* Note: don't use the DAC post divider as it seems unstable.
*/
mdiv |= (DPIO_POST_DIV_HDMIDP << DPIO_POST_DIV_SHIFT);
vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
mdiv |= DPIO_ENABLE_CALIBRATION;
vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
/* Set HBR and RBR LPF coefficients */
if (crtc->config.port_clock == 162000 ||
intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG) ||
intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI))
vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
0x009f0003);
else
vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
0x00d0000f);
if (intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP) ||
intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
/* Use SSC source */
if (pipe == PIPE_A)
vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
0x0df40000);
else
vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
0x0df70000);
} else { /* HDMI or VGA */
/* Use bend source */
if (pipe == PIPE_A)
vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
0x0df70000);
else
vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
0x0df40000);
}
coreclk = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW7(pipe));
coreclk = (coreclk & 0x0000ff00) | 0x01c00000;
if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))
coreclk |= 0x01000000;
vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW7(pipe), coreclk);
vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW11(pipe), 0x87871000);
mutex_unlock(&dev_priv->dpio_lock);
}
static void chv_update_pll(struct intel_crtc *crtc)
{
crtc->config.dpll_hw_state.dpll = DPLL_SSC_REF_CLOCK_CHV |
DPLL_REFA_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS |
DPLL_VCO_ENABLE;
if (crtc->pipe != PIPE_A)
crtc->config.dpll_hw_state.dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
crtc->config.dpll_hw_state.dpll_md =
(crtc->config.pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
}
static void chv_prepare_pll(struct intel_crtc *crtc)
{
struct drm_device *dev = crtc->base.dev;
struct drm_i915_private *dev_priv = dev->dev_private;
int pipe = crtc->pipe;
int dpll_reg = DPLL(crtc->pipe);
enum dpio_channel port = vlv_pipe_to_channel(pipe);
u32 loopfilter, intcoeff;
u32 bestn, bestm1, bestm2, bestp1, bestp2, bestm2_frac;
int refclk;
bestn = crtc->config.dpll.n;
bestm2_frac = crtc->config.dpll.m2 & 0x3fffff;
bestm1 = crtc->config.dpll.m1;
bestm2 = crtc->config.dpll.m2 >> 22;
bestp1 = crtc->config.dpll.p1;
bestp2 = crtc->config.dpll.p2;
/*
* Enable Refclk and SSC
*/
I915_WRITE(dpll_reg,
crtc->config.dpll_hw_state.dpll & ~DPLL_VCO_ENABLE);
mutex_lock(&dev_priv->dpio_lock);
/* p1 and p2 divider */
vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW13(port),
5 << DPIO_CHV_S1_DIV_SHIFT |
bestp1 << DPIO_CHV_P1_DIV_SHIFT |
bestp2 << DPIO_CHV_P2_DIV_SHIFT |
1 << DPIO_CHV_K_DIV_SHIFT);
/* Feedback post-divider - m2 */
vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW0(port), bestm2);
/* Feedback refclk divider - n and m1 */
vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW1(port),
DPIO_CHV_M1_DIV_BY_2 |
1 << DPIO_CHV_N_DIV_SHIFT);
/* M2 fraction division */
vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW2(port), bestm2_frac);
/* M2 fraction division enable */
vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW3(port),
DPIO_CHV_FRAC_DIV_EN |
(2 << DPIO_CHV_FEEDFWD_GAIN_SHIFT));
/* Loop filter */
refclk = i9xx_get_refclk(crtc, 0);
loopfilter = 5 << DPIO_CHV_PROP_COEFF_SHIFT |
2 << DPIO_CHV_GAIN_CTRL_SHIFT;
if (refclk == 100000)
intcoeff = 11;
else if (refclk == 38400)
intcoeff = 10;
else
intcoeff = 9;
loopfilter |= intcoeff << DPIO_CHV_INT_COEFF_SHIFT;
vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW6(port), loopfilter);
/* AFC Recal */
vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port),
vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port)) |
DPIO_AFC_RECAL);
mutex_unlock(&dev_priv->dpio_lock);
}
static void i9xx_update_pll(struct intel_crtc *crtc,
intel_clock_t *reduced_clock,
int num_connectors)
{
struct drm_device *dev = crtc->base.dev;
struct drm_i915_private *dev_priv = dev->dev_private;
u32 dpll;
bool is_sdvo;
struct dpll *clock = &crtc->config.dpll;
i9xx_update_pll_dividers(crtc, reduced_clock);
is_sdvo = intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO) ||
intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI);
dpll = DPLL_VGA_MODE_DIS;
if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
dpll |= DPLLB_MODE_LVDS;
else
dpll |= DPLLB_MODE_DAC_SERIAL;
if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
dpll |= (crtc->config.pixel_multiplier - 1)
<< SDVO_MULTIPLIER_SHIFT_HIRES;
}
if (is_sdvo)
dpll |= DPLL_SDVO_HIGH_SPEED;
if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT))
dpll |= DPLL_SDVO_HIGH_SPEED;
/* compute bitmask from p1 value */
if (IS_PINEVIEW(dev))
dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
else {
dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
if (IS_G4X(dev) && reduced_clock)
dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
}
switch (clock->p2) {
case 5:
dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
break;
case 7:
dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
break;
case 10:
dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
break;
case 14:
dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
break;
}
if (INTEL_INFO(dev)->gen >= 4)
dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
if (crtc->config.sdvo_tv_clock)
dpll |= PLL_REF_INPUT_TVCLKINBC;
else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
intel_panel_use_ssc(dev_priv) && num_connectors < 2)
dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
else
dpll |= PLL_REF_INPUT_DREFCLK;
dpll |= DPLL_VCO_ENABLE;
crtc->config.dpll_hw_state.dpll = dpll;
if (INTEL_INFO(dev)->gen >= 4) {
u32 dpll_md = (crtc->config.pixel_multiplier - 1)
<< DPLL_MD_UDI_MULTIPLIER_SHIFT;
crtc->config.dpll_hw_state.dpll_md = dpll_md;
}
}
static void i8xx_update_pll(struct intel_crtc *crtc,
intel_clock_t *reduced_clock,
int num_connectors)
{
struct drm_device *dev = crtc->base.dev;
struct drm_i915_private *dev_priv = dev->dev_private;
u32 dpll;
struct dpll *clock = &crtc->config.dpll;
i9xx_update_pll_dividers(crtc, reduced_clock);
dpll = DPLL_VGA_MODE_DIS;
if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
} else {
if (clock->p1 == 2)
dpll |= PLL_P1_DIVIDE_BY_TWO;
else
dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
if (clock->p2 == 4)
dpll |= PLL_P2_DIVIDE_BY_4;
}
if (!IS_I830(dev) && intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO))
dpll |= DPLL_DVO_2X_MODE;
if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
intel_panel_use_ssc(dev_priv) && num_connectors < 2)
dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
else
dpll |= PLL_REF_INPUT_DREFCLK;
dpll |= DPLL_VCO_ENABLE;
crtc->config.dpll_hw_state.dpll = dpll;
}
static void intel_set_pipe_timings(struct intel_crtc *intel_crtc)
{
struct drm_device *dev = intel_crtc->base.dev;
struct drm_i915_private *dev_priv = dev->dev_private;
enum pipe pipe = intel_crtc->pipe;
enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
struct drm_display_mode *adjusted_mode =
&intel_crtc->config.adjusted_mode;
uint32_t crtc_vtotal, crtc_vblank_end;
int vsyncshift = 0;
/* We need to be careful not to changed the adjusted mode, for otherwise
* the hw state checker will get angry at the mismatch. */
crtc_vtotal = adjusted_mode->crtc_vtotal;
crtc_vblank_end = adjusted_mode->crtc_vblank_end;
if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
/* the chip adds 2 halflines automatically */
crtc_vtotal -= 1;
crtc_vblank_end -= 1;
if (intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
vsyncshift = (adjusted_mode->crtc_htotal - 1) / 2;
else
vsyncshift = adjusted_mode->crtc_hsync_start -
adjusted_mode->crtc_htotal / 2;
if (vsyncshift < 0)
vsyncshift += adjusted_mode->crtc_htotal;
}
if (INTEL_INFO(dev)->gen > 3)
I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift);
I915_WRITE(HTOTAL(cpu_transcoder),
(adjusted_mode->crtc_hdisplay - 1) |
((adjusted_mode->crtc_htotal - 1) << 16));
I915_WRITE(HBLANK(cpu_transcoder),
(adjusted_mode->crtc_hblank_start - 1) |
((adjusted_mode->crtc_hblank_end - 1) << 16));
I915_WRITE(HSYNC(cpu_transcoder),
(adjusted_mode->crtc_hsync_start - 1) |
((adjusted_mode->crtc_hsync_end - 1) << 16));
I915_WRITE(VTOTAL(cpu_transcoder),
(adjusted_mode->crtc_vdisplay - 1) |
((crtc_vtotal - 1) << 16));
I915_WRITE(VBLANK(cpu_transcoder),
(adjusted_mode->crtc_vblank_start - 1) |
((crtc_vblank_end - 1) << 16));
I915_WRITE(VSYNC(cpu_transcoder),
(adjusted_mode->crtc_vsync_start - 1) |
((adjusted_mode->crtc_vsync_end - 1) << 16));
/* Workaround: when the EDP input selection is B, the VTOTAL_B must be
* programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
* documented on the DDI_FUNC_CTL register description, EDP Input Select
* bits. */
if (IS_HASWELL(dev) && cpu_transcoder == TRANSCODER_EDP &&
(pipe == PIPE_B || pipe == PIPE_C))
I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder)));
/* pipesrc controls the size that is scaled from, which should
* always be the user's requested size.
*/
I915_WRITE(PIPESRC(pipe),
((intel_crtc->config.pipe_src_w - 1) << 16) |
(intel_crtc->config.pipe_src_h - 1));
}
static void intel_get_pipe_timings(struct intel_crtc *crtc,
struct intel_crtc_config *pipe_config)
{
struct drm_device *dev = crtc->base.dev;
struct drm_i915_private *dev_priv = dev->dev_private;
enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
uint32_t tmp;
tmp = I915_READ(HTOTAL(cpu_transcoder));
pipe_config->adjusted_mode.crtc_hdisplay = (tmp & 0xffff) + 1;
pipe_config->adjusted_mode.crtc_htotal = ((tmp >> 16) & 0xffff) + 1;
tmp = I915_READ(HBLANK(cpu_transcoder));
pipe_config->adjusted_mode.crtc_hblank_start = (tmp & 0xffff) + 1;
pipe_config->adjusted_mode.crtc_hblank_end = ((tmp >> 16) & 0xffff) + 1;
tmp = I915_READ(HSYNC(cpu_transcoder));
pipe_config->adjusted_mode.crtc_hsync_start = (tmp & 0xffff) + 1;
pipe_config->adjusted_mode.crtc_hsync_end = ((tmp >> 16) & 0xffff) + 1;
tmp = I915_READ(VTOTAL(cpu_transcoder));
pipe_config->adjusted_mode.crtc_vdisplay = (tmp & 0xffff) + 1;
pipe_config->adjusted_mode.crtc_vtotal = ((tmp >> 16) & 0xffff) + 1;
tmp = I915_READ(VBLANK(cpu_transcoder));
pipe_config->adjusted_mode.crtc_vblank_start = (tmp & 0xffff) + 1;
pipe_config->adjusted_mode.crtc_vblank_end = ((tmp >> 16) & 0xffff) + 1;
tmp = I915_READ(VSYNC(cpu_transcoder));
pipe_config->adjusted_mode.crtc_vsync_start = (tmp & 0xffff) + 1;
pipe_config->adjusted_mode.crtc_vsync_end = ((tmp >> 16) & 0xffff) + 1;
if (I915_READ(PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK) {
pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_INTERLACE;
pipe_config->adjusted_mode.crtc_vtotal += 1;
pipe_config->adjusted_mode.crtc_vblank_end += 1;
}
tmp = I915_READ(PIPESRC(crtc->pipe));
pipe_config->pipe_src_h = (tmp & 0xffff) + 1;
pipe_config->pipe_src_w = ((tmp >> 16) & 0xffff) + 1;
pipe_config->requested_mode.vdisplay = pipe_config->pipe_src_h;
pipe_config->requested_mode.hdisplay = pipe_config->pipe_src_w;
}
void intel_mode_from_pipe_config(struct drm_display_mode *mode,
struct intel_crtc_config *pipe_config)
{
mode->hdisplay = pipe_config->adjusted_mode.crtc_hdisplay;
mode->htotal = pipe_config->adjusted_mode.crtc_htotal;
mode->hsync_start = pipe_config->adjusted_mode.crtc_hsync_start;
mode->hsync_end = pipe_config->adjusted_mode.crtc_hsync_end;
mode->vdisplay = pipe_config->adjusted_mode.crtc_vdisplay;
mode->vtotal = pipe_config->adjusted_mode.crtc_vtotal;
mode->vsync_start = pipe_config->adjusted_mode.crtc_vsync_start;
mode->vsync_end = pipe_config->adjusted_mode.crtc_vsync_end;
mode->flags = pipe_config->adjusted_mode.flags;
mode->clock = pipe_config->adjusted_mode.crtc_clock;
mode->flags |= pipe_config->adjusted_mode.flags;
}
static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc)
{
struct drm_device *dev = intel_crtc->base.dev;
struct drm_i915_private *dev_priv = dev->dev_private;
uint32_t pipeconf;
pipeconf = 0;
if ((intel_crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
(intel_crtc->pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
pipeconf |= I915_READ(PIPECONF(intel_crtc->pipe)) & PIPECONF_ENABLE;
if (intel_crtc->config.double_wide)
pipeconf |= PIPECONF_DOUBLE_WIDE;
/* only g4x and later have fancy bpc/dither controls */
if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
/* Bspec claims that we can't use dithering for 30bpp pipes. */
if (intel_crtc->config.dither && intel_crtc->config.pipe_bpp != 30)
pipeconf |= PIPECONF_DITHER_EN |
PIPECONF_DITHER_TYPE_SP;
switch (intel_crtc->config.pipe_bpp) {
case 18:
pipeconf |= PIPECONF_6BPC;
break;
case 24:
pipeconf |= PIPECONF_8BPC;
break;
case 30:
pipeconf |= PIPECONF_10BPC;
break;
default:
/* Case prevented by intel_choose_pipe_bpp_dither. */
BUG();
}
}
if (HAS_PIPE_CXSR(dev)) {
if (intel_crtc->lowfreq_avail) {
DRM_DEBUG_KMS("enabling CxSR downclocking\n");
pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
} else {
DRM_DEBUG_KMS("disabling CxSR downclocking\n");
}
}
if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) {
if (INTEL_INFO(dev)->gen < 4 ||
intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
else
pipeconf |= PIPECONF_INTERLACE_W_SYNC_SHIFT;
} else
pipeconf |= PIPECONF_PROGRESSIVE;
if (IS_VALLEYVIEW(dev) && intel_crtc->config.limited_color_range)
pipeconf |= PIPECONF_COLOR_RANGE_SELECT;
I915_WRITE(PIPECONF(intel_crtc->pipe), pipeconf);
POSTING_READ(PIPECONF(intel_crtc->pipe));
}
static int i9xx_crtc_mode_set(struct intel_crtc *crtc,
int x, int y,
struct drm_framebuffer *fb)
{
struct drm_device *dev = crtc->base.dev;
struct drm_i915_private *dev_priv = dev->dev_private;
int refclk, num_connectors = 0;
intel_clock_t clock, reduced_clock;
bool ok, has_reduced_clock = false;
bool is_lvds = false, is_dsi = false;
struct intel_encoder *encoder;
const intel_limit_t *limit;
for_each_encoder_on_crtc(dev, &crtc->base, encoder) {
switch (encoder->type) {
case INTEL_OUTPUT_LVDS:
is_lvds = true;
break;
case INTEL_OUTPUT_DSI:
is_dsi = true;
break;
}
num_connectors++;
}
if (is_dsi)
return 0;
if (!crtc->config.clock_set) {
refclk = i9xx_get_refclk(crtc, num_connectors);
/*
* Returns a set of divisors for the desired target clock with
* the given refclk, or FALSE. The returned values represent
* the clock equation: reflck * (5 * (m1 + 2) + (m2 + 2)) / (n +
* 2) / p1 / p2.
*/
limit = intel_limit(crtc, refclk);
ok = dev_priv->display.find_dpll(limit, crtc,
crtc->config.port_clock,
refclk, NULL, &clock);
if (!ok) {
DRM_ERROR("Couldn't find PLL settings for mode!\n");
return -EINVAL;
}
if (is_lvds && dev_priv->lvds_downclock_avail) {
/*
* Ensure we match the reduced clock's P to the target
* clock. If the clocks don't match, we can't switch
* the display clock by using the FP0/FP1. In such case
* we will disable the LVDS downclock feature.
*/
has_reduced_clock =
dev_priv->display.find_dpll(limit, crtc,
dev_priv->lvds_downclock,
refclk, &clock,
&reduced_clock);
}
/* Compat-code for transition, will disappear. */
crtc->config.dpll.n = clock.n;
crtc->config.dpll.m1 = clock.m1;
crtc->config.dpll.m2 = clock.m2;
crtc->config.dpll.p1 = clock.p1;
crtc->config.dpll.p2 = clock.p2;
}
if (IS_GEN2(dev)) {
i8xx_update_pll(crtc,
has_reduced_clock ? &reduced_clock : NULL,
num_connectors);
} else if (IS_CHERRYVIEW(dev)) {
chv_update_pll(crtc);
} else if (IS_VALLEYVIEW(dev)) {
vlv_update_pll(crtc);
} else {
i9xx_update_pll(crtc,
has_reduced_clock ? &reduced_clock : NULL,
num_connectors);
}
return 0;
}
static void i9xx_get_pfit_config(struct intel_crtc *crtc,
struct intel_crtc_config *pipe_config)
{
struct drm_device *dev = crtc->base.dev;
struct drm_i915_private *dev_priv = dev->dev_private;
uint32_t tmp;
if (INTEL_INFO(dev)->gen <= 3 && (IS_I830(dev) || !IS_MOBILE(dev)))
return;
tmp = I915_READ(PFIT_CONTROL);
if (!(tmp & PFIT_ENABLE))
return;
/* Check whether the pfit is attached to our pipe. */
if (INTEL_INFO(dev)->gen < 4) {
if (crtc->pipe != PIPE_B)
return;
} else {
if ((tmp & PFIT_PIPE_MASK) != (crtc->pipe << PFIT_PIPE_SHIFT))
return;
}
pipe_config->gmch_pfit.control = tmp;
pipe_config->gmch_pfit.pgm_ratios = I915_READ(PFIT_PGM_RATIOS);
if (INTEL_INFO(dev)->gen < 5)
pipe_config->gmch_pfit.lvds_border_bits =
I915_READ(LVDS) & LVDS_BORDER_ENABLE;
}
static void vlv_crtc_clock_get(struct intel_crtc *crtc,
struct intel_crtc_config *pipe_config)
{
struct drm_device *dev = crtc->base.dev;
struct drm_i915_private *dev_priv = dev->dev_private;
int pipe = pipe_config->cpu_transcoder;
intel_clock_t clock;
u32 mdiv;
int refclk = 100000;
/* In case of MIPI DPLL will not even be used */
if (!(pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE))
return;
mutex_lock(&dev_priv->dpio_lock);
mdiv = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW3(pipe));
mutex_unlock(&dev_priv->dpio_lock);
clock.m1 = (mdiv >> DPIO_M1DIV_SHIFT) & 7;
clock.m2 = mdiv & DPIO_M2DIV_MASK;
clock.n = (mdiv >> DPIO_N_SHIFT) & 0xf;
clock.p1 = (mdiv >> DPIO_P1_SHIFT) & 7;
clock.p2 = (mdiv >> DPIO_P2_SHIFT) & 0x1f;
vlv_clock(refclk, &clock);
/* clock.dot is the fast clock */
pipe_config->port_clock = clock.dot / 5;
}
static void i9xx_get_plane_config(struct intel_crtc *crtc,
struct intel_plane_config *plane_config)
{
struct drm_device *dev = crtc->base.dev;
struct drm_i915_private *dev_priv = dev->dev_private;
u32 val, base, offset;
int pipe = crtc->pipe, plane = crtc->plane;
int fourcc, pixel_format;
int aligned_height;
crtc->base.primary->fb = kzalloc(sizeof(struct intel_framebuffer), GFP_KERNEL);
if (!crtc->base.primary->fb) {
DRM_DEBUG_KMS("failed to alloc fb\n");
return;
}
val = I915_READ(DSPCNTR(plane));
if (INTEL_INFO(dev)->gen >= 4)
if (val & DISPPLANE_TILED)
plane_config->tiled = true;
pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
fourcc = intel_format_to_fourcc(pixel_format);
crtc->base.primary->fb->pixel_format = fourcc;
crtc->base.primary->fb->bits_per_pixel =
drm_format_plane_cpp(fourcc, 0) * 8;
if (INTEL_INFO(dev)->gen >= 4) {
if (plane_config->tiled)
offset = I915_READ(DSPTILEOFF(plane));
else
offset = I915_READ(DSPLINOFF(plane));
base = I915_READ(DSPSURF(plane)) & 0xfffff000;
} else {
base = I915_READ(DSPADDR(plane));
}
plane_config->base = base;
val = I915_READ(PIPESRC(pipe));
crtc->base.primary->fb->width = ((val >> 16) & 0xfff) + 1;
crtc->base.primary->fb->height = ((val >> 0) & 0xfff) + 1;
val = I915_READ(DSPSTRIDE(pipe));
crtc->base.primary->fb->pitches[0] = val & 0xffffffc0;
aligned_height = intel_align_height(dev, crtc->base.primary->fb->height,
plane_config->tiled);
plane_config->size = PAGE_ALIGN(crtc->base.primary->fb->pitches[0] *
aligned_height);
DRM_DEBUG_KMS("pipe/plane %d/%d with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
pipe, plane, crtc->base.primary->fb->width,
crtc->base.primary->fb->height,
crtc->base.primary->fb->bits_per_pixel, base,
crtc->base.primary->fb->pitches[0],
plane_config->size);
}
static void chv_crtc_clock_get(struct intel_crtc *crtc,
struct intel_crtc_config *pipe_config)
{
struct drm_device *dev = crtc->base.dev;
struct drm_i915_private *dev_priv = dev->dev_private;
int pipe = pipe_config->cpu_transcoder;
enum dpio_channel port = vlv_pipe_to_channel(pipe);
intel_clock_t clock;
u32 cmn_dw13, pll_dw0, pll_dw1, pll_dw2;
int refclk = 100000;
mutex_lock(&dev_priv->dpio_lock);
cmn_dw13 = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW13(port));
pll_dw0 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW0(port));
pll_dw1 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW1(port));
pll_dw2 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW2(port));
mutex_unlock(&dev_priv->dpio_lock);
clock.m1 = (pll_dw1 & 0x7) == DPIO_CHV_M1_DIV_BY_2 ? 2 : 0;
clock.m2 = ((pll_dw0 & 0xff) << 22) | (pll_dw2 & 0x3fffff);
clock.n = (pll_dw1 >> DPIO_CHV_N_DIV_SHIFT) & 0xf;
clock.p1 = (cmn_dw13 >> DPIO_CHV_P1_DIV_SHIFT) & 0x7;
clock.p2 = (cmn_dw13 >> DPIO_CHV_P2_DIV_SHIFT) & 0x1f;
chv_clock(refclk, &clock);
/* clock.dot is the fast clock */
pipe_config->port_clock = clock.dot / 5;
}
static bool i9xx_get_pipe_config(struct intel_crtc *crtc,
struct intel_crtc_config *pipe_config)
{
struct drm_device *dev = crtc->base.dev;
struct drm_i915_private *dev_priv = dev->dev_private;
uint32_t tmp;
if (!intel_display_power_is_enabled(dev_priv,
POWER_DOMAIN_PIPE(crtc->pipe)))
return false;
pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
pipe_config->shared_dpll = DPLL_ID_PRIVATE;
tmp = I915_READ(PIPECONF(crtc->pipe));
if (!(tmp & PIPECONF_ENABLE))
return false;
if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
switch (tmp & PIPECONF_BPC_MASK) {
case PIPECONF_6BPC:
pipe_config->pipe_bpp = 18;
break;
case PIPECONF_8BPC:
pipe_config->pipe_bpp = 24;
break;
case PIPECONF_10BPC:
pipe_config->pipe_bpp = 30;
break;
default:
break;
}
}
if (IS_VALLEYVIEW(dev) && (tmp & PIPECONF_COLOR_RANGE_SELECT))
pipe_config->limited_color_range = true;
if (INTEL_INFO(dev)->gen < 4)
pipe_config->double_wide = tmp & PIPECONF_DOUBLE_WIDE;
intel_get_pipe_timings(crtc, pipe_config);
i9xx_get_pfit_config(crtc, pipe_config);
if (INTEL_INFO(dev)->gen >= 4) {
tmp = I915_READ(DPLL_MD(crtc->pipe));
pipe_config->pixel_multiplier =
((tmp & DPLL_MD_UDI_MULTIPLIER_MASK)
>> DPLL_MD_UDI_MULTIPLIER_SHIFT) + 1;
pipe_config->dpll_hw_state.dpll_md = tmp;
} else if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
tmp = I915_READ(DPLL(crtc->pipe));
pipe_config->pixel_multiplier =
((tmp & SDVO_MULTIPLIER_MASK)
>> SDVO_MULTIPLIER_SHIFT_HIRES) + 1;
} else {
/* Note that on i915G/GM the pixel multiplier is in the sdvo
* port and will be fixed up in the encoder->get_config
* function. */
pipe_config->pixel_multiplier = 1;
}
pipe_config->dpll_hw_state.dpll = I915_READ(DPLL(crtc->pipe));
if (!IS_VALLEYVIEW(dev)) {
/*
* DPLL_DVO_2X_MODE must be enabled for both DPLLs
* on 830. Filter it out here so that we don't
* report errors due to that.
*/
if (IS_I830(dev))
pipe_config->dpll_hw_state.dpll &= ~DPLL_DVO_2X_MODE;
pipe_config->dpll_hw_state.fp0 = I915_READ(FP0(crtc->pipe));
pipe_config->dpll_hw_state.fp1 = I915_READ(FP1(crtc->pipe));
} else {
/* Mask out read-only status bits. */
pipe_config->dpll_hw_state.dpll &= ~(DPLL_LOCK_VLV |
DPLL_PORTC_READY_MASK |
DPLL_PORTB_READY_MASK);
}
if (IS_CHERRYVIEW(dev))
chv_crtc_clock_get(crtc, pipe_config);
else if (IS_VALLEYVIEW(dev))
vlv_crtc_clock_get(crtc, pipe_config);
else
i9xx_crtc_clock_get(crtc, pipe_config);
return true;
}
static void ironlake_init_pch_refclk(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_encoder *encoder;
u32 val, final;
bool has_lvds = false;
bool has_cpu_edp = false;
bool has_panel = false;
bool has_ck505 = false;
bool can_ssc = false;
/* We need to take the global config into account */
for_each_intel_encoder(dev, encoder) {
switch (encoder->type) {
case INTEL_OUTPUT_LVDS:
has_panel = true;
has_lvds = true;
break;
case INTEL_OUTPUT_EDP:
has_panel = true;
if (enc_to_dig_port(&encoder->base)->port == PORT_A)
has_cpu_edp = true;
break;
}
}
if (HAS_PCH_IBX(dev)) {
has_ck505 = dev_priv->vbt.display_clock_mode;
can_ssc = has_ck505;
} else {
has_ck505 = false;
can_ssc = true;
}
DRM_DEBUG_KMS("has_panel %d has_lvds %d has_ck505 %d\n",
has_panel, has_lvds, has_ck505);
/* Ironlake: try to setup display ref clock before DPLL
* enabling. This is only under driver's control after
* PCH B stepping, previous chipset stepping should be
* ignoring this setting.
*/
val = I915_READ(PCH_DREF_CONTROL);
/* As we must carefully and slowly disable/enable each source in turn,
* compute the final state we want first and check if we need to
* make any changes at all.
