mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2024-12-28 11:18:45 +07:00
af4b6b8edf
check_swap_activate() will lookup block mapping via bmap() one by one, so its performance is very bad, this patch introduces check_swap_activate_fast() to use f2fs_fiemap() to boost this process, since f2fs_fiemap() will lookup block mappings in batch, therefore, it can improve swapon()'s performance significantly. Note that this enhancement only works when page size is equal to f2fs' block size. Testcase: (backend device: zram) - touch file - pin & fallocate file to 8GB - mkswap file - swapon file Before: real 0m2.999s user 0m0.000s sys 0m2.980s After: real 0m0.081s user 0m0.000s sys 0m0.064s Signed-off-by: Chao Yu <yuchao0@huawei.com> Signed-off-by: Jaegeuk Kim <jaegeuk@kernel.org>
4202 lines
100 KiB
C
4202 lines
100 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* fs/f2fs/data.c
|
|
*
|
|
* Copyright (c) 2012 Samsung Electronics Co., Ltd.
|
|
* http://www.samsung.com/
|
|
*/
|
|
#include <linux/fs.h>
|
|
#include <linux/f2fs_fs.h>
|
|
#include <linux/buffer_head.h>
|
|
#include <linux/mpage.h>
|
|
#include <linux/writeback.h>
|
|
#include <linux/backing-dev.h>
|
|
#include <linux/pagevec.h>
|
|
#include <linux/blkdev.h>
|
|
#include <linux/bio.h>
|
|
#include <linux/blk-crypto.h>
|
|
#include <linux/swap.h>
|
|
#include <linux/prefetch.h>
|
|
#include <linux/uio.h>
|
|
#include <linux/cleancache.h>
|
|
#include <linux/sched/signal.h>
|
|
#include <linux/fiemap.h>
|
|
|
|
#include "f2fs.h"
|
|
#include "node.h"
|
|
#include "segment.h"
|
|
#include "trace.h"
|
|
#include <trace/events/f2fs.h>
|
|
|
|
#define NUM_PREALLOC_POST_READ_CTXS 128
|
|
|
|
static struct kmem_cache *bio_post_read_ctx_cache;
|
|
static struct kmem_cache *bio_entry_slab;
|
|
static mempool_t *bio_post_read_ctx_pool;
|
|
static struct bio_set f2fs_bioset;
|
|
|
|
#define F2FS_BIO_POOL_SIZE NR_CURSEG_TYPE
|
|
|
|
int __init f2fs_init_bioset(void)
|
|
{
|
|
if (bioset_init(&f2fs_bioset, F2FS_BIO_POOL_SIZE,
|
|
0, BIOSET_NEED_BVECS))
|
|
return -ENOMEM;
|
|
return 0;
|
|
}
|
|
|
|
void f2fs_destroy_bioset(void)
|
|
{
|
|
bioset_exit(&f2fs_bioset);
|
|
}
|
|
|
|
static inline struct bio *__f2fs_bio_alloc(gfp_t gfp_mask,
|
|
unsigned int nr_iovecs)
|
|
{
|
|
return bio_alloc_bioset(gfp_mask, nr_iovecs, &f2fs_bioset);
|
|
}
|
|
|
|
struct bio *f2fs_bio_alloc(struct f2fs_sb_info *sbi, int npages, bool noio)
|
|
{
|
|
if (noio) {
|
|
/* No failure on bio allocation */
|
|
return __f2fs_bio_alloc(GFP_NOIO, npages);
|
|
}
|
|
|
|
if (time_to_inject(sbi, FAULT_ALLOC_BIO)) {
|
|
f2fs_show_injection_info(sbi, FAULT_ALLOC_BIO);
|
|
return NULL;
|
|
}
|
|
|
|
return __f2fs_bio_alloc(GFP_KERNEL, npages);
|
|
}
|
|
|
|
static bool __is_cp_guaranteed(struct page *page)
|
|
{
|
|
struct address_space *mapping = page->mapping;
|
|
struct inode *inode;
|
|
struct f2fs_sb_info *sbi;
|
|
|
|
if (!mapping)
|
|
return false;
|
|
|
|
if (f2fs_is_compressed_page(page))
|
|
return false;
|
|
|
|
inode = mapping->host;
|
|
sbi = F2FS_I_SB(inode);
|
|
|
|
if (inode->i_ino == F2FS_META_INO(sbi) ||
|
|
inode->i_ino == F2FS_NODE_INO(sbi) ||
|
|
S_ISDIR(inode->i_mode) ||
|
|
(S_ISREG(inode->i_mode) &&
|
|
(f2fs_is_atomic_file(inode) || IS_NOQUOTA(inode))) ||
|
|
is_cold_data(page))
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
static enum count_type __read_io_type(struct page *page)
|
|
{
|
|
struct address_space *mapping = page_file_mapping(page);
|
|
|
|
if (mapping) {
|
|
struct inode *inode = mapping->host;
|
|
struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
|
|
|
|
if (inode->i_ino == F2FS_META_INO(sbi))
|
|
return F2FS_RD_META;
|
|
|
|
if (inode->i_ino == F2FS_NODE_INO(sbi))
|
|
return F2FS_RD_NODE;
|
|
}
|
|
return F2FS_RD_DATA;
|
|
}
|
|
|
|
/* postprocessing steps for read bios */
|
|
enum bio_post_read_step {
|
|
STEP_DECRYPT,
|
|
STEP_DECOMPRESS_NOWQ, /* handle normal cluster data inplace */
|
|
STEP_DECOMPRESS, /* handle compressed cluster data in workqueue */
|
|
STEP_VERITY,
|
|
};
|
|
|
|
struct bio_post_read_ctx {
|
|
struct bio *bio;
|
|
struct f2fs_sb_info *sbi;
|
|
struct work_struct work;
|
|
unsigned int enabled_steps;
|
|
};
|
|
|
|
static void __read_end_io(struct bio *bio, bool compr, bool verity)
|
|
{
|
|
struct page *page;
|
|
struct bio_vec *bv;
|
|
struct bvec_iter_all iter_all;
|
|
|
|
bio_for_each_segment_all(bv, bio, iter_all) {
|
|
page = bv->bv_page;
|
|
|
|
#ifdef CONFIG_F2FS_FS_COMPRESSION
|
|
if (compr && f2fs_is_compressed_page(page)) {
|
|
f2fs_decompress_pages(bio, page, verity);
|
|
continue;
|
|
}
|
|
if (verity)
|
|
continue;
|
|
#endif
|
|
|
|
/* PG_error was set if any post_read step failed */
|
|
if (bio->bi_status || PageError(page)) {
|
|
ClearPageUptodate(page);
|
|
/* will re-read again later */
|
|
ClearPageError(page);
|
|
} else {
|
|
SetPageUptodate(page);
|
|
}
|
|
dec_page_count(F2FS_P_SB(page), __read_io_type(page));
|
|
unlock_page(page);
|
|
}
|
|
}
|
|
|
|
static void f2fs_release_read_bio(struct bio *bio);
|
|
static void __f2fs_read_end_io(struct bio *bio, bool compr, bool verity)
|
|
{
|
|
if (!compr)
|
|
__read_end_io(bio, false, verity);
|
|
f2fs_release_read_bio(bio);
|
|
}
|
|
|
|
static void f2fs_decompress_bio(struct bio *bio, bool verity)
|
|
{
|
|
__read_end_io(bio, true, verity);
|
|
}
|
|
|
|
static void bio_post_read_processing(struct bio_post_read_ctx *ctx);
|
|
|
|
static void f2fs_decrypt_work(struct bio_post_read_ctx *ctx)
|
|
{
|
|
fscrypt_decrypt_bio(ctx->bio);
|
|
}
|
|
|
|
static void f2fs_decompress_work(struct bio_post_read_ctx *ctx)
|
|
{
|
|
f2fs_decompress_bio(ctx->bio, ctx->enabled_steps & (1 << STEP_VERITY));
|
|
}
|
|
|
|
#ifdef CONFIG_F2FS_FS_COMPRESSION
|
|
static void f2fs_verify_pages(struct page **rpages, unsigned int cluster_size)
|
|
{
|
|
f2fs_decompress_end_io(rpages, cluster_size, false, true);
|
|
}
|
|
|
|
static void f2fs_verify_bio(struct bio *bio)
|
|
{
|
|
struct bio_vec *bv;
|
|
struct bvec_iter_all iter_all;
|
|
|
|
bio_for_each_segment_all(bv, bio, iter_all) {
|
|
struct page *page = bv->bv_page;
|
|
struct decompress_io_ctx *dic;
|
|
|
|
dic = (struct decompress_io_ctx *)page_private(page);
|
|
|
|
if (dic) {
|
|
if (atomic_dec_return(&dic->pending_pages))
|
|
continue;
|
|
f2fs_verify_pages(dic->rpages,
|
|
dic->cluster_size);
|
|
f2fs_free_dic(dic);
|
|
continue;
|
|
}
|
|
|
|
if (bio->bi_status || PageError(page))
|
|
goto clear_uptodate;
|
|
|
|
if (fsverity_verify_page(page)) {
|
|
SetPageUptodate(page);
|
|
goto unlock;
|
|
}
|
|
clear_uptodate:
|
|
ClearPageUptodate(page);
|
|
ClearPageError(page);
|
|
unlock:
|
|
dec_page_count(F2FS_P_SB(page), __read_io_type(page));
|
|
unlock_page(page);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
static void f2fs_verity_work(struct work_struct *work)
|
|
{
|
|
struct bio_post_read_ctx *ctx =
|
|
container_of(work, struct bio_post_read_ctx, work);
|
|
struct bio *bio = ctx->bio;
|
|
#ifdef CONFIG_F2FS_FS_COMPRESSION
|
|
unsigned int enabled_steps = ctx->enabled_steps;
|
|
#endif
|
|
|
|
/*
|
|
* fsverity_verify_bio() may call readpages() again, and while verity
|
|
* will be disabled for this, decryption may still be needed, resulting
|
|
* in another bio_post_read_ctx being allocated. So to prevent
|
|
* deadlocks we need to release the current ctx to the mempool first.
|
|
* This assumes that verity is the last post-read step.
|
|
*/
|
|
mempool_free(ctx, bio_post_read_ctx_pool);
|
|
bio->bi_private = NULL;
|
|
|
|
#ifdef CONFIG_F2FS_FS_COMPRESSION
|
|
/* previous step is decompression */
|
|
if (enabled_steps & (1 << STEP_DECOMPRESS)) {
|
|
f2fs_verify_bio(bio);
|
|
f2fs_release_read_bio(bio);
|
|
return;
|
|
}
|
|
#endif
|
|
|
|
fsverity_verify_bio(bio);
|
|
__f2fs_read_end_io(bio, false, false);
|
|
}
|
|
|
|
static void f2fs_post_read_work(struct work_struct *work)
|
|
{
|
|
struct bio_post_read_ctx *ctx =
|
|
container_of(work, struct bio_post_read_ctx, work);
|
|
|
|
if (ctx->enabled_steps & (1 << STEP_DECRYPT))
|
|
f2fs_decrypt_work(ctx);
|
|
|
|
if (ctx->enabled_steps & (1 << STEP_DECOMPRESS))
|
|
f2fs_decompress_work(ctx);
|
|
|
|
if (ctx->enabled_steps & (1 << STEP_VERITY)) {
|
|
INIT_WORK(&ctx->work, f2fs_verity_work);
|
|
fsverity_enqueue_verify_work(&ctx->work);
|
|
return;
|
|
}
|
|
|
|
__f2fs_read_end_io(ctx->bio,
|
|
ctx->enabled_steps & (1 << STEP_DECOMPRESS), false);
|
|
}
|
|
|
|
static void f2fs_enqueue_post_read_work(struct f2fs_sb_info *sbi,
|
|
struct work_struct *work)
|
|
{
|
|
queue_work(sbi->post_read_wq, work);
|
|
}
|
|
|
|
static void bio_post_read_processing(struct bio_post_read_ctx *ctx)
|
|
{
|
|
/*
|
|
* We use different work queues for decryption and for verity because
|
|
* verity may require reading metadata pages that need decryption, and
|
|
* we shouldn't recurse to the same workqueue.
|
|
*/
|
|
|
|
if (ctx->enabled_steps & (1 << STEP_DECRYPT) ||
|
|
ctx->enabled_steps & (1 << STEP_DECOMPRESS)) {
|
|
INIT_WORK(&ctx->work, f2fs_post_read_work);
|
|
f2fs_enqueue_post_read_work(ctx->sbi, &ctx->work);
|
|
return;
|
|
}
|
|
|
|
if (ctx->enabled_steps & (1 << STEP_VERITY)) {
|
|
INIT_WORK(&ctx->work, f2fs_verity_work);
|
|
fsverity_enqueue_verify_work(&ctx->work);
|
|
return;
|
|
}
|
|
|
|
__f2fs_read_end_io(ctx->bio, false, false);
|
|
}
|
|
|
|
static bool f2fs_bio_post_read_required(struct bio *bio)
|
|
{
|
|
return bio->bi_private;
|
|
}
|
|
|
|
static void f2fs_read_end_io(struct bio *bio)
|
|
{
|
|
struct f2fs_sb_info *sbi = F2FS_P_SB(bio_first_page_all(bio));
|
|
|
|
if (time_to_inject(sbi, FAULT_READ_IO)) {
|
|
f2fs_show_injection_info(sbi, FAULT_READ_IO);
|
|
bio->bi_status = BLK_STS_IOERR;
|
|
}
|
|
|
|
if (f2fs_bio_post_read_required(bio)) {
|
|
struct bio_post_read_ctx *ctx = bio->bi_private;
|
|
|
|
bio_post_read_processing(ctx);
|
|
return;
|
|
}
|
|
|
|
__f2fs_read_end_io(bio, false, false);
|
|
}
|
|
|
|
static void f2fs_write_end_io(struct bio *bio)
|
|
{
|
|
struct f2fs_sb_info *sbi = bio->bi_private;
|
|
struct bio_vec *bvec;
|
|
struct bvec_iter_all iter_all;
|
|
|
|
if (time_to_inject(sbi, FAULT_WRITE_IO)) {
|
|
f2fs_show_injection_info(sbi, FAULT_WRITE_IO);
|
|
bio->bi_status = BLK_STS_IOERR;
|
|
}
|
|
|
|
bio_for_each_segment_all(bvec, bio, iter_all) {
|
|
struct page *page = bvec->bv_page;
|
|
enum count_type type = WB_DATA_TYPE(page);
|
|
|
|
if (IS_DUMMY_WRITTEN_PAGE(page)) {
|
|
set_page_private(page, (unsigned long)NULL);
|
|
ClearPagePrivate(page);
|
|
unlock_page(page);
|
|
mempool_free(page, sbi->write_io_dummy);
|
|
|
|
if (unlikely(bio->bi_status))
|
|
f2fs_stop_checkpoint(sbi, true);
|
|
continue;
|
|
}
|
|
|
|
fscrypt_finalize_bounce_page(&page);
|
|
|
|
#ifdef CONFIG_F2FS_FS_COMPRESSION
|
|
if (f2fs_is_compressed_page(page)) {
|
|
f2fs_compress_write_end_io(bio, page);
|
|
continue;
|
|
}
|
|
#endif
|
|
|
|
if (unlikely(bio->bi_status)) {
|
|
mapping_set_error(page->mapping, -EIO);
|
|
if (type == F2FS_WB_CP_DATA)
|
|
f2fs_stop_checkpoint(sbi, true);
|
|
}
|
|
|
|
f2fs_bug_on(sbi, page->mapping == NODE_MAPPING(sbi) &&
|
|
page->index != nid_of_node(page));
|
|
|
|
dec_page_count(sbi, type);
|
|
if (f2fs_in_warm_node_list(sbi, page))
|
|
f2fs_del_fsync_node_entry(sbi, page);
|
|
clear_cold_data(page);
|
|
end_page_writeback(page);
|
|
}
|
|
if (!get_pages(sbi, F2FS_WB_CP_DATA) &&
|
|
wq_has_sleeper(&sbi->cp_wait))
|
|
wake_up(&sbi->cp_wait);
|
|
|
|
bio_put(bio);
|
|
}
|
|
|
|
struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi,
|
|
block_t blk_addr, struct bio *bio)
|
|
{
|
|
struct block_device *bdev = sbi->sb->s_bdev;
|
|
int i;
|
|
|
|
if (f2fs_is_multi_device(sbi)) {
|
|
for (i = 0; i < sbi->s_ndevs; i++) {
|
|
if (FDEV(i).start_blk <= blk_addr &&
|
|
FDEV(i).end_blk >= blk_addr) {
|
|
blk_addr -= FDEV(i).start_blk;
|
|
bdev = FDEV(i).bdev;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
if (bio) {
|
|
bio_set_dev(bio, bdev);
|
|
bio->bi_iter.bi_sector = SECTOR_FROM_BLOCK(blk_addr);
|
|
}
|
|
return bdev;
|
|
}
|
|
|
|
int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr)
|
|
{
|
|
int i;
|
|
|
|
if (!f2fs_is_multi_device(sbi))
|
|
return 0;
|
|
|
|
for (i = 0; i < sbi->s_ndevs; i++)
|
|
if (FDEV(i).start_blk <= blkaddr && FDEV(i).end_blk >= blkaddr)
|
|
return i;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Return true, if pre_bio's bdev is same as its target device.
