mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2025-01-22 22:09:34 +07:00
d3690f8b71
Remove unnecessary code that matches this coccinelle pattern if (...) return ret; return ret; Signed-off-by: Greg Dietsche <Gregory.Dietsche@cuw.edu> Signed-off-by: Geert Uytterhoeven <geert@linux-m68k.org>
220 lines
3.8 KiB
C
220 lines
3.8 KiB
C
/*
|
|
|
|
fp_trig.c: floating-point math routines for the Linux-m68k
|
|
floating point emulator.
|
|
|
|
Copyright (c) 1998-1999 David Huggins-Daines / Roman Zippel.
|
|
|
|
I hereby give permission, free of charge, to copy, modify, and
|
|
redistribute this software, in source or binary form, provided that
|
|
the above copyright notice and the following disclaimer are included
|
|
in all such copies.
|
|
|
|
THIS SOFTWARE IS PROVIDED "AS IS", WITH ABSOLUTELY NO WARRANTY, REAL
|
|
OR IMPLIED.
|
|
|
|
*/
|
|
|
|
#include "fp_emu.h"
|
|
|
|
static const struct fp_ext fp_one =
|
|
{
|
|
.exp = 0x3fff,
|
|
};
|
|
|
|
extern struct fp_ext *fp_fadd(struct fp_ext *dest, const struct fp_ext *src);
|
|
extern struct fp_ext *fp_fdiv(struct fp_ext *dest, const struct fp_ext *src);
|
|
|
|
struct fp_ext *
|
|
fp_fsqrt(struct fp_ext *dest, struct fp_ext *src)
|
|
{
|
|
struct fp_ext tmp, src2;
|
|
int i, exp;
|
|
|
|
dprint(PINSTR, "fsqrt\n");
|
|
|
|
fp_monadic_check(dest, src);
|
|
|
|
if (IS_ZERO(dest))
|
|
return dest;
|
|
|
|
if (dest->sign) {
|
|
fp_set_nan(dest);
|
|
return dest;
|
|
}
|
|
if (IS_INF(dest))
|
|
return dest;
|
|
|
|
/*
|
|
* sqrt(m) * 2^(p) , if e = 2*p
|
|
* sqrt(m*2^e) =
|
|
* sqrt(2*m) * 2^(p) , if e = 2*p + 1
|
|
*
|
|
* So we use the last bit of the exponent to decide wether to
|
|
* use the m or 2*m.
|
|
*
|
|
* Since only the fractional part of the mantissa is stored and
|
|
* the integer part is assumed to be one, we place a 1 or 2 into
|
|
* the fixed point representation.
|
|
*/
|
|
exp = dest->exp;
|
|
dest->exp = 0x3FFF;
|
|
if (!(exp & 1)) /* lowest bit of exponent is set */
|
|
dest->exp++;
|
|
fp_copy_ext(&src2, dest);
|
|
|
|
/*
|
|
* The taylor row around a for sqrt(x) is:
|
|
* sqrt(x) = sqrt(a) + 1/(2*sqrt(a))*(x-a) + R
|
|
* With a=1 this gives:
|
|
* sqrt(x) = 1 + 1/2*(x-1)
|
|
* = 1/2*(1+x)
|
|
*/
|
|
fp_fadd(dest, &fp_one);
|
|
dest->exp--; /* * 1/2 */
|
|
|
|
/*
|
|
* We now apply the newton rule to the function
|
|
* f(x) := x^2 - r
|
|
* which has a null point on x = sqrt(r).
|
|
*
|
|
* It gives:
|
|
* x' := x - f(x)/f'(x)
|
|
* = x - (x^2 -r)/(2*x)
|
|
* = x - (x - r/x)/2
|
|
* = (2*x - x + r/x)/2
|
|
* = (x + r/x)/2
|
|
*/
|
|
for (i = 0; i < 9; i++) {
|
|
fp_copy_ext(&tmp, &src2);
|
|
|
|
fp_fdiv(&tmp, dest);
|
|
fp_fadd(dest, &tmp);
|
|
dest->exp--;
|
|
}
|
|
|
|
dest->exp += (exp - 0x3FFF) / 2;
|
|
|
|
return dest;
|
|
}
|
|
|
|
struct fp_ext *
|
|
fp_fetoxm1(struct fp_ext *dest, struct fp_ext *src)
|
|
{
|
|
uprint("fetoxm1\n");
|
|
|
|
fp_monadic_check(dest, src);
|
|
|
|
return dest;
|
|
}
|
|
|
|
struct fp_ext *
|
|
fp_fetox(struct fp_ext *dest, struct fp_ext *src)
|
|
{
|
|
uprint("fetox\n");
|
|
|
|
fp_monadic_check(dest, src);
|
|
|
|
return dest;
|
|
}
|
|
|
|
struct fp_ext *
|
|
fp_ftwotox(struct fp_ext *dest, struct fp_ext *src)
|
|
{
|
|
uprint("ftwotox\n");
|
|
|
|
fp_monadic_check(dest, src);
|
|
|
|
return dest;
|
|
}
|
|
|
|
struct fp_ext *
|
|
fp_ftentox(struct fp_ext *dest, struct fp_ext *src)
|
|
{
|
|
uprint("ftentox\n");
|
|
|
|
fp_monadic_check(dest, src);
|
|
|
|
return dest;
|
|
}
|
|
|
|
struct fp_ext *
|
|
fp_flogn(struct fp_ext *dest, struct fp_ext *src)
|
|
{
|
|
uprint("flogn\n");
|
|
|
|
fp_monadic_check(dest, src);
|
|
|
|
return dest;
|
|
}
|
|
|
|
struct fp_ext *
|
|
fp_flognp1(struct fp_ext *dest, struct fp_ext *src)
|
|
{
|
|
uprint("flognp1\n");
|
|
|
|
fp_monadic_check(dest, src);
|
|
|
|
return dest;
|
|
}
|
|
|
|
struct fp_ext *
|
|
fp_flog10(struct fp_ext *dest, struct fp_ext *src)
|
|
{
|
|
uprint("flog10\n");
|
|
|
|
fp_monadic_check(dest, src);
|
|
|
|
return dest;
|
|
}
|
|
|
|
struct fp_ext *
|
|
fp_flog2(struct fp_ext *dest, struct fp_ext *src)
|
|
{
|
|
uprint("flog2\n");
|
|
|
|
fp_monadic_check(dest, src);
|
|
|
|
return dest;
|
|
}
|
|
|
|
struct fp_ext *
|
|
fp_fgetexp(struct fp_ext *dest, struct fp_ext *src)
|
|
{
|
|
dprint(PINSTR, "fgetexp\n");
|
|
|
|
fp_monadic_check(dest, src);
|
|
|
|
if (IS_INF(dest)) {
|
|
fp_set_nan(dest);
|
|
return dest;
|
|
}
|
|
if (IS_ZERO(dest))
|
|
return dest;
|
|
|
|
fp_conv_long2ext(dest, (int)dest->exp - 0x3FFF);
|
|
|
|
fp_normalize_ext(dest);
|
|
|
|
return dest;
|
|
}
|
|
|
|
struct fp_ext *
|
|
fp_fgetman(struct fp_ext *dest, struct fp_ext *src)
|
|
{
|
|
dprint(PINSTR, "fgetman\n");
|
|
|
|
fp_monadic_check(dest, src);
|
|
|
|
if (IS_ZERO(dest))
|
|
return dest;
|
|
|
|
if (IS_INF(dest))
|
|
return dest;
|
|
|
|
dest->exp = 0x3FFF;
|
|
|
|
return dest;
|
|
}
|
|
|