*/
final = val;
final &= ~DREF_NONSPREAD_SOURCE_MASK;
if (has_ck505)
final |= DREF_NONSPREAD_CK505_ENABLE;
else
final |= DREF_NONSPREAD_SOURCE_ENABLE;
final &= ~DREF_SSC_SOURCE_MASK;
final &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
final &= ~DREF_SSC1_ENABLE;
if (has_panel) {
final |= DREF_SSC_SOURCE_ENABLE;
if (intel_panel_use_ssc(dev_priv) && can_ssc)
final |= DREF_SSC1_ENABLE;
if (has_cpu_edp) {
if (intel_panel_use_ssc(dev_priv) && can_ssc)
final |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
else
final |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
} else
final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
} else {
final |= DREF_SSC_SOURCE_DISABLE;
final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
}
if (final == val)
return;
/* Always enable nonspread source */
val &= ~DREF_NONSPREAD_SOURCE_MASK;
if (has_ck505)
val |= DREF_NONSPREAD_CK505_ENABLE;
else
val |= DREF_NONSPREAD_SOURCE_ENABLE;
if (has_panel) {
val &= ~DREF_SSC_SOURCE_MASK;
val |= DREF_SSC_SOURCE_ENABLE;
/* SSC must be turned on before enabling the CPU output */
if (intel_panel_use_ssc(dev_priv) && can_ssc) {
DRM_DEBUG_KMS("Using SSC on panel\n");
val |= DREF_SSC1_ENABLE;
} else
val &= ~DREF_SSC1_ENABLE;
/* Get SSC going before enabling the outputs */
I915_WRITE(PCH_DREF_CONTROL, val);
POSTING_READ(PCH_DREF_CONTROL);
udelay(200);
val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
/* Enable CPU source on CPU attached eDP */
if (has_cpu_edp) {
if (intel_panel_use_ssc(dev_priv) && can_ssc) {
DRM_DEBUG_KMS("Using SSC on eDP\n");
val |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
} else
val |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
} else
val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
I915_WRITE(PCH_DREF_CONTROL, val);
POSTING_READ(PCH_DREF_CONTROL);
udelay(200);
} else {
DRM_DEBUG_KMS("Disabling SSC entirely\n");
val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
/* Turn off CPU output */
val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
I915_WRITE(PCH_DREF_CONTROL, val);
POSTING_READ(PCH_DREF_CONTROL);
udelay(200);
/* Turn off the SSC source */
val &= ~DREF_SSC_SOURCE_MASK;
val |= DREF_SSC_SOURCE_DISABLE;
/* Turn off SSC1 */
val &= ~DREF_SSC1_ENABLE;
I915_WRITE(PCH_DREF_CONTROL, val);
POSTING_READ(PCH_DREF_CONTROL);
udelay(200);
}
BUG_ON(val != final);
}
static void lpt_reset_fdi_mphy(struct drm_i915_private *dev_priv)
{
uint32_t tmp;
tmp = I915_READ(SOUTH_CHICKEN2);
tmp |= FDI_MPHY_IOSFSB_RESET_CTL;
I915_WRITE(SOUTH_CHICKEN2, tmp);
if (wait_for_atomic_us(I915_READ(SOUTH_CHICKEN2) &
FDI_MPHY_IOSFSB_RESET_STATUS, 100))
DRM_ERROR("FDI mPHY reset assert timeout\n");
tmp = I915_READ(SOUTH_CHICKEN2);
tmp &= ~FDI_MPHY_IOSFSB_RESET_CTL;
I915_WRITE(SOUTH_CHICKEN2, tmp);
if (wait_for_atomic_us((I915_READ(SOUTH_CHICKEN2) &
FDI_MPHY_IOSFSB_RESET_STATUS) == 0, 100))
DRM_ERROR("FDI mPHY reset de-assert timeout\n");
}
/* WaMPhyProgramming:hsw */
static void lpt_program_fdi_mphy(struct drm_i915_private *dev_priv)
{
uint32_t tmp;
tmp = intel_sbi_read(dev_priv, 0x8008, SBI_MPHY);
tmp &= ~(0xFF << 24);
tmp |= (0x12 << 24);
intel_sbi_write(dev_priv, 0x8008, tmp, SBI_MPHY);
tmp = intel_sbi_read(dev_priv, 0x2008, SBI_MPHY);
tmp |= (1 << 11);
intel_sbi_write(dev_priv, 0x2008, tmp, SBI_MPHY);
tmp = intel_sbi_read(dev_priv, 0x2108, SBI_MPHY);
tmp |= (1 << 11);
intel_sbi_write(dev_priv, 0x2108, tmp, SBI_MPHY);
tmp = intel_sbi_read(dev_priv, 0x206C, SBI_MPHY);
tmp |= (1 << 24) | (1 << 21) | (1 << 18);
intel_sbi_write(dev_priv, 0x206C, tmp, SBI_MPHY);
tmp = intel_sbi_read(dev_priv, 0x216C, SBI_MPHY);
tmp |= (1 << 24) | (1 << 21) | (1 << 18);
intel_sbi_write(dev_priv, 0x216C, tmp, SBI_MPHY);
tmp = intel_sbi_read(dev_priv, 0x2080, SBI_MPHY);
tmp &= ~(7 << 13);
tmp |= (5 << 13);
intel_sbi_write(dev_priv, 0x2080, tmp, SBI_MPHY);
tmp = intel_sbi_read(dev_priv, 0x2180, SBI_MPHY);
tmp &= ~(7 << 13);
tmp |= (5 << 13);
intel_sbi_write(dev_priv, 0x2180, tmp, SBI_MPHY);
tmp = intel_sbi_read(dev_priv, 0x208C, SBI_MPHY);
tmp &= ~0xFF;
tmp |= 0x1C;
intel_sbi_write(dev_priv, 0x208C, tmp, SBI_MPHY);
tmp = intel_sbi_read(dev_priv, 0x218C, SBI_MPHY);
tmp &= ~0xFF;
tmp |= 0x1C;
intel_sbi_write(dev_priv, 0x218C, tmp, SBI_MPHY);
tmp = intel_sbi_read(dev_priv, 0x2098, SBI_MPHY);
tmp &= ~(0xFF << 16);
tmp |= (0x1C << 16);
intel_sbi_write(dev_priv, 0x2098, tmp, SBI_MPHY);
tmp = intel_sbi_read(dev_priv, 0x2198, SBI_MPHY);
tmp &= ~(0xFF << 16);
tmp |= (0x1C << 16);
intel_sbi_write(dev_priv, 0x2198, tmp, SBI_MPHY);
tmp = intel_sbi_read(dev_priv, 0x20C4, SBI_MPHY);
tmp |= (1 << 27);
intel_sbi_write(dev_priv, 0x20C4, tmp, SBI_MPHY);
tmp = intel_sbi_read(dev_priv, 0x21C4, SBI_MPHY);
tmp |= (1 << 27);
intel_sbi_write(dev_priv, 0x21C4, tmp, SBI_MPHY);
tmp = intel_sbi_read(dev_priv, 0x20EC, SBI_MPHY);
tmp &= ~(0xF << 28);
tmp |= (4 << 28);
intel_sbi_write(dev_priv, 0x20EC, tmp, SBI_MPHY);
tmp = intel_sbi_read(dev_priv, 0x21EC, SBI_MPHY);
tmp &= ~(0xF << 28);
tmp |= (4 << 28);
intel_sbi_write(dev_priv, 0x21EC, tmp, SBI_MPHY);
}
/* Implements 3 different sequences from BSpec chapter "Display iCLK
* Programming" based on the parameters passed:
* - Sequence to enable CLKOUT_DP
* - Sequence to enable CLKOUT_DP without spread
* - Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O
*/
static void lpt_enable_clkout_dp(struct drm_device *dev, bool with_spread,
bool with_fdi)
{
struct drm_i915_private *dev_priv = dev->dev_private;
uint32_t reg, tmp;
if (WARN(with_fdi && !with_spread, "FDI requires downspread\n"))
with_spread = true;
if (WARN(dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE &&
with_fdi, "LP PCH doesn't have FDI\n"))
with_fdi = false;
mutex_lock(&dev_priv->dpio_lock);
tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
tmp &= ~SBI_SSCCTL_DISABLE;
tmp |= SBI_SSCCTL_PATHALT;
intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
udelay(24);
if (with_spread) {
tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
tmp &= ~SBI_SSCCTL_PATHALT;
intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
if (with_fdi) {
lpt_reset_fdi_mphy(dev_priv);
lpt_program_fdi_mphy(dev_priv);
}
}
reg = (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) ?
SBI_GEN0 : SBI_DBUFF0;
tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
tmp |= SBI_GEN0_CFG_BUFFENABLE_DISABLE;
intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
mutex_unlock(&dev_priv->dpio_lock);
}
/* Sequence to disable CLKOUT_DP */
static void lpt_disable_clkout_dp(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
uint32_t reg, tmp;
mutex_lock(&dev_priv->dpio_lock);
reg = (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) ?
SBI_GEN0 : SBI_DBUFF0;
tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
tmp &= ~SBI_GEN0_CFG_BUFFENABLE_DISABLE;
intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
if (!(tmp & SBI_SSCCTL_DISABLE)) {
if (!(tmp & SBI_SSCCTL_PATHALT)) {
tmp |= SBI_SSCCTL_PATHALT;
intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
udelay(32);
}
tmp |= SBI_SSCCTL_DISABLE;
intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
}
mutex_unlock(&dev_priv->dpio_lock);
}
static void lpt_init_pch_refclk(struct drm_device *dev)
{
struct intel_encoder *encoder;
bool has_vga = false;
for_each_intel_encoder(dev, encoder) {
switch (encoder->type) {
case INTEL_OUTPUT_ANALOG:
has_vga = true;
break;
}
}
if (has_vga)
lpt_enable_clkout_dp(dev, true, true);
else
lpt_disable_clkout_dp(dev);
}
/*
* Initialize reference clocks when the driver loads
*/
void intel_init_pch_refclk(struct drm_device *dev)
{
if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
ironlake_init_pch_refclk(dev);
else if (HAS_PCH_LPT(dev))
lpt_init_pch_refclk(dev);
}
static int ironlake_get_refclk(struct drm_crtc *crtc)
{
struct drm_device *dev = crtc->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_encoder *encoder;
int num_connectors = 0;
bool is_lvds = false;
for_each_encoder_on_crtc(dev, crtc, encoder) {
switch (encoder->type) {
case INTEL_OUTPUT_LVDS:
is_lvds = true;
break;
}
num_connectors++;
}
if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n",
dev_priv->vbt.lvds_ssc_freq);
return dev_priv->vbt.lvds_ssc_freq;
}
return 120000;
}
static void ironlake_set_pipeconf(struct drm_crtc *crtc)
{
struct drm_i915_private *dev_priv = crtc->dev->dev_private;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
int pipe = intel_crtc->pipe;
uint32_t val;
val = 0;
switch (intel_crtc->config.pipe_bpp) {
case 18:
val |= PIPECONF_6BPC;
break;
case 24:
val |= PIPECONF_8BPC;
break;
case 30:
val |= PIPECONF_10BPC;
break;
case 36:
val |= PIPECONF_12BPC;
break;
default:
/* Case prevented by intel_choose_pipe_bpp_dither. */
BUG();
}
if (intel_crtc->config.dither)
val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
val |= PIPECONF_INTERLACED_ILK;
else
val |= PIPECONF_PROGRESSIVE;
if (intel_crtc->config.limited_color_range)
val |= PIPECONF_COLOR_RANGE_SELECT;
I915_WRITE(PIPECONF(pipe), val);
POSTING_READ(PIPECONF(pipe));
}
/*
* Set up the pipe CSC unit.
*
* Currently only full range RGB to limited range RGB conversion
* is supported, but eventually this should handle various
* RGB<->YCbCr scenarios as well.
*/
static void intel_set_pipe_csc(struct drm_crtc *crtc)
{
struct drm_device *dev = crtc->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
int pipe = intel_crtc->pipe;
uint16_t coeff = 0x7800; /* 1.0 */
/*
* TODO: Check what kind of values actually come out of the pipe
* with these coeff/postoff values and adjust to get the best
* accuracy. Perhaps we even need to take the bpc value into
* consideration.
*/
if (intel_crtc->config.limited_color_range)
coeff = ((235 - 16) * (1 << 12) / 255) & 0xff8; /* 0.xxx... */
/*
* GY/GU and RY/RU should be the other way around according
* to BSpec, but reality doesn't agree. Just set them up in
* a way that results in the correct picture.
*/
I915_WRITE(PIPE_CSC_COEFF_RY_GY(pipe), coeff << 16);
I915_WRITE(PIPE_CSC_COEFF_BY(pipe), 0);
I915_WRITE(PIPE_CSC_COEFF_RU_GU(pipe), coeff);
I915_WRITE(PIPE_CSC_COEFF_BU(pipe), 0);
I915_WRITE(PIPE_CSC_COEFF_RV_GV(pipe), 0);
I915_WRITE(PIPE_CSC_COEFF_BV(pipe), coeff << 16);
I915_WRITE(PIPE_CSC_PREOFF_HI(pipe), 0);
I915_WRITE(PIPE_CSC_PREOFF_ME(pipe), 0);
I915_WRITE(PIPE_CSC_PREOFF_LO(pipe), 0);
if (INTEL_INFO(dev)->gen > 6) {
uint16_t postoff = 0;
if (intel_crtc->config.limited_color_range)
postoff = (16 * (1 << 12) / 255) & 0x1fff;
I915_WRITE(PIPE_CSC_POSTOFF_HI(pipe), postoff);
I915_WRITE(PIPE_CSC_POSTOFF_ME(pipe), postoff);
I915_WRITE(PIPE_CSC_POSTOFF_LO(pipe), postoff);
I915_WRITE(PIPE_CSC_MODE(pipe), 0);
} else {
uint32_t mode = CSC_MODE_YUV_TO_RGB;
if (intel_crtc->config.limited_color_range)
mode |= CSC_BLACK_SCREEN_OFFSET;
I915_WRITE(PIPE_CSC_MODE(pipe), mode);
}
}
static void haswell_set_pipeconf(struct drm_crtc *crtc)
{
struct drm_device *dev = crtc->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
enum pipe pipe = intel_crtc->pipe;
enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
uint32_t val;
val = 0;
if (IS_HASWELL(dev) && intel_crtc->config.dither)
val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
val |= PIPECONF_INTERLACED_ILK;
else
val |= PIPECONF_PROGRESSIVE;
I915_WRITE(PIPECONF(cpu_transcoder), val);
POSTING_READ(PIPECONF(cpu_transcoder));
I915_WRITE(GAMMA_MODE(intel_crtc->pipe), GAMMA_MODE_MODE_8BIT);
POSTING_READ(GAMMA_MODE(intel_crtc->pipe));
if (IS_BROADWELL(dev) || INTEL_INFO(dev)->gen >= 9) {
val = 0;
switch (intel_crtc->config.pipe_bpp) {
case 18:
val |= PIPEMISC_DITHER_6_BPC;
break;
case 24:
val |= PIPEMISC_DITHER_8_BPC;
break;
case 30:
val |= PIPEMISC_DITHER_10_BPC;
break;
case 36:
val |= PIPEMISC_DITHER_12_BPC;
break;
default:
/* Case prevented by pipe_config_set_bpp. */
BUG();
}
if (intel_crtc->config.dither)
val |= PIPEMISC_DITHER_ENABLE | PIPEMISC_DITHER_TYPE_SP;
I915_WRITE(PIPEMISC(pipe), val);
}
}
static bool ironlake_compute_clocks(struct drm_crtc *crtc,
intel_clock_t *clock,
bool *has_reduced_clock,
intel_clock_t *reduced_clock)
{
struct drm_device *dev = crtc->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
int refclk;
const intel_limit_t *limit;
bool ret, is_lvds = false;
is_lvds = intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_LVDS);
refclk = ironlake_get_refclk(crtc);
/*
* Returns a set of divisors for the desired target clock with the given
* refclk, or FALSE. The returned values represent the clock equation:
* reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
*/
limit = intel_limit(intel_crtc, refclk);
ret = dev_priv->display.find_dpll(limit, intel_crtc,
intel_crtc->config.port_clock,
refclk, NULL, clock);
if (!ret)
return false;
if (is_lvds && dev_priv->lvds_downclock_avail) {
/*
* Ensure we match the reduced clock's P to the target clock.
* If the clocks don't match, we can't switch the display clock
* by using the FP0/FP1. In such case we will disable the LVDS
* downclock feature.
*/
*has_reduced_clock =
dev_priv->display.find_dpll(limit, intel_crtc,
dev_priv->lvds_downclock,
refclk, clock,
reduced_clock);
}
return true;
}
int ironlake_get_lanes_required(int target_clock, int link_bw, int bpp)
{
/*
* Account for spread spectrum to avoid
* oversubscribing the link. Max center spread
* is 2.5%; use 5% for safety's sake.
*/
u32 bps = target_clock * bpp * 21 / 20;
return DIV_ROUND_UP(bps, link_bw * 8);
}
static bool ironlake_needs_fb_cb_tune(struct dpll *dpll, int factor)
{
return i9xx_dpll_compute_m(dpll) < factor * dpll->n;
}
static uint32_t ironlake_compute_dpll(struct intel_crtc *intel_crtc,
u32 *fp,
intel_clock_t *reduced_clock, u32 *fp2)
{
struct drm_crtc *crtc = &intel_crtc->base;
struct drm_device *dev = crtc->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_encoder *intel_encoder;
uint32_t dpll;
int factor, num_connectors = 0;
bool is_lvds = false, is_sdvo = false;
for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
switch (intel_encoder->type) {
case INTEL_OUTPUT_LVDS:
is_lvds = true;
break;
case INTEL_OUTPUT_SDVO:
case INTEL_OUTPUT_HDMI:
is_sdvo = true;
break;
}
num_connectors++;
}
/* Enable autotuning of the PLL clock (if permissible) */
factor = 21;
if (is_lvds) {
if ((intel_panel_use_ssc(dev_priv) &&
dev_priv->vbt.lvds_ssc_freq == 100000) ||
(HAS_PCH_IBX(dev) && intel_is_dual_link_lvds(dev)))
factor = 25;
} else if (intel_crtc->config.sdvo_tv_clock)
factor = 20;
if (ironlake_needs_fb_cb_tune(&intel_crtc->config.dpll, factor))
*fp |= FP_CB_TUNE;
if (fp2 && (reduced_clock->m < factor * reduced_clock->n))
*fp2 |= FP_CB_TUNE;
dpll = 0;
if (is_lvds)
dpll |= DPLLB_MODE_LVDS;
else
dpll |= DPLLB_MODE_DAC_SERIAL;
dpll |= (intel_crtc->config.pixel_multiplier - 1)
<< PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
if (is_sdvo)
dpll |= DPLL_SDVO_HIGH_SPEED;
if (intel_crtc->config.has_dp_encoder)
dpll |= DPLL_SDVO_HIGH_SPEED;
/* compute bitmask from p1 value */
dpll |= (1 << (intel_crtc->config.dpll.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
/* also FPA1 */
dpll |= (1 << (intel_crtc->config.dpll.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
switch (intel_crtc->config.dpll.p2) {
case 5:
dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
break;
case 7:
dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
break;
case 10:
dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
break;
case 14:
dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
break;
}
if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
else
dpll |= PLL_REF_INPUT_DREFCLK;
return dpll | DPLL_VCO_ENABLE;
}
static int ironlake_crtc_mode_set(struct intel_crtc *crtc,
int x, int y,
struct drm_framebuffer *fb)
{
struct drm_device *dev = crtc->base.dev;
intel_clock_t clock, reduced_clock;
u32 dpll = 0, fp = 0, fp2 = 0;
bool ok, has_reduced_clock = false;
bool is_lvds = false;
struct intel_shared_dpll *pll;
is_lvds = intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS);
WARN(!(HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)),
"Unexpected PCH type %d\n", INTEL_PCH_TYPE(dev));
ok = ironlake_compute_clocks(&crtc->base, &clock,
&has_reduced_clock, &reduced_clock);
if (!ok && !crtc->config.clock_set) {
DRM_ERROR("Couldn't find PLL settings for mode!\n");
return -EINVAL;
}
/* Compat-code for transition, will disappear. */
if (!crtc->config.clock_set) {
crtc->config.dpll.n = clock.n;
crtc->config.dpll.m1 = clock.m1;
crtc->config.dpll.m2 = clock.m2;
crtc->config.dpll.p1 = clock.p1;
crtc->config.dpll.p2 = clock.p2;
}
/* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
if (crtc->config.has_pch_encoder) {
fp = i9xx_dpll_compute_fp(&crtc->config.dpll);
if (has_reduced_clock)
fp2 = i9xx_dpll_compute_fp(&reduced_clock);
dpll = ironlake_compute_dpll(crtc,
&fp, &reduced_clock,
has_reduced_clock ? &fp2 : NULL);
crtc->config.dpll_hw_state.dpll = dpll;
crtc->config.dpll_hw_state.fp0 = fp;
if (has_reduced_clock)
crtc->config.dpll_hw_state.fp1 = fp2;
else
crtc->config.dpll_hw_state.fp1 = fp;
pll = intel_get_shared_dpll(crtc);
if (pll == NULL) {
DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
pipe_name(crtc->pipe));
return -EINVAL;
}
} else
intel_put_shared_dpll(crtc);
if (is_lvds && has_reduced_clock && i915.powersave)
crtc->lowfreq_avail = true;
else
crtc->lowfreq_avail = false;
return 0;
}
static void intel_pch_transcoder_get_m_n(struct intel_crtc *crtc,
struct intel_link_m_n *m_n)
{
struct drm_device *dev = crtc->base.dev;
struct drm_i915_private *dev_priv = dev->dev_private;
enum pipe pipe = crtc->pipe;
m_n->link_m = I915_READ(PCH_TRANS_LINK_M1(pipe));
m_n->link_n = I915_READ(PCH_TRANS_LINK_N1(pipe));
m_n->gmch_m = I915_READ(PCH_TRANS_DATA_M1(pipe))
& ~TU_SIZE_MASK;
m_n->gmch_n = I915_READ(PCH_TRANS_DATA_N1(pipe));
m_n->tu = ((I915_READ(PCH_TRANS_DATA_M1(pipe))
& TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
}
static void intel_cpu_transcoder_get_m_n(struct intel_crtc *crtc,
enum transcoder transcoder,
struct intel_link_m_n *m_n,
struct intel_link_m_n *m2_n2)
{
struct drm_device *dev = crtc->base.dev;
struct drm_i915_private *dev_priv = dev->dev_private;
enum pipe pipe = crtc->pipe;
if (INTEL_INFO(dev)->gen >= 5) {
m_n->link_m = I915_READ(PIPE_LINK_M1(transcoder));
m_n->link_n = I915_READ(PIPE_LINK_N1(transcoder));
m_n->gmch_m = I915_READ(PIPE_DATA_M1(transcoder))
& ~TU_SIZE_MASK;
m_n->gmch_n = I915_READ(PIPE_DATA_N1(transcoder));
m_n->tu = ((I915_READ(PIPE_DATA_M1(transcoder))
& TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
/* Read M2_N2 registers only for gen < 8 (M2_N2 available for
* gen < 8) and if DRRS is supported (to make sure the
* registers are not unnecessarily read).
*/
if (m2_n2 && INTEL_INFO(dev)->gen < 8 &&
crtc->config.has_drrs) {
m2_n2->link_m = I915_READ(PIPE_LINK_M2(transcoder));
m2_n2->link_n = I915_READ(PIPE_LINK_N2(transcoder));
m2_n2->gmch_m = I915_READ(PIPE_DATA_M2(transcoder))
& ~TU_SIZE_MASK;
m2_n2->gmch_n = I915_READ(PIPE_DATA_N2(transcoder));
m2_n2->tu = ((I915_READ(PIPE_DATA_M2(transcoder))
& TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
}
} else {
m_n->link_m = I915_READ(PIPE_LINK_M_G4X(pipe));
m_n->link_n = I915_READ(PIPE_LINK_N_G4X(pipe));
m_n->gmch_m = I915_READ(PIPE_DATA_M_G4X(pipe))
& ~TU_SIZE_MASK;
m_n->gmch_n = I915_READ(PIPE_DATA_N_G4X(pipe));
m_n->tu = ((I915_READ(PIPE_DATA_M_G4X(pipe))
& TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
}
}
void intel_dp_get_m_n(struct intel_crtc *crtc,
struct intel_crtc_config *pipe_config)
{
if (crtc->config.has_pch_encoder)
intel_pch_transcoder_get_m_n(crtc, &pipe_config->dp_m_n);
else
intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
&pipe_config->dp_m_n,
&pipe_config->dp_m2_n2);
}
static void ironlake_get_fdi_m_n_config(struct intel_crtc *crtc,
struct intel_crtc_config *pipe_config)
{
intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
&pipe_config->fdi_m_n, NULL);
}
static void ironlake_get_pfit_config(struct intel_crtc *crtc,
struct intel_crtc_config *pipe_config)
{
struct drm_device *dev = crtc->base.dev;
struct drm_i915_private *dev_priv = dev->dev_private;
uint32_t tmp;
tmp = I915_READ(PF_CTL(crtc->pipe));
if (tmp & PF_ENABLE) {
pipe_config->pch_pfit.enabled = true;
pipe_config->pch_pfit.pos = I915_READ(PF_WIN_POS(crtc->pipe));
pipe_config->pch_pfit.size = I915_READ(PF_WIN_SZ(crtc->pipe));
/* We currently do not free assignements of panel fitters on
* ivb/hsw (since we don't use the higher upscaling modes which
* differentiates them) so just WARN about this case for now. */
if (IS_GEN7(dev)) {
WARN_ON((tmp & PF_PIPE_SEL_MASK_IVB) !=
PF_PIPE_SEL_IVB(crtc->pipe));
}
}
}
static void ironlake_get_plane_config(struct intel_crtc *crtc,
struct intel_plane_config *plane_config)
{
struct drm_device *dev = crtc->base.dev;
struct drm_i915_private *dev_priv = dev->dev_private;
u32 val, base, offset;
int pipe = crtc->pipe, plane = crtc->plane;
int fourcc, pixel_format;
int aligned_height;
crtc->base.primary->fb = kzalloc(sizeof(struct intel_framebuffer), GFP_KERNEL);
if (!crtc->base.primary->fb) {
DRM_DEBUG_KMS("failed to alloc fb\n");
return;
}
val = I915_READ(DSPCNTR(plane));
if (INTEL_INFO(dev)->gen >= 4)
if (val & DISPPLANE_TILED)
plane_config->tiled = true;
pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
fourcc = intel_format_to_fourcc(pixel_format);
crtc->base.primary->fb->pixel_format = fourcc;
crtc->base.primary->fb->bits_per_pixel =
drm_format_plane_cpp(fourcc, 0) * 8;
base = I915_READ(DSPSURF(plane)) & 0xfffff000;
if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
offset = I915_READ(DSPOFFSET(plane));
} else {
if (plane_config->tiled)
offset = I915_READ(DSPTILEOFF(plane));
else
offset = I915_READ(DSPLINOFF(plane));
}
plane_config->base = base;
val = I915_READ(PIPESRC(pipe));
crtc->base.primary->fb->width = ((val >> 16) & 0xfff) + 1;
crtc->base.primary->fb->height = ((val >> 0) & 0xfff) + 1;
val = I915_READ(DSPSTRIDE(pipe));
crtc->base.primary->fb->pitches[0] = val & 0xffffffc0;
aligned_height = intel_align_height(dev, crtc->base.primary->fb->height,
plane_config->tiled);
plane_config->size = PAGE_ALIGN(crtc->base.primary->fb->pitches[0] *
aligned_height);
DRM_DEBUG_KMS("pipe/plane %d/%d with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
pipe, plane, crtc->base.primary->fb->width,
crtc->base.primary->fb->height,
crtc->base.primary->fb->bits_per_pixel, base,
crtc->base.primary->fb->pitches[0],
plane_config->size);
}
static bool ironlake_get_pipe_config(struct intel_crtc *crtc,
struct intel_crtc_config *pipe_config)
{
struct drm_device *dev = crtc->base.dev;
struct drm_i915_private *dev_priv = dev->dev_private;
uint32_t tmp;
if (!intel_display_power_is_enabled(dev_priv,
POWER_DOMAIN_PIPE(crtc->pipe)))
return false;
pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
pipe_config->shared_dpll = DPLL_ID_PRIVATE;
tmp = I915_READ(PIPECONF(crtc->pipe));
if (!(tmp & PIPECONF_ENABLE))
return false;
switch (tmp & PIPECONF_BPC_MASK) {
case PIPECONF_6BPC:
pipe_config->pipe_bpp = 18;
break;
case PIPECONF_8BPC:
pipe_config->pipe_bpp = 24;
break;
case PIPECONF_10BPC:
pipe_config->pipe_bpp = 30;
break;
case PIPECONF_12BPC:
pipe_config->pipe_bpp = 36;
break;
default:
break;
}
if (tmp & PIPECONF_COLOR_RANGE_SELECT)
pipe_config->limited_color_range = true;
if (I915_READ(PCH_TRANSCONF(crtc->pipe)) & TRANS_ENABLE) {
struct intel_shared_dpll *pll;
pipe_config->has_pch_encoder = true;
tmp = I915_READ(FDI_RX_CTL(crtc->pipe));
pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
FDI_DP_PORT_WIDTH_SHIFT) + 1;
ironlake_get_fdi_m_n_config(crtc, pipe_config);
if (HAS_PCH_IBX(dev_priv->dev)) {
pipe_config->shared_dpll =
(enum intel_dpll_id) crtc->pipe;
} else {
tmp = I915_READ(PCH_DPLL_SEL);
if (tmp & TRANS_DPLLB_SEL(crtc->pipe))
pipe_config->shared_dpll = DPLL_ID_PCH_PLL_B;
else
pipe_config->shared_dpll = DPLL_ID_PCH_PLL_A;
}
pll = &dev_priv->shared_dplls[pipe_config->shared_dpll];
WARN_ON(!pll->get_hw_state(dev_priv, pll,
&pipe_config->dpll_hw_state));
tmp = pipe_config->dpll_hw_state.dpll;
pipe_config->pixel_multiplier =
((tmp & PLL_REF_SDVO_HDMI_MULTIPLIER_MASK)
>> PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT) + 1;
ironlake_pch_clock_get(crtc, pipe_config);
} else {
pipe_config->pixel_multiplier = 1;
}
intel_get_pipe_timings(crtc, pipe_config);
ironlake_get_pfit_config(crtc, pipe_config);
return true;
}
static void assert_can_disable_lcpll(struct drm_i915_private *dev_priv)
{
struct drm_device *dev = dev_priv->dev;
struct intel_crtc *crtc;
for_each_intel_crtc(dev, crtc)
WARN(crtc->active, "CRTC for pipe %c enabled\n",
pipe_name(crtc->pipe));
WARN(I915_READ(HSW_PWR_WELL_DRIVER), "Power well on\n");
WARN(I915_READ(SPLL_CTL) & SPLL_PLL_ENABLE, "SPLL enabled\n");
WARN(I915_READ(WRPLL_CTL1) & WRPLL_PLL_ENABLE, "WRPLL1 enabled\n");
WARN(I915_READ(WRPLL_CTL2) & WRPLL_PLL_ENABLE, "WRPLL2 enabled\n");
WARN(I915_READ(PCH_PP_STATUS) & PP_ON, "Panel power on\n");
WARN(I915_READ(BLC_PWM_CPU_CTL2) & BLM_PWM_ENABLE,
"CPU PWM1 enabled\n");
if (IS_HASWELL(dev))
WARN(I915_READ(HSW_BLC_PWM2_CTL) & BLM_PWM_ENABLE,
"CPU PWM2 enabled\n");
WARN(I915_READ(BLC_PWM_PCH_CTL1) & BLM_PCH_PWM_ENABLE,
"PCH PWM1 enabled\n");
WARN(I915_READ(UTIL_PIN_CTL) & UTIL_PIN_ENABLE,
"Utility pin enabled\n");
WARN(I915_READ(PCH_GTC_CTL) & PCH_GTC_ENABLE, "PCH GTC enabled\n");
/*
* In theory we can still leave IRQs enabled, as long as only the HPD
* interrupts remain enabled. We used to check for that, but since it's
* gen-specific and since we only disable LCPLL after we fully disable
* the interrupts, the check below should be enough.