|
|
*/
|
|
static bool __same_bdev(struct f2fs_sb_info *sbi,
|
|
block_t blk_addr, struct bio *bio)
|
|
{
|
|
struct block_device *b = f2fs_target_device(sbi, blk_addr, NULL);
|
|
return bio->bi_disk == b->bd_disk && bio->bi_partno == b->bd_partno;
|
|
}
|
|
|
|
static struct bio *__bio_alloc(struct f2fs_io_info *fio, int npages)
|
|
{
|
|
struct f2fs_sb_info *sbi = fio->sbi;
|
|
struct bio *bio;
|
|
|
|
bio = f2fs_bio_alloc(sbi, npages, true);
|
|
|
|
f2fs_target_device(sbi, fio->new_blkaddr, bio);
|
|
if (is_read_io(fio->op)) {
|
|
bio->bi_end_io = f2fs_read_end_io;
|
|
bio->bi_private = NULL;
|
|
} else {
|
|
bio->bi_end_io = f2fs_write_end_io;
|
|
bio->bi_private = sbi;
|
|
bio->bi_write_hint = f2fs_io_type_to_rw_hint(sbi,
|
|
fio->type, fio->temp);
|
|
}
|
|
if (fio->io_wbc)
|
|
wbc_init_bio(fio->io_wbc, bio);
|
|
|
|
return bio;
|
|
}
|
|
|
|
static void f2fs_set_bio_crypt_ctx(struct bio *bio, const struct inode *inode,
|
|
pgoff_t first_idx,
|
|
const struct f2fs_io_info *fio,
|
|
gfp_t gfp_mask)
|
|
{
|
|
/*
|
|
* The f2fs garbage collector sets ->encrypted_page when it wants to
|
|
* read/write raw data without encryption.
|
|
*/
|
|
if (!fio || !fio->encrypted_page)
|
|
fscrypt_set_bio_crypt_ctx(bio, inode, first_idx, gfp_mask);
|
|
}
|
|
|
|
static bool f2fs_crypt_mergeable_bio(struct bio *bio, const struct inode *inode,
|
|
pgoff_t next_idx,
|
|
const struct f2fs_io_info *fio)
|
|
{
|
|
/*
|
|
* The f2fs garbage collector sets ->encrypted_page when it wants to
|
|
* read/write raw data without encryption.
|
|
*/
|
|
if (fio && fio->encrypted_page)
|
|
return !bio_has_crypt_ctx(bio);
|
|
|
|
return fscrypt_mergeable_bio(bio, inode, next_idx);
|
|
}
|
|
|
|
static inline void __submit_bio(struct f2fs_sb_info *sbi,
|
|
struct bio *bio, enum page_type type)
|
|
{
|
|
if (!is_read_io(bio_op(bio))) {
|
|
unsigned int start;
|
|
|
|
if (type != DATA && type != NODE)
|
|
goto submit_io;
|
|
|
|
if (f2fs_lfs_mode(sbi) && current->plug)
|
|
blk_finish_plug(current->plug);
|
|
|
|
if (F2FS_IO_ALIGNED(sbi))
|
|
goto submit_io;
|
|
|
|
start = bio->bi_iter.bi_size >> F2FS_BLKSIZE_BITS;
|
|
start %= F2FS_IO_SIZE(sbi);
|
|
|
|
if (start == 0)
|
|
goto submit_io;
|
|
|
|
/* fill dummy pages */
|
|
for (; start < F2FS_IO_SIZE(sbi); start++) {
|
|
struct page *page =
|
|
mempool_alloc(sbi->write_io_dummy,
|
|
GFP_NOIO | __GFP_NOFAIL);
|
|
f2fs_bug_on(sbi, !page);
|
|
|
|
zero_user_segment(page, 0, PAGE_SIZE);
|
|
SetPagePrivate(page);
|
|
set_page_private(page, DUMMY_WRITTEN_PAGE);
|
|
lock_page(page);
|
|
if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE)
|
|
f2fs_bug_on(sbi, 1);
|
|
}
|
|
/*
|
|
* In the NODE case, we lose next block address chain. So, we
|
|
* need to do checkpoint in f2fs_sync_file.
|
|
*/
|
|
if (type == NODE)
|
|
set_sbi_flag(sbi, SBI_NEED_CP);
|
|
}
|
|
submit_io:
|
|
if (is_read_io(bio_op(bio)))
|
|
trace_f2fs_submit_read_bio(sbi->sb, type, bio);
|
|
else
|
|
trace_f2fs_submit_write_bio(sbi->sb, type, bio);
|
|
submit_bio(bio);
|
|
}
|
|
|
|
void f2fs_submit_bio(struct f2fs_sb_info *sbi,
|
|
struct bio *bio, enum page_type type)
|
|
{
|
|
__submit_bio(sbi, bio, type);
|
|
}
|
|
|
|
static void __attach_io_flag(struct f2fs_io_info *fio)
|
|
{
|
|
struct f2fs_sb_info *sbi = fio->sbi;
|
|
unsigned int temp_mask = (1 << NR_TEMP_TYPE) - 1;
|
|
unsigned int io_flag, fua_flag, meta_flag;
|
|
|
|
if (fio->type == DATA)
|
|
io_flag = sbi->data_io_flag;
|
|
else if (fio->type == NODE)
|
|
io_flag = sbi->node_io_flag;
|
|
else
|
|
return;
|
|
|
|
fua_flag = io_flag & temp_mask;
|
|
meta_flag = (io_flag >> NR_TEMP_TYPE) & temp_mask;
|
|
|
|
/*
|
|
* data/node io flag bits per temp:
|
|
* REQ_META | REQ_FUA |
|
|
* 5 | 4 | 3 | 2 | 1 | 0 |
|
|
* Cold | Warm | Hot | Cold | Warm | Hot |
|
|
*/
|
|
if ((1 << fio->temp) & meta_flag)
|
|
fio->op_flags |= REQ_META;
|
|
if ((1 << fio->temp) & fua_flag)
|
|
fio->op_flags |= REQ_FUA;
|
|
}
|
|
|
|
static void __submit_merged_bio(struct f2fs_bio_info *io)
|
|
{
|
|
struct f2fs_io_info *fio = &io->fio;
|
|
|
|
if (!io->bio)
|
|
return;
|
|
|
|
__attach_io_flag(fio);
|
|
bio_set_op_attrs(io->bio, fio->op, fio->op_flags);
|
|
|
|
if (is_read_io(fio->op))
|
|
trace_f2fs_prepare_read_bio(io->sbi->sb, fio->type, io->bio);
|
|
else
|
|
trace_f2fs_prepare_write_bio(io->sbi->sb, fio->type, io->bio);
|
|
|
|
__submit_bio(io->sbi, io->bio, fio->type);
|
|
io->bio = NULL;
|
|
}
|
|
|
|
static bool __has_merged_page(struct bio *bio, struct inode *inode,
|
|
struct page *page, nid_t ino)
|
|
{
|
|
struct bio_vec *bvec;
|
|
struct bvec_iter_all iter_all;
|
|
|
|
if (!bio)
|
|
return false;
|
|
|
|
if (!inode && !page && !ino)
|
|
return true;
|
|
|
|
bio_for_each_segment_all(bvec, bio, iter_all) {
|
|
struct page *target = bvec->bv_page;
|
|
|
|
if (fscrypt_is_bounce_page(target)) {
|
|
target = fscrypt_pagecache_page(target);
|
|
if (IS_ERR(target))
|
|
continue;
|
|
}
|
|
if (f2fs_is_compressed_page(target)) {
|
|
target = f2fs_compress_control_page(target);
|
|
if (IS_ERR(target))
|
|
continue;
|
|
}
|
|
|
|
if (inode && inode == target->mapping->host)
|
|
return true;
|
|
if (page && page == target)
|
|
return true;
|
|
if (ino && ino == ino_of_node(target))
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
static void __f2fs_submit_merged_write(struct f2fs_sb_info *sbi,
|
|
enum page_type type, enum temp_type temp)
|
|
{
|
|
enum page_type btype = PAGE_TYPE_OF_BIO(type);
|
|
struct f2fs_bio_info *io = sbi->write_io[btype] + temp;
|
|
|
|
down_write(&io->io_rwsem);
|
|
|
|
/* change META to META_FLUSH in the checkpoint procedure */
|
|
if (type >= META_FLUSH) {
|
|
io->fio.type = META_FLUSH;
|
|
io->fio.op = REQ_OP_WRITE;
|
|
io->fio.op_flags = REQ_META | REQ_PRIO | REQ_SYNC;
|
|
if (!test_opt(sbi, NOBARRIER))
|
|
io->fio.op_flags |= REQ_PREFLUSH | REQ_FUA;
|
|
}
|
|
__submit_merged_bio(io);
|
|
up_write(&io->io_rwsem);
|
|
}
|
|
|
|
static void __submit_merged_write_cond(struct f2fs_sb_info *sbi,
|
|
struct inode *inode, struct page *page,
|
|
nid_t ino, enum page_type type, bool force)
|
|
{
|
|
enum temp_type temp;
|
|
bool ret = true;
|
|
|
|
for (temp = HOT; temp < NR_TEMP_TYPE; temp++) {
|
|
if (!force) {
|
|
enum page_type btype = PAGE_TYPE_OF_BIO(type);
|
|
struct f2fs_bio_info *io = sbi->write_io[btype] + temp;
|
|
|
|
down_read(&io->io_rwsem);
|
|
ret = __has_merged_page(io->bio, inode, page, ino);
|
|
up_read(&io->io_rwsem);
|
|
}
|
|
if (ret)
|
|
__f2fs_submit_merged_write(sbi, type, temp);
|
|
|
|
/* TODO: use HOT temp only for meta pages now. */
|
|
if (type >= META)
|
|
break;
|
|
}
|
|
}
|
|
|
|
void f2fs_submit_merged_write(struct f2fs_sb_info *sbi, enum page_type type)
|
|
{
|
|
__submit_merged_write_cond(sbi, NULL, NULL, 0, type, true);
|
|
}
|
|
|
|
void f2fs_submit_merged_write_cond(struct f2fs_sb_info *sbi,
|
|
struct inode *inode, struct page *page,
|
|
nid_t ino, enum page_type type)
|
|
{
|
|
__submit_merged_write_cond(sbi, inode, page, ino, type, false);
|
|
}
|
|
|
|
void f2fs_flush_merged_writes(struct f2fs_sb_info *sbi)
|
|
{
|
|
f2fs_submit_merged_write(sbi, DATA);
|
|
f2fs_submit_merged_write(sbi, NODE);
|
|
f2fs_submit_merged_write(sbi, META);
|
|
}
|
|
|
|
/*
|
|
* Fill the locked page with data located in the block address.
|
|
* A caller needs to unlock the page on failure.
|
|
*/
|
|
int f2fs_submit_page_bio(struct f2fs_io_info *fio)
|
|
{
|
|
struct bio *bio;
|
|
struct page *page = fio->encrypted_page ?
|
|
fio->encrypted_page : fio->page;
|
|
|
|
if (!f2fs_is_valid_blkaddr(fio->sbi, fio->new_blkaddr,
|
|
fio->is_por ? META_POR : (__is_meta_io(fio) ?
|
|
META_GENERIC : DATA_GENERIC_ENHANCE)))
|
|
return -EFSCORRUPTED;
|
|
|
|
trace_f2fs_submit_page_bio(page, fio);
|
|
f2fs_trace_ios(fio, 0);
|
|
|
|
/* Allocate a new bio */
|
|
bio = __bio_alloc(fio, 1);
|
|
|
|
f2fs_set_bio_crypt_ctx(bio, fio->page->mapping->host,
|
|
fio->page->index, fio, GFP_NOIO);
|
|
|
|
if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) {
|
|
bio_put(bio);
|
|
return -EFAULT;
|
|
}
|
|
|
|
if (fio->io_wbc && !is_read_io(fio->op))
|
|
wbc_account_cgroup_owner(fio->io_wbc, page, PAGE_SIZE);
|
|
|
|
__attach_io_flag(fio);
|
|
bio_set_op_attrs(bio, fio->op, fio->op_flags);
|
|
|
|
inc_page_count(fio->sbi, is_read_io(fio->op) ?
