mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2025-01-12 16:06:30 +07:00
3994586f4d
Currently mmap_sem is read locked while pinning the memory. In a multi-threaded application of a process, holding mmap_sem lock creates contention with other threads who might be either registering memory, creating QPs or simply doing mmap() as such operations also require to hold the mmap_sem write lock. All such operation cannot make forward progress until one memory pin operation is completed. It becomes more worse if the memory is unpinned and/or memory registration is large (in GB range). Therefore, instead of holding mmap_sem for too long (for whole region pinning), acquire and release the lock for every few pages. For example on x86 with 4K page size, acquire and release mmap_sem for every 2Mbytes memory chunk. This allows other competing threads to make progress who might wish to hold mmap_sem for shorter duration. When memory registration latency is measured using [1] for memory sizes ranging from 4K to 48GB, <= 1% or 0.5% degradation is noticed. In many runs no difference is seen other than run-to-run variance. In other targeted tests of users with large memory, desired improvements are seen due to reduced contention of mmap_sem. [1] https://github.com/paravmellanox/rtool $ rdma_resource_lat -c 1 -s 48G -a -u L -i 500 -A It registers pinned memory from 4K to 48GB size with 500 iterations for each memory size. $ rdma_resource_lat -c 1 -s 12G -a -u L -i 500 -t 4 4 competing threads pin memory, each of 12GB size with 500 iterations. Signed-off-by: Parav Pandit <parav@mellanox.com> Signed-off-by: Leon Romanovsky <leonro@mellanox.com> Signed-off-by: Jason Gunthorpe <jgg@mellanox.com>
357 lines
9.0 KiB
C
357 lines
9.0 KiB
C
/*
|
|
* Copyright (c) 2005 Topspin Communications. All rights reserved.
|
|
* Copyright (c) 2005 Cisco Systems. All rights reserved.
|
|
* Copyright (c) 2005 Mellanox Technologies. All rights reserved.
|
|
*
|
|
* This software is available to you under a choice of one of two
|
|
* licenses. You may choose to be licensed under the terms of the GNU
|
|
* General Public License (GPL) Version 2, available from the file
|
|
* COPYING in the main directory of this source tree, or the
|
|
* OpenIB.org BSD license below:
|
|
*
|
|
* Redistribution and use in source and binary forms, with or
|
|
* without modification, are permitted provided that the following
|
|
* conditions are met:
|
|
*
|
|
* - Redistributions of source code must retain the above
|
|
* copyright notice, this list of conditions and the following
|
|
* disclaimer.
|
|
*
|
|
* - Redistributions in binary form must reproduce the above
|
|
* copyright notice, this list of conditions and the following
|
|
* disclaimer in the documentation and/or other materials
|
|
* provided with the distribution.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
|
|
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
|
|
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
|
|
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
|
|
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
|
|
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
|
|
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
|
* SOFTWARE.
|
|
*/
|
|
|
|
#include <linux/mm.h>
|
|
#include <linux/dma-mapping.h>
|
|
#include <linux/sched/signal.h>
|
|
#include <linux/sched/mm.h>
|
|
#include <linux/export.h>
|
|
#include <linux/hugetlb.h>
|
|
#include <linux/slab.h>
|
|
#include <rdma/ib_umem_odp.h>
|
|
|
|
#include "uverbs.h"
|
|
|
|
|
|
static void __ib_umem_release(struct ib_device *dev, struct ib_umem *umem, int dirty)
|
|
{
|
|
struct scatterlist *sg;
|
|
struct page *page;
|
|
int i;
|
|
|
|
if (umem->nmap > 0)
|
|
ib_dma_unmap_sg(dev, umem->sg_head.sgl,
|
|
umem->npages,
|
|
DMA_BIDIRECTIONAL);
|
|
|
|
for_each_sg(umem->sg_head.sgl, sg, umem->npages, i) {
|
|
|
|
page = sg_page(sg);
|
|
if (!PageDirty(page) && umem->writable && dirty)
|
|
set_page_dirty_lock(page);
|
|
put_page(page);
|
|
}
|
|
|
|
sg_free_table(&umem->sg_head);
|
|
}
|
|
|
|
/**
|
|
* ib_umem_get - Pin and DMA map userspace memory.
|
|
*
|
|
* If access flags indicate ODP memory, avoid pinning. Instead, stores
|
|
* the mm for future page fault handling in conjunction with MMU notifiers.
|
|
*
|
|
* @context: userspace context to pin memory for
|
|
* @addr: userspace virtual address to start at
|
|
* @size: length of region to pin
|
|
* @access: IB_ACCESS_xxx flags for memory being pinned
|
|
* @dmasync: flush in-flight DMA when the memory region is written
|
|
*/
|
|
struct ib_umem *ib_umem_get(struct ib_ucontext *context, unsigned long addr,
|
|
size_t size, int access, int dmasync)
|
|
{
|
|
struct ib_umem *umem;
|
|
struct page **page_list;
|
|
struct vm_area_struct **vma_list;
|
|
unsigned long lock_limit;
|
|
unsigned long new_pinned;
|
|
unsigned long cur_base;
|
|
struct mm_struct *mm;
|
|
unsigned long npages;
|
|
int ret;
|
|
int i;
|
|
unsigned long dma_attrs = 0;
|
|
struct scatterlist *sg, *sg_list_start;
|
|
unsigned int gup_flags = FOLL_WRITE;
|
|
|
|
if (dmasync)
|
|
dma_attrs |= DMA_ATTR_WRITE_BARRIER;
|
|
|
|
/*
|
|
* If the combination of the addr and size requested for this memory
|
|
* region causes an integer overflow, return error.