*/
WARN(intel_irqs_enabled(dev_priv), "IRQs enabled\n");
}
static uint32_t hsw_read_dcomp(struct drm_i915_private *dev_priv)
{
struct drm_device *dev = dev_priv->dev;
if (IS_HASWELL(dev))
return I915_READ(D_COMP_HSW);
else
return I915_READ(D_COMP_BDW);
}
static void hsw_write_dcomp(struct drm_i915_private *dev_priv, uint32_t val)
{
struct drm_device *dev = dev_priv->dev;
if (IS_HASWELL(dev)) {
mutex_lock(&dev_priv->rps.hw_lock);
if (sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_D_COMP,
val))
DRM_ERROR("Failed to write to D_COMP\n");
mutex_unlock(&dev_priv->rps.hw_lock);
} else {
I915_WRITE(D_COMP_BDW, val);
POSTING_READ(D_COMP_BDW);
}
}
/*
* This function implements pieces of two sequences from BSpec:
* - Sequence for display software to disable LCPLL
* - Sequence for display software to allow package C8+
* The steps implemented here are just the steps that actually touch the LCPLL
* register. Callers should take care of disabling all the display engine
* functions, doing the mode unset, fixing interrupts, etc.
*/
static void hsw_disable_lcpll(struct drm_i915_private *dev_priv,
bool switch_to_fclk, bool allow_power_down)
{
uint32_t val;
assert_can_disable_lcpll(dev_priv);
val = I915_READ(LCPLL_CTL);
if (switch_to_fclk) {
val |= LCPLL_CD_SOURCE_FCLK;
I915_WRITE(LCPLL_CTL, val);
if (wait_for_atomic_us(I915_READ(LCPLL_CTL) &
LCPLL_CD_SOURCE_FCLK_DONE, 1))
DRM_ERROR("Switching to FCLK failed\n");
val = I915_READ(LCPLL_CTL);
}
val |= LCPLL_PLL_DISABLE;
I915_WRITE(LCPLL_CTL, val);
POSTING_READ(LCPLL_CTL);
if (wait_for((I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK) == 0, 1))
DRM_ERROR("LCPLL still locked\n");
val = hsw_read_dcomp(dev_priv);
val |= D_COMP_COMP_DISABLE;
hsw_write_dcomp(dev_priv, val);
ndelay(100);
if (wait_for((hsw_read_dcomp(dev_priv) & D_COMP_RCOMP_IN_PROGRESS) == 0,
1))
DRM_ERROR("D_COMP RCOMP still in progress\n");
if (allow_power_down) {
val = I915_READ(LCPLL_CTL);
val |= LCPLL_POWER_DOWN_ALLOW;
I915_WRITE(LCPLL_CTL, val);
POSTING_READ(LCPLL_CTL);
}
}
/*
* Fully restores LCPLL, disallowing power down and switching back to LCPLL
* source.
*/
static void hsw_restore_lcpll(struct drm_i915_private *dev_priv)
{
uint32_t val;
val = I915_READ(LCPLL_CTL);
if ((val & (LCPLL_PLL_LOCK | LCPLL_PLL_DISABLE | LCPLL_CD_SOURCE_FCLK |
LCPLL_POWER_DOWN_ALLOW)) == LCPLL_PLL_LOCK)
return;
/*
* Make sure we're not on PC8 state before disabling PC8, otherwise
* we'll hang the machine. To prevent PC8 state, just enable force_wake.
*
* The other problem is that hsw_restore_lcpll() is called as part of
* the runtime PM resume sequence, so we can't just call
* gen6_gt_force_wake_get() because that function calls
* intel_runtime_pm_get(), and we can't change the runtime PM refcount
* while we are on the resume sequence. So to solve this problem we have
* to call special forcewake code that doesn't touch runtime PM and
* doesn't enable the forcewake delayed work.
*/
spin_lock_irq(&dev_priv->uncore.lock);
if (dev_priv->uncore.forcewake_count++ == 0)
dev_priv->uncore.funcs.force_wake_get(dev_priv, FORCEWAKE_ALL);
spin_unlock_irq(&dev_priv->uncore.lock);
if (val & LCPLL_POWER_DOWN_ALLOW) {
val &= ~LCPLL_POWER_DOWN_ALLOW;
I915_WRITE(LCPLL_CTL, val);
POSTING_READ(LCPLL_CTL);
}
val = hsw_read_dcomp(dev_priv);
val |= D_COMP_COMP_FORCE;
val &= ~D_COMP_COMP_DISABLE;
hsw_write_dcomp(dev_priv, val);
val = I915_READ(LCPLL_CTL);
val &= ~LCPLL_PLL_DISABLE;
I915_WRITE(LCPLL_CTL, val);
if (wait_for(I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK, 5))
DRM_ERROR("LCPLL not locked yet\n");
if (val & LCPLL_CD_SOURCE_FCLK) {
val = I915_READ(LCPLL_CTL);
val &= ~LCPLL_CD_SOURCE_FCLK;
I915_WRITE(LCPLL_CTL, val);
if (wait_for_atomic_us((I915_READ(LCPLL_CTL) &
LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
DRM_ERROR("Switching back to LCPLL failed\n");
}
/* See the big comment above. */
spin_lock_irq(&dev_priv->uncore.lock);
if (--dev_priv->uncore.forcewake_count == 0)
dev_priv->uncore.funcs.force_wake_put(dev_priv, FORCEWAKE_ALL);
spin_unlock_irq(&dev_priv->uncore.lock);
}
/*
* Package states C8 and deeper are really deep PC states that can only be
* reached when all the devices on the system allow it, so even if the graphics
* device allows PC8+, it doesn't mean the system will actually get to these
* states. Our driver only allows PC8+ when going into runtime PM.
*
* The requirements for PC8+ are that all the outputs are disabled, the power
* well is disabled and most interrupts are disabled, and these are also
* requirements for runtime PM. When these conditions are met, we manually do
* the other conditions: disable the interrupts, clocks and switch LCPLL refclk
* to Fclk. If we're in PC8+ and we get an non-hotplug interrupt, we can hard
* hang the machine.
*
* When we really reach PC8 or deeper states (not just when we allow it) we lose
* the state of some registers, so when we come back from PC8+ we need to
* restore this state. We don't get into PC8+ if we're not in RC6, so we don't
* need to take care of the registers kept by RC6. Notice that this happens even
* if we don't put the device in PCI D3 state (which is what currently happens
* because of the runtime PM support).
*
* For more, read "Display Sequences for Package C8" on the hardware
* documentation.
*/
void hsw_enable_pc8(struct drm_i915_private *dev_priv)
{
struct drm_device *dev = dev_priv->dev;
uint32_t val;
DRM_DEBUG_KMS("Enabling package C8+\n");
if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
val = I915_READ(SOUTH_DSPCLK_GATE_D);
val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
}
lpt_disable_clkout_dp(dev);
hsw_disable_lcpll(dev_priv, true, true);
}
void hsw_disable_pc8(struct drm_i915_private *dev_priv)
{
struct drm_device *dev = dev_priv->dev;
uint32_t val;
DRM_DEBUG_KMS("Disabling package C8+\n");
hsw_restore_lcpll(dev_priv);
lpt_init_pch_refclk(dev);
if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
val = I915_READ(SOUTH_DSPCLK_GATE_D);
val |= PCH_LP_PARTITION_LEVEL_DISABLE;
I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
}
intel_prepare_ddi(dev);
}
static void snb_modeset_global_resources(struct drm_device *dev)
{
modeset_update_crtc_power_domains(dev);
}
static void haswell_modeset_global_resources(struct drm_device *dev)
{
modeset_update_crtc_power_domains(dev);
}
static int haswell_crtc_mode_set(struct intel_crtc *crtc,
int x, int y,
struct drm_framebuffer *fb)
{
if (!intel_ddi_pll_select(crtc))
return -EINVAL;
crtc->lowfreq_avail = false;
return 0;
}
static void haswell_get_ddi_pll(struct drm_i915_private *dev_priv,
enum port port,
struct intel_crtc_config *pipe_config)
{
pipe_config->ddi_pll_sel = I915_READ(PORT_CLK_SEL(port));
switch (pipe_config->ddi_pll_sel) {
case PORT_CLK_SEL_WRPLL1:
pipe_config->shared_dpll = DPLL_ID_WRPLL1;
break;
case PORT_CLK_SEL_WRPLL2:
pipe_config->shared_dpll = DPLL_ID_WRPLL2;
break;
}
}
static void haswell_get_ddi_port_state(struct intel_crtc *crtc,
struct intel_crtc_config *pipe_config)
{
struct drm_device *dev = crtc->base.dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_shared_dpll *pll;
enum port port;
uint32_t tmp;
tmp = I915_READ(TRANS_DDI_FUNC_CTL(pipe_config->cpu_transcoder));
port = (tmp & TRANS_DDI_PORT_MASK) >> TRANS_DDI_PORT_SHIFT;
haswell_get_ddi_pll(dev_priv, port, pipe_config);
if (pipe_config->shared_dpll >= 0) {
pll = &dev_priv->shared_dplls[pipe_config->shared_dpll];
WARN_ON(!pll->get_hw_state(dev_priv, pll,
&pipe_config->dpll_hw_state));
}
/*
* Haswell has only FDI/PCH transcoder A. It is which is connected to
* DDI E. So just check whether this pipe is wired to DDI E and whether
* the PCH transcoder is on.
*/
if (INTEL_INFO(dev)->gen < 9 &&
(port == PORT_E) && I915_READ(LPT_TRANSCONF) & TRANS_ENABLE) {
pipe_config->has_pch_encoder = true;
tmp = I915_READ(FDI_RX_CTL(PIPE_A));
pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
FDI_DP_PORT_WIDTH_SHIFT) + 1;
ironlake_get_fdi_m_n_config(crtc, pipe_config);
}
}
static bool haswell_get_pipe_config(struct intel_crtc *crtc,
struct intel_crtc_config *pipe_config)
{
struct drm_device *dev = crtc->base.dev;
struct drm_i915_private *dev_priv = dev->dev_private;
enum intel_display_power_domain pfit_domain;
uint32_t tmp;
if (!intel_display_power_is_enabled(dev_priv,
POWER_DOMAIN_PIPE(crtc->pipe)))
return false;
pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
pipe_config->shared_dpll = DPLL_ID_PRIVATE;
tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
if (tmp & TRANS_DDI_FUNC_ENABLE) {
enum pipe trans_edp_pipe;
switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
default:
WARN(1, "unknown pipe linked to edp transcoder\n");
case TRANS_DDI_EDP_INPUT_A_ONOFF:
case TRANS_DDI_EDP_INPUT_A_ON:
trans_edp_pipe = PIPE_A;
break;
case TRANS_DDI_EDP_INPUT_B_ONOFF:
trans_edp_pipe = PIPE_B;
break;
case TRANS_DDI_EDP_INPUT_C_ONOFF:
trans_edp_pipe = PIPE_C;
break;
}
if (trans_edp_pipe == crtc->pipe)
pipe_config->cpu_transcoder = TRANSCODER_EDP;
}
if (!intel_display_power_is_enabled(dev_priv,
POWER_DOMAIN_TRANSCODER(pipe_config->cpu_transcoder)))
return false;
tmp = I915_READ(PIPECONF(pipe_config->cpu_transcoder));
if (!(tmp & PIPECONF_ENABLE))
return false;
haswell_get_ddi_port_state(crtc, pipe_config);
intel_get_pipe_timings(crtc, pipe_config);
pfit_domain = POWER_DOMAIN_PIPE_PANEL_FITTER(crtc->pipe);
if (intel_display_power_is_enabled(dev_priv, pfit_domain))
ironlake_get_pfit_config(crtc, pipe_config);
if (IS_HASWELL(dev))
pipe_config->ips_enabled = hsw_crtc_supports_ips(crtc) &&
(I915_READ(IPS_CTL) & IPS_ENABLE);
if (pipe_config->cpu_transcoder != TRANSCODER_EDP) {
pipe_config->pixel_multiplier =
I915_READ(PIPE_MULT(pipe_config->cpu_transcoder)) + 1;
} else {
pipe_config->pixel_multiplier = 1;
}
return true;
}
static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
{
struct drm_device *dev = crtc->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
uint32_t cntl = 0, size = 0;
if (base) {
unsigned int width = intel_crtc->cursor_width;
unsigned int height = intel_crtc->cursor_height;
unsigned int stride = roundup_pow_of_two(width) * 4;
switch (stride) {
default:
WARN_ONCE(1, "Invalid cursor width/stride, width=%u, stride=%u\n",
width, stride);
stride = 256;
/* fallthrough */
case 256:
case 512:
case 1024:
case 2048:
break;
}
cntl |= CURSOR_ENABLE |
CURSOR_GAMMA_ENABLE |
CURSOR_FORMAT_ARGB |
CURSOR_STRIDE(stride);
size = (height << 12) | width;
}
if (intel_crtc->cursor_cntl != 0 &&
(intel_crtc->cursor_base != base ||
intel_crtc->cursor_size != size ||
intel_crtc->cursor_cntl != cntl)) {
/* On these chipsets we can only modify the base/size/stride
* whilst the cursor is disabled.
*/
I915_WRITE(_CURACNTR, 0);
POSTING_READ(_CURACNTR);
intel_crtc->cursor_cntl = 0;
}
if (intel_crtc->cursor_base != base) {
I915_WRITE(_CURABASE, base);
intel_crtc->cursor_base = base;
}
if (intel_crtc->cursor_size != size) {
I915_WRITE(CURSIZE, size);
intel_crtc->cursor_size = size;
}
if (intel_crtc->cursor_cntl != cntl) {
I915_WRITE(_CURACNTR, cntl);
POSTING_READ(_CURACNTR);
intel_crtc->cursor_cntl = cntl;
}
}
static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
{
struct drm_device *dev = crtc->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
int pipe = intel_crtc->pipe;
uint32_t cntl;
cntl = 0;
if (base) {
cntl = MCURSOR_GAMMA_ENABLE;
switch (intel_crtc->cursor_width) {
case 64:
cntl |= CURSOR_MODE_64_ARGB_AX;
break;
case 128:
cntl |= CURSOR_MODE_128_ARGB_AX;
break;
case 256:
cntl |= CURSOR_MODE_256_ARGB_AX;
break;
default:
WARN_ON(1);
return;
}
cntl |= pipe << 28; /* Connect to correct pipe */
if (IS_HASWELL(dev) || IS_BROADWELL(dev))
cntl |= CURSOR_PIPE_CSC_ENABLE;
}
if (to_intel_plane(crtc->cursor)->rotation == BIT(DRM_ROTATE_180))
cntl |= CURSOR_ROTATE_180;
if (intel_crtc->cursor_cntl != cntl) {
I915_WRITE(CURCNTR(pipe), cntl);
POSTING_READ(CURCNTR(pipe));
intel_crtc->cursor_cntl = cntl;
}
/* and commit changes on next vblank */
I915_WRITE(CURBASE(pipe), base);
POSTING_READ(CURBASE(pipe));
intel_crtc->cursor_base = base;
}
/* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
static void intel_crtc_update_cursor(struct drm_crtc *crtc,
bool on)
{
struct drm_device *dev = crtc->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
int pipe = intel_crtc->pipe;
int x = crtc->cursor_x;
int y = crtc->cursor_y;
u32 base = 0, pos = 0;
if (on)
base = intel_crtc->cursor_addr;
if (x >= intel_crtc->config.pipe_src_w)
base = 0;
if (y >= intel_crtc->config.pipe_src_h)
base = 0;
if (x < 0) {
if (x + intel_crtc->cursor_width <= 0)
base = 0;
pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
x = -x;
}
pos |= x << CURSOR_X_SHIFT;
if (y < 0) {
if (y + intel_crtc->cursor_height <= 0)
base = 0;
pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
y = -y;
}
pos |= y << CURSOR_Y_SHIFT;
if (base == 0 && intel_crtc->cursor_base == 0)
return;
I915_WRITE(CURPOS(pipe), pos);
/* ILK+ do this automagically */
if (HAS_GMCH_DISPLAY(dev) &&
to_intel_plane(crtc->cursor)->rotation == BIT(DRM_ROTATE_180)) {
base += (intel_crtc->cursor_height *
intel_crtc->cursor_width - 1) * 4;
}
if (IS_845G(dev) || IS_I865G(dev))
i845_update_cursor(crtc, base);
else
i9xx_update_cursor(crtc, base);
}
static bool cursor_size_ok(struct drm_device *dev,
uint32_t width, uint32_t height)
{
if (width == 0 || height == 0)
return false;
/*
* 845g/865g are special in that they are only limited by
* the width of their cursors, the height is arbitrary up to
* the precision of the register. Everything else requires
* square cursors, limited to a few power-of-two sizes.
*/
if (IS_845G(dev) || IS_I865G(dev)) {
if ((width & 63) != 0)
return false;
if (width > (IS_845G(dev) ? 64 : 512))
return false;
if (height > 1023)
return false;
} else {
switch (width | height) {
case 256:
case 128:
if (IS_GEN2(dev))
return false;
case 64:
break;
default:
return false;
}
}
return true;
}
static int intel_crtc_cursor_set_obj(struct drm_crtc *crtc,
struct drm_i915_gem_object *obj,
uint32_t width, uint32_t height)
{
struct drm_device *dev = crtc->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
enum pipe pipe = intel_crtc->pipe;
unsigned old_width;
uint32_t addr;
int ret;
/* if we want to turn off the cursor ignore width and height */
if (!obj) {
DRM_DEBUG_KMS("cursor off\n");
addr = 0;
mutex_lock(&dev->struct_mutex);
goto finish;
}
/* we only need to pin inside GTT if cursor is non-phy */
mutex_lock(&dev->struct_mutex);
if (!INTEL_INFO(dev)->cursor_needs_physical) {
unsigned alignment;
/*
* Global gtt pte registers are special registers which actually
* forward writes to a chunk of system memory. Which means that
* there is no risk that the register values disappear as soon
* as we call intel_runtime_pm_put(), so it is correct to wrap
* only the pin/unpin/fence and not more.
*/
intel_runtime_pm_get(dev_priv);
/* Note that the w/a also requires 2 PTE of padding following
* the bo. We currently fill all unused PTE with the shadow
* page and so we should always have valid PTE following the
* cursor preventing the VT-d warning.
*/
alignment = 0;
if (need_vtd_wa(dev))
alignment = 64*1024;
ret = i915_gem_object_pin_to_display_plane(obj, alignment, NULL);
if (ret) {
DRM_DEBUG_KMS("failed to move cursor bo into the GTT\n");
intel_runtime_pm_put(dev_priv);
goto fail_locked;
}
ret = i915_gem_object_put_fence(obj);
if (ret) {
DRM_DEBUG_KMS("failed to release fence for cursor");
intel_runtime_pm_put(dev_priv);
goto fail_unpin;
}
addr = i915_gem_obj_ggtt_offset(obj);
intel_runtime_pm_put(dev_priv);
} else {
int align = IS_I830(dev) ? 16 * 1024 : 256;
ret = i915_gem_object_attach_phys(obj, align);
if (ret) {
DRM_DEBUG_KMS("failed to attach phys object\n");
goto fail_locked;
}
addr = obj->phys_handle->busaddr;
}
finish:
if (intel_crtc->cursor_bo) {
if (!INTEL_INFO(dev)->cursor_needs_physical)
i915_gem_object_unpin_from_display_plane(intel_crtc->cursor_bo);
}
i915_gem_track_fb(intel_crtc->cursor_bo, obj,
INTEL_FRONTBUFFER_CURSOR(pipe));
mutex_unlock(&dev->struct_mutex);
old_width = intel_crtc->cursor_width;
intel_crtc->cursor_addr = addr;
intel_crtc->cursor_bo = obj;
intel_crtc->cursor_width = width;
intel_crtc->cursor_height = height;
if (intel_crtc->active) {
if (old_width != width)
intel_update_watermarks(crtc);
intel_crtc_update_cursor(crtc, intel_crtc->cursor_bo != NULL);
intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_CURSOR(pipe));
}
return 0;
fail_unpin:
i915_gem_object_unpin_from_display_plane(obj);
fail_locked:
mutex_unlock(&dev->struct_mutex);
return ret;
}
static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
u16 *blue, uint32_t start, uint32_t size)
{
int end = (start + size > 256) ? 256 : start + size, i;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
for (i = start; i < end; i++) {
intel_crtc->lut_r[i] = red[i] >> 8;
intel_crtc->lut_g[i] = green[i] >> 8;
intel_crtc->lut_b[i] = blue[i] >> 8;
}
intel_crtc_load_lut(crtc);
}
/* VESA 640x480x72Hz mode to set on the pipe */
static struct drm_display_mode load_detect_mode = {
DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
};
struct drm_framebuffer *
__intel_framebuffer_create(struct drm_device *dev,
struct drm_mode_fb_cmd2 *mode_cmd,
struct drm_i915_gem_object *obj)
{
struct intel_framebuffer *intel_fb;
int ret;
intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
if (!intel_fb) {
drm_gem_object_unreference_unlocked(&obj->base);
return ERR_PTR(-ENOMEM);
}
ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
if (ret)
goto err;
return &intel_fb->base;
err:
drm_gem_object_unreference_unlocked(&obj->base);
kfree(intel_fb);
return ERR_PTR(ret);
}
static struct drm_framebuffer *
intel_framebuffer_create(struct drm_device *dev,
struct drm_mode_fb_cmd2 *mode_cmd,
struct drm_i915_gem_object *obj)
{
struct drm_framebuffer *fb;
int ret;
ret = i915_mutex_lock_interruptible(dev);
if (ret)
return ERR_PTR(ret);
fb = __intel_framebuffer_create(dev, mode_cmd, obj);
mutex_unlock(&dev->struct_mutex);
return fb;
}
static u32
intel_framebuffer_pitch_for_width(int width, int bpp)
{
u32 pitch = DIV_ROUND_UP(width * bpp, 8);
return ALIGN(pitch, 64);
}
static u32
intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
{
u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
return PAGE_ALIGN(pitch * mode->vdisplay);
}
static struct drm_framebuffer *
intel_framebuffer_create_for_mode(struct drm_device *dev,
struct drm_display_mode *mode,
int depth, int bpp)
{
struct drm_i915_gem_object *obj;
struct drm_mode_fb_cmd2 mode_cmd = { 0 };
obj = i915_gem_alloc_object(dev,
intel_framebuffer_size_for_mode(mode, bpp));
if (obj == NULL)
return ERR_PTR(-ENOMEM);
mode_cmd.width = mode->hdisplay;
mode_cmd.height = mode->vdisplay;
mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
bpp);
mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
return intel_framebuffer_create(dev, &mode_cmd, obj);
}
static struct drm_framebuffer *
mode_fits_in_fbdev(struct drm_device *dev,
struct drm_display_mode *mode)
{
#ifdef CONFIG_DRM_I915_FBDEV
struct drm_i915_private *dev_priv = dev->dev_private;
struct drm_i915_gem_object *obj;
struct drm_framebuffer *fb;
if (!dev_priv->fbdev)
return NULL;
if (!dev_priv->fbdev->fb)
return NULL;
obj = dev_priv->fbdev->fb->obj;
BUG_ON(!obj);
fb = &dev_priv->fbdev->fb->base;
if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
fb->bits_per_pixel))
return NULL;
if (obj->base.size < mode->vdisplay * fb->pitches[0])
return NULL;
return fb;
#else
return NULL;
#endif
}
bool intel_get_load_detect_pipe(struct drm_connector *connector,
struct drm_display_mode *mode,
struct intel_load_detect_pipe *old,
struct drm_modeset_acquire_ctx *ctx)
{
struct intel_crtc *intel_crtc;
struct intel_encoder *intel_encoder =
intel_attached_encoder(connector);
struct drm_crtc *possible_crtc;
struct drm_encoder *encoder = &intel_encoder->base;
struct drm_crtc *crtc = NULL;
struct drm_device *dev = encoder->dev;
struct drm_framebuffer *fb;
struct drm_mode_config *config = &dev->mode_config;
int ret, i = -1;
DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
connector->base.id, connector->name,
encoder->base.id, encoder->name);
retry:
ret = drm_modeset_lock(&config->connection_mutex, ctx);
if (ret)
goto fail_unlock;
/*
* Algorithm gets a little messy:
*
* - if the connector already has an assigned crtc, use it (but make
* sure it's on first)
*
* - try to find the first unused crtc that can drive this connector,
* and use that if we find one
*/
/* See if we already have a CRTC for this connector */
if (encoder->crtc) {
crtc = encoder->crtc;
ret = drm_modeset_lock(&crtc->mutex, ctx);
if (ret)
goto fail_unlock;
old->dpms_mode = connector->dpms;
old->load_detect_temp = false;
/* Make sure the crtc and connector are running */
if (connector->dpms != DRM_MODE_DPMS_ON)
connector->funcs->dpms(connector, DRM_MODE_DPMS_ON);
return true;
}
/* Find an unused one (if possible) */
for_each_crtc(dev, possible_crtc) {
i++;
if (!(encoder->possible_crtcs & (1 << i)))
continue;
if (possible_crtc->enabled)
continue;
/* This can occur when applying the pipe A quirk on resume. */
if (to_intel_crtc(possible_crtc)->new_enabled)
continue;
crtc = possible_crtc;
break;
}
/*
* If we didn't find an unused CRTC, don't use any.
*/
if (!crtc) {
DRM_DEBUG_KMS("no pipe available for load-detect\n");
goto fail_unlock;
}
ret = drm_modeset_lock(&crtc->mutex, ctx);
if (ret)
goto fail_unlock;
intel_encoder->new_crtc = to_intel_crtc(crtc);
to_intel_connector(connector)->new_encoder = intel_encoder;
intel_crtc = to_intel_crtc(crtc);
intel_crtc->new_enabled = true;
intel_crtc->new_config = &intel_crtc->config;
old->dpms_mode = connector->dpms;
old->load_detect_temp = true;
old->release_fb = NULL;
if (!mode)
mode = &load_detect_mode;
/* We need a framebuffer large enough to accommodate all accesses
* that the plane may generate whilst we perform load detection.
* We can not rely on the fbcon either being present (we get called
* during its initialisation to detect all boot displays, or it may
* not even exist) or that it is large enough to satisfy the
* requested mode.
*/
fb = mode_fits_in_fbdev(dev, mode);
if (fb == NULL) {
DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
old->release_fb = fb;
} else
DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
if (IS_ERR(fb)) {
DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
goto fail;
}
if (intel_set_mode(crtc, mode, 0, 0, fb)) {
DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
if (old->release_fb)
old->release_fb->funcs->destroy(old->release_fb);
goto fail;
}
/* let the connector get through one full cycle before testing */
intel_wait_for_vblank(dev, intel_crtc->pipe);
return true;
fail:
intel_crtc->new_enabled = crtc->enabled;
if (intel_crtc->new_enabled)
intel_crtc->new_config = &intel_crtc->config;
else
intel_crtc->new_config = NULL;
fail_unlock:
if (ret == -EDEADLK) {
drm_modeset_backoff(ctx);
goto retry;
}
return false;
}
void intel_release_load_detect_pipe(struct drm_connector *connector,
struct intel_load_detect_pipe *old)
{
struct intel_encoder *intel_encoder =
intel_attached_encoder(connector);
struct drm_encoder *encoder = &intel_encoder->base;
struct drm_crtc *crtc = encoder->crtc;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
connector->base.id, connector->name,
encoder->base.id, encoder->name);
if (old->load_detect_temp) {
to_intel_connector(connector)->new_encoder = NULL;
intel_encoder->new_crtc = NULL;
intel_crtc->new_enabled = false;
intel_crtc->new_config = NULL;
intel_set_mode(crtc, NULL, 0, 0, NULL);
if (old->release_fb) {
drm_framebuffer_unregister_private(old->release_fb);
drm_framebuffer_unreference(old->release_fb);
}
return;
}
/* Switch crtc and encoder back off if necessary */
if (old->dpms_mode != DRM_MODE_DPMS_ON)
connector->funcs->dpms(connector, old->dpms_mode);
}
static int i9xx_pll_refclk(struct drm_device *dev,
const struct intel_crtc_config *pipe_config)
{
struct drm_i915_private *dev_priv = dev->dev_private;
u32 dpll = pipe_config->dpll_hw_state.dpll;
if ((dpll & PLL_REF_INPUT_MASK) == PLLB_REF_INPUT_SPREADSPECTRUMIN)
return dev_priv->vbt.lvds_ssc_freq;
else if (HAS_PCH_SPLIT(dev))
return 120000;
else if (!IS_GEN2(dev))
return 96000;
else
return 48000;
}
/* Returns the clock of the currently programmed mode of the given pipe. */
static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
struct intel_crtc_config *pipe_config)
{
struct drm_device *dev = crtc->base.dev;
struct drm_i915_private *dev_priv = dev->dev_private;
int pipe = pipe_config->cpu_transcoder;
u32 dpll = pipe_config->dpll_hw_state.dpll;
u32 fp;
intel_clock_t clock;
int refclk = i9xx_pll_refclk(dev, pipe_config);
if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
fp = pipe_config->dpll_hw_state.fp0;
else
fp = pipe_config->dpll_hw_state.fp1;
clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
if (IS_PINEVIEW(dev)) {
clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
} else {
clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
}
if (!IS_GEN2(dev)) {
if (IS_PINEVIEW(dev))
clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
else
clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
DPLL_FPA01_P1_POST_DIV_SHIFT);
switch (dpll & DPLL_MODE_MASK) {
case DPLLB_MODE_DAC_SERIAL:
clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
5 : 10;
break;
case DPLLB_MODE_LVDS:
clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
7 : 14;
break;
default:
DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
"mode\n", (int)(dpll & DPLL_MODE_MASK));
return;
}
if (IS_PINEVIEW(dev))
pineview_clock(refclk, &clock);
else
i9xx_clock(refclk, &clock);
} else {
u32 lvds = IS_I830(dev) ? 0 : I915_READ(LVDS);
bool is_lvds = (pipe == 1) && (lvds & LVDS_PORT_EN);
if (is_lvds) {
clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
DPLL_FPA01_P1_POST_DIV_SHIFT);
if (lvds & LVDS_CLKB_POWER_UP)
clock.p2 = 7;
else
clock.p2 = 14;
} else {
if (dpll & PLL_P1_DIVIDE_BY_TWO)
clock.p1 = 2;
else {
clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
}
if (dpll & PLL_P2_DIVIDE_BY_4)
clock.p2 = 4;
else
clock.p2 = 2;
}
i9xx_clock(refclk, &clock);
}
/*
* This value includes pixel_multiplier. We will use
* port_clock to compute adjusted_mode.crtc_clock in the
* encoder's get_config() function.