|
|
__read_io_type(page): WB_DATA_TYPE(fio->page));
|
|
|
|
__submit_bio(fio->sbi, bio, fio->type);
|
|
return 0;
|
|
}
|
|
|
|
static bool page_is_mergeable(struct f2fs_sb_info *sbi, struct bio *bio,
|
|
block_t last_blkaddr, block_t cur_blkaddr)
|
|
{
|
|
if (last_blkaddr + 1 != cur_blkaddr)
|
|
return false;
|
|
return __same_bdev(sbi, cur_blkaddr, bio);
|
|
}
|
|
|
|
static bool io_type_is_mergeable(struct f2fs_bio_info *io,
|
|
struct f2fs_io_info *fio)
|
|
{
|
|
if (io->fio.op != fio->op)
|
|
return false;
|
|
return io->fio.op_flags == fio->op_flags;
|
|
}
|
|
|
|
static bool io_is_mergeable(struct f2fs_sb_info *sbi, struct bio *bio,
|
|
struct f2fs_bio_info *io,
|
|
struct f2fs_io_info *fio,
|
|
block_t last_blkaddr,
|
|
block_t cur_blkaddr)
|
|
{
|
|
if (F2FS_IO_ALIGNED(sbi) && (fio->type == DATA || fio->type == NODE)) {
|
|
unsigned int filled_blocks =
|
|
F2FS_BYTES_TO_BLK(bio->bi_iter.bi_size);
|
|
unsigned int io_size = F2FS_IO_SIZE(sbi);
|
|
unsigned int left_vecs = bio->bi_max_vecs - bio->bi_vcnt;
|
|
|
|
/* IOs in bio is aligned and left space of vectors is not enough */
|
|
if (!(filled_blocks % io_size) && left_vecs < io_size)
|
|
return false;
|
|
}
|
|
if (!page_is_mergeable(sbi, bio, last_blkaddr, cur_blkaddr))
|
|
return false;
|
|
return io_type_is_mergeable(io, fio);
|
|
}
|
|
|
|
static void add_bio_entry(struct f2fs_sb_info *sbi, struct bio *bio,
|
|
struct page *page, enum temp_type temp)
|
|
{
|
|
struct f2fs_bio_info *io = sbi->write_io[DATA] + temp;
|
|
struct bio_entry *be;
|
|
|
|
be = f2fs_kmem_cache_alloc(bio_entry_slab, GFP_NOFS);
|
|
be->bio = bio;
|
|
bio_get(bio);
|
|
|
|
if (bio_add_page(bio, page, PAGE_SIZE, 0) != PAGE_SIZE)
|
|
f2fs_bug_on(sbi, 1);
|
|
|
|
down_write(&io->bio_list_lock);
|
|
list_add_tail(&be->list, &io->bio_list);
|
|
up_write(&io->bio_list_lock);
|
|
}
|
|
|
|
static void del_bio_entry(struct bio_entry *be)
|
|
{
|
|
list_del(&be->list);
|
|
kmem_cache_free(bio_entry_slab, be);
|
|
}
|
|
|
|
static int add_ipu_page(struct f2fs_io_info *fio, struct bio **bio,
|
|
struct page *page)
|
|
{
|
|
struct f2fs_sb_info *sbi = fio->sbi;
|
|
enum temp_type temp;
|
|
bool found = false;
|
|
int ret = -EAGAIN;
|
|
|
|
for (temp = HOT; temp < NR_TEMP_TYPE && !found; temp++) {
|
|
struct f2fs_bio_info *io = sbi->write_io[DATA] + temp;
|
|
struct list_head *head = &io->bio_list;
|
|
struct bio_entry *be;
|
|
|
|
down_write(&io->bio_list_lock);
|
|
list_for_each_entry(be, head, list) {
|
|
if (be->bio != *bio)
|
|
continue;
|
|
|
|
found = true;
|
|
|
|
f2fs_bug_on(sbi, !page_is_mergeable(sbi, *bio,
|
|
*fio->last_block,
|
|
fio->new_blkaddr));
|
|
if (f2fs_crypt_mergeable_bio(*bio,
|
|
fio->page->mapping->host,
|
|
fio->page->index, fio) &&
|
|
bio_add_page(*bio, page, PAGE_SIZE, 0) ==
|
|
PAGE_SIZE) {
|
|
ret = 0;
|
|
break;
|
|
}
|
|
|
|
/* page can't be merged into bio; submit the bio */
|
|
del_bio_entry(be);
|
|
__submit_bio(sbi, *bio, DATA);
|
|
break;
|
|
}
|
|
up_write(&io->bio_list_lock);
|
|
}
|
|
|
|
if (ret) {
|
|
bio_put(*bio);
|
|
*bio = NULL;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
void f2fs_submit_merged_ipu_write(struct f2fs_sb_info *sbi,
|
|
struct bio **bio, struct page *page)
|
|
{
|
|
enum temp_type temp;
|
|
bool found = false;
|
|
struct bio *target = bio ? *bio : NULL;
|
|
|
|
for (temp = HOT; temp < NR_TEMP_TYPE && !found; temp++) {
|
|
struct f2fs_bio_info *io = sbi->write_io[DATA] + temp;
|
|
struct list_head *head = &io->bio_list;
|
|
struct bio_entry *be;
|
|
|
|
if (list_empty(head))
|
|
continue;
|
|
|
|
down_read(&io->bio_list_lock);
|
|
list_for_each_entry(be, head, list) {
|
|
if (target)
|
|
found = (target == be->bio);
|
|
else
|
|
found = __has_merged_page(be->bio, NULL,
|
|
page, 0);
|
|
if (found)
|
|
break;
|
|
}
|
|
up_read(&io->bio_list_lock);
|
|
|
|
if (!found)
|
|
continue;
|
|
|
|
found = false;
|
|
|
|
down_write(&io->bio_list_lock);
|
|
list_for_each_entry(be, head, list) {
|
|
if (target)
|
|
found = (target == be->bio);
|
|
else
|
|
found = __has_merged_page(be->bio, NULL,
|
|
page, 0);
|
|
if (found) {
|
|
target = be->bio;
|
|
del_bio_entry(be);
|
|
break;
|
|
}
|
|
}
|
|
up_write(&io->bio_list_lock);
|
|
}
|
|
|
|
if (found)
|
|
__submit_bio(sbi, target, DATA);
|
|
if (bio && *bio) {
|
|
bio_put(*bio);
|
|
*bio = NULL;
|
|
}
|
|
}
|
|
|
|
int f2fs_merge_page_bio(struct f2fs_io_info *fio)
|
|
{
|
|
struct bio *bio = *fio->bio;
|
|
struct page *page = fio->encrypted_page ?
|
|
fio->encrypted_page : fio->page;
|
|
|
|
if (!f2fs_is_valid_blkaddr(fio->sbi, fio->new_blkaddr,
|
|
__is_meta_io(fio) ? META_GENERIC : DATA_GENERIC))
|
|
return -EFSCORRUPTED;
|
|
|
|
trace_f2fs_submit_page_bio(page, fio);
|
|
f2fs_trace_ios(fio, 0);
|
|
|
|
if (bio && !page_is_mergeable(fio->sbi, bio, *fio->last_block,
|
|
fio->new_blkaddr))
|
|
f2fs_submit_merged_ipu_write(fio->sbi, &bio, NULL);
|
|
alloc_new:
|
|
if (!bio) {
|
|
bio = __bio_alloc(fio, BIO_MAX_PAGES);
|
|
__attach_io_flag(fio);
|
|
f2fs_set_bio_crypt_ctx(bio, fio->page->mapping->host,
|
|
fio->page->index, fio, GFP_NOIO);
|
|
bio_set_op_attrs(bio, fio->op, fio->op_flags);
|
|
|
|
add_bio_entry(fio->sbi, bio, page, fio->temp);
|
|
} else {
|
|
if (add_ipu_page(fio, &bio, page))
|
|
goto alloc_new;
|
|
}
|
|
|
|
if (fio->io_wbc)
|
|
wbc_account_cgroup_owner(fio->io_wbc, page, PAGE_SIZE);
|
|
|
|
inc_page_count(fio->sbi, WB_DATA_TYPE(page));
|
|
|
|
*fio->last_block = fio->new_blkaddr;
|
|
*fio->bio = bio;
|
|
|
|
return 0;
|
|
}
|
|
|
|
void f2fs_submit_page_write(struct f2fs_io_info *fio)
|
|
{
|
|
struct f2fs_sb_info *sbi = fio->sbi;
|
|
enum page_type btype = PAGE_TYPE_OF_BIO(fio->type);
|
|
struct f2fs_bio_info *io = sbi->write_io[btype] + fio->temp;
|
|
struct page *bio_page;
|
|
|
|
f2fs_bug_on(sbi, is_read_io(fio->op));
|
|
|
|
down_write(&io->io_rwsem);
|
|
next:
|
|
if (fio->in_list) {
|
|
spin_lock(&io->io_lock);
|
|
if (list_empty(&io->io_list)) {
|
|
spin_unlock(&io->io_lock);
|
|
goto out;
|
|
}
|
|
fio = list_first_entry(&io->io_list,
|
|
struct f2fs_io_info, list);
|
|
list_del(&fio->list);
|
|
spin_unlock(&io->io_lock);
|
|
}
|
|
|
|
verify_fio_blkaddr(fio);
|
|
|
|
if (fio->encrypted_page)
|
|
bio_page = fio->encrypted_page;
|
|
else if (fio->compressed_page)
|
|
bio_page = fio->compressed_page;
|
|
else
|
|
bio_page = fio->page;
|
|
|
|
/* set submitted = true as a return value */
|
|
fio->submitted = true;
|
|
|
|
inc_page_count(sbi, WB_DATA_TYPE(bio_page));
|
|
|
|
if (io->bio &&
|
|
(!io_is_mergeable(sbi, io->bio, io, fio, io->last_block_in_bio,
|
|
fio->new_blkaddr) ||
|
|
!f2fs_crypt_mergeable_bio(io->bio, fio->page->mapping->host,
|
|
bio_page->index, fio)))
|
|
__submit_merged_bio(io);
|
|
alloc_new:
|
|
if (io->bio == NULL) {
|
|
if (F2FS_IO_ALIGNED(sbi) &&
|
|
(fio->type == DATA || fio->type == NODE) &&
|
|
fio->new_blkaddr & F2FS_IO_SIZE_MASK(sbi)) {
|
|
dec_page_count(sbi, WB_DATA_TYPE(bio_page));
|
|
fio->retry = true;
|
|
goto skip;
|
|
}
|
|
io->bio = __bio_alloc(fio, BIO_MAX_PAGES);
|
|
f2fs_set_bio_crypt_ctx(io->bio, fio->page->mapping->host,
|
|
bio_page->index, fio, GFP_NOIO);
|
|
io->fio = *fio;
|
|
}
|
|
|
|
if (bio_add_page(io->bio, bio_page, PAGE_SIZE, 0) < PAGE_SIZE) {
|
|
__submit_merged_bio(io);
|
|
goto alloc_new;
|
|
}
|
|
|
|
if (fio->io_wbc)
|
|
wbc_account_cgroup_owner(fio->io_wbc, bio_page, PAGE_SIZE);
|
|
|
|
io->last_block_in_bio = fio->new_blkaddr;
|
|
f2fs_trace_ios(fio, 0);
|
|
|
|
trace_f2fs_submit_page_write(fio->page, fio);
|
|
skip:
|
|
if (fio->in_list)
|
|
goto next;
|
|
out:
|
|
if (is_sbi_flag_set(sbi, SBI_IS_SHUTDOWN) ||
|
|
!f2fs_is_checkpoint_ready(sbi))
|
|
__submit_merged_bio(io);
|
|
up_write(&io->io_rwsem);
|
|
}
|
|
|
|
static inline bool f2fs_need_verity(const struct inode *inode, pgoff_t idx)
|
|
{
|
|
return fsverity_active(inode) &&
|
|
idx < DIV_ROUND_UP(inode->i_size, PAGE_SIZE);
|
|
}
|
|
|
|
static struct bio *f2fs_grab_read_bio(struct inode *inode, block_t blkaddr,
|
|
unsigned nr_pages, unsigned op_flag,
|
|
pgoff_t first_idx, bool for_write)
|
|
{
|
|
struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
|
|
struct bio *bio;
|
|
struct bio_post_read_ctx *ctx;
|
|
unsigned int post_read_steps = 0;
|
|
|
|
bio = f2fs_bio_alloc(sbi, min_t(int, nr_pages, BIO_MAX_PAGES),
|
|
for_write);
|
|
if (!bio)
|
|
return ERR_PTR(-ENOMEM);
|
|
|
|
f2fs_set_bio_crypt_ctx(bio, inode, first_idx, NULL, GFP_NOFS);
|
|
|
|
f2fs_target_device(sbi, blkaddr, bio);
|
|
bio->bi_end_io = f2fs_read_end_io;
|
|
bio_set_op_attrs(bio, REQ_OP_READ, op_flag);
|
|
|
|
if (fscrypt_inode_uses_fs_layer_crypto(inode))
|
|
post_read_steps |= 1 << STEP_DECRYPT;
|
|
if (f2fs_compressed_file(inode))
|
|
post_read_steps |= 1 << STEP_DECOMPRESS_NOWQ;
|
|
if (f2fs_need_verity(inode, first_idx))
|
|
post_read_steps |= 1 << STEP_VERITY;
|
|
|
|
if (post_read_steps) {
|
|
/* Due to the mempool, this never fails. */
|
|
ctx = mempool_alloc(bio_post_read_ctx_pool, GFP_NOFS);
|
|
ctx->bio = bio;
|
|
ctx->sbi = sbi;
|
|
ctx->enabled_steps = post_read_steps;
|
|
bio->bi_private = ctx;
|
|
}
|
|
|
|
return bio;
|
|
}
|
|
|
|
static void f2fs_release_read_bio(struct bio *bio)
|
|
{
|
|
if (bio->bi_private)
|
|
mempool_free(bio->bi_private, bio_post_read_ctx_pool);
|
|
bio_put(bio);
|
|
}
|
|
|
|
/* This can handle encryption stuffs */
|
|
static int f2fs_submit_page_read(struct inode *inode, struct page *page,
|
|
block_t blkaddr, int op_flags, bool for_write)
|
|
{
|
|
struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
|
|
struct bio *bio;
|
|
|
|
bio = f2fs_grab_read_bio(inode, blkaddr, 1, op_flags,
|
|
page->index, for_write);
|
|
if (IS_ERR(bio))
|
|
return PTR_ERR(bio);
|
|
|
|
/* wait for GCed page writeback via META_MAPPING */
|
|
f2fs_wait_on_block_writeback(inode, blkaddr);
|
|
|
|
if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) {
|
|
bio_put(bio);
|
|
return -EFAULT;
|
|
}
|
|
ClearPageError(page);
|
|
inc_page_count(sbi, F2FS_RD_DATA);
|
|
f2fs_update_iostat(sbi, FS_DATA_READ_IO, F2FS_BLKSIZE);
|
|
__submit_bio(sbi, bio, DATA);
|
|
return 0;
|
|
}
|
|
|
|
static void __set_data_blkaddr(struct dnode_of_data *dn)
|
|
{
|
|
struct f2fs_node *rn = F2FS_NODE(dn->node_page);
|
|
__le32 *addr_array;
|
|
int base = 0;
|
|
|
|
if (IS_INODE(dn->node_page) && f2fs_has_extra_attr(dn->inode))
|
|
base = get_extra_isize(dn->inode);
|
|
|
|
/* Get physical address of data block */
|
|
addr_array = blkaddr_in_node(rn);
|
|
addr_array[base + dn->ofs_in_node] = cpu_to_le32(dn->data_blkaddr);