|
|
*/
|
|
if (((addr + size) < addr) ||
|
|
PAGE_ALIGN(addr + size) < (addr + size))
|
|
return ERR_PTR(-EINVAL);
|
|
|
|
if (!can_do_mlock())
|
|
return ERR_PTR(-EPERM);
|
|
|
|
if (access & IB_ACCESS_ON_DEMAND) {
|
|
umem = kzalloc(sizeof(struct ib_umem_odp), GFP_KERNEL);
|
|
if (!umem)
|
|
return ERR_PTR(-ENOMEM);
|
|
umem->is_odp = 1;
|
|
} else {
|
|
umem = kzalloc(sizeof(*umem), GFP_KERNEL);
|
|
if (!umem)
|
|
return ERR_PTR(-ENOMEM);
|
|
}
|
|
|
|
umem->context = context;
|
|
umem->length = size;
|
|
umem->address = addr;
|
|
umem->page_shift = PAGE_SHIFT;
|
|
umem->writable = ib_access_writable(access);
|
|
umem->owning_mm = mm = current->mm;
|
|
mmgrab(mm);
|
|
|
|
if (access & IB_ACCESS_ON_DEMAND) {
|
|
ret = ib_umem_odp_get(to_ib_umem_odp(umem), access);
|
|
if (ret)
|
|
goto umem_kfree;
|
|
return umem;
|
|
}
|
|
|
|
/* We assume the memory is from hugetlb until proved otherwise */
|
|
umem->hugetlb = 1;
|
|
|
|
page_list = (struct page **) __get_free_page(GFP_KERNEL);
|
|
if (!page_list) {
|
|
ret = -ENOMEM;
|
|
goto umem_kfree;
|
|
}
|
|
|
|
/*
|
|
* if we can't alloc the vma_list, it's not so bad;
|
|
* just assume the memory is not hugetlb memory
|
|
*/
|
|
vma_list = (struct vm_area_struct **) __get_free_page(GFP_KERNEL);
|
|
if (!vma_list)
|
|
umem->hugetlb = 0;
|
|
|
|
npages = ib_umem_num_pages(umem);
|
|
if (npages == 0 || npages > UINT_MAX) {
|
|
ret = -EINVAL;
|
|
goto out;
|
|
}
|
|
|
|
lock_limit = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT;
|
|
|
|
down_write(&mm->mmap_sem);
|
|
if (check_add_overflow(mm->pinned_vm, npages, &new_pinned) ||
|
|
(new_pinned > lock_limit && !capable(CAP_IPC_LOCK))) {
|
|
up_write(&mm->mmap_sem);
|
|
ret = -ENOMEM;
|
|
goto out;
|
|
}
|
|
mm->pinned_vm = new_pinned;
|
|
up_write(&mm->mmap_sem);
|
|
|
|
cur_base = addr & PAGE_MASK;
|
|
|
|
ret = sg_alloc_table(&umem->sg_head, npages, GFP_KERNEL);
|
|
if (ret)
|
|
goto vma;
|
|
|
|
if (!umem->writable)
|
|
gup_flags |= FOLL_FORCE;
|
|
|
|
sg_list_start = umem->sg_head.sgl;
|
|
|
|
while (npages) {
|
|
down_read(&mm->mmap_sem);
|
|
ret = get_user_pages_longterm(cur_base,
|
|
min_t(unsigned long, npages,
|
|
PAGE_SIZE / sizeof (struct page *)),
|
|
gup_flags, page_list, vma_list);
|
|
if (ret < 0) {
|
|
up_read(&mm->mmap_sem);
|
|
goto umem_release;
|
|
}
|
|
|
|
umem->npages += ret;
|
|
cur_base += ret * PAGE_SIZE;
|
|
npages -= ret;
|
|
|
|
/* Continue to hold the mmap_sem as vma_list access
|
|
* needs to be protected.