*/
pipe_config->port_clock = clock.dot;
}
int intel_dotclock_calculate(int link_freq,
const struct intel_link_m_n *m_n)
{
/*
* The calculation for the data clock is:
* pixel_clock = ((m/n)*(link_clock * nr_lanes))/bpp
* But we want to avoid losing precison if possible, so:
* pixel_clock = ((m * link_clock * nr_lanes)/(n*bpp))
*
* and the link clock is simpler:
* link_clock = (m * link_clock) / n
*/
if (!m_n->link_n)
return 0;
return div_u64((u64)m_n->link_m * link_freq, m_n->link_n);
}
static void ironlake_pch_clock_get(struct intel_crtc *crtc,
struct intel_crtc_config *pipe_config)
{
struct drm_device *dev = crtc->base.dev;
/* read out port_clock from the DPLL */
i9xx_crtc_clock_get(crtc, pipe_config);
/*
* This value does not include pixel_multiplier.
* We will check that port_clock and adjusted_mode.crtc_clock
* agree once we know their relationship in the encoder's
* get_config() function.
*/
pipe_config->adjusted_mode.crtc_clock =
intel_dotclock_calculate(intel_fdi_link_freq(dev) * 10000,
&pipe_config->fdi_m_n);
}
/** Returns the currently programmed mode of the given pipe. */
struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
struct drm_crtc *crtc)
{
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
struct drm_display_mode *mode;
struct intel_crtc_config pipe_config;
int htot = I915_READ(HTOTAL(cpu_transcoder));
int hsync = I915_READ(HSYNC(cpu_transcoder));
int vtot = I915_READ(VTOTAL(cpu_transcoder));
int vsync = I915_READ(VSYNC(cpu_transcoder));
enum pipe pipe = intel_crtc->pipe;
mode = kzalloc(sizeof(*mode), GFP_KERNEL);
if (!mode)
return NULL;
/*
* Construct a pipe_config sufficient for getting the clock info
* back out of crtc_clock_get.
*
* Note, if LVDS ever uses a non-1 pixel multiplier, we'll need
* to use a real value here instead.
*/
pipe_config.cpu_transcoder = (enum transcoder) pipe;
pipe_config.pixel_multiplier = 1;
pipe_config.dpll_hw_state.dpll = I915_READ(DPLL(pipe));
pipe_config.dpll_hw_state.fp0 = I915_READ(FP0(pipe));
pipe_config.dpll_hw_state.fp1 = I915_READ(FP1(pipe));
i9xx_crtc_clock_get(intel_crtc, &pipe_config);
mode->clock = pipe_config.port_clock / pipe_config.pixel_multiplier;
mode->hdisplay = (htot & 0xffff) + 1;
mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
mode->hsync_start = (hsync & 0xffff) + 1;
mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
mode->vdisplay = (vtot & 0xffff) + 1;
mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
mode->vsync_start = (vsync & 0xffff) + 1;
mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
drm_mode_set_name(mode);
return mode;
}
static void intel_decrease_pllclock(struct drm_crtc *crtc)
{
struct drm_device *dev = crtc->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
if (!HAS_GMCH_DISPLAY(dev))
return;
if (!dev_priv->lvds_downclock_avail)
return;
/*
* Since this is called by a timer, we should never get here in
* the manual case.
*/
if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
int pipe = intel_crtc->pipe;
int dpll_reg = DPLL(pipe);
int dpll;
DRM_DEBUG_DRIVER("downclocking LVDS\n");
assert_panel_unlocked(dev_priv, pipe);
dpll = I915_READ(dpll_reg);
dpll |= DISPLAY_RATE_SELECT_FPA1;
I915_WRITE(dpll_reg, dpll);
intel_wait_for_vblank(dev, pipe);
dpll = I915_READ(dpll_reg);
if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
}
}
void intel_mark_busy(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
if (dev_priv->mm.busy)
return;
intel_runtime_pm_get(dev_priv);
i915_update_gfx_val(dev_priv);
dev_priv->mm.busy = true;
}
void intel_mark_idle(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
struct drm_crtc *crtc;
if (!dev_priv->mm.busy)
return;
dev_priv->mm.busy = false;
if (!i915.powersave)
goto out;
for_each_crtc(dev, crtc) {
if (!crtc->primary->fb)
continue;
intel_decrease_pllclock(crtc);
}
if (INTEL_INFO(dev)->gen >= 6)
gen6_rps_idle(dev->dev_private);
out:
intel_runtime_pm_put(dev_priv);
}
static void intel_crtc_destroy(struct drm_crtc *crtc)
{
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
struct drm_device *dev = crtc->dev;
struct intel_unpin_work *work;
spin_lock_irq(&dev->event_lock);
work = intel_crtc->unpin_work;
intel_crtc->unpin_work = NULL;
spin_unlock_irq(&dev->event_lock);
if (work) {
cancel_work_sync(&work->work);
kfree(work);
}
drm_crtc_cleanup(crtc);
kfree(intel_crtc);
}
static void intel_unpin_work_fn(struct work_struct *__work)
{
struct intel_unpin_work *work =
container_of(__work, struct intel_unpin_work, work);
struct drm_device *dev = work->crtc->dev;
enum pipe pipe = to_intel_crtc(work->crtc)->pipe;
mutex_lock(&dev->struct_mutex);
intel_unpin_fb_obj(work->old_fb_obj);
drm_gem_object_unreference(&work->pending_flip_obj->base);
drm_gem_object_unreference(&work->old_fb_obj->base);
intel_update_fbc(dev);
mutex_unlock(&dev->struct_mutex);
intel_frontbuffer_flip_complete(dev, INTEL_FRONTBUFFER_PRIMARY(pipe));
BUG_ON(atomic_read(&to_intel_crtc(work->crtc)->unpin_work_count) == 0);
atomic_dec(&to_intel_crtc(work->crtc)->unpin_work_count);
kfree(work);
}
static void do_intel_finish_page_flip(struct drm_device *dev,
struct drm_crtc *crtc)
{
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
struct intel_unpin_work *work;
unsigned long flags;
/* Ignore early vblank irqs */
if (intel_crtc == NULL)
return;
/*
* This is called both by irq handlers and the reset code (to complete
* lost pageflips) so needs the full irqsave spinlocks.
*/
spin_lock_irqsave(&dev->event_lock, flags);
work = intel_crtc->unpin_work;
/* Ensure we don't miss a work->pending update ... */
smp_rmb();
if (work == NULL || atomic_read(&work->pending) < INTEL_FLIP_COMPLETE) {
spin_unlock_irqrestore(&dev->event_lock, flags);
return;
}
page_flip_completed(intel_crtc);
spin_unlock_irqrestore(&dev->event_lock, flags);
}
void intel_finish_page_flip(struct drm_device *dev, int pipe)
{
struct drm_i915_private *dev_priv = dev->dev_private;
struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
do_intel_finish_page_flip(dev, crtc);
}
void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
{
struct drm_i915_private *dev_priv = dev->dev_private;
struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
do_intel_finish_page_flip(dev, crtc);
}
/* Is 'a' after or equal to 'b'? */
static bool g4x_flip_count_after_eq(u32 a, u32 b)
{
return !((a - b) & 0x80000000);
}
static bool page_flip_finished(struct intel_crtc *crtc)
{
struct drm_device *dev = crtc->base.dev;
struct drm_i915_private *dev_priv = dev->dev_private;
/*
* The relevant registers doen't exist on pre-ctg.
* As the flip done interrupt doesn't trigger for mmio
* flips on gmch platforms, a flip count check isn't
* really needed there. But since ctg has the registers,
* include it in the check anyway.
*/
if (INTEL_INFO(dev)->gen < 5 && !IS_G4X(dev))
return true;
/*
* A DSPSURFLIVE check isn't enough in case the mmio and CS flips
* used the same base address. In that case the mmio flip might
* have completed, but the CS hasn't even executed the flip yet.
*
* A flip count check isn't enough as the CS might have updated
* the base address just after start of vblank, but before we
* managed to process the interrupt. This means we'd complete the
* CS flip too soon.
*
* Combining both checks should get us a good enough result. It may
* still happen that the CS flip has been executed, but has not
* yet actually completed. But in case the base address is the same
* anyway, we don't really care.
*/
return (I915_READ(DSPSURFLIVE(crtc->plane)) & ~0xfff) ==
crtc->unpin_work->gtt_offset &&
g4x_flip_count_after_eq(I915_READ(PIPE_FLIPCOUNT_GM45(crtc->pipe)),
crtc->unpin_work->flip_count);
}
void intel_prepare_page_flip(struct drm_device *dev, int plane)
{
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_crtc *intel_crtc =
to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
unsigned long flags;
/*
* This is called both by irq handlers and the reset code (to complete
* lost pageflips) so needs the full irqsave spinlocks.
*
* NB: An MMIO update of the plane base pointer will also
* generate a page-flip completion irq, i.e. every modeset
* is also accompanied by a spurious intel_prepare_page_flip().
*/
spin_lock_irqsave(&dev->event_lock, flags);
if (intel_crtc->unpin_work && page_flip_finished(intel_crtc))
atomic_inc_not_zero(&intel_crtc->unpin_work->pending);
spin_unlock_irqrestore(&dev->event_lock, flags);
}
static inline void intel_mark_page_flip_active(struct intel_crtc *intel_crtc)
{
/* Ensure that the work item is consistent when activating it ... */
smp_wmb();
atomic_set(&intel_crtc->unpin_work->pending, INTEL_FLIP_PENDING);
/* and that it is marked active as soon as the irq could fire. */
smp_wmb();
}
static int intel_gen2_queue_flip(struct drm_device *dev,
struct drm_crtc *crtc,
struct drm_framebuffer *fb,
struct drm_i915_gem_object *obj,
struct intel_engine_cs *ring,
uint32_t flags)
{
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
u32 flip_mask;
int ret;
ret = intel_ring_begin(ring, 6);
if (ret)
return ret;
/* Can't queue multiple flips, so wait for the previous
* one to finish before executing the next.
*/
if (intel_crtc->plane)
flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
else
flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
intel_ring_emit(ring, MI_NOOP);
intel_ring_emit(ring, MI_DISPLAY_FLIP |
MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
intel_ring_emit(ring, fb->pitches[0]);
intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
intel_ring_emit(ring, 0); /* aux display base address, unused */
intel_mark_page_flip_active(intel_crtc);
__intel_ring_advance(ring);
return 0;
}
static int intel_gen3_queue_flip(struct drm_device *dev,
struct drm_crtc *crtc,
struct drm_framebuffer *fb,
struct drm_i915_gem_object *obj,
struct intel_engine_cs *ring,
uint32_t flags)
{
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
u32 flip_mask;
int ret;
ret = intel_ring_begin(ring, 6);
if (ret)
return ret;
if (intel_crtc->plane)
flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
else
flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
intel_ring_emit(ring, MI_NOOP);
intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 |
MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
intel_ring_emit(ring, fb->pitches[0]);
intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
intel_ring_emit(ring, MI_NOOP);
intel_mark_page_flip_active(intel_crtc);
__intel_ring_advance(ring);
return 0;
}
static int intel_gen4_queue_flip(struct drm_device *dev,
struct drm_crtc *crtc,
struct drm_framebuffer *fb,
struct drm_i915_gem_object *obj,
struct intel_engine_cs *ring,
uint32_t flags)
{
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
uint32_t pf, pipesrc;
int ret;
ret = intel_ring_begin(ring, 4);
if (ret)
return ret;
/* i965+ uses the linear or tiled offsets from the
* Display Registers (which do not change across a page-flip)
* so we need only reprogram the base address.
*/
intel_ring_emit(ring, MI_DISPLAY_FLIP |
MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
intel_ring_emit(ring, fb->pitches[0]);
intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset |
obj->tiling_mode);
/* XXX Enabling the panel-fitter across page-flip is so far
* untested on non-native modes, so ignore it for now.
* pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
*/
pf = 0;
pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
intel_ring_emit(ring, pf | pipesrc);
intel_mark_page_flip_active(intel_crtc);
__intel_ring_advance(ring);
return 0;
}
static int intel_gen6_queue_flip(struct drm_device *dev,
struct drm_crtc *crtc,
struct drm_framebuffer *fb,
struct drm_i915_gem_object *obj,
struct intel_engine_cs *ring,
uint32_t flags)
{
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
uint32_t pf, pipesrc;
int ret;
ret = intel_ring_begin(ring, 4);
if (ret)
return ret;
intel_ring_emit(ring, MI_DISPLAY_FLIP |
MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
intel_ring_emit(ring, fb->pitches[0] | obj->tiling_mode);
intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
/* Contrary to the suggestions in the documentation,
* "Enable Panel Fitter" does not seem to be required when page
* flipping with a non-native mode, and worse causes a normal
* modeset to fail.
* pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
*/
pf = 0;
pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
intel_ring_emit(ring, pf | pipesrc);
intel_mark_page_flip_active(intel_crtc);
__intel_ring_advance(ring);
return 0;
}
static int intel_gen7_queue_flip(struct drm_device *dev,
struct drm_crtc *crtc,
struct drm_framebuffer *fb,
struct drm_i915_gem_object *obj,
struct intel_engine_cs *ring,
uint32_t flags)
{
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
uint32_t plane_bit = 0;
int len, ret;
switch (intel_crtc->plane) {
case PLANE_A:
plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
break;
case PLANE_B:
plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
break;
case PLANE_C:
plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
break;
default:
WARN_ONCE(1, "unknown plane in flip command\n");
return -ENODEV;
}
len = 4;
if (ring->id == RCS) {
len += 6;
/*
* On Gen 8, SRM is now taking an extra dword to accommodate
* 48bits addresses, and we need a NOOP for the batch size to
* stay even.
*/
if (IS_GEN8(dev))
len += 2;
}
/*
* BSpec MI_DISPLAY_FLIP for IVB:
* "The full packet must be contained within the same cache line."
*
* Currently the LRI+SRM+MI_DISPLAY_FLIP all fit within the same
* cacheline, if we ever start emitting more commands before
* the MI_DISPLAY_FLIP we may need to first emit everything else,
* then do the cacheline alignment, and finally emit the
* MI_DISPLAY_FLIP.
*/
ret = intel_ring_cacheline_align(ring);
if (ret)
return ret;
ret = intel_ring_begin(ring, len);
if (ret)
return ret;
/* Unmask the flip-done completion message. Note that the bspec says that
* we should do this for both the BCS and RCS, and that we must not unmask
* more than one flip event at any time (or ensure that one flip message
* can be sent by waiting for flip-done prior to queueing new flips).
* Experimentation says that BCS works despite DERRMR masking all
* flip-done completion events and that unmasking all planes at once
* for the RCS also doesn't appear to drop events. Setting the DERRMR
* to zero does lead to lockups within MI_DISPLAY_FLIP.
*/
if (ring->id == RCS) {
intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
intel_ring_emit(ring, DERRMR);
intel_ring_emit(ring, ~(DERRMR_PIPEA_PRI_FLIP_DONE |
DERRMR_PIPEB_PRI_FLIP_DONE |
DERRMR_PIPEC_PRI_FLIP_DONE));
if (IS_GEN8(dev))
intel_ring_emit(ring, MI_STORE_REGISTER_MEM_GEN8(1) |
MI_SRM_LRM_GLOBAL_GTT);
else
intel_ring_emit(ring, MI_STORE_REGISTER_MEM(1) |
MI_SRM_LRM_GLOBAL_GTT);
intel_ring_emit(ring, DERRMR);
intel_ring_emit(ring, ring->scratch.gtt_offset + 256);
if (IS_GEN8(dev)) {
intel_ring_emit(ring, 0);
intel_ring_emit(ring, MI_NOOP);
}
}
intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane_bit);
intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode));
intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
intel_ring_emit(ring, (MI_NOOP));
intel_mark_page_flip_active(intel_crtc);
__intel_ring_advance(ring);
return 0;
}
static bool use_mmio_flip(struct intel_engine_cs *ring,
struct drm_i915_gem_object *obj)
{
/*
* This is not being used for older platforms, because
* non-availability of flip done interrupt forces us to use
* CS flips. Older platforms derive flip done using some clever
* tricks involving the flip_pending status bits and vblank irqs.
* So using MMIO flips there would disrupt this mechanism.
*/
if (ring == NULL)
return true;
if (INTEL_INFO(ring->dev)->gen < 5)
return false;
if (i915.use_mmio_flip < 0)
return false;
else if (i915.use_mmio_flip > 0)
return true;
else if (i915.enable_execlists)
return true;
else
return ring != obj->ring;
}
static void intel_do_mmio_flip(struct intel_crtc *intel_crtc)
{
struct drm_device *dev = intel_crtc->base.dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_framebuffer *intel_fb =
to_intel_framebuffer(intel_crtc->base.primary->fb);
struct drm_i915_gem_object *obj = intel_fb->obj;
u32 dspcntr;
u32 reg;
intel_mark_page_flip_active(intel_crtc);
reg = DSPCNTR(intel_crtc->plane);
dspcntr = I915_READ(reg);
if (obj->tiling_mode != I915_TILING_NONE)
dspcntr |= DISPPLANE_TILED;
else
dspcntr &= ~DISPPLANE_TILED;
I915_WRITE(reg, dspcntr);
I915_WRITE(DSPSURF(intel_crtc->plane),
intel_crtc->unpin_work->gtt_offset);
POSTING_READ(DSPSURF(intel_crtc->plane));
}
static int intel_postpone_flip(struct drm_i915_gem_object *obj)
{
struct intel_engine_cs *ring;
int ret;
lockdep_assert_held(&obj->base.dev->struct_mutex);
if (!obj->last_write_seqno)
return 0;
ring = obj->ring;
if (i915_seqno_passed(ring->get_seqno(ring, true),
obj->last_write_seqno))
return 0;
ret = i915_gem_check_olr(ring, obj->last_write_seqno);
if (ret)
return ret;
if (WARN_ON(!ring->irq_get(ring)))
return 0;
return 1;
}
void intel_notify_mmio_flip(struct intel_engine_cs *ring)
{
struct drm_i915_private *dev_priv = to_i915(ring->dev);
struct intel_crtc *intel_crtc;
unsigned long irq_flags;
u32 seqno;
seqno = ring->get_seqno(ring, false);
spin_lock_irqsave(&dev_priv->mmio_flip_lock, irq_flags);
for_each_intel_crtc(ring->dev, intel_crtc) {
struct intel_mmio_flip *mmio_flip;
mmio_flip = &intel_crtc->mmio_flip;
if (mmio_flip->seqno == 0)
continue;
if (ring->id != mmio_flip->ring_id)
continue;
if (i915_seqno_passed(seqno, mmio_flip->seqno)) {
intel_do_mmio_flip(intel_crtc);
mmio_flip->seqno = 0;
ring->irq_put(ring);
}
}
spin_unlock_irqrestore(&dev_priv->mmio_flip_lock, irq_flags);
}
static int intel_queue_mmio_flip(struct drm_device *dev,
struct drm_crtc *crtc,
struct drm_framebuffer *fb,
struct drm_i915_gem_object *obj,
struct intel_engine_cs *ring,
uint32_t flags)
{
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
int ret;
if (WARN_ON(intel_crtc->mmio_flip.seqno))
return -EBUSY;
ret = intel_postpone_flip(obj);
if (ret < 0)
return ret;
if (ret == 0) {
intel_do_mmio_flip(intel_crtc);
return 0;
}
spin_lock_irq(&dev_priv->mmio_flip_lock);
intel_crtc->mmio_flip.seqno = obj->last_write_seqno;
intel_crtc->mmio_flip.ring_id = obj->ring->id;
spin_unlock_irq(&dev_priv->mmio_flip_lock);
/*
* Double check to catch cases where irq fired before
* mmio flip data was ready
*/
intel_notify_mmio_flip(obj->ring);
return 0;
}
static int intel_default_queue_flip(struct drm_device *dev,
struct drm_crtc *crtc,
struct drm_framebuffer *fb,
struct drm_i915_gem_object *obj,
struct intel_engine_cs *ring,
uint32_t flags)
{
return -ENODEV;
}
static bool __intel_pageflip_stall_check(struct drm_device *dev,
struct drm_crtc *crtc)
{
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
struct intel_unpin_work *work = intel_crtc->unpin_work;
u32 addr;
if (atomic_read(&work->pending) >= INTEL_FLIP_COMPLETE)
return true;
if (!work->enable_stall_check)
return false;
if (work->flip_ready_vblank == 0) {
if (work->flip_queued_ring &&
!i915_seqno_passed(work->flip_queued_ring->get_seqno(work->flip_queued_ring, true),
work->flip_queued_seqno))
return false;
work->flip_ready_vblank = drm_vblank_count(dev, intel_crtc->pipe);
}
if (drm_vblank_count(dev, intel_crtc->pipe) - work->flip_ready_vblank < 3)
return false;
/* Potential stall - if we see that the flip has happened,
* assume a missed interrupt. */
if (INTEL_INFO(dev)->gen >= 4)
addr = I915_HI_DISPBASE(I915_READ(DSPSURF(intel_crtc->plane)));
else
addr = I915_READ(DSPADDR(intel_crtc->plane));
/* There is a potential issue here with a false positive after a flip
* to the same address. We could address this by checking for a
* non-incrementing frame counter.
*/
return addr == work->gtt_offset;
}
void intel_check_page_flip(struct drm_device *dev, int pipe)
{
struct drm_i915_private *dev_priv = dev->dev_private;
struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
WARN_ON(!in_irq());
if (crtc == NULL)
return;
spin_lock(&dev->event_lock);
if (intel_crtc->unpin_work && __intel_pageflip_stall_check(dev, crtc)) {
WARN_ONCE(1, "Kicking stuck page flip: queued at %d, now %d\n",
intel_crtc->unpin_work->flip_queued_vblank, drm_vblank_count(dev, pipe));
page_flip_completed(intel_crtc);
}
spin_unlock(&dev->event_lock);
}
static int intel_crtc_page_flip(struct drm_crtc *crtc,
struct drm_framebuffer *fb,
struct drm_pending_vblank_event *event,
uint32_t page_flip_flags)
{
struct drm_device *dev = crtc->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct drm_framebuffer *old_fb = crtc->primary->fb;
struct drm_i915_gem_object *obj = intel_fb_obj(fb);
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
enum pipe pipe = intel_crtc->pipe;
struct intel_unpin_work *work;
struct intel_engine_cs *ring;
int ret;
/*
* drm_mode_page_flip_ioctl() should already catch this, but double
* check to be safe. In the future we may enable pageflipping from
* a disabled primary plane.
*/
if (WARN_ON(intel_fb_obj(old_fb) == NULL))
return -EBUSY;
/* Can't change pixel format via MI display flips. */
if (fb->pixel_format != crtc->primary->fb->pixel_format)
return -EINVAL;
/*
* TILEOFF/LINOFF registers can't be changed via MI display flips.
* Note that pitch changes could also affect these register.
*/
if (INTEL_INFO(dev)->gen > 3 &&
(fb->offsets[0] != crtc->primary->fb->offsets[0] ||
fb->pitches[0] != crtc->primary->fb->pitches[0]))
return -EINVAL;
if (i915_terminally_wedged(&dev_priv->gpu_error))
goto out_hang;
work = kzalloc(sizeof(*work), GFP_KERNEL);
if (work == NULL)
return -ENOMEM;
work->event = event;
work->crtc = crtc;
work->old_fb_obj = intel_fb_obj(old_fb);
INIT_WORK(&work->work, intel_unpin_work_fn);
ret = drm_crtc_vblank_get(crtc);
if (ret)
goto free_work;
/* We borrow the event spin lock for protecting unpin_work */
spin_lock_irq(&dev->event_lock);
if (intel_crtc->unpin_work) {
/* Before declaring the flip queue wedged, check if
* the hardware completed the operation behind our backs.
*/
if (__intel_pageflip_stall_check(dev, crtc)) {
DRM_DEBUG_DRIVER("flip queue: previous flip completed, continuing\n");
page_flip_completed(intel_crtc);
} else {
DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
spin_unlock_irq(&dev->event_lock);
drm_crtc_vblank_put(crtc);
kfree(work);
return -EBUSY;
}
}
intel_crtc->unpin_work = work;
spin_unlock_irq(&dev->event_lock);
if (atomic_read(&intel_crtc->unpin_work_count) >= 2)
flush_workqueue(dev_priv->wq);
ret = i915_mutex_lock_interruptible(dev);
if (ret)
goto cleanup;
/* Reference the objects for the scheduled work. */
drm_gem_object_reference(&work->old_fb_obj->base);
drm_gem_object_reference(&obj->base);
crtc->primary->fb = fb;
work->pending_flip_obj = obj;
atomic_inc(&intel_crtc->unpin_work_count);
intel_crtc->reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
work->flip_count = I915_READ(PIPE_FLIPCOUNT_GM45(pipe)) + 1;
if (IS_VALLEYVIEW(dev)) {
ring = &dev_priv->ring[BCS];
if (obj->tiling_mode != work->old_fb_obj->tiling_mode)
/* vlv: DISPLAY_FLIP fails to change tiling */
ring = NULL;
} else if (IS_IVYBRIDGE(dev)) {
ring = &dev_priv->ring[BCS];
} else if (INTEL_INFO(dev)->gen >= 7) {
ring = obj->ring;
if (ring == NULL || ring->id != RCS)
ring = &dev_priv->ring[BCS];
} else {
ring = &dev_priv->ring[RCS];
}
ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
if (ret)
goto cleanup_pending;
work->gtt_offset =
i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset;
if (use_mmio_flip(ring, obj)) {
ret = intel_queue_mmio_flip(dev, crtc, fb, obj, ring,
page_flip_flags);
if (ret)
goto cleanup_unpin;
work->flip_queued_seqno = obj->last_write_seqno;
work->flip_queued_ring = obj->ring;
} else {
ret = dev_priv->display.queue_flip(dev, crtc, fb, obj, ring,
page_flip_flags);
if (ret)
goto cleanup_unpin;
work->flip_queued_seqno = intel_ring_get_seqno(ring);
work->flip_queued_ring = ring;
}
work->flip_queued_vblank = drm_vblank_count(dev, intel_crtc->pipe);
work->enable_stall_check = true;
i915_gem_track_fb(work->old_fb_obj, obj,
INTEL_FRONTBUFFER_PRIMARY(pipe));
intel_disable_fbc(dev);
intel_frontbuffer_flip_prepare(dev, INTEL_FRONTBUFFER_PRIMARY(pipe));
mutex_unlock(&dev->struct_mutex);
trace_i915_flip_request(intel_crtc->plane, obj);
return 0;
cleanup_unpin:
intel_unpin_fb_obj(obj);
cleanup_pending:
atomic_dec(&intel_crtc->unpin_work_count);
crtc->primary->fb = old_fb;
drm_gem_object_unreference(&work->old_fb_obj->base);
drm_gem_object_unreference(&obj->base);
mutex_unlock(&dev->struct_mutex);
cleanup:
spin_lock_irq(&dev->event_lock);
intel_crtc->unpin_work = NULL;
spin_unlock_irq(&dev->event_lock);
drm_crtc_vblank_put(crtc);
free_work:
kfree(work);
if (ret == -EIO) {
out_hang:
intel_crtc_wait_for_pending_flips(crtc);
ret = intel_pipe_set_base(crtc, crtc->x, crtc->y, fb);
if (ret == 0 && event) {
spin_lock_irq(&dev->event_lock);
drm_send_vblank_event(dev, pipe, event);
spin_unlock_irq(&dev->event_lock);
}
}
return ret;
}
static struct drm_crtc_helper_funcs intel_helper_funcs = {
.mode_set_base_atomic = intel_pipe_set_base_atomic,
.load_lut = intel_crtc_load_lut,
};
/**
* intel_modeset_update_staged_output_state
*
* Updates the staged output configuration state, e.g. after we've read out the
* current hw state.
*/
static void intel_modeset_update_staged_output_state(struct drm_device *dev)
{
struct intel_crtc *crtc;
struct intel_encoder *encoder;
struct intel_connector *connector;
list_for_each_entry(connector, &dev->mode_config.connector_list,
base.head) {
connector->new_encoder =
to_intel_encoder(connector->base.encoder);
}
for_each_intel_encoder(dev, encoder) {
encoder->new_crtc =
to_intel_crtc(encoder->base.crtc);
}
for_each_intel_crtc(dev, crtc) {
crtc->new_enabled = crtc->base.enabled;
if (crtc->new_enabled)
crtc->new_config = &crtc->config;
else
crtc->new_config = NULL;
}
}
/**
* intel_modeset_commit_output_state
*
* This function copies the stage display pipe configuration to the real one.