|
|
}
|
|
|
|
/*
|
|
* Lock ordering for the change of data block address:
|
|
* ->data_page
|
|
* ->node_page
|
|
* update block addresses in the node page
|
|
*/
|
|
void f2fs_set_data_blkaddr(struct dnode_of_data *dn)
|
|
{
|
|
f2fs_wait_on_page_writeback(dn->node_page, NODE, true, true);
|
|
__set_data_blkaddr(dn);
|
|
if (set_page_dirty(dn->node_page))
|
|
dn->node_changed = true;
|
|
}
|
|
|
|
void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr)
|
|
{
|
|
dn->data_blkaddr = blkaddr;
|
|
f2fs_set_data_blkaddr(dn);
|
|
f2fs_update_extent_cache(dn);
|
|
}
|
|
|
|
/* dn->ofs_in_node will be returned with up-to-date last block pointer */
|
|
int f2fs_reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count)
|
|
{
|
|
struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
|
|
int err;
|
|
|
|
if (!count)
|
|
return 0;
|
|
|
|
if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
|
|
return -EPERM;
|
|
if (unlikely((err = inc_valid_block_count(sbi, dn->inode, &count))))
|
|
return err;
|
|
|
|
trace_f2fs_reserve_new_blocks(dn->inode, dn->nid,
|
|
dn->ofs_in_node, count);
|
|
|
|
f2fs_wait_on_page_writeback(dn->node_page, NODE, true, true);
|
|
|
|
for (; count > 0; dn->ofs_in_node++) {
|
|
block_t blkaddr = f2fs_data_blkaddr(dn);
|
|
if (blkaddr == NULL_ADDR) {
|
|
dn->data_blkaddr = NEW_ADDR;
|
|
__set_data_blkaddr(dn);
|
|
count--;
|
|
}
|
|
}
|
|
|
|
if (set_page_dirty(dn->node_page))
|
|
dn->node_changed = true;
|
|
return 0;
|
|
}
|
|
|
|
/* Should keep dn->ofs_in_node unchanged */
|
|
int f2fs_reserve_new_block(struct dnode_of_data *dn)
|
|
{
|
|
unsigned int ofs_in_node = dn->ofs_in_node;
|
|
int ret;
|
|
|
|
ret = f2fs_reserve_new_blocks(dn, 1);
|
|
dn->ofs_in_node = ofs_in_node;
|
|
return ret;
|
|
}
|
|
|
|
int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index)
|
|
{
|
|
bool need_put = dn->inode_page ? false : true;
|
|
int err;
|
|
|
|
err = f2fs_get_dnode_of_data(dn, index, ALLOC_NODE);
|
|
if (err)
|
|
return err;
|
|
|
|
if (dn->data_blkaddr == NULL_ADDR)
|
|
err = f2fs_reserve_new_block(dn);
|
|
if (err || need_put)
|
|
f2fs_put_dnode(dn);
|
|
return err;
|
|
}
|
|
|
|
int f2fs_get_block(struct dnode_of_data *dn, pgoff_t index)
|
|
{
|
|
struct extent_info ei = {0, 0, 0};
|
|
struct inode *inode = dn->inode;
|
|
|
|
if (f2fs_lookup_extent_cache(inode, index, &ei)) {
|
|
dn->data_blkaddr = ei.blk + index - ei.fofs;
|
|
return 0;
|
|
}
|
|
|
|
return f2fs_reserve_block(dn, index);
|
|
}
|
|
|
|
struct page *f2fs_get_read_data_page(struct inode *inode, pgoff_t index,
|
|
int op_flags, bool for_write)
|
|
{
|
|
struct address_space *mapping = inode->i_mapping;
|
|
struct dnode_of_data dn;
|
|
struct page *page;
|
|
struct extent_info ei = {0,0,0};
|
|
int err;
|
|
|
|
page = f2fs_grab_cache_page(mapping, index, for_write);
|
|
if (!page)
|
|
return ERR_PTR(-ENOMEM);
|
|
|
|
if (f2fs_lookup_extent_cache(inode, index, &ei)) {
|
|
dn.data_blkaddr = ei.blk + index - ei.fofs;
|
|
if (!f2fs_is_valid_blkaddr(F2FS_I_SB(inode), dn.data_blkaddr,
|
|
DATA_GENERIC_ENHANCE_READ)) {
|
|
err = -EFSCORRUPTED;
|
|
goto put_err;
|
|
}
|
|
goto got_it;
|
|
}
|
|
|
|
set_new_dnode(&dn, inode, NULL, NULL, 0);
|
|
err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE);
|
|
if (err)
|
|
goto put_err;
|
|
f2fs_put_dnode(&dn);
|
|
|
|
if (unlikely(dn.data_blkaddr == NULL_ADDR)) {
|
|
err = -ENOENT;
|
|
goto put_err;
|
|
}
|
|
if (dn.data_blkaddr != NEW_ADDR &&
|
|
!f2fs_is_valid_blkaddr(F2FS_I_SB(inode),
|
|
dn.data_blkaddr,
|
|
DATA_GENERIC_ENHANCE)) {
|
|
err = -EFSCORRUPTED;
|
|
goto put_err;
|
|
}
|
|
got_it:
|
|
if (PageUptodate(page)) {
|
|
unlock_page(page);
|
|
return page;
|
|
}
|
|
|
|
/*
|
|
* A new dentry page is allocated but not able to be written, since its
|
|
* new inode page couldn't be allocated due to -ENOSPC.
|
|
* In such the case, its blkaddr can be remained as NEW_ADDR.
|
|
* see, f2fs_add_link -> f2fs_get_new_data_page ->
|
|
* f2fs_init_inode_metadata.
|
|
*/
|
|
if (dn.data_blkaddr == NEW_ADDR) {
|
|
zero_user_segment(page, 0, PAGE_SIZE);
|
|
if (!PageUptodate(page))
|
|
SetPageUptodate(page);
|
|
unlock_page(page);
|
|
return page;
|
|
}
|
|
|
|
err = f2fs_submit_page_read(inode, page, dn.data_blkaddr,
|
|
op_flags, for_write);
|
|
if (err)
|
|
goto put_err;
|
|
return page;
|
|
|
|
put_err:
|
|
f2fs_put_page(page, 1);
|
|
return ERR_PTR(err);
|
|
}
|
|
|
|
struct page *f2fs_find_data_page(struct inode *inode, pgoff_t index)
|
|
{
|
|
struct address_space *mapping = inode->i_mapping;
|
|
struct page *page;
|
|
|
|
page = find_get_page(mapping, index);
|
|
if (page && PageUptodate(page))
|
|
return page;
|
|
f2fs_put_page(page, 0);
|
|
|
|
page = f2fs_get_read_data_page(inode, index, 0, false);
|
|
if (IS_ERR(page))
|
|
return page;
|
|
|
|
if (PageUptodate(page))
|
|
return page;
|
|
|
|
wait_on_page_locked(page);
|
|
if (unlikely(!PageUptodate(page))) {
|
|
f2fs_put_page(page, 0);
|
|
return ERR_PTR(-EIO);
|
|
}
|
|
return page;
|
|
}
|
|
|
|
/*
|
|
* If it tries to access a hole, return an error.
|
|
* Because, the callers, functions in dir.c and GC, should be able to know
|
|
* whether this page exists or not.
|
|
*/
|
|
struct page *f2fs_get_lock_data_page(struct inode *inode, pgoff_t index,
|
|
bool for_write)
|
|
{
|
|
struct address_space *mapping = inode->i_mapping;
|
|
struct page *page;
|
|
repeat:
|
|
page = f2fs_get_read_data_page(inode, index, 0, for_write);
|
|
if (IS_ERR(page))
|
|
return page;
|
|
|
|
/* wait for read completion */
|
|
lock_page(page);
|
|
if (unlikely(page->mapping != mapping)) {
|
|
f2fs_put_page(page, 1);
|
|
goto repeat;
|
|
}
|
|
if (unlikely(!PageUptodate(page))) {
|
|
f2fs_put_page(page, 1);
|
|
return ERR_PTR(-EIO);
|
|
}
|
|
return page;
|
|
}
|
|
|
|
/*
|
|
* Caller ensures that this data page is never allocated.
|
|
* A new zero-filled data page is allocated in the page cache.
|
|
*
|
|
* Also, caller should grab and release a rwsem by calling f2fs_lock_op() and
|
|
* f2fs_unlock_op().
|
|
* Note that, ipage is set only by make_empty_dir, and if any error occur,
|
|
* ipage should be released by this function.
|
|
*/
|
|
struct page *f2fs_get_new_data_page(struct inode *inode,
|
|
struct page *ipage, pgoff_t index, bool new_i_size)
|
|
{
|
|
struct address_space *mapping = inode->i_mapping;
|
|
struct page *page;
|
|
struct dnode_of_data dn;
|
|
int err;
|
|
|
|
page = f2fs_grab_cache_page(mapping, index, true);
|
|
if (!page) {
|
|
/*
|
|
* before exiting, we should make sure ipage will be released
|
|
* if any error occur.
|
|
*/
|
|
f2fs_put_page(ipage, 1);
|
|
return ERR_PTR(-ENOMEM);
|
|
}
|
|
|
|
set_new_dnode(&dn, inode, ipage, NULL, 0);
|
|
err = f2fs_reserve_block(&dn, index);
|
|
if (err) {
|
|
f2fs_put_page(page, 1);
|
|
return ERR_PTR(err);
|
|
}
|
|
if (!ipage)
|
|
f2fs_put_dnode(&dn);
|
|
|
|
if (PageUptodate(page))
|
|
goto got_it;
|
|
|
|
if (dn.data_blkaddr == NEW_ADDR) {
|
|
zero_user_segment(page, 0, PAGE_SIZE);
|
|
if (!PageUptodate(page))
|
|
SetPageUptodate(page);
|
|
} else {
|
|
f2fs_put_page(page, 1);
|
|
|
|
/* if ipage exists, blkaddr should be NEW_ADDR */
|
|
f2fs_bug_on(F2FS_I_SB(inode), ipage);
|
|
page = f2fs_get_lock_data_page(inode, index, true);
|
|
if (IS_ERR(page))
|
|
return page;
|
|
}
|
|
got_it:
|
|
if (new_i_size && i_size_read(inode) <
|
|
((loff_t)(index + 1) << PAGE_SHIFT))
|
|
f2fs_i_size_write(inode, ((loff_t)(index + 1) << PAGE_SHIFT));
|
|
return page;
|
|
}
|
|
|
|
static int __allocate_data_block(struct dnode_of_data *dn, int seg_type)
|
|
{
|
|
struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
|
|
struct f2fs_summary sum;
|
|
struct node_info ni;
|
|
block_t old_blkaddr;
|
|
blkcnt_t count = 1;
|
|
int err;
|
|
|
|
if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
|
|
return -EPERM;
|
|
|
|
err = f2fs_get_node_info(sbi, dn->nid, &ni);
|
|
if (err)
|
|
return err;
|
|
|
|
dn->data_blkaddr = f2fs_data_blkaddr(dn);
|
|
if (dn->data_blkaddr != NULL_ADDR)
|
|
goto alloc;
|
|
|
|
if (unlikely((err = inc_valid_block_count(sbi, dn->inode, &count))))
|
|
return err;
|
|
|
|
alloc:
|
|
set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version);
|
|
old_blkaddr = dn->data_blkaddr;
|
|
f2fs_allocate_data_block(sbi, NULL, old_blkaddr, &dn->data_blkaddr,
|
|
&sum, seg_type, NULL);
|
|
if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO)
|
|
invalidate_mapping_pages(META_MAPPING(sbi),
|
|
old_blkaddr, old_blkaddr);
|
|
f2fs_update_data_blkaddr(dn, dn->data_blkaddr);
|
|
|
|
/*
|
|
* i_size will be updated by direct_IO. Otherwise, we'll get stale
|
|
* data from unwritten block via dio_read.
|
|
*/
|
|
return 0;
|
|
}
|
|
|
|
int f2fs_preallocate_blocks(struct kiocb *iocb, struct iov_iter *from)
|
|
{
|
|
struct inode *inode = file_inode(iocb->ki_filp);
|
|
struct f2fs_map_blocks map;
|
|
int flag;
|
|
int err = 0;
|
|
bool direct_io = iocb->ki_flags & IOCB_DIRECT;
|
|
|
|
map.m_lblk = F2FS_BLK_ALIGN(iocb->ki_pos);
|
|
map.m_len = F2FS_BYTES_TO_BLK(iocb->ki_pos + iov_iter_count(from));
|
|
if (map.m_len > map.m_lblk)
|
|
map.m_len -= map.m_lblk;
|
|
else
|
|
map.m_len = 0;
|
|
|
|
map.m_next_pgofs = NULL;
|
|
map.m_next_extent = NULL;
|
|
map.m_seg_type = NO_CHECK_TYPE;
|
|
map.m_may_create = true;
|
|
|
|
if (direct_io) {
|
|
map.m_seg_type = f2fs_rw_hint_to_seg_type(iocb->ki_hint);
|
|
flag = f2fs_force_buffered_io(inode, iocb, from) ?
|
|
F2FS_GET_BLOCK_PRE_AIO :
|
|
F2FS_GET_BLOCK_PRE_DIO;
|
|
goto map_blocks;
|
|
}
|
|
if (iocb->ki_pos + iov_iter_count(from) > MAX_INLINE_DATA(inode)) {
|
|
err = f2fs_convert_inline_inode(inode);
|
|
if (err)
|
|
return err;
|
|
}
|
|
if (f2fs_has_inline_data(inode))
|
|
return err;
|
|
|
|
flag = F2FS_GET_BLOCK_PRE_AIO;
|
|
|
|
map_blocks:
|
|
err = f2fs_map_blocks(inode, &map, 1, flag);
|
|
if (map.m_len > 0 && err == -ENOSPC) {
|
|
if (!direct_io)
|
|
set_inode_flag(inode, FI_NO_PREALLOC);
|
|
err = 0;
|
|
}
|
|
return err;
|
|
}
|
|
|
|
void f2fs_do_map_lock(struct f2fs_sb_info *sbi, int flag, bool lock)
|
|
{
|
|
if (flag == F2FS_GET_BLOCK_PRE_AIO) {
|
|
if (lock)
|
|
down_read(&sbi->node_change);
|
|
else
|
|
up_read(&sbi->node_change);
|
|
} else {
|
|
if (lock)
|
|
f2fs_lock_op(sbi);
|
|
else
|
|
f2fs_unlock_op(sbi);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* f2fs_map_blocks() tries to find or build mapping relationship which
|
|
* maps continuous logical blocks to physical blocks, and return such
|
|
* info via f2fs_map_blocks structure.