|
|
*/
|
|
for_each_sg(sg_list_start, sg, ret, i) {
|
|
if (vma_list && !is_vm_hugetlb_page(vma_list[i]))
|
|
umem->hugetlb = 0;
|
|
|
|
sg_set_page(sg, page_list[i], PAGE_SIZE, 0);
|
|
}
|
|
up_read(&mm->mmap_sem);
|
|
|
|
/* preparing for next loop */
|
|
sg_list_start = sg;
|
|
}
|
|
|
|
umem->nmap = ib_dma_map_sg_attrs(context->device,
|
|
umem->sg_head.sgl,
|
|
umem->npages,
|
|
DMA_BIDIRECTIONAL,
|
|
dma_attrs);
|
|
|
|
if (!umem->nmap) {
|
|
ret = -ENOMEM;
|
|
goto umem_release;
|
|
}
|
|
|
|
ret = 0;
|
|
goto out;
|
|
|
|
umem_release:
|
|
__ib_umem_release(context->device, umem, 0);
|
|
vma:
|
|
down_write(&mm->mmap_sem);
|
|
mm->pinned_vm -= ib_umem_num_pages(umem);
|
|
up_write(&mm->mmap_sem);
|
|
out:
|
|
if (vma_list)
|
|
free_page((unsigned long) vma_list);
|
|
free_page((unsigned long) page_list);
|
|
umem_kfree:
|
|
if (ret) {
|
|
mmdrop(umem->owning_mm);
|
|
kfree(umem);
|
|
}
|
|
return ret ? ERR_PTR(ret) : umem;
|
|
}
|
|
EXPORT_SYMBOL(ib_umem_get);
|
|
|
|
static void __ib_umem_release_tail(struct ib_umem *umem)
|
|
{
|
|
mmdrop(umem->owning_mm);
|
|
if (umem->is_odp)
|
|
kfree(to_ib_umem_odp(umem));
|
|
else
|
|
kfree(umem);
|
|
}
|
|
|
|
static void ib_umem_release_defer(struct work_struct *work)
|
|
{
|
|
struct ib_umem *umem = container_of(work, struct ib_umem, work);
|
|
|
|
down_write(&umem->owning_mm->mmap_sem);
|
|
umem->owning_mm->pinned_vm -= ib_umem_num_pages(umem);
|
|
up_write(&umem->owning_mm->mmap_sem);
|
|
|
|
__ib_umem_release_tail(umem);
|
|
}
|
|
|
|
/**
|
|
* ib_umem_release - release memory pinned with ib_umem_get
|
|
* @umem: umem struct to release
|
|
*/
|
|
void ib_umem_release(struct ib_umem *umem)
|
|
{
|
|
struct ib_ucontext *context = umem->context;
|
|
|
|
if (umem->is_odp) {
|
|
ib_umem_odp_release(to_ib_umem_odp(umem));
|
|
__ib_umem_release_tail(umem);
|
|
return;
|
|
}
|
|
|
|
__ib_umem_release(umem->context->device, umem, 1);
|
|
|
|
/*
|
|
* We may be called with the mm's mmap_sem already held. This
|
|
* can happen when a userspace munmap() is the call that drops
|
|
* the last reference to our file and calls our release
|
|
* method. If there are memory regions to destroy, we'll end
|
|
* up here and not be able to take the mmap_sem. In that case
|
|
* we defer the vm_locked accounting a workqueue.
|
|
*/
|
|
if (context->closing) {
|
|
if (!down_write_trylock(&umem->owning_mm->mmap_sem)) {
|
|
INIT_WORK(&umem->work, ib_umem_release_defer);
|
|
queue_work(ib_wq, &umem->work);
|
|
return;
|
|
}
|
|
} else {
|
|
down_write(&umem->owning_mm->mmap_sem);
|
|
}
|
|
umem->owning_mm->pinned_vm -= ib_umem_num_pages(umem);
|
|
up_write(&umem->owning_mm->mmap_sem);
|
|
|
|
__ib_umem_release_tail(umem);
|
|
}
|
|
EXPORT_SYMBOL(ib_umem_release);
|
|
|
|
int ib_umem_page_count(struct ib_umem *umem)
|
|
{
|
|
int i;
|
|
int n;
|
|
struct scatterlist *sg;
|
|
|
|
if (umem->is_odp)
|
|
return ib_umem_num_pages(umem);
|
|
|
|
n = 0;
|
|
for_each_sg(umem->sg_head.sgl, sg, umem->nmap, i)
|
|
n += sg_dma_len(sg) >> umem->page_shift;
|
|
|
|
return n;
|
|
}
|
|
EXPORT_SYMBOL(ib_umem_page_count);
|
|
|
|
/*
|
|
* Copy from the given ib_umem's pages to the given buffer.
|
|
*
|
|
* umem - the umem to copy from
|
|
* offset - offset to start copying from
|
|
* dst - destination buffer
|
|
* length - buffer length
|
|
*
|
|
* Returns 0 on success, or an error code.
|
|
*/
|
|
int ib_umem_copy_from(void *dst, struct ib_umem *umem, size_t offset,
|
|
size_t length)
|
|
{
|
|
size_t end = offset + length;
|
|
int ret;
|
|
|
|
if (offset > umem->length || length > umem->length - offset) {
|
|
pr_err("ib_umem_copy_from not in range. offset: %zd umem length: %zd end: %zd\n",
|
|
offset, umem->length, end);
|
|
return -EINVAL;
|
|
}
|
|
|
|
ret = sg_pcopy_to_buffer(umem->sg_head.sgl, umem->npages, dst, length,
|
|
offset + ib_umem_offset(umem));
|
|
|
|
if (ret < 0)
|
|
return ret;
|
|
else if (ret != length)
|
|
return -EINVAL;
|
|
else
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL(ib_umem_copy_from);
|