*/
static void intel_modeset_commit_output_state(struct drm_device *dev)
{
struct intel_crtc *crtc;
struct intel_encoder *encoder;
struct intel_connector *connector;
list_for_each_entry(connector, &dev->mode_config.connector_list,
base.head) {
connector->base.encoder = &connector->new_encoder->base;
}
for_each_intel_encoder(dev, encoder) {
encoder->base.crtc = &encoder->new_crtc->base;
}
for_each_intel_crtc(dev, crtc) {
crtc->base.enabled = crtc->new_enabled;
}
}
static void
connected_sink_compute_bpp(struct intel_connector *connector,
struct intel_crtc_config *pipe_config)
{
int bpp = pipe_config->pipe_bpp;
DRM_DEBUG_KMS("[CONNECTOR:%d:%s] checking for sink bpp constrains\n",
connector->base.base.id,
connector->base.name);
/* Don't use an invalid EDID bpc value */
if (connector->base.display_info.bpc &&
connector->base.display_info.bpc * 3 < bpp) {
DRM_DEBUG_KMS("clamping display bpp (was %d) to EDID reported max of %d\n",
bpp, connector->base.display_info.bpc*3);
pipe_config->pipe_bpp = connector->base.display_info.bpc*3;
}
/* Clamp bpp to 8 on screens without EDID 1.4 */
if (connector->base.display_info.bpc == 0 && bpp > 24) {
DRM_DEBUG_KMS("clamping display bpp (was %d) to default limit of 24\n",
bpp);
pipe_config->pipe_bpp = 24;
}
}
static int
compute_baseline_pipe_bpp(struct intel_crtc *crtc,
struct drm_framebuffer *fb,
struct intel_crtc_config *pipe_config)
{
struct drm_device *dev = crtc->base.dev;
struct intel_connector *connector;
int bpp;
switch (fb->pixel_format) {
case DRM_FORMAT_C8:
bpp = 8*3; /* since we go through a colormap */
break;
case DRM_FORMAT_XRGB1555:
case DRM_FORMAT_ARGB1555:
/* checked in intel_framebuffer_init already */
if (WARN_ON(INTEL_INFO(dev)->gen > 3))
return -EINVAL;
case DRM_FORMAT_RGB565:
bpp = 6*3; /* min is 18bpp */
break;
case DRM_FORMAT_XBGR8888:
case DRM_FORMAT_ABGR8888:
/* checked in intel_framebuffer_init already */
if (WARN_ON(INTEL_INFO(dev)->gen < 4))
return -EINVAL;
case DRM_FORMAT_XRGB8888:
case DRM_FORMAT_ARGB8888:
bpp = 8*3;
break;
case DRM_FORMAT_XRGB2101010:
case DRM_FORMAT_ARGB2101010:
case DRM_FORMAT_XBGR2101010:
case DRM_FORMAT_ABGR2101010:
/* checked in intel_framebuffer_init already */
if (WARN_ON(INTEL_INFO(dev)->gen < 4))
return -EINVAL;
bpp = 10*3;
break;
/* TODO: gen4+ supports 16 bpc floating point, too. */
default:
DRM_DEBUG_KMS("unsupported depth\n");
return -EINVAL;
}
pipe_config->pipe_bpp = bpp;
/* Clamp display bpp to EDID value */
list_for_each_entry(connector, &dev->mode_config.connector_list,
base.head) {
if (!connector->new_encoder ||
connector->new_encoder->new_crtc != crtc)
continue;
connected_sink_compute_bpp(connector, pipe_config);
}
return bpp;
}
static void intel_dump_crtc_timings(const struct drm_display_mode *mode)
{
DRM_DEBUG_KMS("crtc timings: %d %d %d %d %d %d %d %d %d, "
"type: 0x%x flags: 0x%x\n",
mode->crtc_clock,
mode->crtc_hdisplay, mode->crtc_hsync_start,
mode->crtc_hsync_end, mode->crtc_htotal,
mode->crtc_vdisplay, mode->crtc_vsync_start,
mode->crtc_vsync_end, mode->crtc_vtotal, mode->type, mode->flags);
}
static void intel_dump_pipe_config(struct intel_crtc *crtc,
struct intel_crtc_config *pipe_config,
const char *context)
{
DRM_DEBUG_KMS("[CRTC:%d]%s config for pipe %c\n", crtc->base.base.id,
context, pipe_name(crtc->pipe));
DRM_DEBUG_KMS("cpu_transcoder: %c\n", transcoder_name(pipe_config->cpu_transcoder));
DRM_DEBUG_KMS("pipe bpp: %i, dithering: %i\n",
pipe_config->pipe_bpp, pipe_config->dither);
DRM_DEBUG_KMS("fdi/pch: %i, lanes: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
pipe_config->has_pch_encoder,
pipe_config->fdi_lanes,
pipe_config->fdi_m_n.gmch_m, pipe_config->fdi_m_n.gmch_n,
pipe_config->fdi_m_n.link_m, pipe_config->fdi_m_n.link_n,
pipe_config->fdi_m_n.tu);
DRM_DEBUG_KMS("dp: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
pipe_config->has_dp_encoder,
pipe_config->dp_m_n.gmch_m, pipe_config->dp_m_n.gmch_n,
pipe_config->dp_m_n.link_m, pipe_config->dp_m_n.link_n,
pipe_config->dp_m_n.tu);
DRM_DEBUG_KMS("dp: %i, gmch_m2: %u, gmch_n2: %u, link_m2: %u, link_n2: %u, tu2: %u\n",
pipe_config->has_dp_encoder,
pipe_config->dp_m2_n2.gmch_m,
pipe_config->dp_m2_n2.gmch_n,
pipe_config->dp_m2_n2.link_m,
pipe_config->dp_m2_n2.link_n,
pipe_config->dp_m2_n2.tu);
DRM_DEBUG_KMS("requested mode:\n");
drm_mode_debug_printmodeline(&pipe_config->requested_mode);
DRM_DEBUG_KMS("adjusted mode:\n");
drm_mode_debug_printmodeline(&pipe_config->adjusted_mode);
intel_dump_crtc_timings(&pipe_config->adjusted_mode);
DRM_DEBUG_KMS("port clock: %d\n", pipe_config->port_clock);
DRM_DEBUG_KMS("pipe src size: %dx%d\n",
pipe_config->pipe_src_w, pipe_config->pipe_src_h);
DRM_DEBUG_KMS("gmch pfit: control: 0x%08x, ratios: 0x%08x, lvds border: 0x%08x\n",
pipe_config->gmch_pfit.control,
pipe_config->gmch_pfit.pgm_ratios,
pipe_config->gmch_pfit.lvds_border_bits);
DRM_DEBUG_KMS("pch pfit: pos: 0x%08x, size: 0x%08x, %s\n",
pipe_config->pch_pfit.pos,
pipe_config->pch_pfit.size,
pipe_config->pch_pfit.enabled ? "enabled" : "disabled");
DRM_DEBUG_KMS("ips: %i\n", pipe_config->ips_enabled);
DRM_DEBUG_KMS("double wide: %i\n", pipe_config->double_wide);
}
static bool encoders_cloneable(const struct intel_encoder *a,
const struct intel_encoder *b)
{
/* masks could be asymmetric, so check both ways */
return a == b || (a->cloneable & (1 << b->type) &&
b->cloneable & (1 << a->type));
}
static bool check_single_encoder_cloning(struct intel_crtc *crtc,
struct intel_encoder *encoder)
{
struct drm_device *dev = crtc->base.dev;
struct intel_encoder *source_encoder;
for_each_intel_encoder(dev, source_encoder) {
if (source_encoder->new_crtc != crtc)
continue;
if (!encoders_cloneable(encoder, source_encoder))
return false;
}
return true;
}
static bool check_encoder_cloning(struct intel_crtc *crtc)
{
struct drm_device *dev = crtc->base.dev;
struct intel_encoder *encoder;
for_each_intel_encoder(dev, encoder) {
if (encoder->new_crtc != crtc)
continue;
if (!check_single_encoder_cloning(crtc, encoder))
return false;
}
return true;
}
static struct intel_crtc_config *
intel_modeset_pipe_config(struct drm_crtc *crtc,
struct drm_framebuffer *fb,
struct drm_display_mode *mode)
{
struct drm_device *dev = crtc->dev;
struct intel_encoder *encoder;
struct intel_crtc_config *pipe_config;
int plane_bpp, ret = -EINVAL;
bool retry = true;
if (!check_encoder_cloning(to_intel_crtc(crtc))) {
DRM_DEBUG_KMS("rejecting invalid cloning configuration\n");
return ERR_PTR(-EINVAL);
}
pipe_config = kzalloc(sizeof(*pipe_config), GFP_KERNEL);
if (!pipe_config)
return ERR_PTR(-ENOMEM);
drm_mode_copy(&pipe_config->adjusted_mode, mode);
drm_mode_copy(&pipe_config->requested_mode, mode);
pipe_config->cpu_transcoder =
(enum transcoder) to_intel_crtc(crtc)->pipe;
pipe_config->shared_dpll = DPLL_ID_PRIVATE;
/*
* Sanitize sync polarity flags based on requested ones. If neither
* positive or negative polarity is requested, treat this as meaning
* negative polarity.
*/
if (!(pipe_config->adjusted_mode.flags &
(DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NHSYNC)))
pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_NHSYNC;
if (!(pipe_config->adjusted_mode.flags &
(DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_NVSYNC)))
pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_NVSYNC;
/* Compute a starting value for pipe_config->pipe_bpp taking the source
* plane pixel format and any sink constraints into account. Returns the
* source plane bpp so that dithering can be selected on mismatches
* after encoders and crtc also have had their say. */
plane_bpp = compute_baseline_pipe_bpp(to_intel_crtc(crtc),
fb, pipe_config);
if (plane_bpp < 0)
goto fail;
/*
* Determine the real pipe dimensions. Note that stereo modes can
* increase the actual pipe size due to the frame doubling and
* insertion of additional space for blanks between the frame. This
* is stored in the crtc timings. We use the requested mode to do this
* computation to clearly distinguish it from the adjusted mode, which
* can be changed by the connectors in the below retry loop.
*/
drm_mode_set_crtcinfo(&pipe_config->requested_mode, CRTC_STEREO_DOUBLE);
pipe_config->pipe_src_w = pipe_config->requested_mode.crtc_hdisplay;
pipe_config->pipe_src_h = pipe_config->requested_mode.crtc_vdisplay;
encoder_retry:
/* Ensure the port clock defaults are reset when retrying. */
pipe_config->port_clock = 0;
pipe_config->pixel_multiplier = 1;
/* Fill in default crtc timings, allow encoders to overwrite them. */
drm_mode_set_crtcinfo(&pipe_config->adjusted_mode, CRTC_STEREO_DOUBLE);
/* Pass our mode to the connectors and the CRTC to give them a chance to
* adjust it according to limitations or connector properties, and also
* a chance to reject the mode entirely.
*/
for_each_intel_encoder(dev, encoder) {
if (&encoder->new_crtc->base != crtc)
continue;
if (!(encoder->compute_config(encoder, pipe_config))) {
DRM_DEBUG_KMS("Encoder config failure\n");
goto fail;
}
}
/* Set default port clock if not overwritten by the encoder. Needs to be
* done afterwards in case the encoder adjusts the mode. */
if (!pipe_config->port_clock)
pipe_config->port_clock = pipe_config->adjusted_mode.crtc_clock
* pipe_config->pixel_multiplier;
ret = intel_crtc_compute_config(to_intel_crtc(crtc), pipe_config);
if (ret < 0) {
DRM_DEBUG_KMS("CRTC fixup failed\n");
goto fail;
}
if (ret == RETRY) {
if (WARN(!retry, "loop in pipe configuration computation\n")) {
ret = -EINVAL;
goto fail;
}
DRM_DEBUG_KMS("CRTC bw constrained, retrying\n");
retry = false;
goto encoder_retry;
}
pipe_config->dither = pipe_config->pipe_bpp != plane_bpp;
DRM_DEBUG_KMS("plane bpp: %i, pipe bpp: %i, dithering: %i\n",
plane_bpp, pipe_config->pipe_bpp, pipe_config->dither);
return pipe_config;
fail:
kfree(pipe_config);
return ERR_PTR(ret);
}
/* Computes which crtcs are affected and sets the relevant bits in the mask. For
* simplicity we use the crtc's pipe number (because it's easier to obtain). */
static void
intel_modeset_affected_pipes(struct drm_crtc *crtc, unsigned *modeset_pipes,
unsigned *prepare_pipes, unsigned *disable_pipes)
{
struct intel_crtc *intel_crtc;
struct drm_device *dev = crtc->dev;
struct intel_encoder *encoder;
struct intel_connector *connector;
struct drm_crtc *tmp_crtc;
*disable_pipes = *modeset_pipes = *prepare_pipes = 0;
/* Check which crtcs have changed outputs connected to them, these need
* to be part of the prepare_pipes mask. We don't (yet) support global
* modeset across multiple crtcs, so modeset_pipes will only have one
* bit set at most. */
list_for_each_entry(connector, &dev->mode_config.connector_list,
base.head) {
if (connector->base.encoder == &connector->new_encoder->base)
continue;
if (connector->base.encoder) {
tmp_crtc = connector->base.encoder->crtc;
*prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
}
if (connector->new_encoder)
*prepare_pipes |=
1 << connector->new_encoder->new_crtc->pipe;
}
for_each_intel_encoder(dev, encoder) {
if (encoder->base.crtc == &encoder->new_crtc->base)
continue;
if (encoder->base.crtc) {
tmp_crtc = encoder->base.crtc;
*prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
}
if (encoder->new_crtc)
*prepare_pipes |= 1 << encoder->new_crtc->pipe;
}
/* Check for pipes that will be enabled/disabled ... */
for_each_intel_crtc(dev, intel_crtc) {
if (intel_crtc->base.enabled == intel_crtc->new_enabled)
continue;
if (!intel_crtc->new_enabled)
*disable_pipes |= 1 << intel_crtc->pipe;
else
*prepare_pipes |= 1 << intel_crtc->pipe;
}
/* set_mode is also used to update properties on life display pipes. */
intel_crtc = to_intel_crtc(crtc);
if (intel_crtc->new_enabled)
*prepare_pipes |= 1 << intel_crtc->pipe;
/*
* For simplicity do a full modeset on any pipe where the output routing
* changed. We could be more clever, but that would require us to be
* more careful with calling the relevant encoder->mode_set functions.
*/
if (*prepare_pipes)
*modeset_pipes = *prepare_pipes;
/* ... and mask these out. */
*modeset_pipes &= ~(*disable_pipes);
*prepare_pipes &= ~(*disable_pipes);
/*
* HACK: We don't (yet) fully support global modesets. intel_set_config
* obies this rule, but the modeset restore mode of
* intel_modeset_setup_hw_state does not.
*/
*modeset_pipes &= 1 << intel_crtc->pipe;
*prepare_pipes &= 1 << intel_crtc->pipe;
DRM_DEBUG_KMS("set mode pipe masks: modeset: %x, prepare: %x, disable: %x\n",
*modeset_pipes, *prepare_pipes, *disable_pipes);
}
static bool intel_crtc_in_use(struct drm_crtc *crtc)
{
struct drm_encoder *encoder;
struct drm_device *dev = crtc->dev;
list_for_each_entry(encoder, &dev->mode_config.encoder_list, head)
if (encoder->crtc == crtc)
return true;
return false;
}
static void
intel_modeset_update_state(struct drm_device *dev, unsigned prepare_pipes)
{
struct intel_encoder *intel_encoder;
struct intel_crtc *intel_crtc;
struct drm_connector *connector;
for_each_intel_encoder(dev, intel_encoder) {
if (!intel_encoder->base.crtc)
continue;
intel_crtc = to_intel_crtc(intel_encoder->base.crtc);
if (prepare_pipes & (1 << intel_crtc->pipe))
intel_encoder->connectors_active = false;
}
intel_modeset_commit_output_state(dev);
/* Double check state. */
for_each_intel_crtc(dev, intel_crtc) {
WARN_ON(intel_crtc->base.enabled != intel_crtc_in_use(&intel_crtc->base));
WARN_ON(intel_crtc->new_config &&
intel_crtc->new_config != &intel_crtc->config);
WARN_ON(intel_crtc->base.enabled != !!intel_crtc->new_config);
}
list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
if (!connector->encoder || !connector->encoder->crtc)
continue;
intel_crtc = to_intel_crtc(connector->encoder->crtc);
if (prepare_pipes & (1 << intel_crtc->pipe)) {
struct drm_property *dpms_property =
dev->mode_config.dpms_property;
connector->dpms = DRM_MODE_DPMS_ON;
drm_object_property_set_value(&connector->base,
dpms_property,
DRM_MODE_DPMS_ON);
intel_encoder = to_intel_encoder(connector->encoder);
intel_encoder->connectors_active = true;
}
}
}
static bool intel_fuzzy_clock_check(int clock1, int clock2)
{
int diff;
if (clock1 == clock2)
return true;
if (!clock1 || !clock2)
return false;
diff = abs(clock1 - clock2);
if (((((diff + clock1 + clock2) * 100)) / (clock1 + clock2)) < 105)
return true;
return false;
}
#define for_each_intel_crtc_masked(dev, mask, intel_crtc) \
list_for_each_entry((intel_crtc), \
&(dev)->mode_config.crtc_list, \
base.head) \
if (mask & (1 <<(intel_crtc)->pipe))
static bool
intel_pipe_config_compare(struct drm_device *dev,
struct intel_crtc_config *current_config,
struct intel_crtc_config *pipe_config)
{
#define PIPE_CONF_CHECK_X(name) \
if (current_config->name != pipe_config->name) { \
DRM_ERROR("mismatch in " #name " " \
"(expected 0x%08x, found 0x%08x)\n", \
current_config->name, \
pipe_config->name); \
return false; \
}
#define PIPE_CONF_CHECK_I(name) \
if (current_config->name != pipe_config->name) { \
DRM_ERROR("mismatch in " #name " " \
"(expected %i, found %i)\n", \
current_config->name, \
pipe_config->name); \
return false; \
}
/* This is required for BDW+ where there is only one set of registers for
* switching between high and low RR.
* This macro can be used whenever a comparison has to be made between one
* hw state and multiple sw state variables.
*/
#define PIPE_CONF_CHECK_I_ALT(name, alt_name) \
if ((current_config->name != pipe_config->name) && \
(current_config->alt_name != pipe_config->name)) { \
DRM_ERROR("mismatch in " #name " " \
"(expected %i or %i, found %i)\n", \
current_config->name, \
current_config->alt_name, \
pipe_config->name); \
return false; \
}
#define PIPE_CONF_CHECK_FLAGS(name, mask) \
if ((current_config->name ^ pipe_config->name) & (mask)) { \
DRM_ERROR("mismatch in " #name "(" #mask ") " \
"(expected %i, found %i)\n", \
current_config->name & (mask), \
pipe_config->name & (mask)); \
return false; \
}
#define PIPE_CONF_CHECK_CLOCK_FUZZY(name) \
if (!intel_fuzzy_clock_check(current_config->name, pipe_config->name)) { \
DRM_ERROR("mismatch in " #name " " \
"(expected %i, found %i)\n", \
current_config->name, \
pipe_config->name); \
return false; \
}
#define PIPE_CONF_QUIRK(quirk) \
((current_config->quirks | pipe_config->quirks) & (quirk))
PIPE_CONF_CHECK_I(cpu_transcoder);
PIPE_CONF_CHECK_I(has_pch_encoder);
PIPE_CONF_CHECK_I(fdi_lanes);
PIPE_CONF_CHECK_I(fdi_m_n.gmch_m);
PIPE_CONF_CHECK_I(fdi_m_n.gmch_n);
PIPE_CONF_CHECK_I(fdi_m_n.link_m);
PIPE_CONF_CHECK_I(fdi_m_n.link_n);
PIPE_CONF_CHECK_I(fdi_m_n.tu);
PIPE_CONF_CHECK_I(has_dp_encoder);
if (INTEL_INFO(dev)->gen < 8) {
PIPE_CONF_CHECK_I(dp_m_n.gmch_m);
PIPE_CONF_CHECK_I(dp_m_n.gmch_n);
PIPE_CONF_CHECK_I(dp_m_n.link_m);
PIPE_CONF_CHECK_I(dp_m_n.link_n);
PIPE_CONF_CHECK_I(dp_m_n.tu);
if (current_config->has_drrs) {
PIPE_CONF_CHECK_I(dp_m2_n2.gmch_m);
PIPE_CONF_CHECK_I(dp_m2_n2.gmch_n);
PIPE_CONF_CHECK_I(dp_m2_n2.link_m);
PIPE_CONF_CHECK_I(dp_m2_n2.link_n);
PIPE_CONF_CHECK_I(dp_m2_n2.tu);
}
} else {
PIPE_CONF_CHECK_I_ALT(dp_m_n.gmch_m, dp_m2_n2.gmch_m);
PIPE_CONF_CHECK_I_ALT(dp_m_n.gmch_n, dp_m2_n2.gmch_n);
PIPE_CONF_CHECK_I_ALT(dp_m_n.link_m, dp_m2_n2.link_m);
PIPE_CONF_CHECK_I_ALT(dp_m_n.link_n, dp_m2_n2.link_n);
PIPE_CONF_CHECK_I_ALT(dp_m_n.tu, dp_m2_n2.tu);
}
PIPE_CONF_CHECK_I(adjusted_mode.crtc_hdisplay);
PIPE_CONF_CHECK_I(adjusted_mode.crtc_htotal);
PIPE_CONF_CHECK_I(adjusted_mode.crtc_hblank_start);
PIPE_CONF_CHECK_I(adjusted_mode.crtc_hblank_end);
PIPE_CONF_CHECK_I(adjusted_mode.crtc_hsync_start);
PIPE_CONF_CHECK_I(adjusted_mode.crtc_hsync_end);
PIPE_CONF_CHECK_I(adjusted_mode.crtc_vdisplay);
PIPE_CONF_CHECK_I(adjusted_mode.crtc_vtotal);
PIPE_CONF_CHECK_I(adjusted_mode.crtc_vblank_start);
PIPE_CONF_CHECK_I(adjusted_mode.crtc_vblank_end);
PIPE_CONF_CHECK_I(adjusted_mode.crtc_vsync_start);
PIPE_CONF_CHECK_I(adjusted_mode.crtc_vsync_end);
PIPE_CONF_CHECK_I(pixel_multiplier);
PIPE_CONF_CHECK_I(has_hdmi_sink);
if ((INTEL_INFO(dev)->gen < 8 && !IS_HASWELL(dev)) ||
IS_VALLEYVIEW(dev))
PIPE_CONF_CHECK_I(limited_color_range);
PIPE_CONF_CHECK_I(has_audio);
PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
DRM_MODE_FLAG_INTERLACE);
if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_MODE_SYNC_FLAGS)) {
PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
DRM_MODE_FLAG_PHSYNC);
PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
DRM_MODE_FLAG_NHSYNC);
PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
DRM_MODE_FLAG_PVSYNC);
PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
DRM_MODE_FLAG_NVSYNC);
}
PIPE_CONF_CHECK_I(pipe_src_w);
PIPE_CONF_CHECK_I(pipe_src_h);
/*
* FIXME: BIOS likes to set up a cloned config with lvds+external
* screen. Since we don't yet re-compute the pipe config when moving
* just the lvds port away to another pipe the sw tracking won't match.
*
* Proper atomic modesets with recomputed global state will fix this.
* Until then just don't check gmch state for inherited modes.
*/
if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_INHERITED_MODE)) {
PIPE_CONF_CHECK_I(gmch_pfit.control);
/* pfit ratios are autocomputed by the hw on gen4+ */
if (INTEL_INFO(dev)->gen < 4)
PIPE_CONF_CHECK_I(gmch_pfit.pgm_ratios);
PIPE_CONF_CHECK_I(gmch_pfit.lvds_border_bits);
}
PIPE_CONF_CHECK_I(pch_pfit.enabled);
if (current_config->pch_pfit.enabled) {
PIPE_CONF_CHECK_I(pch_pfit.pos);
PIPE_CONF_CHECK_I(pch_pfit.size);
}
/* BDW+ don't expose a synchronous way to read the state */
if (IS_HASWELL(dev))
PIPE_CONF_CHECK_I(ips_enabled);
PIPE_CONF_CHECK_I(double_wide);
PIPE_CONF_CHECK_X(ddi_pll_sel);
PIPE_CONF_CHECK_I(shared_dpll);
PIPE_CONF_CHECK_X(dpll_hw_state.dpll);
PIPE_CONF_CHECK_X(dpll_hw_state.dpll_md);
PIPE_CONF_CHECK_X(dpll_hw_state.fp0);
PIPE_CONF_CHECK_X(dpll_hw_state.fp1);
PIPE_CONF_CHECK_X(dpll_hw_state.wrpll);
if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5)
PIPE_CONF_CHECK_I(pipe_bpp);
PIPE_CONF_CHECK_CLOCK_FUZZY(adjusted_mode.crtc_clock);
PIPE_CONF_CHECK_CLOCK_FUZZY(port_clock);
#undef PIPE_CONF_CHECK_X
#undef PIPE_CONF_CHECK_I
#undef PIPE_CONF_CHECK_I_ALT
#undef PIPE_CONF_CHECK_FLAGS
#undef PIPE_CONF_CHECK_CLOCK_FUZZY
#undef PIPE_CONF_QUIRK
return true;
}
static void
check_connector_state(struct drm_device *dev)
{
struct intel_connector *connector;
list_for_each_entry(connector, &dev->mode_config.connector_list,
base.head) {
/* This also checks the encoder/connector hw state with the
* ->get_hw_state callbacks. */
intel_connector_check_state(connector);
WARN(&connector->new_encoder->base != connector->base.encoder,
"connector's staged encoder doesn't match current encoder\n");
}
}
static void
check_encoder_state(struct drm_device *dev)
{
struct intel_encoder *encoder;
struct intel_connector *connector;
for_each_intel_encoder(dev, encoder) {
bool enabled = false;
bool active = false;
enum pipe pipe, tracked_pipe;
DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
encoder->base.base.id,
encoder->base.name);
WARN(&encoder->new_crtc->base != encoder->base.crtc,
"encoder's stage crtc doesn't match current crtc\n");
WARN(encoder->connectors_active && !encoder->base.crtc,
"encoder's active_connectors set, but no crtc\n");
list_for_each_entry(connector, &dev->mode_config.connector_list,
base.head) {
if (connector->base.encoder != &encoder->base)
continue;
enabled = true;
if (connector->base.dpms != DRM_MODE_DPMS_OFF)
active = true;
}
/*
* for MST connectors if we unplug the connector is gone
* away but the encoder is still connected to a crtc
* until a modeset happens in response to the hotplug.
*/
if (!enabled && encoder->base.encoder_type == DRM_MODE_ENCODER_DPMST)
continue;
WARN(!!encoder->base.crtc != enabled,
"encoder's enabled state mismatch "
"(expected %i, found %i)\n",
!!encoder->base.crtc, enabled);
WARN(active && !encoder->base.crtc,
"active encoder with no crtc\n");
WARN(encoder->connectors_active != active,
"encoder's computed active state doesn't match tracked active state "
"(expected %i, found %i)\n", active, encoder->connectors_active);
active = encoder->get_hw_state(encoder, &pipe);
WARN(active != encoder->connectors_active,
"encoder's hw state doesn't match sw tracking "
"(expected %i, found %i)\n",
encoder->connectors_active, active);
if (!encoder->base.crtc)
continue;
tracked_pipe = to_intel_crtc(encoder->base.crtc)->pipe;
WARN(active && pipe != tracked_pipe,
"active encoder's pipe doesn't match"
"(expected %i, found %i)\n",
tracked_pipe, pipe);
}
}
static void
check_crtc_state(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_crtc *crtc;
struct intel_encoder *encoder;
struct intel_crtc_config pipe_config;
for_each_intel_crtc(dev, crtc) {
bool enabled = false;
bool active = false;
memset(&pipe_config, 0, sizeof(pipe_config));
DRM_DEBUG_KMS("[CRTC:%d]\n",
crtc->base.base.id);
WARN(crtc->active && !crtc->base.enabled,
"active crtc, but not enabled in sw tracking\n");
for_each_intel_encoder(dev, encoder) {
if (encoder->base.crtc != &crtc->base)
continue;
enabled = true;
if (encoder->connectors_active)
active = true;
}
WARN(active != crtc->active,
"crtc's computed active state doesn't match tracked active state "
"(expected %i, found %i)\n", active, crtc->active);
WARN(enabled != crtc->base.enabled,
"crtc's computed enabled state doesn't match tracked enabled state "
"(expected %i, found %i)\n", enabled, crtc->base.enabled);
active = dev_priv->display.get_pipe_config(crtc,
&pipe_config);
/* hw state is inconsistent with the pipe quirk */
if ((crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
(crtc->pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
active = crtc->active;
for_each_intel_encoder(dev, encoder) {
enum pipe pipe;
if (encoder->base.crtc != &crtc->base)
continue;
if (encoder->get_hw_state(encoder, &pipe))
encoder->get_config(encoder, &pipe_config);
}
WARN(crtc->active != active,
"crtc active state doesn't match with hw state "
"(expected %i, found %i)\n", crtc->active, active);
if (active &&
!intel_pipe_config_compare(dev, &crtc->config, &pipe_config)) {
WARN(1, "pipe state doesn't match!\n");
intel_dump_pipe_config(crtc, &pipe_config,
"[hw state]");
intel_dump_pipe_config(crtc, &crtc->config,
"[sw state]");
}
}
}
static void
check_shared_dpll_state(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_crtc *crtc;
struct intel_dpll_hw_state dpll_hw_state;
int i;
for (i = 0; i < dev_priv->num_shared_dpll; i++) {
struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
int enabled_crtcs = 0, active_crtcs = 0;
bool active;
memset(&dpll_hw_state, 0, sizeof(dpll_hw_state));
DRM_DEBUG_KMS("%s\n", pll->name);
active = pll->get_hw_state(dev_priv, pll, &dpll_hw_state);
WARN(pll->active > pll->refcount,
"more active pll users than references: %i vs %i\n",
pll->active, pll->refcount);
WARN(pll->active && !pll->on,
"pll in active use but not on in sw tracking\n");
WARN(pll->on && !pll->active,
"pll in on but not on in use in sw tracking\n");
WARN(pll->on != active,
"pll on state mismatch (expected %i, found %i)\n",
pll->on, active);
for_each_intel_crtc(dev, crtc) {
if (crtc->base.enabled && intel_crtc_to_shared_dpll(crtc) == pll)
enabled_crtcs++;
if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll)
active_crtcs++;
}
WARN(pll->active != active_crtcs,
"pll active crtcs mismatch (expected %i, found %i)\n",
pll->active, active_crtcs);
WARN(pll->refcount != enabled_crtcs,
"pll enabled crtcs mismatch (expected %i, found %i)\n",
pll->refcount, enabled_crtcs);
WARN(pll->on && memcmp(&pll->hw_state, &dpll_hw_state,
sizeof(dpll_hw_state)),
"pll hw state mismatch\n");
}
}
void
intel_modeset_check_state(struct drm_device *dev)
{
check_connector_state(dev);
check_encoder_state(dev);
check_crtc_state(dev);
check_shared_dpll_state(dev);
}
void ironlake_check_encoder_dotclock(const struct intel_crtc_config *pipe_config,
int dotclock)
{
/*
* FDI already provided one idea for the dotclock.