|
|
*/
|
|
int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map,
|
|
int create, int flag)
|
|
{
|
|
unsigned int maxblocks = map->m_len;
|
|
struct dnode_of_data dn;
|
|
struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
|
|
int mode = map->m_may_create ? ALLOC_NODE : LOOKUP_NODE;
|
|
pgoff_t pgofs, end_offset, end;
|
|
int err = 0, ofs = 1;
|
|
unsigned int ofs_in_node, last_ofs_in_node;
|
|
blkcnt_t prealloc;
|
|
struct extent_info ei = {0,0,0};
|
|
block_t blkaddr;
|
|
unsigned int start_pgofs;
|
|
|
|
if (!maxblocks)
|
|
return 0;
|
|
|
|
map->m_len = 0;
|
|
map->m_flags = 0;
|
|
|
|
/* it only supports block size == page size */
|
|
pgofs = (pgoff_t)map->m_lblk;
|
|
end = pgofs + maxblocks;
|
|
|
|
if (!create && f2fs_lookup_extent_cache(inode, pgofs, &ei)) {
|
|
if (f2fs_lfs_mode(sbi) && flag == F2FS_GET_BLOCK_DIO &&
|
|
map->m_may_create)
|
|
goto next_dnode;
|
|
|
|
map->m_pblk = ei.blk + pgofs - ei.fofs;
|
|
map->m_len = min((pgoff_t)maxblocks, ei.fofs + ei.len - pgofs);
|
|
map->m_flags = F2FS_MAP_MAPPED;
|
|
if (map->m_next_extent)
|
|
*map->m_next_extent = pgofs + map->m_len;
|
|
|
|
/* for hardware encryption, but to avoid potential issue in future */
|
|
if (flag == F2FS_GET_BLOCK_DIO)
|
|
f2fs_wait_on_block_writeback_range(inode,
|
|
map->m_pblk, map->m_len);
|
|
goto out;
|
|
}
|
|
|
|
next_dnode:
|
|
if (map->m_may_create)
|
|
f2fs_do_map_lock(sbi, flag, true);
|
|
|
|
/* When reading holes, we need its node page */
|
|
set_new_dnode(&dn, inode, NULL, NULL, 0);
|
|
err = f2fs_get_dnode_of_data(&dn, pgofs, mode);
|
|
if (err) {
|
|
if (flag == F2FS_GET_BLOCK_BMAP)
|
|
map->m_pblk = 0;
|
|
if (err == -ENOENT) {
|
|
err = 0;
|
|
if (map->m_next_pgofs)
|
|
*map->m_next_pgofs =
|
|
f2fs_get_next_page_offset(&dn, pgofs);
|
|
if (map->m_next_extent)
|
|
*map->m_next_extent =
|
|
f2fs_get_next_page_offset(&dn, pgofs);
|
|
}
|
|
goto unlock_out;
|
|
}
|
|
|
|
start_pgofs = pgofs;
|
|
prealloc = 0;
|
|
last_ofs_in_node = ofs_in_node = dn.ofs_in_node;
|
|
end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
|
|
|
|
next_block:
|
|
blkaddr = f2fs_data_blkaddr(&dn);
|
|
|
|
if (__is_valid_data_blkaddr(blkaddr) &&
|
|
!f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC_ENHANCE)) {
|
|
err = -EFSCORRUPTED;
|
|
goto sync_out;
|
|
}
|
|
|
|
if (__is_valid_data_blkaddr(blkaddr)) {
|
|
/* use out-place-update for driect IO under LFS mode */
|
|
if (f2fs_lfs_mode(sbi) && flag == F2FS_GET_BLOCK_DIO &&
|
|
map->m_may_create) {
|
|
err = __allocate_data_block(&dn, map->m_seg_type);
|
|
if (err)
|
|
goto sync_out;
|
|
blkaddr = dn.data_blkaddr;
|
|
set_inode_flag(inode, FI_APPEND_WRITE);
|
|
}
|
|
} else {
|
|
if (create) {
|
|
if (unlikely(f2fs_cp_error(sbi))) {
|
|
err = -EIO;
|
|
goto sync_out;
|
|
}
|
|
if (flag == F2FS_GET_BLOCK_PRE_AIO) {
|
|
if (blkaddr == NULL_ADDR) {
|
|
prealloc++;
|
|
last_ofs_in_node = dn.ofs_in_node;
|
|
}
|
|
} else {
|
|
WARN_ON(flag != F2FS_GET_BLOCK_PRE_DIO &&
|
|
flag != F2FS_GET_BLOCK_DIO);
|
|
err = __allocate_data_block(&dn,
|
|
map->m_seg_type);
|
|
if (!err)
|
|
set_inode_flag(inode, FI_APPEND_WRITE);
|
|
}
|
|
if (err)
|
|
goto sync_out;
|
|
map->m_flags |= F2FS_MAP_NEW;
|
|
blkaddr = dn.data_blkaddr;
|
|
} else {
|
|
if (flag == F2FS_GET_BLOCK_BMAP) {
|
|
map->m_pblk = 0;
|
|
goto sync_out;
|
|
}
|
|
if (flag == F2FS_GET_BLOCK_PRECACHE)
|
|
goto sync_out;
|
|
if (flag == F2FS_GET_BLOCK_FIEMAP &&
|
|
blkaddr == NULL_ADDR) {
|
|
if (map->m_next_pgofs)
|
|
*map->m_next_pgofs = pgofs + 1;
|
|
goto sync_out;
|
|
}
|
|
if (flag != F2FS_GET_BLOCK_FIEMAP) {
|
|
/* for defragment case */
|
|
if (map->m_next_pgofs)
|
|
*map->m_next_pgofs = pgofs + 1;
|
|
goto sync_out;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (flag == F2FS_GET_BLOCK_PRE_AIO)
|
|
goto skip;
|
|
|
|
if (map->m_len == 0) {
|
|
/* preallocated unwritten block should be mapped for fiemap. */
|
|
if (blkaddr == NEW_ADDR)
|
|
map->m_flags |= F2FS_MAP_UNWRITTEN;
|
|
map->m_flags |= F2FS_MAP_MAPPED;
|
|
|
|
map->m_pblk = blkaddr;
|
|
map->m_len = 1;
|
|
} else if ((map->m_pblk != NEW_ADDR &&
|
|
blkaddr == (map->m_pblk + ofs)) ||
|
|
(map->m_pblk == NEW_ADDR && blkaddr == NEW_ADDR) ||
|
|
flag == F2FS_GET_BLOCK_PRE_DIO) {
|
|
ofs++;
|
|
map->m_len++;
|
|
} else {
|
|
goto sync_out;
|
|
}
|
|
|
|
skip:
|
|
dn.ofs_in_node++;
|
|
pgofs++;
|
|
|
|
/* preallocate blocks in batch for one dnode page */
|
|
if (flag == F2FS_GET_BLOCK_PRE_AIO &&
|
|
(pgofs == end || dn.ofs_in_node == end_offset)) {
|
|
|
|
dn.ofs_in_node = ofs_in_node;
|
|
err = f2fs_reserve_new_blocks(&dn, prealloc);
|
|
if (err)
|
|
goto sync_out;
|
|
|
|
map->m_len += dn.ofs_in_node - ofs_in_node;
|
|
if (prealloc && dn.ofs_in_node != last_ofs_in_node + 1) {
|
|
err = -ENOSPC;
|
|
goto sync_out;
|
|
}
|
|
dn.ofs_in_node = end_offset;
|
|
}
|
|
|
|
if (pgofs >= end)
|
|
goto sync_out;
|
|
else if (dn.ofs_in_node < end_offset)
|
|
goto next_block;
|
|
|
|
if (flag == F2FS_GET_BLOCK_PRECACHE) {
|
|
if (map->m_flags & F2FS_MAP_MAPPED) {
|
|
unsigned int ofs = start_pgofs - map->m_lblk;
|
|
|
|
f2fs_update_extent_cache_range(&dn,
|
|
start_pgofs, map->m_pblk + ofs,
|
|
map->m_len - ofs);
|
|
}
|
|
}
|
|
|
|
f2fs_put_dnode(&dn);
|
|
|
|
if (map->m_may_create) {
|
|
f2fs_do_map_lock(sbi, flag, false);
|
|
f2fs_balance_fs(sbi, dn.node_changed);
|
|
}
|
|
goto next_dnode;
|
|
|
|
sync_out:
|
|
|
|
/* for hardware encryption, but to avoid potential issue in future */
|
|
if (flag == F2FS_GET_BLOCK_DIO && map->m_flags & F2FS_MAP_MAPPED)
|
|
f2fs_wait_on_block_writeback_range(inode,
|
|
map->m_pblk, map->m_len);
|
|
|
|
if (flag == F2FS_GET_BLOCK_PRECACHE) {
|
|
if (map->m_flags & F2FS_MAP_MAPPED) {
|
|
unsigned int ofs = start_pgofs - map->m_lblk;
|
|
|
|
f2fs_update_extent_cache_range(&dn,
|
|
start_pgofs, map->m_pblk + ofs,
|
|
map->m_len - ofs);
|
|
}
|
|
if (map->m_next_extent)
|
|
*map->m_next_extent = pgofs + 1;
|
|
}
|
|
f2fs_put_dnode(&dn);
|
|
unlock_out:
|
|
if (map->m_may_create) {
|
|
f2fs_do_map_lock(sbi, flag, false);
|
|
f2fs_balance_fs(sbi, dn.node_changed);
|
|
}
|
|
out:
|
|
trace_f2fs_map_blocks(inode, map, err);
|
|
return err;
|
|
}
|
|
|
|
bool f2fs_overwrite_io(struct inode *inode, loff_t pos, size_t len)
|
|
{
|
|
struct f2fs_map_blocks map;
|
|
block_t last_lblk;
|
|
int err;
|
|
|
|
if (pos + len > i_size_read(inode))
|
|
return false;
|
|
|
|
map.m_lblk = F2FS_BYTES_TO_BLK(pos);
|
|
map.m_next_pgofs = NULL;
|
|
map.m_next_extent = NULL;
|
|
map.m_seg_type = NO_CHECK_TYPE;
|
|
map.m_may_create = false;
|
|
last_lblk = F2FS_BLK_ALIGN(pos + len);
|
|
|
|
while (map.m_lblk < last_lblk) {
|
|
map.m_len = last_lblk - map.m_lblk;
|
|
err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_DEFAULT);
|
|
if (err || map.m_len == 0)
|
|
return false;
|
|
map.m_lblk += map.m_len;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
static int __get_data_block(struct inode *inode, sector_t iblock,
|
|
struct buffer_head *bh, int create, int flag,
|
|
pgoff_t *next_pgofs, int seg_type, bool may_write)
|
|
{
|
|
struct f2fs_map_blocks map;
|
|
int err;
|
|
|
|
map.m_lblk = iblock;
|
|
map.m_len = bh->b_size >> inode->i_blkbits;
|
|
map.m_next_pgofs = next_pgofs;
|
|
map.m_next_extent = NULL;
|
|
map.m_seg_type = seg_type;
|
|
map.m_may_create = may_write;
|
|
|
|
err = f2fs_map_blocks(inode, &map, create, flag);
|
|
if (!err) {
|
|
map_bh(bh, inode->i_sb, map.m_pblk);
|
|
bh->b_state = (bh->b_state & ~F2FS_MAP_FLAGS) | map.m_flags;
|
|
bh->b_size = (u64)map.m_len << inode->i_blkbits;
|
|
}
|
|
return err;
|
|
}
|
|
|
|
static int get_data_block(struct inode *inode, sector_t iblock,
|
|
struct buffer_head *bh_result, int create, int flag,
|
|
pgoff_t *next_pgofs)
|
|
{
|
|
return __get_data_block(inode, iblock, bh_result, create,
|
|
flag, next_pgofs,
|
|
NO_CHECK_TYPE, create);
|
|
}
|
|
|
|
static int get_data_block_dio_write(struct inode *inode, sector_t iblock,
|
|
struct buffer_head *bh_result, int create)
|
|
{
|
|
return __get_data_block(inode, iblock, bh_result, create,
|
|
F2FS_GET_BLOCK_DIO, NULL,
|
|
f2fs_rw_hint_to_seg_type(inode->i_write_hint),
|
|
IS_SWAPFILE(inode) ? false : true);
|
|
}
|
|
|
|
static int get_data_block_dio(struct inode *inode, sector_t iblock,
|
|
struct buffer_head *bh_result, int create)
|
|
{
|
|
return __get_data_block(inode, iblock, bh_result, create,
|
|
F2FS_GET_BLOCK_DIO, NULL,
|
|
f2fs_rw_hint_to_seg_type(inode->i_write_hint),
|
|
false);
|
|
}
|
|
|
|
static int get_data_block_bmap(struct inode *inode, sector_t iblock,
|
|
struct buffer_head *bh_result, int create)
|
|
{
|
|
return __get_data_block(inode, iblock, bh_result, create,
|
|
F2FS_GET_BLOCK_BMAP, NULL,
|
|
NO_CHECK_TYPE, create);
|
|
}
|
|
|
|
static inline sector_t logical_to_blk(struct inode *inode, loff_t offset)
|
|
{
|
|
return (offset >> inode->i_blkbits);
|
|
}
|
|
|
|
static inline loff_t blk_to_logical(struct inode *inode, sector_t blk)
|
|
{
|
|
return (blk << inode->i_blkbits);
|
|
}
|
|
|
|
static int f2fs_xattr_fiemap(struct inode *inode,
|
|
struct fiemap_extent_info *fieinfo)
|
|
{
|
|
struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
|
|
struct page *page;
|
|
struct node_info ni;
|
|
__u64 phys = 0, len;
|
|
__u32 flags;
|
|
nid_t xnid = F2FS_I(inode)->i_xattr_nid;
|
|
int err = 0;
|
|
|
|
if (f2fs_has_inline_xattr(inode)) {
|
|
int offset;
|
|
|
|
page = f2fs_grab_cache_page(NODE_MAPPING(sbi),
|
|
inode->i_ino, false);
|
|
if (!page)
|
|
return -ENOMEM;
|
|
|
|
err = f2fs_get_node_info(sbi, inode->i_ino, &ni);
|
|
if (err) {
|
|
f2fs_put_page(page, 1);
|
|
return err;
|
|
}
|
|
|
|
phys = (__u64)blk_to_logical(inode, ni.blk_addr);
|
|
offset = offsetof(struct f2fs_inode, i_addr) +
|
|
sizeof(__le32) * (DEF_ADDRS_PER_INODE -
|
|
get_inline_xattr_addrs(inode));
|
|
|
|
phys += offset;
|
|
len = inline_xattr_size(inode);
|
|
|
|
f2fs_put_page(page, 1);
|
|
|
|
flags = FIEMAP_EXTENT_DATA_INLINE | FIEMAP_EXTENT_NOT_ALIGNED;
|
|
|
|
if (!xnid)
|
|
flags |= FIEMAP_EXTENT_LAST;
|
|
|
|
err = fiemap_fill_next_extent(fieinfo, 0, phys, len, flags);
|
|
trace_f2fs_fiemap(inode, 0, phys, len, flags, err);
|
|
if (err || err == 1)
|
|
return err;
|
|
}
|
|
|
|
if (xnid) {
|
|
page = f2fs_grab_cache_page(NODE_MAPPING(sbi), xnid, false);
|
|
if (!page)
|
|
return -ENOMEM;
|
|
|
|
err = f2fs_get_node_info(sbi, xnid, &ni);
|
|
if (err) {
|
|
f2fs_put_page(page, 1);
|
|
return err;
|
|
}
|
|
|
|
phys = (__u64)blk_to_logical(inode, ni.blk_addr);
|
|
len = inode->i_sb->s_blocksize;
|
|
|
|
f2fs_put_page(page, 1);
|
|
|
|
flags = FIEMAP_EXTENT_LAST;
|
|
}
|
|
|
|
if (phys) {
|
|
err = fiemap_fill_next_extent(fieinfo, 0, phys, len, flags);
|
|
trace_f2fs_fiemap(inode, 0, phys, len, flags, err);
|
|
}
|
|
|
|
return (err < 0 ? err : 0);
|
|
}
|
|
|
|
static loff_t max_inode_blocks(struct inode *inode)
|
|
{
|
|
loff_t result = ADDRS_PER_INODE(inode);
|
|