* Yell if the encoder disagrees.
*/
WARN(!intel_fuzzy_clock_check(pipe_config->adjusted_mode.crtc_clock, dotclock),
"FDI dotclock and encoder dotclock mismatch, fdi: %i, encoder: %i\n",
pipe_config->adjusted_mode.crtc_clock, dotclock);
}
static void update_scanline_offset(struct intel_crtc *crtc)
{
struct drm_device *dev = crtc->base.dev;
/*
* The scanline counter increments at the leading edge of hsync.
*
* On most platforms it starts counting from vtotal-1 on the
* first active line. That means the scanline counter value is
* always one less than what we would expect. Ie. just after
* start of vblank, which also occurs at start of hsync (on the
* last active line), the scanline counter will read vblank_start-1.
*
* On gen2 the scanline counter starts counting from 1 instead
* of vtotal-1, so we have to subtract one (or rather add vtotal-1
* to keep the value positive), instead of adding one.
*
* On HSW+ the behaviour of the scanline counter depends on the output
* type. For DP ports it behaves like most other platforms, but on HDMI
* there's an extra 1 line difference. So we need to add two instead of
* one to the value.
*/
if (IS_GEN2(dev)) {
const struct drm_display_mode *mode = &crtc->config.adjusted_mode;
int vtotal;
vtotal = mode->crtc_vtotal;
if (mode->flags & DRM_MODE_FLAG_INTERLACE)
vtotal /= 2;
crtc->scanline_offset = vtotal - 1;
} else if (HAS_DDI(dev) &&
intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI)) {
crtc->scanline_offset = 2;
} else
crtc->scanline_offset = 1;
}
static int __intel_set_mode(struct drm_crtc *crtc,
struct drm_display_mode *mode,
int x, int y, struct drm_framebuffer *fb)
{
struct drm_device *dev = crtc->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct drm_display_mode *saved_mode;
struct intel_crtc_config *pipe_config = NULL;
struct intel_crtc *intel_crtc;
unsigned disable_pipes, prepare_pipes, modeset_pipes;
int ret = 0;
saved_mode = kmalloc(sizeof(*saved_mode), GFP_KERNEL);
if (!saved_mode)
return -ENOMEM;
intel_modeset_affected_pipes(crtc, &modeset_pipes,
&prepare_pipes, &disable_pipes);
*saved_mode = crtc->mode;
/* Hack: Because we don't (yet) support global modeset on multiple
* crtcs, we don't keep track of the new mode for more than one crtc.
* Hence simply check whether any bit is set in modeset_pipes in all the
* pieces of code that are not yet converted to deal with mutliple crtcs
* changing their mode at the same time. */
if (modeset_pipes) {
pipe_config = intel_modeset_pipe_config(crtc, fb, mode);
if (IS_ERR(pipe_config)) {
ret = PTR_ERR(pipe_config);
pipe_config = NULL;
goto out;
}
intel_dump_pipe_config(to_intel_crtc(crtc), pipe_config,
"[modeset]");
to_intel_crtc(crtc)->new_config = pipe_config;
}
/*
* See if the config requires any additional preparation, e.g.
* to adjust global state with pipes off. We need to do this
* here so we can get the modeset_pipe updated config for the new
* mode set on this crtc. For other crtcs we need to use the
* adjusted_mode bits in the crtc directly.
*/
if (IS_VALLEYVIEW(dev)) {
valleyview_modeset_global_pipes(dev, &prepare_pipes);
/* may have added more to prepare_pipes than we should */
prepare_pipes &= ~disable_pipes;
}
for_each_intel_crtc_masked(dev, disable_pipes, intel_crtc)
intel_crtc_disable(&intel_crtc->base);
for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc) {
if (intel_crtc->base.enabled)
dev_priv->display.crtc_disable(&intel_crtc->base);
}
/* crtc->mode is already used by the ->mode_set callbacks, hence we need
* to set it here already despite that we pass it down the callchain.
*/
if (modeset_pipes) {
crtc->mode = *mode;
/* mode_set/enable/disable functions rely on a correct pipe
* config. */
to_intel_crtc(crtc)->config = *pipe_config;
to_intel_crtc(crtc)->new_config = &to_intel_crtc(crtc)->config;
/*
* Calculate and store various constants which
* are later needed by vblank and swap-completion
* timestamping. They are derived from true hwmode.
*/
drm_calc_timestamping_constants(crtc,
&pipe_config->adjusted_mode);
}
/* Only after disabling all output pipelines that will be changed can we
* update the the output configuration. */
intel_modeset_update_state(dev, prepare_pipes);
if (dev_priv->display.modeset_global_resources)
dev_priv->display.modeset_global_resources(dev);
/* Set up the DPLL and any encoders state that needs to adjust or depend
* on the DPLL.
*/
for_each_intel_crtc_masked(dev, modeset_pipes, intel_crtc) {
struct drm_framebuffer *old_fb = crtc->primary->fb;
struct drm_i915_gem_object *old_obj = intel_fb_obj(old_fb);
struct drm_i915_gem_object *obj = intel_fb_obj(fb);
mutex_lock(&dev->struct_mutex);
ret = intel_pin_and_fence_fb_obj(dev,
obj,
NULL);
if (ret != 0) {
DRM_ERROR("pin & fence failed\n");
mutex_unlock(&dev->struct_mutex);
goto done;
}
if (old_fb)
intel_unpin_fb_obj(old_obj);
i915_gem_track_fb(old_obj, obj,
INTEL_FRONTBUFFER_PRIMARY(intel_crtc->pipe));
mutex_unlock(&dev->struct_mutex);
crtc->primary->fb = fb;
crtc->x = x;
crtc->y = y;
ret = dev_priv->display.crtc_mode_set(intel_crtc, x, y, fb);
if (ret)
goto done;
}
/* Now enable the clocks, plane, pipe, and connectors that we set up. */
for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc) {
update_scanline_offset(intel_crtc);
dev_priv->display.crtc_enable(&intel_crtc->base);
}
/* FIXME: add subpixel order */
done:
if (ret && crtc->enabled)
crtc->mode = *saved_mode;
out:
kfree(pipe_config);
kfree(saved_mode);
return ret;
}
static int intel_set_mode(struct drm_crtc *crtc,
struct drm_display_mode *mode,
int x, int y, struct drm_framebuffer *fb)
{
int ret;
ret = __intel_set_mode(crtc, mode, x, y, fb);
if (ret == 0)
intel_modeset_check_state(crtc->dev);
return ret;
}
void intel_crtc_restore_mode(struct drm_crtc *crtc)
{
intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y, crtc->primary->fb);
}
#undef for_each_intel_crtc_masked
static void intel_set_config_free(struct intel_set_config *config)
{
if (!config)
return;
kfree(config->save_connector_encoders);
kfree(config->save_encoder_crtcs);
kfree(config->save_crtc_enabled);
kfree(config);
}
static int intel_set_config_save_state(struct drm_device *dev,
struct intel_set_config *config)
{
struct drm_crtc *crtc;
struct drm_encoder *encoder;
struct drm_connector *connector;
int count;
config->save_crtc_enabled =
kcalloc(dev->mode_config.num_crtc,
sizeof(bool), GFP_KERNEL);
if (!config->save_crtc_enabled)
return -ENOMEM;
config->save_encoder_crtcs =
kcalloc(dev->mode_config.num_encoder,
sizeof(struct drm_crtc *), GFP_KERNEL);
if (!config->save_encoder_crtcs)
return -ENOMEM;
config->save_connector_encoders =
kcalloc(dev->mode_config.num_connector,
sizeof(struct drm_encoder *), GFP_KERNEL);
if (!config->save_connector_encoders)
return -ENOMEM;
/* Copy data. Note that driver private data is not affected.
* Should anything bad happen only the expected state is
* restored, not the drivers personal bookkeeping.
*/
count = 0;
for_each_crtc(dev, crtc) {
config->save_crtc_enabled[count++] = crtc->enabled;
}
count = 0;
list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
config->save_encoder_crtcs[count++] = encoder->crtc;
}
count = 0;
list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
config->save_connector_encoders[count++] = connector->encoder;
}
return 0;
}
static void intel_set_config_restore_state(struct drm_device *dev,
struct intel_set_config *config)
{
struct intel_crtc *crtc;
struct intel_encoder *encoder;
struct intel_connector *connector;
int count;
count = 0;
for_each_intel_crtc(dev, crtc) {
crtc->new_enabled = config->save_crtc_enabled[count++];
if (crtc->new_enabled)
crtc->new_config = &crtc->config;
else
crtc->new_config = NULL;
}
count = 0;
for_each_intel_encoder(dev, encoder) {
encoder->new_crtc =
to_intel_crtc(config->save_encoder_crtcs[count++]);
}
count = 0;
list_for_each_entry(connector, &dev->mode_config.connector_list, base.head) {
connector->new_encoder =
to_intel_encoder(config->save_connector_encoders[count++]);
}
}
static bool
is_crtc_connector_off(struct drm_mode_set *set)
{
int i;
if (set->num_connectors == 0)
return false;
if (WARN_ON(set->connectors == NULL))
return false;
for (i = 0; i < set->num_connectors; i++)
if (set->connectors[i]->encoder &&
set->connectors[i]->encoder->crtc == set->crtc &&
set->connectors[i]->dpms != DRM_MODE_DPMS_ON)
return true;
return false;
}
static void
intel_set_config_compute_mode_changes(struct drm_mode_set *set,
struct intel_set_config *config)
{
/* We should be able to check here if the fb has the same properties
* and then just flip_or_move it */
if (is_crtc_connector_off(set)) {
config->mode_changed = true;
} else if (set->crtc->primary->fb != set->fb) {
/*
* If we have no fb, we can only flip as long as the crtc is
* active, otherwise we need a full mode set. The crtc may
* be active if we've only disabled the primary plane, or
* in fastboot situations.
*/
if (set->crtc->primary->fb == NULL) {
struct intel_crtc *intel_crtc =
to_intel_crtc(set->crtc);
if (intel_crtc->active) {
DRM_DEBUG_KMS("crtc has no fb, will flip\n");
config->fb_changed = true;
} else {
DRM_DEBUG_KMS("inactive crtc, full mode set\n");
config->mode_changed = true;
}
} else if (set->fb == NULL) {
config->mode_changed = true;
} else if (set->fb->pixel_format !=
set->crtc->primary->fb->pixel_format) {
config->mode_changed = true;
} else {
config->fb_changed = true;
}
}
if (set->fb && (set->x != set->crtc->x || set->y != set->crtc->y))
config->fb_changed = true;
if (set->mode && !drm_mode_equal(set->mode, &set->crtc->mode)) {
DRM_DEBUG_KMS("modes are different, full mode set\n");
drm_mode_debug_printmodeline(&set->crtc->mode);
drm_mode_debug_printmodeline(set->mode);
config->mode_changed = true;
}
DRM_DEBUG_KMS("computed changes for [CRTC:%d], mode_changed=%d, fb_changed=%d\n",
set->crtc->base.id, config->mode_changed, config->fb_changed);
}
static int
intel_modeset_stage_output_state(struct drm_device *dev,
struct drm_mode_set *set,
struct intel_set_config *config)
{
struct intel_connector *connector;
struct intel_encoder *encoder;
struct intel_crtc *crtc;
int ro;
/* The upper layers ensure that we either disable a crtc or have a list
* of connectors. For paranoia, double-check this. */
WARN_ON(!set->fb && (set->num_connectors != 0));
WARN_ON(set->fb && (set->num_connectors == 0));
list_for_each_entry(connector, &dev->mode_config.connector_list,
base.head) {
/* Otherwise traverse passed in connector list and get encoders
* for them. */
for (ro = 0; ro < set->num_connectors; ro++) {
if (set->connectors[ro] == &connector->base) {
connector->new_encoder = intel_find_encoder(connector, to_intel_crtc(set->crtc)->pipe);
break;
}
}
/* If we disable the crtc, disable all its connectors. Also, if
* the connector is on the changing crtc but not on the new
* connector list, disable it. */
if ((!set->fb || ro == set->num_connectors) &&
connector->base.encoder &&
connector->base.encoder->crtc == set->crtc) {
connector->new_encoder = NULL;
DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [NOCRTC]\n",
connector->base.base.id,
connector->base.name);
}
if (&connector->new_encoder->base != connector->base.encoder) {
DRM_DEBUG_KMS("encoder changed, full mode switch\n");
config->mode_changed = true;
}
}
/* connector->new_encoder is now updated for all connectors. */
/* Update crtc of enabled connectors. */
list_for_each_entry(connector, &dev->mode_config.connector_list,
base.head) {
struct drm_crtc *new_crtc;
if (!connector->new_encoder)
continue;
new_crtc = connector->new_encoder->base.crtc;
for (ro = 0; ro < set->num_connectors; ro++) {
if (set->connectors[ro] == &connector->base)
new_crtc = set->crtc;
}
/* Make sure the new CRTC will work with the encoder */
if (!drm_encoder_crtc_ok(&connector->new_encoder->base,
new_crtc)) {
return -EINVAL;
}
connector->new_encoder->new_crtc = to_intel_crtc(new_crtc);
DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [CRTC:%d]\n",
connector->base.base.id,
connector->base.name,
new_crtc->base.id);
}
/* Check for any encoders that needs to be disabled. */
for_each_intel_encoder(dev, encoder) {
int num_connectors = 0;
list_for_each_entry(connector,
&dev->mode_config.connector_list,
base.head) {
if (connector->new_encoder == encoder) {
WARN_ON(!connector->new_encoder->new_crtc);
num_connectors++;
}
}
if (num_connectors == 0)
encoder->new_crtc = NULL;
else if (num_connectors > 1)
return -EINVAL;
/* Only now check for crtc changes so we don't miss encoders
* that will be disabled. */
if (&encoder->new_crtc->base != encoder->base.crtc) {
DRM_DEBUG_KMS("crtc changed, full mode switch\n");
config->mode_changed = true;
}
}
/* Now we've also updated encoder->new_crtc for all encoders. */
list_for_each_entry(connector, &dev->mode_config.connector_list,
base.head) {
if (connector->new_encoder)
if (connector->new_encoder != connector->encoder)
connector->encoder = connector->new_encoder;
}
for_each_intel_crtc(dev, crtc) {
crtc->new_enabled = false;
for_each_intel_encoder(dev, encoder) {
if (encoder->new_crtc == crtc) {
crtc->new_enabled = true;
break;
}
}
if (crtc->new_enabled != crtc->base.enabled) {
DRM_DEBUG_KMS("crtc %sabled, full mode switch\n",
crtc->new_enabled ? "en" : "dis");
config->mode_changed = true;
}
if (crtc->new_enabled)
crtc->new_config = &crtc->config;
else
crtc->new_config = NULL;
}
return 0;
}
static void disable_crtc_nofb(struct intel_crtc *crtc)
{
struct drm_device *dev = crtc->base.dev;
struct intel_encoder *encoder;
struct intel_connector *connector;
DRM_DEBUG_KMS("Trying to restore without FB -> disabling pipe %c\n",
pipe_name(crtc->pipe));
list_for_each_entry(connector, &dev->mode_config.connector_list, base.head) {
if (connector->new_encoder &&
connector->new_encoder->new_crtc == crtc)
connector->new_encoder = NULL;
}
for_each_intel_encoder(dev, encoder) {
if (encoder->new_crtc == crtc)
encoder->new_crtc = NULL;
}
crtc->new_enabled = false;
crtc->new_config = NULL;
}
static int intel_crtc_set_config(struct drm_mode_set *set)
{
struct drm_device *dev;
struct drm_mode_set save_set;
struct intel_set_config *config;
int ret;
BUG_ON(!set);
BUG_ON(!set->crtc);
BUG_ON(!set->crtc->helper_private);
/* Enforce sane interface api - has been abused by the fb helper. */
BUG_ON(!set->mode && set->fb);
BUG_ON(set->fb && set->num_connectors == 0);
if (set->fb) {
DRM_DEBUG_KMS("[CRTC:%d] [FB:%d] #connectors=%d (x y) (%i %i)\n",
set->crtc->base.id, set->fb->base.id,
(int)set->num_connectors, set->x, set->y);
} else {
DRM_DEBUG_KMS("[CRTC:%d] [NOFB]\n", set->crtc->base.id);
}
dev = set->crtc->dev;
ret = -ENOMEM;
config = kzalloc(sizeof(*config), GFP_KERNEL);
if (!config)
goto out_config;
ret = intel_set_config_save_state(dev, config);
if (ret)
goto out_config;
save_set.crtc = set->crtc;
save_set.mode = &set->crtc->mode;
save_set.x = set->crtc->x;
save_set.y = set->crtc->y;
save_set.fb = set->crtc->primary->fb;
/* Compute whether we need a full modeset, only an fb base update or no
* change at all. In the future we might also check whether only the
* mode changed, e.g. for LVDS where we only change the panel fitter in
* such cases. */
intel_set_config_compute_mode_changes(set, config);
ret = intel_modeset_stage_output_state(dev, set, config);
if (ret)
goto fail;
if (config->mode_changed) {
ret = intel_set_mode(set->crtc, set->mode,
set->x, set->y, set->fb);
} else if (config->fb_changed) {
struct intel_crtc *intel_crtc = to_intel_crtc(set->crtc);
intel_crtc_wait_for_pending_flips(set->crtc);
ret = intel_pipe_set_base(set->crtc,
set->x, set->y, set->fb);
/*
* We need to make sure the primary plane is re-enabled if it
* has previously been turned off.
*/
if (!intel_crtc->primary_enabled && ret == 0) {
WARN_ON(!intel_crtc->active);
intel_enable_primary_hw_plane(set->crtc->primary, set->crtc);
}
/*
* In the fastboot case this may be our only check of the
* state after boot. It would be better to only do it on
* the first update, but we don't have a nice way of doing that
* (and really, set_config isn't used much for high freq page
* flipping, so increasing its cost here shouldn't be a big
* deal).
*/
if (i915.fastboot && ret == 0)
intel_modeset_check_state(set->crtc->dev);
}
if (ret) {
DRM_DEBUG_KMS("failed to set mode on [CRTC:%d], err = %d\n",
set->crtc->base.id, ret);
fail:
intel_set_config_restore_state(dev, config);
/*
* HACK: if the pipe was on, but we didn't have a framebuffer,
* force the pipe off to avoid oopsing in the modeset code
* due to fb==NULL. This should only happen during boot since
* we don't yet reconstruct the FB from the hardware state.
*/
if (to_intel_crtc(save_set.crtc)->new_enabled && !save_set.fb)
disable_crtc_nofb(to_intel_crtc(save_set.crtc));
/* Try to restore the config */
if (config->mode_changed &&
intel_set_mode(save_set.crtc, save_set.mode,
save_set.x, save_set.y, save_set.fb))
DRM_ERROR("failed to restore config after modeset failure\n");
}
out_config:
intel_set_config_free(config);
return ret;
}
static const struct drm_crtc_funcs intel_crtc_funcs = {
.gamma_set = intel_crtc_gamma_set,
.set_config = intel_crtc_set_config,
.destroy = intel_crtc_destroy,
.page_flip = intel_crtc_page_flip,
};
static bool ibx_pch_dpll_get_hw_state(struct drm_i915_private *dev_priv,
struct intel_shared_dpll *pll,
struct intel_dpll_hw_state *hw_state)
{
uint32_t val;
if (!intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_PLLS))
return false;
val = I915_READ(PCH_DPLL(pll->id));
hw_state->dpll = val;
hw_state->fp0 = I915_READ(PCH_FP0(pll->id));
hw_state->fp1 = I915_READ(PCH_FP1(pll->id));
return val & DPLL_VCO_ENABLE;
}
static void ibx_pch_dpll_mode_set(struct drm_i915_private *dev_priv,
struct intel_shared_dpll *pll)
{
I915_WRITE(PCH_FP0(pll->id), pll->hw_state.fp0);
I915_WRITE(PCH_FP1(pll->id), pll->hw_state.fp1);
}
static void ibx_pch_dpll_enable(struct drm_i915_private *dev_priv,
struct intel_shared_dpll *pll)
{
/* PCH refclock must be enabled first */
ibx_assert_pch_refclk_enabled(dev_priv);
I915_WRITE(PCH_DPLL(pll->id), pll->hw_state.dpll);
/* Wait for the clocks to stabilize. */
POSTING_READ(PCH_DPLL(pll->id));
udelay(150);
/* The pixel multiplier can only be updated once the
* DPLL is enabled and the clocks are stable.
*
* So write it again.
*/
I915_WRITE(PCH_DPLL(pll->id), pll->hw_state.dpll);
POSTING_READ(PCH_DPLL(pll->id));
udelay(200);
}
static void ibx_pch_dpll_disable(struct drm_i915_private *dev_priv,
struct intel_shared_dpll *pll)
{
struct drm_device *dev = dev_priv->dev;
struct intel_crtc *crtc;
/* Make sure no transcoder isn't still depending on us. */
for_each_intel_crtc(dev, crtc) {
if (intel_crtc_to_shared_dpll(crtc) == pll)
assert_pch_transcoder_disabled(dev_priv, crtc->pipe);
}
I915_WRITE(PCH_DPLL(pll->id), 0);
POSTING_READ(PCH_DPLL(pll->id));
udelay(200);
}
static char *ibx_pch_dpll_names[] = {
"PCH DPLL A",
"PCH DPLL B",
};
static void ibx_pch_dpll_init(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
int i;
dev_priv->num_shared_dpll = 2;
for (i = 0; i < dev_priv->num_shared_dpll; i++) {
dev_priv->shared_dplls[i].id = i;
dev_priv->shared_dplls[i].name = ibx_pch_dpll_names[i];
dev_priv->shared_dplls[i].mode_set = ibx_pch_dpll_mode_set;
dev_priv->shared_dplls[i].enable = ibx_pch_dpll_enable;
dev_priv->shared_dplls[i].disable = ibx_pch_dpll_disable;
dev_priv->shared_dplls[i].get_hw_state =
ibx_pch_dpll_get_hw_state;
}
}
static void intel_shared_dpll_init(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
if (HAS_DDI(dev))
intel_ddi_pll_init(dev);
else if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
ibx_pch_dpll_init(dev);
else
dev_priv->num_shared_dpll = 0;
BUG_ON(dev_priv->num_shared_dpll > I915_NUM_PLLS);
}
static int
intel_primary_plane_disable(struct drm_plane *plane)
{
struct drm_device *dev = plane->dev;
struct intel_crtc *intel_crtc;
if (!plane->fb)
return 0;
BUG_ON(!plane->crtc);
intel_crtc = to_intel_crtc(plane->crtc);
/*
* Even though we checked plane->fb above, it's still possible that
* the primary plane has been implicitly disabled because the crtc
* coordinates given weren't visible, or because we detected
* that it was 100% covered by a sprite plane. Or, the CRTC may be
* off and we've set a fb, but haven't actually turned on the CRTC yet.
* In either case, we need to unpin the FB and let the fb pointer get
* updated, but otherwise we don't need to touch the hardware.
*/
if (!intel_crtc->primary_enabled)
goto disable_unpin;
intel_crtc_wait_for_pending_flips(plane->crtc);
intel_disable_primary_hw_plane(plane, plane->crtc);
disable_unpin:
mutex_lock(&dev->struct_mutex);
i915_gem_track_fb(intel_fb_obj(plane->fb), NULL,
INTEL_FRONTBUFFER_PRIMARY(intel_crtc->pipe));
intel_unpin_fb_obj(intel_fb_obj(plane->fb));
mutex_unlock(&dev->struct_mutex);
plane->fb = NULL;
return 0;
}
static int
intel_check_primary_plane(struct drm_plane *plane,
struct intel_plane_state *state)
{
struct drm_crtc *crtc = state->crtc;
struct drm_framebuffer *fb = state->fb;
struct drm_rect *dest = &state->dst;
struct drm_rect *src = &state->src;
const struct drm_rect *clip = &state->clip;
return drm_plane_helper_check_update(plane, crtc, fb,
src, dest, clip,
DRM_PLANE_HELPER_NO_SCALING,
DRM_PLANE_HELPER_NO_SCALING,
false, true, &state->visible);
}
static int
intel_commit_primary_plane(struct drm_plane *plane,
struct intel_plane_state *state)
{
struct drm_crtc *crtc = state->crtc;
struct drm_framebuffer *fb = state->fb;
struct drm_device *dev = crtc->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
enum pipe pipe = intel_crtc->pipe;
struct drm_framebuffer *old_fb = plane->fb;
struct drm_i915_gem_object *obj = intel_fb_obj(fb);
struct drm_i915_gem_object *old_obj = intel_fb_obj(plane->fb);
struct intel_plane *intel_plane = to_intel_plane(plane);
struct drm_rect *src = &state->src;
int ret;
intel_crtc_wait_for_pending_flips(crtc);
if (intel_crtc_has_pending_flip(crtc)) {
DRM_ERROR("pipe is still busy with an old pageflip\n");
return -EBUSY;
}
if (plane->fb != fb) {
mutex_lock(&dev->struct_mutex);
ret = intel_pin_and_fence_fb_obj(dev, obj, NULL);
if (ret == 0)
i915_gem_track_fb(old_obj, obj,
INTEL_FRONTBUFFER_PRIMARY(pipe));
mutex_unlock(&dev->struct_mutex);
if (ret != 0) {
DRM_DEBUG_KMS("pin & fence failed\n");
return ret;
}
}
crtc->primary->fb = fb;
crtc->x = src->x1;
crtc->y = src->y1;
intel_plane->crtc_x = state->orig_dst.x1;
intel_plane->crtc_y = state->orig_dst.y1;
intel_plane->crtc_w = drm_rect_width(&state->orig_dst);
intel_plane->crtc_h = drm_rect_height(&state->orig_dst);
intel_plane->src_x = state->orig_src.x1;
intel_plane->src_y = state->orig_src.y1;
intel_plane->src_w = drm_rect_width(&state->orig_src);
intel_plane->src_h = drm_rect_height(&state->orig_src);
intel_plane->obj = obj;
if (intel_crtc->active) {
/*
* FBC does not work on some platforms for rotated
* planes, so disable it when rotation is not 0 and
* update it when rotation is set back to 0.
*
* FIXME: This is redundant with the fbc update done in
* the primary plane enable function except that that
* one is done too late. We eventually need to unify
* this.
*/
if (intel_crtc->primary_enabled &&
INTEL_INFO(dev)->gen <= 4 && !IS_G4X(dev) &&
dev_priv->fbc.plane == intel_crtc->plane &&
intel_plane->rotation != BIT(DRM_ROTATE_0)) {
intel_disable_fbc(dev);
}
if (state->visible) {
bool was_enabled = intel_crtc->primary_enabled;
/* FIXME: kill this fastboot hack */
intel_update_pipe_size(intel_crtc);
intel_crtc->primary_enabled = true;
dev_priv->display.update_primary_plane(crtc, plane->fb,
crtc->x, crtc->y);
/*
* BDW signals flip done immediately if the plane
* is disabled, even if the plane enable is already
* armed to occur at the next vblank :(
*/
if (IS_BROADWELL(dev) && !was_enabled)
intel_wait_for_vblank(dev, intel_crtc->pipe);
} else {
/*
* If clipping results in a non-visible primary plane,
* we'll disable the primary plane. Note that this is
* a bit different than what happens if userspace
* explicitly disables the plane by passing fb=0
* because plane->fb still gets set and pinned.
*/
intel_disable_primary_hw_plane(plane, crtc);
}
intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_PRIMARY(pipe));
mutex_lock(&dev->struct_mutex);
intel_update_fbc(dev);
mutex_unlock(&dev->struct_mutex);
}
if (old_fb && old_fb != fb) {
if (intel_crtc->active)
intel_wait_for_vblank(dev, intel_crtc->pipe);
mutex_lock(&dev->struct_mutex);
intel_unpin_fb_obj(old_obj);
mutex_unlock(&dev->struct_mutex);
}
return 0;
}
static int
intel_primary_plane_setplane(struct drm_plane *plane, struct drm_crtc *crtc,
struct drm_framebuffer *fb, int crtc_x, int crtc_y,
unsigned int crtc_w, unsigned int crtc_h,
uint32_t src_x, uint32_t src_y,
uint32_t src_w, uint32_t src_h)
{
struct intel_plane_state state;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
int ret;
state.crtc = crtc;
state.fb = fb;
/* sample coordinates in 16.16 fixed point */
state.src.x1 = src_x;
state.src.x2 = src_x + src_w;
state.src.y1 = src_y;
state.src.y2 = src_y + src_h;
/* integer pixels */
state.dst.x1 = crtc_x;
state.dst.x2 = crtc_x + crtc_w;
state.dst.y1 = crtc_y;
state.dst.y2 = crtc_y + crtc_h;
state.clip.x1 = 0;
state.clip.y1 = 0;
state.clip.x2 = intel_crtc->active ? intel_crtc->config.pipe_src_w : 0;
state.clip.y2 = intel_crtc->active ? intel_crtc->config.pipe_src_h : 0;
state.orig_src = state.src;
state.orig_dst = state.dst;
ret = intel_check_primary_plane(plane, &state);
if (ret)
return ret;
intel_commit_primary_plane(plane, &state);
return 0;
}
/* Common destruction function for both primary and cursor planes */
static void intel_plane_destroy(struct drm_plane *plane)
{
struct intel_plane *intel_plane = to_intel_plane(plane);
drm_plane_cleanup(plane);
kfree(intel_plane);
}
static const struct drm_plane_funcs intel_primary_plane_funcs = {
.update_plane = intel_primary_plane_setplane,
.disable_plane = intel_primary_plane_disable,
.destroy = intel_plane_destroy,
.set_property = intel_plane_set_property
};
static struct drm_plane *intel_primary_plane_create(struct drm_device *dev,
int pipe)
{
struct intel_plane *primary;
const uint32_t *intel_primary_formats;
int num_formats;
primary = kzalloc(sizeof(*primary), GFP_KERNEL);
if (primary == NULL)
return NULL;
primary->can_scale = false;
primary->max_downscale = 1;
primary->pipe = pipe;
primary->plane = pipe;
primary->rotation = BIT(DRM_ROTATE_0);
if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4)
primary->plane = !pipe;
if (INTEL_INFO(dev)->gen <= 3) {
intel_primary_formats = intel_primary_formats_gen2;
num_formats = ARRAY_SIZE(intel_primary_formats_gen2);
} else {
intel_primary_formats = intel_primary_formats_gen4;
num_formats = ARRAY_SIZE(intel_primary_formats_gen4);
}
drm_universal_plane_init(dev, &primary->base, 0,
&intel_primary_plane_funcs,
intel_primary_formats, num_formats,
DRM_PLANE_TYPE_PRIMARY);
if (INTEL_INFO(dev)->gen >= 4) {
if (!dev->mode_config.rotation_property)
dev->mode_config.rotation_property =
drm_mode_create_rotation_property(dev,
BIT(DRM_ROTATE_0) |
BIT(DRM_ROTATE_180));
if (dev->mode_config.rotation_property)
drm_object_attach_property(&primary->base.base,
dev->mode_config.rotation_property,
primary->rotation);
}
return &primary->base;
}
static int
intel_cursor_plane_disable(struct drm_plane *plane)
{
if (!plane->fb)
return 0;
BUG_ON(!plane->crtc);
return intel_crtc_cursor_set_obj(plane->crtc, NULL, 0, 0);
}
static int
intel_check_cursor_plane(struct drm_plane *plane,
struct intel_plane_state *state)
{
struct drm_crtc *crtc = state->crtc;
struct drm_device *dev = crtc->dev;
struct drm_framebuffer *fb = state->fb;
struct drm_rect *dest = &state->dst;
struct drm_rect *src = &state->src;
const struct drm_rect *clip = &state->clip;
struct drm_i915_gem_object *obj = intel_fb_obj(fb);
int crtc_w, crtc_h;
unsigned stride;
int ret;
ret = drm_plane_helper_check_update(plane, crtc, fb,
src, dest, clip,
DRM_PLANE_HELPER_NO_SCALING,
DRM_PLANE_HELPER_NO_SCALING,
true, true, &state->visible);
if (ret)
return ret;
/* if we want to turn off the cursor ignore width and height */
if (!obj)
return 0;
/* Check for which cursor types we support */
crtc_w = drm_rect_width(&state->orig_dst);
crtc_h = drm_rect_height(&state->orig_dst);
if (!cursor_size_ok(dev, crtc_w, crtc_h)) {
DRM_DEBUG("Cursor dimension not supported\n");
return -EINVAL;
}
stride = roundup_pow_of_two(crtc_w) * 4;
if (obj->base.size < stride * crtc_h) {
DRM_DEBUG_KMS("buffer is too small\n");
return -ENOMEM;
}
if (fb == crtc->cursor->fb)
return 0;
/* we only need to pin inside GTT if cursor is non-phy */
mutex_lock(&dev->struct_mutex);
if (!INTEL_INFO(dev)->cursor_needs_physical && obj->tiling_mode) {
DRM_DEBUG_KMS("cursor cannot be tiled\n");
ret = -EINVAL;
}
mutex_unlock(&dev->struct_mutex);
return ret;
}
static int
intel_commit_cursor_plane(struct drm_plane *plane,
struct intel_plane_state *state)
{
struct drm_crtc *crtc = state->crtc;
struct drm_framebuffer *fb = state->fb;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
struct intel_plane *intel_plane = to_intel_plane(plane);
struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
struct drm_i915_gem_object *obj = intel_fb->obj;
int crtc_w, crtc_h;
crtc->cursor_x = state->orig_dst.x1;
crtc->cursor_y = state->orig_dst.y1;
intel_plane->crtc_x = state->orig_dst.x1;
intel_plane->crtc_y = state->orig_dst.y1;
intel_plane->crtc_w = drm_rect_width(&state->orig_dst);
intel_plane->crtc_h = drm_rect_height(&state->orig_dst);
intel_plane->src_x = state->orig_src.x1;
intel_plane->src_y = state->orig_src.y1;
intel_plane->src_w = drm_rect_width(&state->orig_src);
intel_plane->src_h = drm_rect_height(&state->orig_src);
intel_plane->obj = obj;
if (fb != crtc->cursor->fb) {
crtc_w = drm_rect_width(&state->orig_dst);
crtc_h = drm_rect_height(&state->orig_dst);
return intel_crtc_cursor_set_obj(crtc, obj, crtc_w, crtc_h);
} else {
intel_crtc_update_cursor(crtc, state->visible);
intel_frontbuffer_flip(crtc->dev,
INTEL_FRONTBUFFER_CURSOR(intel_crtc->pipe));
return 0;
}
}
static int
intel_cursor_plane_update(struct drm_plane *plane, struct drm_crtc *crtc,
struct drm_framebuffer *fb, int crtc_x, int crtc_y,
unsigned int crtc_w, unsigned int crtc_h,
uint32_t src_x, uint32_t src_y,
uint32_t src_w, uint32_t src_h)
{
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
struct intel_plane_state state;
int ret;
state.crtc = crtc;
state.fb = fb;
/* sample coordinates in 16.16 fixed point */
state.src.x1 = src_x;
state.src.x2 = src_x + src_w;
state.src.y1 = src_y;
state.src.y2 = src_y + src_h;
/* integer pixels */
state.dst.x1 = crtc_x;
state.dst.x2 = crtc_x + crtc_w;
state.dst.y1 = crtc_y;
state.dst.y2 = crtc_y + crtc_h;
state.clip.x1 = 0;
state.clip.y1 = 0;
state.clip.x2 = intel_crtc->active ? intel_crtc->config.pipe_src_w : 0;
state.clip.y2 = intel_crtc->active ? intel_crtc->config.pipe_src_h : 0;
state.orig_src = state.src;
state.orig_dst = state.dst;
ret = intel_check_cursor_plane(plane, &state);
if (ret)
return ret;
return intel_commit_cursor_plane(plane, &state);
}
static const struct drm_plane_funcs intel_cursor_plane_funcs = {
.update_plane = intel_cursor_plane_update,
.disable_plane = intel_cursor_plane_disable,
.destroy = intel_plane_destroy,
.set_property = intel_plane_set_property,
};
static struct drm_plane *intel_cursor_plane_create(struct drm_device *dev,
int pipe)
{
struct intel_plane *cursor;
cursor = kzalloc(sizeof(*cursor), GFP_KERNEL);
if (cursor == NULL)
return NULL;
cursor->can_scale = false;
cursor->max_downscale = 1;
cursor->pipe = pipe;
cursor->plane = pipe;
cursor->rotation = BIT(DRM_ROTATE_0);
drm_universal_plane_init(dev, &cursor->base, 0,
&intel_cursor_plane_funcs,
intel_cursor_formats,
ARRAY_SIZE(intel_cursor_formats),
DRM_PLANE_TYPE_CURSOR);
if (INTEL_INFO(dev)->gen >= 4) {
if (!dev->mode_config.rotation_property)
dev->mode_config.rotation_property =
drm_mode_create_rotation_property(dev,
BIT(DRM_ROTATE_0) |
BIT(DRM_ROTATE_180));
if (dev->mode_config.rotation_property)
drm_object_attach_property(&cursor->base.base,
dev->mode_config.rotation_property,
cursor->rotation);
}
return &cursor->base;
}
static void intel_crtc_init(struct drm_device *dev, int pipe)
{
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_crtc *intel_crtc;
struct drm_plane *primary = NULL;
struct drm_plane *cursor = NULL;
int i, ret;
intel_crtc = kzalloc(sizeof(*intel_crtc), GFP_KERNEL);
if (intel_crtc == NULL)
return;
primary = intel_primary_plane_create(dev, pipe);
if (!primary)
goto fail;
cursor = intel_cursor_plane_create(dev, pipe);
if (!cursor)
goto fail;
ret = drm_crtc_init_with_planes(dev, &intel_crtc->base, primary,
cursor, &intel_crtc_funcs);
if (ret)
goto fail;
drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
for (i = 0; i < 256; i++) {
intel_crtc->lut_r[i] = i;
intel_crtc->lut_g[i] = i;
intel_crtc->lut_b[i] = i;
}
/*
* On gen2/3 only plane A can do fbc, but the panel fitter and lvds port
* is hooked to pipe B. Hence we want plane A feeding pipe B.
*/
intel_crtc->pipe = pipe;
intel_crtc->plane = pipe;
if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4) {
DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
intel_crtc->plane = !pipe;
}
intel_crtc->cursor_base = ~0;
intel_crtc->cursor_cntl = ~0;
intel_crtc->cursor_size = ~0;
BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
WARN_ON(drm_crtc_index(&intel_crtc->base) != intel_crtc->pipe);
return;
fail:
if (primary)
drm_plane_cleanup(primary);
if (cursor)
drm_plane_cleanup(cursor);
kfree(intel_crtc);
}
enum pipe intel_get_pipe_from_connector(struct intel_connector *connector)
{
struct drm_encoder *encoder = connector->base.encoder;
struct drm_device *dev = connector->base.dev;
WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));
if (!encoder)
return INVALID_PIPE;
return to_intel_crtc(encoder->crtc)->pipe;
}
int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
struct drm_file *file)
{
struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
struct drm_crtc *drmmode_crtc;
struct intel_crtc *crtc;
if (!drm_core_check_feature(dev, DRIVER_MODESET))
return -ENODEV;
drmmode_crtc = drm_crtc_find(dev, pipe_from_crtc_id->crtc_id);
if (!drmmode_crtc) {
DRM_ERROR("no such CRTC id\n");
return -ENOENT;
}
crtc = to_intel_crtc(drmmode_crtc);
pipe_from_crtc_id->pipe = crtc->pipe;
return 0;
}
static int intel_encoder_clones(struct intel_encoder *encoder)
{
struct drm_device *dev = encoder->base.dev;
struct intel_encoder *source_encoder;
int index_mask = 0;
int entry = 0;
for_each_intel_encoder(dev, source_encoder) {
if (encoders_cloneable(encoder, source_encoder))
index_mask |= (1 << entry);
entry++;
}
return index_mask;
}
static bool has_edp_a(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
if (!IS_MOBILE(dev))
return false;
if ((I915_READ(DP_A) & DP_DETECTED) == 0)
return false;
if (IS_GEN5(dev) && (I915_READ(FUSE_STRAP) & ILK_eDP_A_DISABLE))
return false;
return true;
}
const char *intel_output_name(int output)
{
static const char *names[] = {
[INTEL_OUTPUT_UNUSED] = "Unused",
[INTEL_OUTPUT_ANALOG] = "Analog",
[INTEL_OUTPUT_DVO] = "DVO",
[INTEL_OUTPUT_SDVO] = "SDVO",
[INTEL_OUTPUT_LVDS] = "LVDS",
[INTEL_OUTPUT_TVOUT] = "TV",
[INTEL_OUTPUT_HDMI] = "HDMI",
[INTEL_OUTPUT_DISPLAYPORT] = "DisplayPort",
[INTEL_OUTPUT_EDP] = "eDP",
[INTEL_OUTPUT_DSI] = "DSI",
[INTEL_OUTPUT_UNKNOWN] = "Unknown",
};
if (output < 0 || output >= ARRAY_SIZE(names) || !names[output])
return "Invalid";
return names[output];
}
static bool intel_crt_present(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
if (INTEL_INFO(dev)->gen >= 9)
return false;
if (IS_HSW_ULT(dev) || IS_BDW_ULT(dev))
return false;
if (IS_CHERRYVIEW(dev))
return false;
if (IS_VALLEYVIEW(dev) && !dev_priv->vbt.int_crt_support)
return false;
return true;
}
static void intel_setup_outputs(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_encoder *encoder;
bool dpd_is_edp = false;
intel_lvds_init(dev);
if (intel_crt_present(dev))
intel_crt_init(dev);
if (HAS_DDI(dev)) {
int found;
/* Haswell uses DDI functions to detect digital outputs */
found = I915_READ(DDI_BUF_CTL_A) & DDI_INIT_DISPLAY_DETECTED;
/* DDI A only supports eDP */
if (found)
intel_ddi_init(dev, PORT_A);
/* DDI B, C and D detection is indicated by the SFUSE_STRAP
* register */
found = I915_READ(SFUSE_STRAP);
if (found & SFUSE_STRAP_DDIB_DETECTED)
intel_ddi_init(dev, PORT_B);
if (found & SFUSE_STRAP_DDIC_DETECTED)
intel_ddi_init(dev, PORT_C);
if (found & SFUSE_STRAP_DDID_DETECTED)
intel_ddi_init(dev, PORT_D);
} else if (HAS_PCH_SPLIT(dev)) {
int found;
dpd_is_edp = intel_dp_is_edp(dev, PORT_D);
if (has_edp_a(dev))
intel_dp_init(dev, DP_A, PORT_A);
if (I915_READ(PCH_HDMIB) & SDVO_DETECTED) {
/* PCH SDVOB multiplex with HDMIB */
found = intel_sdvo_init(dev, PCH_SDVOB, true);
if (!found)
intel_hdmi_init(dev, PCH_HDMIB, PORT_B);
if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
intel_dp_init(dev, PCH_DP_B, PORT_B);
}
if (I915_READ(PCH_HDMIC) & SDVO_DETECTED)
intel_hdmi_init(dev, PCH_HDMIC, PORT_C);
if (!dpd_is_edp && I915_READ(PCH_HDMID) & SDVO_DETECTED)
intel_hdmi_init(dev, PCH_HDMID, PORT_D);
if (I915_READ(PCH_DP_C) & DP_DETECTED)
intel_dp_init(dev, PCH_DP_C, PORT_C);
if (I915_READ(PCH_DP_D) & DP_DETECTED)
intel_dp_init(dev, PCH_DP_D, PORT_D);
} else if (IS_VALLEYVIEW(dev)) {
/*
* The DP_DETECTED bit is the latched state of the DDC
* SDA pin at boot. However since eDP doesn't require DDC
* (no way to plug in a DP->HDMI dongle) the DDC pins for
* eDP ports may have been muxed to an alternate function.
* Thus we can't rely on the DP_DETECTED bit alone to detect
* eDP ports. Consult the VBT as well as DP_DETECTED to
* detect eDP ports.
*/
if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIB) & SDVO_DETECTED)
intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIB,
PORT_B);
if (I915_READ(VLV_DISPLAY_BASE + DP_B) & DP_DETECTED ||
intel_dp_is_edp(dev, PORT_B))
intel_dp_init(dev, VLV_DISPLAY_BASE + DP_B, PORT_B);
if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIC) & SDVO_DETECTED)
intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIC,
PORT_C);
if (I915_READ(VLV_DISPLAY_BASE + DP_C) & DP_DETECTED ||
intel_dp_is_edp(dev, PORT_C))
intel_dp_init(dev, VLV_DISPLAY_BASE + DP_C, PORT_C);
if (IS_CHERRYVIEW(dev)) {
if (I915_READ(VLV_DISPLAY_BASE + CHV_HDMID) & SDVO_DETECTED)
intel_hdmi_init(dev, VLV_DISPLAY_BASE + CHV_HDMID,
PORT_D);
/* eDP not supported on port D, so don't check VBT */
if (I915_READ(VLV_DISPLAY_BASE + DP_D) & DP_DETECTED)
intel_dp_init(dev, VLV_DISPLAY_BASE + DP_D, PORT_D);
}
intel_dsi_init(dev);
} else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
bool found = false;
if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
DRM_DEBUG_KMS("probing SDVOB\n");
found = intel_sdvo_init(dev, GEN3_SDVOB, true);
if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
intel_hdmi_init(dev, GEN4_HDMIB, PORT_B);
}
if (!found && SUPPORTS_INTEGRATED_DP(dev))
intel_dp_init(dev, DP_B, PORT_B);
}
/* Before G4X SDVOC doesn't have its own detect register */
if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
DRM_DEBUG_KMS("probing SDVOC\n");
found = intel_sdvo_init(dev, GEN3_SDVOC, false);
}
if (!found && (I915_READ(GEN3_SDVOC) & SDVO_DETECTED)) {
if (SUPPORTS_INTEGRATED_HDMI(dev)) {
DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
intel_hdmi_init(dev, GEN4_HDMIC, PORT_C);
}
if (SUPPORTS_INTEGRATED_DP(dev))
intel_dp_init(dev, DP_C, PORT_C);
}
if (SUPPORTS_INTEGRATED_DP(dev) &&
(I915_READ(DP_D) & DP_DETECTED))
intel_dp_init(dev, DP_D, PORT_D);
} else if (IS_GEN2(dev))
intel_dvo_init(dev);
if (SUPPORTS_TV(dev))
intel_tv_init(dev);
intel_edp_psr_init(dev);
for_each_intel_encoder(dev, encoder) {
encoder->base.possible_crtcs = encoder->crtc_mask;
encoder->base.possible_clones =
intel_encoder_clones(encoder);
}
intel_init_pch_refclk(dev);
drm_helper_move_panel_connectors_to_head(dev);
}
static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
{
struct drm_device *dev = fb->dev;
struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
drm_framebuffer_cleanup(fb);
mutex_lock(&dev->struct_mutex);
WARN_ON(!intel_fb->obj->framebuffer_references--);
drm_gem_object_unreference(&intel_fb->obj->base);
mutex_unlock(&dev->struct_mutex);
kfree(intel_fb);
}
static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
struct drm_file *file,
unsigned int *handle)
{
struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
struct drm_i915_gem_object *obj = intel_fb->obj;
return drm_gem_handle_create(file, &obj->base, handle);
}
static const struct drm_framebuffer_funcs intel_fb_funcs = {
.destroy = intel_user_framebuffer_destroy,
.create_handle = intel_user_framebuffer_create_handle,
};
static int intel_framebuffer_init(struct drm_device *dev,
struct intel_framebuffer *intel_fb,
struct drm_mode_fb_cmd2 *mode_cmd,
struct drm_i915_gem_object *obj)
{
int aligned_height;
int pitch_limit;
int ret;
WARN_ON(!mutex_is_locked(&dev->struct_mutex));
if (obj->tiling_mode == I915_TILING_Y) {
DRM_DEBUG("hardware does not support tiling Y\n");
return -EINVAL;
}
if (mode_cmd->pitches[0] & 63) {
DRM_DEBUG("pitch (%d) must be at least 64 byte aligned\n",
mode_cmd->pitches[0]);
return -EINVAL;
}
if (INTEL_INFO(dev)->gen >= 5 && !IS_VALLEYVIEW(dev)) {
pitch_limit = 32*1024;
} else if (INTEL_INFO(dev)->gen >= 4) {
if (obj->tiling_mode)
pitch_limit = 16*1024;
else
pitch_limit = 32*1024;
} else if (INTEL_INFO(dev)->gen >= 3) {
if (obj->tiling_mode)
pitch_limit = 8*1024;
else
pitch_limit = 16*1024;
} else
/* XXX DSPC is limited to 4k tiled */
pitch_limit = 8*1024;
if (mode_cmd->pitches[0] > pitch_limit) {
DRM_DEBUG("%s pitch (%d) must be at less than %d\n",
obj->tiling_mode ? "tiled" : "linear",
mode_cmd->pitches[0], pitch_limit);
return -EINVAL;
}
if (obj->tiling_mode != I915_TILING_NONE &&
mode_cmd->pitches[0] != obj->stride) {
DRM_DEBUG("pitch (%d) must match tiling stride (%d)\n",
mode_cmd->pitches[0], obj->stride);
return -EINVAL;
}
/* Reject formats not supported by any plane early. */
switch (mode_cmd->pixel_format) {
case DRM_FORMAT_C8:
case DRM_FORMAT_RGB565:
case DRM_FORMAT_XRGB8888:
case DRM_FORMAT_ARGB8888:
break;
case DRM_FORMAT_XRGB1555:
case DRM_FORMAT_ARGB1555:
if (INTEL_INFO(dev)->gen > 3) {
DRM_DEBUG("unsupported pixel format: %s\n",
drm_get_format_name(mode_cmd->pixel_format));
return -EINVAL;
}
break;
case DRM_FORMAT_XBGR8888:
case DRM_FORMAT_ABGR8888:
case DRM_FORMAT_XRGB2101010:
case DRM_FORMAT_ARGB2101010:
case DRM_FORMAT_XBGR2101010:
case DRM_FORMAT_ABGR2101010:
if (INTEL_INFO(dev)->gen < 4) {
DRM_DEBUG("unsupported pixel format: %s\n",
drm_get_format_name(mode_cmd->pixel_format));
return -EINVAL;
}
break;
case DRM_FORMAT_YUYV:
case DRM_FORMAT_UYVY:
case DRM_FORMAT_YVYU:
case DRM_FORMAT_VYUY:
if (INTEL_INFO(dev)->gen < 5) {
DRM_DEBUG("unsupported pixel format: %s\n",
drm_get_format_name(mode_cmd->pixel_format));
return -EINVAL;
}
break;
default:
DRM_DEBUG("unsupported pixel format: %s\n",
drm_get_format_name(mode_cmd->pixel_format));
return -EINVAL;
}
/* FIXME need to adjust LINOFF/TILEOFF accordingly. */
if (mode_cmd->offsets[0] != 0)
return -EINVAL;
aligned_height = intel_align_height(dev, mode_cmd->height,
obj->tiling_mode);
/* FIXME drm helper for size checks (especially planar formats)? */
if (obj->base.size < aligned_height * mode_cmd->pitches[0])
return -EINVAL;
drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
intel_fb->obj = obj;
intel_fb->obj->framebuffer_references++;
ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
if (ret) {
DRM_ERROR("framebuffer init failed %d\n", ret);
return ret;
}
return 0;
}
static struct drm_framebuffer *
intel_user_framebuffer_create(struct drm_device *dev,
struct drm_file *filp,
struct drm_mode_fb_cmd2 *mode_cmd)
{
struct drm_i915_gem_object *obj;
obj = to_intel_bo(drm_gem_object_lookup(dev, filp,
mode_cmd->handles[0]));
if (&obj->base == NULL)
return ERR_PTR(-ENOENT);
return intel_framebuffer_create(dev, mode_cmd, obj);
}
#ifndef CONFIG_DRM_I915_FBDEV
static inline void intel_fbdev_output_poll_changed(struct drm_device *dev)
{
}
#endif
static const struct drm_mode_config_funcs intel_mode_funcs = {
.fb_create = intel_user_framebuffer_create,
.output_poll_changed = intel_fbdev_output_poll_changed,
};
/* Set up chip specific display functions */
static void intel_init_display(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
if (HAS_PCH_SPLIT(dev) || IS_G4X(dev))
dev_priv->display.find_dpll = g4x_find_best_dpll;
else if (IS_CHERRYVIEW(dev))
dev_priv->display.find_dpll = chv_find_best_dpll;
else if (IS_VALLEYVIEW(dev))
dev_priv->display.find_dpll = vlv_find_best_dpll;
else if (IS_PINEVIEW(dev))
dev_priv->display.find_dpll = pnv_find_best_dpll;
else
dev_priv->display.find_dpll = i9xx_find_best_dpll;
if (HAS_DDI(dev)) {
dev_priv->display.get_pipe_config = haswell_get_pipe_config;
dev_priv->display.get_plane_config = ironlake_get_plane_config;
dev_priv->display.crtc_mode_set = haswell_crtc_mode_set;
dev_priv->display.crtc_enable = haswell_crtc_enable;
dev_priv->display.crtc_disable = haswell_crtc_disable;
dev_priv->display.off = ironlake_crtc_off;
if (INTEL_INFO(dev)->gen >= 9)
dev_priv->display.update_primary_plane =
skylake_update_primary_plane;
else
dev_priv->display.update_primary_plane =
ironlake_update_primary_plane;
} else if (HAS_PCH_SPLIT(dev)) {
dev_priv->display.get_pipe_config = ironlake_get_pipe_config;
dev_priv->display.get_plane_config = ironlake_get_plane_config;
dev_priv->display.crtc_mode_set = ironlake_crtc_mode_set;
dev_priv->display.crtc_enable = ironlake_crtc_enable;
dev_priv->display.crtc_disable = ironlake_crtc_disable;
dev_priv->display.off = ironlake_crtc_off;
dev_priv->display.update_primary_plane =
ironlake_update_primary_plane;
} else if (IS_VALLEYVIEW(dev)) {
dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
dev_priv->display.get_plane_config = i9xx_get_plane_config;
dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
dev_priv->display.crtc_enable = valleyview_crtc_enable;
dev_priv->display.crtc_disable = i9xx_crtc_disable;
dev_priv->display.off = i9xx_crtc_off;
dev_priv->display.update_primary_plane =
i9xx_update_primary_plane;
} else {
dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
dev_priv->display.get_plane_config = i9xx_get_plane_config;
dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
dev_priv->display.crtc_enable = i9xx_crtc_enable;
dev_priv->display.crtc_disable = i9xx_crtc_disable;
dev_priv->display.off = i9xx_crtc_off;
dev_priv->display.update_primary_plane =
i9xx_update_primary_plane;
}
/* Returns the core display clock speed */
if (IS_VALLEYVIEW(dev))
dev_priv->display.get_display_clock_speed =
valleyview_get_display_clock_speed;
else if (IS_I945G(dev) || (IS_G33(dev) && !IS_PINEVIEW_M(dev)))
dev_priv->display.get_display_clock_speed =
i945_get_display_clock_speed;
else if (IS_I915G(dev))
dev_priv->display.get_display_clock_speed =
i915_get_display_clock_speed;
else if (IS_I945GM(dev) || IS_845G(dev))
dev_priv->display.get_display_clock_speed =
i9xx_misc_get_display_clock_speed;
else if (IS_PINEVIEW(dev))
dev_priv->display.get_display_clock_speed =
pnv_get_display_clock_speed;
else if (IS_I915GM(dev))
dev_priv->display.get_display_clock_speed =
i915gm_get_display_clock_speed;
else if (IS_I865G(dev))
dev_priv->display.get_display_clock_speed =
i865_get_display_clock_speed;
else if (IS_I85X(dev))
dev_priv->display.get_display_clock_speed =
i855_get_display_clock_speed;
else /* 852, 830 */
dev_priv->display.get_display_clock_speed =
i830_get_display_clock_speed;
if (IS_GEN5(dev)) {
dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
} else if (IS_GEN6(dev)) {
dev_priv->display.fdi_link_train = gen6_fdi_link_train;
dev_priv->display.modeset_global_resources =
snb_modeset_global_resources;
} else if (IS_IVYBRIDGE(dev)) {
/* FIXME: detect B0+ stepping and use auto training */
dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
dev_priv->display.modeset_global_resources =
ivb_modeset_global_resources;
} else if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
dev_priv->display.fdi_link_train = hsw_fdi_link_train;
dev_priv->display.modeset_global_resources =
haswell_modeset_global_resources;
} else if (IS_VALLEYVIEW(dev)) {
dev_priv->display.modeset_global_resources =
valleyview_modeset_global_resources;
} else if (INTEL_INFO(dev)->gen >= 9) {
dev_priv->display.modeset_global_resources =
haswell_modeset_global_resources;
}
/* Default just returns -ENODEV to indicate unsupported */
dev_priv->display.queue_flip = intel_default_queue_flip;
switch (INTEL_INFO(dev)->gen) {
case 2:
dev_priv->display.queue_flip = intel_gen2_queue_flip;
break;
case 3:
dev_priv->display.queue_flip = intel_gen3_queue_flip;
break;
case 4:
case 5:
dev_priv->display.queue_flip = intel_gen4_queue_flip;
break;
case 6:
dev_priv->display.queue_flip = intel_gen6_queue_flip;
break;
case 7:
case 8: /* FIXME(BDW): Check that the gen8 RCS flip works. */
dev_priv->display.queue_flip = intel_gen7_queue_flip;
break;
}
intel_panel_init_backlight_funcs(dev);
mutex_init(&dev_priv->pps_mutex);
}
/*
* Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
* resume, or other times. This quirk makes sure that's the case for
* affected systems.