loff_t leaf_count = ADDRS_PER_BLOCK(inode);
|
|
|
|
/* two direct node blocks */
|
|
result += (leaf_count * 2);
|
|
|
|
/* two indirect node blocks */
|
|
leaf_count *= NIDS_PER_BLOCK;
|
|
result += (leaf_count * 2);
|
|
|
|
/* one double indirect node block */
|
|
leaf_count *= NIDS_PER_BLOCK;
|
|
result += leaf_count;
|
|
|
|
return result;
|
|
}
|
|
|
|
int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
|
|
u64 start, u64 len)
|
|
{
|
|
struct buffer_head map_bh;
|
|
sector_t start_blk, last_blk;
|
|
pgoff_t next_pgofs;
|
|
u64 logical = 0, phys = 0, size = 0;
|
|
u32 flags = 0;
|
|
int ret = 0;
|
|
bool compr_cluster = false;
|
|
unsigned int cluster_size = F2FS_I(inode)->i_cluster_size;
|
|
|
|
if (fieinfo->fi_flags & FIEMAP_FLAG_CACHE) {
|
|
ret = f2fs_precache_extents(inode);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
|
|
ret = fiemap_prep(inode, fieinfo, start, &len, FIEMAP_FLAG_XATTR);
|
|
if (ret)
|
|
return ret;
|
|
|
|
inode_lock(inode);
|
|
|
|
if (fieinfo->fi_flags & FIEMAP_FLAG_XATTR) {
|
|
ret = f2fs_xattr_fiemap(inode, fieinfo);
|
|
goto out;
|
|
}
|
|
|
|
if (f2fs_has_inline_data(inode) || f2fs_has_inline_dentry(inode)) {
|
|
ret = f2fs_inline_data_fiemap(inode, fieinfo, start, len);
|
|
if (ret != -EAGAIN)
|
|
goto out;
|
|
}
|
|
|
|
if (logical_to_blk(inode, len) == 0)
|
|
len = blk_to_logical(inode, 1);
|
|
|
|
start_blk = logical_to_blk(inode, start);
|
|
last_blk = logical_to_blk(inode, start + len - 1);
|
|
|
|
next:
|
|
memset(&map_bh, 0, sizeof(struct buffer_head));
|
|
map_bh.b_size = len;
|
|
|
|
if (compr_cluster)
|
|
map_bh.b_size = blk_to_logical(inode, cluster_size - 1);
|
|
|
|
ret = get_data_block(inode, start_blk, &map_bh, 0,
|
|
F2FS_GET_BLOCK_FIEMAP, &next_pgofs);
|
|
if (ret)
|
|
goto out;
|
|
|
|
/* HOLE */
|
|
if (!buffer_mapped(&map_bh)) {
|
|
start_blk = next_pgofs;
|
|
|
|
if (blk_to_logical(inode, start_blk) < blk_to_logical(inode,
|
|
max_inode_blocks(inode)))
|
|
goto prep_next;
|
|
|
|
flags |= FIEMAP_EXTENT_LAST;
|
|
}
|
|
|
|
if (size) {
|
|
if (IS_ENCRYPTED(inode))
|
|
flags |= FIEMAP_EXTENT_DATA_ENCRYPTED;
|
|
|
|
ret = fiemap_fill_next_extent(fieinfo, logical,
|
|
phys, size, flags);
|
|
trace_f2fs_fiemap(inode, logical, phys, size, flags, ret);
|
|
if (ret)
|
|
goto out;
|
|
size = 0;
|
|
}
|
|
|
|
if (start_blk > last_blk)
|
|
goto out;
|
|
|
|
if (compr_cluster) {
|
|
compr_cluster = false;
|
|
|
|
|
|
logical = blk_to_logical(inode, start_blk - 1);
|
|
phys = blk_to_logical(inode, map_bh.b_blocknr);
|
|
size = blk_to_logical(inode, cluster_size);
|
|
|
|
flags |= FIEMAP_EXTENT_ENCODED;
|
|
|
|
start_blk += cluster_size - 1;
|
|
|
|
if (start_blk > last_blk)
|
|
goto out;
|
|
|
|
goto prep_next;
|
|
}
|
|
|
|
if (map_bh.b_blocknr == COMPRESS_ADDR) {
|
|
compr_cluster = true;
|
|
start_blk++;
|
|
goto prep_next;
|
|
}
|
|
|
|
logical = blk_to_logical(inode, start_blk);
|
|
phys = blk_to_logical(inode, map_bh.b_blocknr);
|
|
size = map_bh.b_size;
|
|
flags = 0;
|
|
if (buffer_unwritten(&map_bh))
|
|
flags = FIEMAP_EXTENT_UNWRITTEN;
|
|
|
|
start_blk += logical_to_blk(inode, size);
|
|
|
|
prep_next:
|
|
cond_resched();
|
|
if (fatal_signal_pending(current))
|
|
ret = -EINTR;
|
|
else
|
|
goto next;
|
|
out:
|
|
if (ret == 1)
|
|
ret = 0;
|
|
|
|
inode_unlock(inode);
|
|
return ret;
|
|
}
|
|
|
|
static inline loff_t f2fs_readpage_limit(struct inode *inode)
|
|
{
|
|
if (IS_ENABLED(CONFIG_FS_VERITY) &&
|
|
(IS_VERITY(inode) || f2fs_verity_in_progress(inode)))
|
|
return inode->i_sb->s_maxbytes;
|
|
|
|
return i_size_read(inode);
|
|
}
|
|
|
|
static int f2fs_read_single_page(struct inode *inode, struct page *page,
|
|
unsigned nr_pages,
|
|
struct f2fs_map_blocks *map,
|
|
struct bio **bio_ret,
|
|
sector_t *last_block_in_bio,
|
|
bool is_readahead)
|
|
{
|
|
struct bio *bio = *bio_ret;
|
|
const unsigned blkbits = inode->i_blkbits;
|
|
const unsigned blocksize = 1 << blkbits;
|
|
sector_t block_in_file;
|
|
sector_t last_block;
|
|
sector_t last_block_in_file;
|
|
sector_t block_nr;
|
|
int ret = 0;
|
|
|
|
block_in_file = (sector_t)page_index(page);
|
|
last_block = block_in_file + nr_pages;
|
|
last_block_in_file = (f2fs_readpage_limit(inode) + blocksize - 1) >>
|
|
blkbits;
|
|
if (last_block > last_block_in_file)
|
|
last_block = last_block_in_file;
|
|
|
|
/* just zeroing out page which is beyond EOF */
|
|
if (block_in_file >= last_block)
|
|
goto zero_out;
|
|
/*
|
|
* Map blocks using the previous result first.
|
|
*/
|
|
if ((map->m_flags & F2FS_MAP_MAPPED) &&
|
|
block_in_file > map->m_lblk &&
|
|
block_in_file < (map->m_lblk + map->m_len))
|
|
goto got_it;
|
|
|
|
/*
|
|
* Then do more f2fs_map_blocks() calls until we are
|
|
* done with this page.
|
|
*/
|
|
map->m_lblk = block_in_file;
|
|
map->m_len = last_block - block_in_file;
|
|
|
|
ret = f2fs_map_blocks(inode, map, 0, F2FS_GET_BLOCK_DEFAULT);
|
|
if (ret)
|
|
goto out;
|
|
got_it:
|
|
if ((map->m_flags & F2FS_MAP_MAPPED)) {
|
|
block_nr = map->m_pblk + block_in_file - map->m_lblk;
|
|
SetPageMappedToDisk(page);
|
|
|
|
if (!PageUptodate(page) && (!PageSwapCache(page) &&
|
|
!cleancache_get_page(page))) {
|
|
SetPageUptodate(page);
|
|
goto confused;
|
|
}
|
|
|
|
if (!f2fs_is_valid_blkaddr(F2FS_I_SB(inode), block_nr,
|
|
DATA_GENERIC_ENHANCE_READ)) {
|
|
ret = -EFSCORRUPTED;
|
|
goto out;
|
|
}
|
|
} else {
|
|
zero_out:
|
|
zero_user_segment(page, 0, PAGE_SIZE);
|
|
if (f2fs_need_verity(inode, page->index) &&
|
|
!fsverity_verify_page(page)) {
|
|
ret = -EIO;
|
|
goto out;
|
|
}
|
|
if (!PageUptodate(page))
|
|
SetPageUptodate(page);
|
|
unlock_page(page);
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* This page will go to BIO. Do we need to send this
|
|
* BIO off first?
|
|
*/
|
|
if (bio && (!page_is_mergeable(F2FS_I_SB(inode), bio,
|
|
*last_block_in_bio, block_nr) ||
|
|
!f2fs_crypt_mergeable_bio(bio, inode, page->index, NULL))) {
|
|
submit_and_realloc:
|
|
__submit_bio(F2FS_I_SB(inode), bio, DATA);
|
|
bio = NULL;
|
|
}
|
|
if (bio == NULL) {
|
|
bio = f2fs_grab_read_bio(inode, block_nr, nr_pages,
|
|
is_readahead ? REQ_RAHEAD : 0, page->index,
|
|
false);
|
|
if (IS_ERR(bio)) {
|
|
ret = PTR_ERR(bio);
|
|
bio = NULL;
|
|
goto out;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* If the page is under writeback, we need to wait for
|
|
* its completion to see the correct decrypted data.
|
|
*/
|
|
f2fs_wait_on_block_writeback(inode, block_nr);
|
|
|
|
if (bio_add_page(bio, page, blocksize, 0) < blocksize)
|
|
goto submit_and_realloc;
|
|
|
|
inc_page_count(F2FS_I_SB(inode), F2FS_RD_DATA);
|
|
f2fs_update_iostat(F2FS_I_SB(inode), FS_DATA_READ_IO, F2FS_BLKSIZE);
|
|
ClearPageError(page);
|
|
*last_block_in_bio = block_nr;
|
|
goto out;
|
|
confused:
|
|
if (bio) {
|
|
__submit_bio(F2FS_I_SB(inode), bio, DATA);
|
|
bio = NULL;
|
|
}
|
|
unlock_page(page);
|
|
out:
|
|
*bio_ret = bio;
|
|
return ret;
|
|
}
|
|
|
|
#ifdef CONFIG_F2FS_FS_COMPRESSION
|
|
int f2fs_read_multi_pages(struct compress_ctx *cc, struct bio **bio_ret,
|
|
unsigned nr_pages, sector_t *last_block_in_bio,
|
|
bool is_readahead, bool for_write)
|
|
{
|
|
struct dnode_of_data dn;
|
|
struct inode *inode = cc->inode;
|
|
struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
|
|
struct bio *bio = *bio_ret;
|
|
unsigned int start_idx = cc->cluster_idx << cc->log_cluster_size;
|
|
sector_t last_block_in_file;
|
|
const unsigned blkbits = inode->i_blkbits;
|
|
const unsigned blocksize = 1 << blkbits;
|
|
struct decompress_io_ctx *dic = NULL;
|
|
int i;
|
|
int ret = 0;
|
|
|
|
f2fs_bug_on(sbi, f2fs_cluster_is_empty(cc));
|
|
|
|
last_block_in_file = (f2fs_readpage_limit(inode) +
|
|
blocksize - 1) >> blkbits;
|
|
|
|
/* get rid of pages beyond EOF */
|
|
for (i = 0; i < cc->cluster_size; i++) {
|
|
struct page *page = cc->rpages[i];
|
|
|
|
if (!page)
|
|
continue;
|
|
if ((sector_t)page->index >= last_block_in_file) {
|
|
zero_user_segment(page, 0, PAGE_SIZE);
|
|
if (!PageUptodate(page))
|
|
SetPageUptodate(page);
|
|
} else if (!PageUptodate(page)) {
|
|
continue;
|
|
}
|
|
unlock_page(page);
|
|
cc->rpages[i] = NULL;
|
|
cc->nr_rpages--;
|
|
}
|
|
|
|
/* we are done since all pages are beyond EOF */
|
|
if (f2fs_cluster_is_empty(cc))
|
|
goto out;
|
|
|
|
set_new_dnode(&dn, inode, NULL, NULL, 0);
|
|
ret = f2fs_get_dnode_of_data(&dn, start_idx, LOOKUP_NODE);
|
|
if (ret)
|
|
goto out;
|
|
|
|
f2fs_bug_on(sbi, dn.data_blkaddr != COMPRESS_ADDR);
|
|
|
|
for (i = 1; i < cc->cluster_size; i++) {
|
|
block_t blkaddr;
|
|
|
|
blkaddr = data_blkaddr(dn.inode, dn.node_page,
|
|
dn.ofs_in_node + i);
|
|
|
|
if (!__is_valid_data_blkaddr(blkaddr))
|
|
break;
|
|
|
|
if (!f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC)) {
|
|
ret = -EFAULT;
|
|
goto out_put_dnode;
|
|
}
|
|
cc->nr_cpages++;
|
|
}
|
|
|
|
/* nothing to decompress */
|
|
if (cc->nr_cpages == 0) {
|
|
ret = 0;
|
|
goto out_put_dnode;
|
|
}
|
|
|
|
dic = f2fs_alloc_dic(cc);
|
|
if (IS_ERR(dic)) {
|
|
ret = PTR_ERR(dic);
|
|
goto out_put_dnode;
|
|
}
|
|
|
|
for (i = 0; i < dic->nr_cpages; i++) {
|
|
struct page *page = dic->cpages[i];
|
|
block_t blkaddr;
|
|
struct bio_post_read_ctx *ctx;
|
|
|
|
blkaddr = data_blkaddr(dn.inode, dn.node_page,
|
|
dn.ofs_in_node + i + 1);
|
|
|
|
if (bio && (!page_is_mergeable(sbi, bio,
|
|
*last_block_in_bio, blkaddr) ||
|
|
!f2fs_crypt_mergeable_bio(bio, inode, page->index, NULL))) {
|
|
submit_and_realloc:
|
|
__submit_bio(sbi, bio, DATA);
|
|
bio = NULL;
|
|
}
|
|
|
|
if (!bio) {
|
|
bio = f2fs_grab_read_bio(inode, blkaddr, nr_pages,
|
|
is_readahead ? REQ_RAHEAD : 0,
|
|
page->index, for_write);
|
|
if (IS_ERR(bio)) {
|
|
ret = PTR_ERR(bio);
|
|
dic->failed = true;
|
|
if (!atomic_sub_return(dic->nr_cpages - i,
|
|
&dic->pending_pages)) {
|
|
f2fs_decompress_end_io(dic->rpages,
|
|
cc->cluster_size, true,
|
|
false);
|
|
f2fs_free_dic(dic);
|
|
}
|
|
f2fs_put_dnode(&dn);
|
|
*bio_ret = NULL;
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
f2fs_wait_on_block_writeback(inode, blkaddr);
|
|
|
|
if (bio_add_page(bio, page, blocksize, 0) < blocksize)
|
|
goto submit_and_realloc;
|
|
|
|
/* tag STEP_DECOMPRESS to handle IO in wq */
|
|
ctx = bio->bi_private;
|
|
if (!(ctx->enabled_steps & (1 << STEP_DECOMPRESS)))
|
|
ctx->enabled_steps |= 1 << STEP_DECOMPRESS;
|
|
|
|
inc_page_count(sbi, F2FS_RD_DATA);
|
|
f2fs_update_iostat(sbi, FS_DATA_READ_IO, F2FS_BLKSIZE);
|
|
f2fs_update_iostat(sbi, FS_CDATA_READ_IO, F2FS_BLKSIZE);
|
|
ClearPageError(page);
|
|
*last_block_in_bio = blkaddr;
|
|
}
|
|
|
|
f2fs_put_dnode(&dn);
|
|
|
|
*bio_ret = bio;
|
|
return 0;
|
|
|
|
out_put_dnode:
|
|
f2fs_put_dnode(&dn);
|
|
out:
|
|
f2fs_decompress_end_io(cc->rpages, cc->cluster_size, true, false);
|
|
*bio_ret = bio;
|
|
return ret;
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* This function was originally taken from fs/mpage.c, and customized for f2fs.