*/
static void quirk_pipea_force(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
dev_priv->quirks |= QUIRK_PIPEA_FORCE;
DRM_INFO("applying pipe a force quirk\n");
}
static void quirk_pipeb_force(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
dev_priv->quirks |= QUIRK_PIPEB_FORCE;
DRM_INFO("applying pipe b force quirk\n");
}
/*
* Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
*/
static void quirk_ssc_force_disable(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
DRM_INFO("applying lvds SSC disable quirk\n");
}
/*
* A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
* brightness value
*/
static void quirk_invert_brightness(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
DRM_INFO("applying inverted panel brightness quirk\n");
}
/* Some VBT's incorrectly indicate no backlight is present */
static void quirk_backlight_present(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
dev_priv->quirks |= QUIRK_BACKLIGHT_PRESENT;
DRM_INFO("applying backlight present quirk\n");
}
struct intel_quirk {
int device;
int subsystem_vendor;
int subsystem_device;
void (*hook)(struct drm_device *dev);
};
/* For systems that don't have a meaningful PCI subdevice/subvendor ID */
struct intel_dmi_quirk {
void (*hook)(struct drm_device *dev);
const struct dmi_system_id (*dmi_id_list)[];
};
static int intel_dmi_reverse_brightness(const struct dmi_system_id *id)
{
DRM_INFO("Backlight polarity reversed on %s\n", id->ident);
return 1;
}
static const struct intel_dmi_quirk intel_dmi_quirks[] = {
{
.dmi_id_list = &(const struct dmi_system_id[]) {
{
.callback = intel_dmi_reverse_brightness,
.ident = "NCR Corporation",
.matches = {DMI_MATCH(DMI_SYS_VENDOR, "NCR Corporation"),
DMI_MATCH(DMI_PRODUCT_NAME, ""),
},
},
{ } /* terminating entry */
},
.hook = quirk_invert_brightness,
},
};
static struct intel_quirk intel_quirks[] = {
/* HP Mini needs pipe A force quirk (LP: #322104) */
{ 0x27ae, 0x103c, 0x361a, quirk_pipea_force },
/* Toshiba Protege R-205, S-209 needs pipe A force quirk */
{ 0x2592, 0x1179, 0x0001, quirk_pipea_force },
/* ThinkPad T60 needs pipe A force quirk (bug #16494) */
{ 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
/* 830 needs to leave pipe A & dpll A up */
{ 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
/* 830 needs to leave pipe B & dpll B up */
{ 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipeb_force },
/* Lenovo U160 cannot use SSC on LVDS */
{ 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
/* Sony Vaio Y cannot use SSC on LVDS */
{ 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
/* Acer Aspire 5734Z must invert backlight brightness */
{ 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
/* Acer/eMachines G725 */
{ 0x2a42, 0x1025, 0x0210, quirk_invert_brightness },
/* Acer/eMachines e725 */
{ 0x2a42, 0x1025, 0x0212, quirk_invert_brightness },
/* Acer/Packard Bell NCL20 */
{ 0x2a42, 0x1025, 0x034b, quirk_invert_brightness },
/* Acer Aspire 4736Z */
{ 0x2a42, 0x1025, 0x0260, quirk_invert_brightness },
/* Acer Aspire 5336 */
{ 0x2a42, 0x1025, 0x048a, quirk_invert_brightness },
/* Acer C720 and C720P Chromebooks (Celeron 2955U) have backlights */
{ 0x0a06, 0x1025, 0x0a11, quirk_backlight_present },
/* Acer C720 Chromebook (Core i3 4005U) */
{ 0x0a16, 0x1025, 0x0a11, quirk_backlight_present },
/* Toshiba CB35 Chromebook (Celeron 2955U) */
{ 0x0a06, 0x1179, 0x0a88, quirk_backlight_present },
/* HP Chromebook 14 (Celeron 2955U) */
{ 0x0a06, 0x103c, 0x21ed, quirk_backlight_present },
};
static void intel_init_quirks(struct drm_device *dev)
{
struct pci_dev *d = dev->pdev;
int i;
for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
struct intel_quirk *q = &intel_quirks[i];
if (d->device == q->device &&
(d->subsystem_vendor == q->subsystem_vendor ||
q->subsystem_vendor == PCI_ANY_ID) &&
(d->subsystem_device == q->subsystem_device ||
q->subsystem_device == PCI_ANY_ID))
q->hook(dev);
}
for (i = 0; i < ARRAY_SIZE(intel_dmi_quirks); i++) {
if (dmi_check_system(*intel_dmi_quirks[i].dmi_id_list) != 0)
intel_dmi_quirks[i].hook(dev);
}
}
/* Disable the VGA plane that we never use */
static void i915_disable_vga(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
u8 sr1;
u32 vga_reg = i915_vgacntrl_reg(dev);
/* WaEnableVGAAccessThroughIOPort:ctg,elk,ilk,snb,ivb,vlv,hsw */
vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
outb(SR01, VGA_SR_INDEX);
sr1 = inb(VGA_SR_DATA);
outb(sr1 | 1<<5, VGA_SR_DATA);
vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
udelay(300);
/*
* Fujitsu-Siemens Lifebook S6010 (830) has problems resuming
* from S3 without preserving (some of?) the other bits.
*/
I915_WRITE(vga_reg, dev_priv->bios_vgacntr | VGA_DISP_DISABLE);
POSTING_READ(vga_reg);
}
void intel_modeset_init_hw(struct drm_device *dev)
{
intel_prepare_ddi(dev);
if (IS_VALLEYVIEW(dev))
vlv_update_cdclk(dev);
intel_init_clock_gating(dev);
intel_enable_gt_powersave(dev);
}
void intel_modeset_init(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
int sprite, ret;
enum pipe pipe;
struct intel_crtc *crtc;
drm_mode_config_init(dev);
dev->mode_config.min_width = 0;
dev->mode_config.min_height = 0;
dev->mode_config.preferred_depth = 24;
dev->mode_config.prefer_shadow = 1;
dev->mode_config.funcs = &intel_mode_funcs;
intel_init_quirks(dev);
intel_init_pm(dev);
if (INTEL_INFO(dev)->num_pipes == 0)
return;
intel_init_display(dev);
intel_init_audio(dev);
if (IS_GEN2(dev)) {
dev->mode_config.max_width = 2048;
dev->mode_config.max_height = 2048;
} else if (IS_GEN3(dev)) {
dev->mode_config.max_width = 4096;
dev->mode_config.max_height = 4096;
} else {
dev->mode_config.max_width = 8192;
dev->mode_config.max_height = 8192;
}
if (IS_845G(dev) || IS_I865G(dev)) {
dev->mode_config.cursor_width = IS_845G(dev) ? 64 : 512;
dev->mode_config.cursor_height = 1023;
} else if (IS_GEN2(dev)) {
dev->mode_config.cursor_width = GEN2_CURSOR_WIDTH;
dev->mode_config.cursor_height = GEN2_CURSOR_HEIGHT;
} else {
dev->mode_config.cursor_width = MAX_CURSOR_WIDTH;
dev->mode_config.cursor_height = MAX_CURSOR_HEIGHT;
}
dev->mode_config.fb_base = dev_priv->gtt.mappable_base;
DRM_DEBUG_KMS("%d display pipe%s available.\n",
INTEL_INFO(dev)->num_pipes,
INTEL_INFO(dev)->num_pipes > 1 ? "s" : "");
for_each_pipe(dev_priv, pipe) {
intel_crtc_init(dev, pipe);
for_each_sprite(pipe, sprite) {
ret = intel_plane_init(dev, pipe, sprite);
if (ret)
DRM_DEBUG_KMS("pipe %c sprite %c init failed: %d\n",
pipe_name(pipe), sprite_name(pipe, sprite), ret);
}
}
intel_init_dpio(dev);
intel_shared_dpll_init(dev);
/* save the BIOS value before clobbering it */
dev_priv->bios_vgacntr = I915_READ(i915_vgacntrl_reg(dev));
/* Just disable it once at startup */
i915_disable_vga(dev);
intel_setup_outputs(dev);
/* Just in case the BIOS is doing something questionable. */
intel_disable_fbc(dev);
drm_modeset_lock_all(dev);
intel_modeset_setup_hw_state(dev, false);
drm_modeset_unlock_all(dev);
for_each_intel_crtc(dev, crtc) {
if (!crtc->active)
continue;
/*
* Note that reserving the BIOS fb up front prevents us
* from stuffing other stolen allocations like the ring
* on top. This prevents some ugliness at boot time, and
* can even allow for smooth boot transitions if the BIOS
* fb is large enough for the active pipe configuration.
*/
if (dev_priv->display.get_plane_config) {
dev_priv->display.get_plane_config(crtc,
&crtc->plane_config);
/*
* If the fb is shared between multiple heads, we'll
* just get the first one.
*/
intel_find_plane_obj(crtc, &crtc->plane_config);
}
}
}
static void intel_enable_pipe_a(struct drm_device *dev)
{
struct intel_connector *connector;
struct drm_connector *crt = NULL;
struct intel_load_detect_pipe load_detect_temp;
struct drm_modeset_acquire_ctx *ctx = dev->mode_config.acquire_ctx;
/* We can't just switch on the pipe A, we need to set things up with a
* proper mode and output configuration. As a gross hack, enable pipe A
* by enabling the load detect pipe once. */
list_for_each_entry(connector,
&dev->mode_config.connector_list,
base.head) {
if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
crt = &connector->base;
break;
}
}
if (!crt)
return;
if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp, ctx))
intel_release_load_detect_pipe(crt, &load_detect_temp);
}
static bool
intel_check_plane_mapping(struct intel_crtc *crtc)
{
struct drm_device *dev = crtc->base.dev;
struct drm_i915_private *dev_priv = dev->dev_private;
u32 reg, val;
if (INTEL_INFO(dev)->num_pipes == 1)
return true;
reg = DSPCNTR(!crtc->plane);
val = I915_READ(reg);
if ((val & DISPLAY_PLANE_ENABLE) &&
(!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
return false;
return true;
}
static void intel_sanitize_crtc(struct intel_crtc *crtc)
{
struct drm_device *dev = crtc->base.dev;
struct drm_i915_private *dev_priv = dev->dev_private;
u32 reg;
/* Clear any frame start delays used for debugging left by the BIOS */
reg = PIPECONF(crtc->config.cpu_transcoder);
I915_WRITE(reg, I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
/* restore vblank interrupts to correct state */
if (crtc->active) {
update_scanline_offset(crtc);
drm_vblank_on(dev, crtc->pipe);
} else
drm_vblank_off(dev, crtc->pipe);
/* We need to sanitize the plane -> pipe mapping first because this will
* disable the crtc (and hence change the state) if it is wrong. Note
* that gen4+ has a fixed plane -> pipe mapping. */
if (INTEL_INFO(dev)->gen < 4 && !intel_check_plane_mapping(crtc)) {
struct intel_connector *connector;
bool plane;
DRM_DEBUG_KMS("[CRTC:%d] wrong plane connection detected!\n",
crtc->base.base.id);
/* Pipe has the wrong plane attached and the plane is active.
* Temporarily change the plane mapping and disable everything
* ... */
plane = crtc->plane;
crtc->plane = !plane;
crtc->primary_enabled = true;
dev_priv->display.crtc_disable(&crtc->base);
crtc->plane = plane;
/* ... and break all links. */
list_for_each_entry(connector, &dev->mode_config.connector_list,
base.head) {
if (connector->encoder->base.crtc != &crtc->base)
continue;
connector->base.dpms = DRM_MODE_DPMS_OFF;
connector->base.encoder = NULL;
}
/* multiple connectors may have the same encoder:
* handle them and break crtc link separately */
list_for_each_entry(connector, &dev->mode_config.connector_list,
base.head)
if (connector->encoder->base.crtc == &crtc->base) {
connector->encoder->base.crtc = NULL;
connector->encoder->connectors_active = false;
}
WARN_ON(crtc->active);
crtc->base.enabled = false;
}
if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
crtc->pipe == PIPE_A && !crtc->active) {
/* BIOS forgot to enable pipe A, this mostly happens after
* resume. Force-enable the pipe to fix this, the update_dpms
* call below we restore the pipe to the right state, but leave
* the required bits on. */
intel_enable_pipe_a(dev);
}
/* Adjust the state of the output pipe according to whether we
* have active connectors/encoders. */
intel_crtc_update_dpms(&crtc->base);
if (crtc->active != crtc->base.enabled) {
struct intel_encoder *encoder;
/* This can happen either due to bugs in the get_hw_state
* functions or because the pipe is force-enabled due to the
* pipe A quirk. */
DRM_DEBUG_KMS("[CRTC:%d] hw state adjusted, was %s, now %s\n",
crtc->base.base.id,
crtc->base.enabled ? "enabled" : "disabled",
crtc->active ? "enabled" : "disabled");
crtc->base.enabled = crtc->active;
/* Because we only establish the connector -> encoder ->
* crtc links if something is active, this means the
* crtc is now deactivated. Break the links. connector
* -> encoder links are only establish when things are
* actually up, hence no need to break them. */
WARN_ON(crtc->active);
for_each_encoder_on_crtc(dev, &crtc->base, encoder) {
WARN_ON(encoder->connectors_active);
encoder->base.crtc = NULL;
}
}
if (crtc->active || HAS_GMCH_DISPLAY(dev)) {
/*
* We start out with underrun reporting disabled to avoid races.
* For correct bookkeeping mark this on active crtcs.
*
* Also on gmch platforms we dont have any hardware bits to
* disable the underrun reporting. Which means we need to start
* out with underrun reporting disabled also on inactive pipes,
* since otherwise we'll complain about the garbage we read when
* e.g. coming up after runtime pm.
*
* No protection against concurrent access is required - at
* worst a fifo underrun happens which also sets this to false.
*/
crtc->cpu_fifo_underrun_disabled = true;
crtc->pch_fifo_underrun_disabled = true;
}
}
static void intel_sanitize_encoder(struct intel_encoder *encoder)
{
struct intel_connector *connector;
struct drm_device *dev = encoder->base.dev;
/* We need to check both for a crtc link (meaning that the
* encoder is active and trying to read from a pipe) and the
* pipe itself being active. */
bool has_active_crtc = encoder->base.crtc &&
to_intel_crtc(encoder->base.crtc)->active;
if (encoder->connectors_active && !has_active_crtc) {
DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
encoder->base.base.id,
encoder->base.name);
/* Connector is active, but has no active pipe. This is
* fallout from our resume register restoring. Disable
* the encoder manually again. */
if (encoder->base.crtc) {
DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
encoder->base.base.id,
encoder->base.name);
encoder->disable(encoder);
if (encoder->post_disable)
encoder->post_disable(encoder);
}
encoder->base.crtc = NULL;
encoder->connectors_active = false;
/* Inconsistent output/port/pipe state happens presumably due to
* a bug in one of the get_hw_state functions. Or someplace else
* in our code, like the register restore mess on resume. Clamp
* things to off as a safer default. */
list_for_each_entry(connector,
&dev->mode_config.connector_list,
base.head) {
if (connector->encoder != encoder)
continue;
connector->base.dpms = DRM_MODE_DPMS_OFF;
connector->base.encoder = NULL;
}
}
/* Enabled encoders without active connectors will be fixed in
* the crtc fixup. */
}
void i915_redisable_vga_power_on(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
u32 vga_reg = i915_vgacntrl_reg(dev);
if (!(I915_READ(vga_reg) & VGA_DISP_DISABLE)) {
DRM_DEBUG_KMS("Something enabled VGA plane, disabling it\n");
i915_disable_vga(dev);
}
}
void i915_redisable_vga(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
/* This function can be called both from intel_modeset_setup_hw_state or
* at a very early point in our resume sequence, where the power well
* structures are not yet restored. Since this function is at a very
* paranoid "someone might have enabled VGA while we were not looking"
* level, just check if the power well is enabled instead of trying to
* follow the "don't touch the power well if we don't need it" policy
* the rest of the driver uses. */
if (!intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_VGA))
return;
i915_redisable_vga_power_on(dev);
}
static bool primary_get_hw_state(struct intel_crtc *crtc)
{
struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
if (!crtc->active)
return false;
return I915_READ(DSPCNTR(crtc->plane)) & DISPLAY_PLANE_ENABLE;
}
static void intel_modeset_readout_hw_state(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
enum pipe pipe;
struct intel_crtc *crtc;
struct intel_encoder *encoder;
struct intel_connector *connector;
int i;
for_each_intel_crtc(dev, crtc) {
memset(&crtc->config, 0, sizeof(crtc->config));
crtc->config.quirks |= PIPE_CONFIG_QUIRK_INHERITED_MODE;
crtc->active = dev_priv->display.get_pipe_config(crtc,
&crtc->config);
crtc->base.enabled = crtc->active;
crtc->primary_enabled = primary_get_hw_state(crtc);
DRM_DEBUG_KMS("[CRTC:%d] hw state readout: %s\n",
crtc->base.base.id,
crtc->active ? "enabled" : "disabled");
}
for (i = 0; i < dev_priv->num_shared_dpll; i++) {
struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
pll->on = pll->get_hw_state(dev_priv, pll, &pll->hw_state);
pll->active = 0;
for_each_intel_crtc(dev, crtc) {
if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll)
pll->active++;
}
pll->refcount = pll->active;
DRM_DEBUG_KMS("%s hw state readout: refcount %i, on %i\n",
pll->name, pll->refcount, pll->on);
if (pll->refcount)
intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
}
for_each_intel_encoder(dev, encoder) {
pipe = 0;
if (encoder->get_hw_state(encoder, &pipe)) {
crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
encoder->base.crtc = &crtc->base;
encoder->get_config(encoder, &crtc->config);
} else {
encoder->base.crtc = NULL;
}
encoder->connectors_active = false;
DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe %c\n",
encoder->base.base.id,
encoder->base.name,
encoder->base.crtc ? "enabled" : "disabled",
pipe_name(pipe));
}
list_for_each_entry(connector, &dev->mode_config.connector_list,
base.head) {
if (connector->get_hw_state(connector)) {
connector->base.dpms = DRM_MODE_DPMS_ON;
connector->encoder->connectors_active = true;
connector->base.encoder = &connector->encoder->base;
} else {
connector->base.dpms = DRM_MODE_DPMS_OFF;
connector->base.encoder = NULL;
}
DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
connector->base.base.id,
connector->base.name,
connector->base.encoder ? "enabled" : "disabled");
}
}
/* Scan out the current hw modeset state, sanitizes it and maps it into the drm
* and i915 state tracking structures. */
void intel_modeset_setup_hw_state(struct drm_device *dev,
bool force_restore)
{
struct drm_i915_private *dev_priv = dev->dev_private;
enum pipe pipe;
struct intel_crtc *crtc;
struct intel_encoder *encoder;
int i;
intel_modeset_readout_hw_state(dev);
/*
* Now that we have the config, copy it to each CRTC struct
* Note that this could go away if we move to using crtc_config
* checking everywhere.
*/
for_each_intel_crtc(dev, crtc) {
if (crtc->active && i915.fastboot) {
intel_mode_from_pipe_config(&crtc->base.mode, &crtc->config);
DRM_DEBUG_KMS("[CRTC:%d] found active mode: ",
crtc->base.base.id);
drm_mode_debug_printmodeline(&crtc->base.mode);
}
}
/* HW state is read out, now we need to sanitize this mess. */
for_each_intel_encoder(dev, encoder) {
intel_sanitize_encoder(encoder);
}
for_each_pipe(dev_priv, pipe) {
crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
intel_sanitize_crtc(crtc);
intel_dump_pipe_config(crtc, &crtc->config, "[setup_hw_state]");
}
for (i = 0; i < dev_priv->num_shared_dpll; i++) {
struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
if (!pll->on || pll->active)
continue;
DRM_DEBUG_KMS("%s enabled but not in use, disabling\n", pll->name);
pll->disable(dev_priv, pll);
pll->on = false;
}
if (HAS_PCH_SPLIT(dev))
ilk_wm_get_hw_state(dev);
if (force_restore) {
i915_redisable_vga(dev);
/*
* We need to use raw interfaces for restoring state to avoid
* checking (bogus) intermediate states.
*/
for_each_pipe(dev_priv, pipe) {
struct drm_crtc *crtc =
dev_priv->pipe_to_crtc_mapping[pipe];
__intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y,
crtc->primary->fb);
}
} else {
intel_modeset_update_staged_output_state(dev);
}
intel_modeset_check_state(dev);
}
void intel_modeset_gem_init(struct drm_device *dev)
{
struct drm_crtc *c;
struct drm_i915_gem_object *obj;
mutex_lock(&dev->struct_mutex);
intel_init_gt_powersave(dev);
mutex_unlock(&dev->struct_mutex);
intel_modeset_init_hw(dev);
intel_setup_overlay(dev);
/*
* Make sure any fbs we allocated at startup are properly
* pinned & fenced. When we do the allocation it's too early
* for this.
*/
mutex_lock(&dev->struct_mutex);
for_each_crtc(dev, c) {
obj = intel_fb_obj(c->primary->fb);
if (obj == NULL)
continue;
if (intel_pin_and_fence_fb_obj(dev, obj, NULL)) {
DRM_ERROR("failed to pin boot fb on pipe %d\n",
to_intel_crtc(c)->pipe);
drm_framebuffer_unreference(c->primary->fb);
c->primary->fb = NULL;
}
}
mutex_unlock(&dev->struct_mutex);
}
void intel_connector_unregister(struct intel_connector *intel_connector)
{
struct drm_connector *connector = &intel_connector->base;
intel_panel_destroy_backlight(connector);
drm_connector_unregister(connector);
}
void intel_modeset_cleanup(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
struct drm_connector *connector;
/*
* Interrupts and polling as the first thing to avoid creating havoc.
* Too much stuff here (turning of rps, connectors, ...) would
* experience fancy races otherwise.
*/
intel_irq_uninstall(dev_priv);
/*
* Due to the hpd irq storm handling the hotplug work can re-arm the
* poll handlers. Hence disable polling after hpd handling is shut down.
*/
drm_kms_helper_poll_fini(dev);
mutex_lock(&dev->struct_mutex);
intel_unregister_dsm_handler();
intel_disable_fbc(dev);
intel_disable_gt_powersave(dev);
ironlake_teardown_rc6(dev);
mutex_unlock(&dev->struct_mutex);
/* flush any delayed tasks or pending work */
flush_scheduled_work();
/* destroy the backlight and sysfs files before encoders/connectors */
list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
struct intel_connector *intel_connector;
intel_connector = to_intel_connector(connector);
intel_connector->unregister(intel_connector);
}
drm_mode_config_cleanup(dev);
intel_cleanup_overlay(dev);
mutex_lock(&dev->struct_mutex);
intel_cleanup_gt_powersave(dev);
mutex_unlock(&dev->struct_mutex);
}
/*
* Return which encoder is currently attached for connector.
*/
struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
{
return &intel_attached_encoder(connector)->base;
}
void intel_connector_attach_encoder(struct intel_connector *connector,
struct intel_encoder *encoder)
{
connector->encoder = encoder;
drm_mode_connector_attach_encoder(&connector->base,
&encoder->base);
}
/*
* set vga decode state - true == enable VGA decode
*/
int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
{
struct drm_i915_private *dev_priv = dev->dev_private;
unsigned reg = INTEL_INFO(dev)->gen >= 6 ? SNB_GMCH_CTRL : INTEL_GMCH_CTRL;
u16 gmch_ctrl;
if (pci_read_config_word(dev_priv->bridge_dev, reg, &gmch_ctrl)) {
DRM_ERROR("failed to read control word\n");
return -EIO;
}
if (!!(gmch_ctrl & INTEL_GMCH_VGA_DISABLE) == !state)
return 0;
if (state)
gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
else
gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
if (pci_write_config_word(dev_priv->bridge_dev, reg, gmch_ctrl)) {
DRM_ERROR("failed to write control word\n");
return -EIO;
}
return 0;
}
struct intel_display_error_state {
u32 power_well_driver;
int num_transcoders;
struct intel_cursor_error_state {
u32 control;
u32 position;
u32 base;
u32 size;
} cursor[I915_MAX_PIPES];
struct intel_pipe_error_state {
bool power_domain_on;
u32 source;
u32 stat;
} pipe[I915_MAX_PIPES];
struct intel_plane_error_state {
u32 control;
u32 stride;
u32 size;
u32 pos;
u32 addr;
u32 surface;
u32 tile_offset;
} plane[I915_MAX_PIPES];
struct intel_transcoder_error_state {
bool power_domain_on;
enum transcoder cpu_transcoder;
u32 conf;
u32 htotal;
u32 hblank;
u32 hsync;
u32 vtotal;
u32 vblank;
u32 vsync;
} transcoder[4];
};
struct intel_display_error_state *
intel_display_capture_error_state(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_display_error_state *error;
int transcoders[] = {
TRANSCODER_A,
TRANSCODER_B,
TRANSCODER_C,
TRANSCODER_EDP,
};
int i;
if (INTEL_INFO(dev)->num_pipes == 0)
return NULL;
error = kzalloc(sizeof(*error), GFP_ATOMIC);
if (error == NULL)
return NULL;
if (IS_HASWELL(dev) || IS_BROADWELL(dev))
error->power_well_driver = I915_READ(HSW_PWR_WELL_DRIVER);
for_each_pipe(dev_priv, i) {
error->pipe[i].power_domain_on =
__intel_display_power_is_enabled(dev_priv,
POWER_DOMAIN_PIPE(i));
if (!error->pipe[i].power_domain_on)
continue;
error->cursor[i].control = I915_READ(CURCNTR(i));
error->cursor[i].position = I915_READ(CURPOS(i));
error->cursor[i].base = I915_READ(CURBASE(i));
error->plane[i].control = I915_READ(DSPCNTR(i));
error->plane[i].stride = I915_READ(DSPSTRIDE(i));
if (INTEL_INFO(dev)->gen <= 3) {
error->plane[i].size = I915_READ(DSPSIZE(i));
error->plane[i].pos = I915_READ(DSPPOS(i));
}
if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
error->plane[i].addr = I915_READ(DSPADDR(i));
if (INTEL_INFO(dev)->gen >= 4) {
error->plane[i].surface = I915_READ(DSPSURF(i));
error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
}
error->pipe[i].source = I915_READ(PIPESRC(i));
if (HAS_GMCH_DISPLAY(dev))
error->pipe[i].stat = I915_READ(PIPESTAT(i));
}
error->num_transcoders = INTEL_INFO(dev)->num_pipes;
if (HAS_DDI(dev_priv->dev))
error->num_transcoders++; /* Account for eDP. */
for (i = 0; i < error->num_transcoders; i++) {
enum transcoder cpu_transcoder = transcoders[i];
error->transcoder[i].power_domain_on =
__intel_display_power_is_enabled(dev_priv,
POWER_DOMAIN_TRANSCODER(cpu_transcoder));
if (!error->transcoder[i].power_domain_on)
continue;
error->transcoder[i].cpu_transcoder = cpu_transcoder;
error->transcoder[i].conf = I915_READ(PIPECONF(cpu_transcoder));
error->transcoder[i].htotal = I915_READ(HTOTAL(cpu_transcoder));
error->transcoder[i].hblank = I915_READ(HBLANK(cpu_transcoder));
error->transcoder[i].hsync = I915_READ(HSYNC(cpu_transcoder));
error->transcoder[i].vtotal = I915_READ(VTOTAL(cpu_transcoder));
error->transcoder[i].vblank = I915_READ(VBLANK(cpu_transcoder));
error->transcoder[i].vsync = I915_READ(VSYNC(cpu_transcoder));
}
return error;
}
#define err_printf(e, ...) i915_error_printf(e, __VA_ARGS__)
void
intel_display_print_error_state(struct drm_i915_error_state_buf *m,
struct drm_device *dev,
struct intel_display_error_state *error)
{
struct drm_i915_private *dev_priv = dev->dev_private;
int i;
if (!error)
return;
err_printf(m, "Num Pipes: %d\n", INTEL_INFO(dev)->num_pipes);
if (IS_HASWELL(dev) || IS_BROADWELL(dev))
err_printf(m, "PWR_WELL_CTL2: %08x\n",
error->power_well_driver);
for_each_pipe(dev_priv, i) {
err_printf(m, "Pipe [%d]:\n", i);
err_printf(m, " Power: %s\n",
error->pipe[i].power_domain_on ? "on" : "off");
err_printf(m, " SRC: %08x\n", error->pipe[i].source);
err_printf(m, " STAT: %08x\n", error->pipe[i].stat);
err_printf(m, "Plane [%d]:\n", i);
err_printf(m, " CNTR: %08x\n", error->plane[i].control);
err_printf(m, " STRIDE: %08x\n", error->plane[i].stride);
if (INTEL_INFO(dev)->gen <= 3) {
err_printf(m, " SIZE: %08x\n", error->plane[i].size);
err_printf(m, " POS: %08x\n", error->plane[i].pos);
}
if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
err_printf(m, " ADDR: %08x\n", error->plane[i].addr);
if (INTEL_INFO(dev)->gen >= 4) {
err_printf(m, " SURF: %08x\n", error->plane[i].surface);
err_printf(m, " TILEOFF: %08x\n", error->plane[i].tile_offset);
}
err_printf(m, "Cursor [%d]:\n", i);
err_printf(m, " CNTR: %08x\n", error->cursor[i].control);
err_printf(m, " POS: %08x\n", error->cursor[i].position);
err_printf(m, " BASE: %08x\n", error->cursor[i].base);
}
for (i = 0; i < error->num_transcoders; i++) {
err_printf(m, "CPU transcoder: %c\n",
transcoder_name(error->transcoder[i].cpu_transcoder));
err_printf(m, " Power: %s\n",
error->transcoder[i].power_domain_on ? "on" : "off");
err_printf(m, " CONF: %08x\n", error->transcoder[i].conf);
err_printf(m, " HTOTAL: %08x\n", error->transcoder[i].htotal);
err_printf(m, " HBLANK: %08x\n", error->transcoder[i].hblank);
err_printf(m, " HSYNC: %08x\n", error->transcoder[i].hsync);
err_printf(m, " VTOTAL: %08x\n", error->transcoder[i].vtotal);
err_printf(m, " VBLANK: %08x\n", error->transcoder[i].vblank);
err_printf(m, " VSYNC: %08x\n", error->transcoder[i].vsync);
}
}
void intel_modeset_preclose(struct drm_device *dev, struct drm_file *file)
{
struct intel_crtc *crtc;
for_each_intel_crtc(dev, crtc) {
struct intel_unpin_work *work;
spin_lock_irq(&dev->event_lock);
work = crtc->unpin_work;
if (work && work->event &&
work->event->base.file_priv == file) {
kfree(work->event);
work->event = NULL;
}
spin_unlock_irq(&dev->event_lock);
}
}