|
|
* Major change was from block_size == page_size in f2fs by default.
|
|
*
|
|
* Note that the aops->readpages() function is ONLY used for read-ahead. If
|
|
* this function ever deviates from doing just read-ahead, it should either
|
|
* use ->readpage() or do the necessary surgery to decouple ->readpages()
|
|
* from read-ahead.
|
|
*/
|
|
static int f2fs_mpage_readpages(struct inode *inode,
|
|
struct readahead_control *rac, struct page *page)
|
|
{
|
|
struct bio *bio = NULL;
|
|
sector_t last_block_in_bio = 0;
|
|
struct f2fs_map_blocks map;
|
|
#ifdef CONFIG_F2FS_FS_COMPRESSION
|
|
struct compress_ctx cc = {
|
|
.inode = inode,
|
|
.log_cluster_size = F2FS_I(inode)->i_log_cluster_size,
|
|
.cluster_size = F2FS_I(inode)->i_cluster_size,
|
|
.cluster_idx = NULL_CLUSTER,
|
|
.rpages = NULL,
|
|
.cpages = NULL,
|
|
.nr_rpages = 0,
|
|
.nr_cpages = 0,
|
|
};
|
|
#endif
|
|
unsigned nr_pages = rac ? readahead_count(rac) : 1;
|
|
unsigned max_nr_pages = nr_pages;
|
|
int ret = 0;
|
|
bool drop_ra = false;
|
|
|
|
map.m_pblk = 0;
|
|
map.m_lblk = 0;
|
|
map.m_len = 0;
|
|
map.m_flags = 0;
|
|
map.m_next_pgofs = NULL;
|
|
map.m_next_extent = NULL;
|
|
map.m_seg_type = NO_CHECK_TYPE;
|
|
map.m_may_create = false;
|
|
|
|
/*
|
|
* Two readahead threads for same address range can cause race condition
|
|
* which fragments sequential read IOs. So let's avoid each other.
|
|
*/
|
|
if (rac && readahead_count(rac)) {
|
|
if (READ_ONCE(F2FS_I(inode)->ra_offset) == readahead_index(rac))
|
|
drop_ra = true;
|
|
else
|
|
WRITE_ONCE(F2FS_I(inode)->ra_offset,
|
|
readahead_index(rac));
|
|
}
|
|
|
|
for (; nr_pages; nr_pages--) {
|
|
if (rac) {
|
|
page = readahead_page(rac);
|
|
prefetchw(&page->flags);
|
|
if (drop_ra) {
|
|
f2fs_put_page(page, 1);
|
|
continue;
|
|
}
|
|
}
|
|
|
|
#ifdef CONFIG_F2FS_FS_COMPRESSION
|
|
if (f2fs_compressed_file(inode)) {
|
|
/* there are remained comressed pages, submit them */
|
|
if (!f2fs_cluster_can_merge_page(&cc, page->index)) {
|
|
ret = f2fs_read_multi_pages(&cc, &bio,
|
|
max_nr_pages,
|
|
&last_block_in_bio,
|
|
rac != NULL, false);
|
|
f2fs_destroy_compress_ctx(&cc);
|
|
if (ret)
|
|
goto set_error_page;
|
|
}
|
|
ret = f2fs_is_compressed_cluster(inode, page->index);
|
|
if (ret < 0)
|
|
goto set_error_page;
|
|
else if (!ret)
|
|
goto read_single_page;
|
|
|
|
ret = f2fs_init_compress_ctx(&cc);
|
|
if (ret)
|
|
goto set_error_page;
|
|
|
|
f2fs_compress_ctx_add_page(&cc, page);
|
|
|
|
goto next_page;
|
|
}
|
|
read_single_page:
|
|
#endif
|
|
|
|
ret = f2fs_read_single_page(inode, page, max_nr_pages, &map,
|
|
&bio, &last_block_in_bio, rac);
|
|
if (ret) {
|
|
#ifdef CONFIG_F2FS_FS_COMPRESSION
|
|
set_error_page:
|
|
#endif
|
|
SetPageError(page);
|
|
zero_user_segment(page, 0, PAGE_SIZE);
|
|
unlock_page(page);
|
|
}
|
|
#ifdef CONFIG_F2FS_FS_COMPRESSION
|
|
next_page:
|
|
#endif
|
|
if (rac)
|
|
put_page(page);
|
|
|
|
#ifdef CONFIG_F2FS_FS_COMPRESSION
|
|
if (f2fs_compressed_file(inode)) {
|
|
/* last page */
|
|
if (nr_pages == 1 && !f2fs_cluster_is_empty(&cc)) {
|
|
ret = f2fs_read_multi_pages(&cc, &bio,
|
|
max_nr_pages,
|
|
&last_block_in_bio,
|
|
rac != NULL, false);
|
|
f2fs_destroy_compress_ctx(&cc);
|
|
}
|
|
}
|
|
#endif
|
|
}
|
|
if (bio)
|
|
__submit_bio(F2FS_I_SB(inode), bio, DATA);
|
|
|
|
if (rac && readahead_count(rac) && !drop_ra)
|
|
WRITE_ONCE(F2FS_I(inode)->ra_offset, -1);
|
|
return ret;
|
|
}
|
|
|
|
static int f2fs_read_data_page(struct file *file, struct page *page)
|
|
{
|
|
struct inode *inode = page_file_mapping(page)->host;
|
|
int ret = -EAGAIN;
|
|
|
|
trace_f2fs_readpage(page, DATA);
|
|
|
|
if (!f2fs_is_compress_backend_ready(inode)) {
|
|
unlock_page(page);
|
|
return -EOPNOTSUPP;
|
|
}
|
|
|
|
/* If the file has inline data, try to read it directly */
|
|
if (f2fs_has_inline_data(inode))
|
|
ret = f2fs_read_inline_data(inode, page);
|
|
if (ret == -EAGAIN)
|
|
ret = f2fs_mpage_readpages(inode, NULL, page);
|
|
return ret;
|
|
}
|
|
|
|
static void f2fs_readahead(struct readahead_control *rac)
|
|
{
|
|
struct inode *inode = rac->mapping->host;
|
|
|
|
trace_f2fs_readpages(inode, readahead_index(rac), readahead_count(rac));
|
|
|
|
if (!f2fs_is_compress_backend_ready(inode))
|
|
return;
|
|
|
|
/* If the file has inline data, skip readpages */
|
|
if (f2fs_has_inline_data(inode))
|
|
return;
|
|
|
|
f2fs_mpage_readpages(inode, rac, NULL);
|
|
}
|
|
|
|
int f2fs_encrypt_one_page(struct f2fs_io_info *fio)
|
|
{
|
|
struct inode *inode = fio->page->mapping->host;
|
|
struct page *mpage, *page;
|
|
gfp_t gfp_flags = GFP_NOFS;
|
|
|
|
if (!f2fs_encrypted_file(inode))
|
|
return 0;
|
|
|
|
page = fio->compressed_page ? fio->compressed_page : fio->page;
|
|
|
|
/* wait for GCed page writeback via META_MAPPING */
|
|
f2fs_wait_on_block_writeback(inode, fio->old_blkaddr);
|
|
|
|
if (fscrypt_inode_uses_inline_crypto(inode))
|
|
return 0;
|
|
|
|
retry_encrypt:
|
|
fio->encrypted_page = fscrypt_encrypt_pagecache_blocks(page,
|
|
PAGE_SIZE, 0, gfp_flags);
|
|
if (IS_ERR(fio->encrypted_page)) {
|
|
/* flush pending IOs and wait for a while in the ENOMEM case */
|
|
if (PTR_ERR(fio->encrypted_page) == -ENOMEM) {
|
|
f2fs_flush_merged_writes(fio->sbi);
|
|
congestion_wait(BLK_RW_ASYNC, DEFAULT_IO_TIMEOUT);
|
|
gfp_flags |= __GFP_NOFAIL;
|
|
goto retry_encrypt;
|
|
}
|
|
return PTR_ERR(fio->encrypted_page);
|
|
}
|
|
|
|
mpage = find_lock_page(META_MAPPING(fio->sbi), fio->old_blkaddr);
|
|
if (mpage) {
|
|
if (PageUptodate(mpage))
|
|
memcpy(page_address(mpage),
|
|
page_address(fio->encrypted_page), PAGE_SIZE);
|
|
f2fs_put_page(mpage, 1);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static inline bool check_inplace_update_policy(struct inode *inode,
|
|
struct f2fs_io_info *fio)
|
|
{
|
|
struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
|
|
unsigned int policy = SM_I(sbi)->ipu_policy;
|
|
|
|
if (policy & (0x1 << F2FS_IPU_FORCE))
|
|
return true;
|
|
if (policy & (0x1 << F2FS_IPU_SSR) && f2fs_need_SSR(sbi))
|
|
return true;
|
|
if (policy & (0x1 << F2FS_IPU_UTIL) &&
|
|
utilization(sbi) > SM_I(sbi)->min_ipu_util)
|
|
return true;
|
|
if (policy & (0x1 << F2FS_IPU_SSR_UTIL) && f2fs_need_SSR(sbi) &&
|
|
utilization(sbi) > SM_I(sbi)->min_ipu_util)
|
|
return true;
|
|
|
|
/*
|
|
* IPU for rewrite async pages
|
|
*/
|
|
if (policy & (0x1 << F2FS_IPU_ASYNC) &&
|
|
fio && fio->op == REQ_OP_WRITE &&
|
|
!(fio->op_flags & REQ_SYNC) &&
|
|
!IS_ENCRYPTED(inode))
|
|
return true;
|
|
|
|
/* this is only set during fdatasync */
|
|
if (policy & (0x1 << F2FS_IPU_FSYNC) &&
|
|
is_inode_flag_set(inode, FI_NEED_IPU))
|
|
return true;
|
|
|
|
if (unlikely(fio && is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
|
|
!f2fs_is_checkpointed_data(sbi, fio->old_blkaddr)))
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
bool f2fs_should_update_inplace(struct inode *inode, struct f2fs_io_info *fio)
|
|
{
|
|
if (f2fs_is_pinned_file(inode))
|
|
return true;
|
|
|
|
/* if this is cold file, we should overwrite to avoid fragmentation */
|
|
if (file_is_cold(inode))
|
|
return true;
|
|
|
|
return check_inplace_update_policy(inode, fio);
|
|
}
|
|
|
|
bool f2fs_should_update_outplace(struct inode *inode, struct f2fs_io_info *fio)
|
|
{
|
|
struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
|
|
|
|
if (f2fs_lfs_mode(sbi))
|
|
return true;
|
|
if (S_ISDIR(inode->i_mode))
|
|
return true;
|
|
if (IS_NOQUOTA(inode))
|
|
return true;
|
|
if (f2fs_is_atomic_file(inode))
|
|
return true;
|
|
if (fio) {
|
|
if (is_cold_data(fio->page))
|
|
return true;
|
|
if (IS_ATOMIC_WRITTEN_PAGE(fio->page))
|
|
return true;
|
|
if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
|
|
f2fs_is_checkpointed_data(sbi, fio->old_blkaddr)))
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
static inline bool need_inplace_update(struct f2fs_io_info *fio)
|
|
{
|
|
struct inode *inode = fio->page->mapping->host;
|
|
|
|
if (f2fs_should_update_outplace(inode, fio))
|
|
return false;
|
|
|
|
return f2fs_should_update_inplace(inode, fio);
|
|
}
|
|
|
|
int f2fs_do_write_data_page(struct f2fs_io_info *fio)
|
|
{
|
|
struct page *page = fio->page;
|
|
struct inode *inode = page->mapping->host;
|
|
struct dnode_of_data dn;
|
|
struct extent_info ei = {0,0,0};
|
|
struct node_info ni;
|
|
bool ipu_force = false;
|
|
int err = 0;
|
|
|
|
set_new_dnode(&dn, inode, NULL, NULL, 0);
|
|
if (need_inplace_update(fio) &&
|
|
f2fs_lookup_extent_cache(inode, page->index, &ei)) {
|
|
fio->old_blkaddr = ei.blk + page->index - ei.fofs;
|
|
|
|
if (!f2fs_is_valid_blkaddr(fio->sbi, fio->old_blkaddr,
|
|
DATA_GENERIC_ENHANCE))
|
|
return -EFSCORRUPTED;
|
|
|
|
ipu_force = true;
|
|
fio->need_lock = LOCK_DONE;
|
|
goto got_it;
|
|
}
|
|
|
|
/* Deadlock due to between page->lock and f2fs_lock_op */
|
|
if (fio->need_lock == LOCK_REQ && !f2fs_trylock_op(fio->sbi))
|
|
return -EAGAIN;
|
|
|
|
err = f2fs_get_dnode_of_data(&dn, page->index, LOOKUP_NODE);
|
|
if (err)
|
|
goto out;
|
|
|
|
fio->old_blkaddr = dn.data_blkaddr;
|
|
|
|
/* This page is already truncated */
|
|
if (fio->old_blkaddr == NULL_ADDR) {
|
|
ClearPageUptodate(page);
|
|
clear_cold_data(page);
|
|
goto out_writepage;
|
|
}
|
|
got_it:
|
|
if (__is_valid_data_blkaddr(fio->old_blkaddr) &&
|
|
!f2fs_is_valid_blkaddr(fio->sbi, fio->old_blkaddr,
|
|
DATA_GENERIC_ENHANCE)) {
|
|
err = -EFSCORRUPTED;
|
|
goto out_writepage;
|
|
}
|
|
/*
|
|
* If current allocation needs SSR,
|
|
* it had better in-place writes for updated data.
|
|
*/
|
|
if (ipu_force ||
|
|
(__is_valid_data_blkaddr(fio->old_blkaddr) &&
|
|
need_inplace_update(fio))) {
|
|
err = f2fs_encrypt_one_page(fio);
|
|
if (err)
|
|
goto out_writepage;
|
|
|
|
set_page_writeback(page);
|
|
ClearPageError(page);
|
|
f2fs_put_dnode(&dn);
|
|
if (fio->need_lock == LOCK_REQ)
|
|
f2fs_unlock_op(fio->sbi);
|
|
err = f2fs_inplace_write_data(fio);
|
|
if (err) {
|
|
if (fscrypt_inode_uses_fs_layer_crypto(inode))
|
|
fscrypt_finalize_bounce_page(&fio->encrypted_page);
|
|
if (PageWriteback(page))
|
|
end_page_writeback(page);
|
|
} else {
|
|
set_inode_flag(inode, FI_UPDATE_WRITE);
|
|
}
|
|
trace_f2fs_do_write_data_page(fio->page, IPU);
|
|
return err;
|
|
}
|
|
|
|
if (fio->need_lock == LOCK_RETRY) {
|
|
if (!f2fs_trylock_op(fio->sbi)) {
|
|
err = -EAGAIN;
|
|
goto out_writepage;
|
|
}
|
|
fio->need_lock = LOCK_REQ;
|
|
}
|
|
|
|
err = f2fs_get_node_info(fio->sbi, dn.nid, &ni);
|
|
if (err)
|
|
goto out_writepage;
|
|
|
|
fio->version = ni.version;
|
|
|
|
err = f2fs_encrypt_one_page(fio);
|
|
if (err)
|
|
goto out_writepage;
|
|
|
|
set_page_writeback(page);
|
|
ClearPageError(page);
|
|
|
|
if (fio->compr_blocks && fio->old_blkaddr == COMPRESS_ADDR)
|
|
f2fs_i_compr_blocks_update(inode, fio->compr_blocks - 1, false);
|
|
|
|
/* LFS mode write path */
|
|
f2fs_outplace_write_data(&dn, fio);
|
|
trace_f2fs_do_write_data_page(page, OPU);
|
|
set_inode_flag(inode, FI_APPEND_WRITE);
|
|
if (page->index == 0)
|
|
set_inode_flag(inode, FI_FIRST_BLOCK_WRITTEN);
|
|
out_writepage:
|
|
f2fs_put_dnode(&dn);
|
|
out:
|
|
if (fio->need_lock == LOCK_REQ)
|
|
f2fs_unlock_op(fio->sbi);
|
|
return err;
|
|
}
|
|
|
|
int f2fs_write_single_data_page(struct page *page, int *submitted,
|
|
struct bio **bio,
|
|
sector_t *last_block,
|
|
struct writeback_control *wbc,
|
|
enum iostat_type io_type,
|
|
int compr_blocks)
|
|
{
|
|
struct inode *inode = page->mapping->host;
|
|
struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
|
|
loff_t i_size = i_size_read(inode);
|
|
const pgoff_t end_index = ((unsigned long long)i_size)
|
|
>> PAGE_SHIFT;
|
|
loff_t psize = (loff_t)(page->index + 1) << PAGE_SHIFT;
|
|
unsigned offset = 0;
|
|
bool need_balance_fs = false;
|
|
int err = 0;
|
|
struct f2fs_io_info fio = {
|
|
.sbi = sbi,
|
|
.ino = inode->i_ino,
|
|
.type = DATA,
|
|
.op = REQ_OP_WRITE,
|
|
.op_flags = wbc_to_write_flags(wbc),
|
|
.old_blkaddr = NULL_ADDR,
|
|
.page = page,
|
|
.encrypted_page = NULL,
|
|
.submitted = false,
|
|
.compr_blocks = compr_blocks,
|
|
.need_lock = LOCK_RETRY,
|
|
.io_type = io_type,
|
|
.io_wbc = wbc,
|
|
.bio = bio,
|
|
.last_block = last_block,
|
|
};
|
|
|
|
trace_f2fs_writepage(page, DATA);
|
|
|
|
/* we should bypass data pages to proceed the kworkder jobs */
|
|
if (unlikely(f2fs_cp_error(sbi))) {
|
|
mapping_set_error(page->mapping, -EIO);
|
|
/*
|
|
* don't drop any dirty dentry pages for keeping lastest
|
|
* directory structure.
|
|
*/
|
|
if (S_ISDIR(inode->i_mode))
|
|
goto redirty_out;
|
|
goto out;
|
|
}
|
|
|
|
if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
|
|
goto redirty_out;
|
|
|
|
if (page->index < end_index ||
|
|
f2fs_verity_in_progress(inode) ||
|
|
compr_blocks)
|
|
goto write;
|
|
|
|
/*
|
|
* If the offset is out-of-range of file size,
|
|
* this page does not have to be written to disk.
|
|
*/
|
|
offset = i_size & (PAGE_SIZE - 1);
|
|
if ((page->index >= end_index + 1) || !offset)
|
|
goto out;
|
|
|
|
zero_user_segment(page, offset, PAGE_SIZE);
|
|
write:
|
|
if (f2fs_is_drop_cache(inode))
|
|
goto out;
|
|
/* we should not write 0'th page having journal header */
|
|
if (f2fs_is_volatile_file(inode) && (!page->index ||
|
|
(!wbc->for_reclaim &&
|
|
f2fs_available_free_memory(sbi, BASE_CHECK))))
|
|
goto redirty_out;
|
|
|
|
/* Dentry/quota blocks are controlled by checkpoint */
|
|
if (S_ISDIR(inode->i_mode) || IS_NOQUOTA(inode)) {
|
|
/*
|
|
* We need to wait for node_write to avoid block allocation during
|
|
* checkpoint. This can only happen to quota writes which can cause
|
|
* the below discard race condition.
|
|
*/
|
|
if (IS_NOQUOTA(inode))
|
|
down_read(&sbi->node_write);
|
|
|
|
fio.need_lock = LOCK_DONE;
|
|
err = f2fs_do_write_data_page(&fio);
|
|
|
|
if (IS_NOQUOTA(inode))
|
|
up_read(&sbi->node_write);
|
|
|
|
goto done;
|
|
}
|
|
|
|
if (!wbc->for_reclaim)
|
|
need_balance_fs = true;
|
|
else if (has_not_enough_free_secs(sbi, 0, 0))
|
|
goto redirty_out;
|
|
else
|
|
set_inode_flag(inode, FI_HOT_DATA);
|
|
|
|
err = -EAGAIN;
|
|
if (f2fs_has_inline_data(inode)) {
|
|
err = f2fs_write_inline_data(inode, page);
|
|
if (!err)
|
|
goto out;
|
|
}
|
|
|
|
if (err == -EAGAIN) {
|
|
err = f2fs_do_write_data_page(&fio);
|
|
if (err == -EAGAIN) {
|
|
fio.need_lock = LOCK_REQ;
|
|
err = f2fs_do_write_data_page(&fio);
|
|
}
|
|
}
|
|
|
|
if (err) {
|
|
file_set_keep_isize(inode);
|
|
} else {
|
|
spin_lock(&F2FS_I(inode)->i_size_lock);
|
|
if (F2FS_I(inode)->last_disk_size < psize)
|
|
F2FS_I(inode)->last_disk_size = psize;
|
|
spin_unlock(&F2FS_I(inode)->i_size_lock);
|
|
}
|
|
|
|
done:
|
|
if (err && err != -ENOENT)
|
|
goto redirty_out;
|
|
|
|
out:
|
|
inode_dec_dirty_pages(inode);
|
|
if (err) {
|
|
ClearPageUptodate(page);
|
|
clear_cold_data(page);
|
|
}
|
|
|
|
if (wbc->for_reclaim) {
|
|
f2fs_submit_merged_write_cond(sbi, NULL, page, 0, DATA);
|
|
clear_inode_flag(inode, FI_HOT_DATA);
|
|
f2fs_remove_dirty_inode(inode);
|
|
submitted = NULL;
|
|
}
|
|
unlock_page(page);
|
|
if (!S_ISDIR(inode->i_mode) && !IS_NOQUOTA(inode) &&
|
|
!F2FS_I(inode)->cp_task)
|
|
f2fs_balance_fs(sbi, need_balance_fs);
|
|
|
|
if (unlikely(f2fs_cp_error(sbi))) {
|
|
f2fs_submit_merged_write(sbi, DATA);
|
|
f2fs_submit_merged_ipu_write(sbi, bio, NULL);
|
|
submitted = NULL;
|
|
}
|
|
|
|
if (submitted)
|
|
*submitted = fio.submitted ? 1 : 0;
|
|
|
|
return 0;
|
|
|
|
redirty_out:
|
|
redirty_page_for_writepage(wbc, page);
|
|
/*
|
|
* pageout() in MM traslates EAGAIN, so calls handle_write_error()
|
|
* -> mapping_set_error() -> set_bit(AS_EIO, ...).
|
|
* file_write_and_wait_range() will see EIO error, which is critical
|
|
* to return value of fsync() followed by atomic_write failure to user.
|
|
*/
|
|
if (!err || wbc->for_reclaim)
|
|
return AOP_WRITEPAGE_ACTIVATE;
|
|
unlock_page(page);
|
|
return err;
|
|
}
|
|
|
|
static int f2fs_write_data_page(struct page *page,
|
|
struct writeback_control *wbc)
|
|
{
|
|
#ifdef CONFIG_F2FS_FS_COMPRESSION
|
|
struct inode *inode = page->mapping->host;
|
|
|
|
if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
|
|
goto out;
|
|
|
|
if (f2fs_compressed_file(inode)) {
|
|
if (f2fs_is_compressed_cluster(inode, page->index)) {
|
|
redirty_page_for_writepage(wbc, page);
|
|
return AOP_WRITEPAGE_ACTIVATE;
|
|
}
|
|
}
|
|
out:
|
|
#endif
|
|
|
|
return f2fs_write_single_data_page(page, NULL, NULL, NULL,
|
|
wbc, FS_DATA_IO, 0);
|
|
}
|
|
|
|
/*
|
|
* This function was copied from write_cche_pages from mm/page-writeback.c.
|
|
* The major change is making write step of cold data page separately from
|
|
* warm/hot data page.
|
|
*/
|
|
static int f2fs_write_cache_pages(struct address_space *mapping,
|
|
struct writeback_control *wbc,
|
|
enum iostat_type io_type)
|
|
{
|
|
int ret = 0;
|
|
int done = 0, retry = 0;
|
|
struct pagevec pvec;
|
|
struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
|
|
struct bio *bio = NULL;
|
|
sector_t last_block;
|
|
#ifdef CONFIG_F2FS_FS_COMPRESSION
|
|
struct inode *inode = mapping->host;
|
|
struct compress_ctx cc = {
|
|
.inode = inode,
|
|
.log_cluster_size = F2FS_I(inode)->i_log_cluster_size,
|
|
.cluster_size = F2FS_I(inode)->i_cluster_size,
|
|
.cluster_idx = NULL_CLUSTER,
|
|
.rpages = NULL,
|
|
.nr_rpages = 0,
|
|
.cpages = NULL,
|
|
.rbuf = NULL,
|
|
.cbuf = NULL,
|
|
.rlen = PAGE_SIZE * F2FS_I(inode)->i_cluster_size,
|
|
.private = NULL,
|
|
};
|
|
#endif
|
|
int nr_pages;
|
|
pgoff_t index;
|
|
pgoff_t end; /* Inclusive */
|
|
pgoff_t done_index;
|
|
int range_whole = 0;
|
|
xa_mark_t tag;
|
|
int nwritten = 0;
|
|
int submitted = 0;
|
|
int i;
|
|
|
|
pagevec_init(&pvec);
|
|
|
|
if (get_dirty_pages(mapping->host) <=
|
|
SM_I(F2FS_M_SB(mapping))->min_hot_blocks)
|
|
set_inode_flag(mapping->host, FI_HOT_DATA);
|
|
else
|
|
clear_inode_flag(mapping->host, FI_HOT_DATA);
|
|
|
|
if (wbc->range_cyclic) {
|
|
index = mapping->writeback_index; /* prev offset */
|
|
end = -1;
|
|
} else {
|
|
index = wbc->range_start >> PAGE_SHIFT;
|
|
end = wbc->range_end >> PAGE_SHIFT;
|
|
if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
|
|
range_whole = 1;
|
|
}
|
|
if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
|
|
tag = PAGECACHE_TAG_TOWRITE;
|
|
else
|
|
tag = PAGECACHE_TAG_DIRTY;
|
|
retry:
|
|
retry = 0;
|
|
if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
|
|
tag_pages_for_writeback(mapping, index, end);
|
|
done_index = index;
|
|
while (!done && !retry && (index <= end)) {
|
|
nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
|
|
tag);
|
|
if (nr_pages == 0)
|
|
break;
|
|
|
|
for (i = 0; i < nr_pages; i++) {
|
|
struct page *page = pvec.pages[i];
|
|
bool need_readd;
|
|
readd:
|
|
need_readd = false;
|
|
#ifdef CONFIG_F2FS_FS_COMPRESSION
|
|
if (f2fs_compressed_file(inode)) {
|
|
ret = f2fs_init_compress_ctx(&cc);
|
|
if (ret) {
|
|
done = 1;
|
|
break;
|
|
}
|
|
|
|
if (!f2fs_cluster_can_merge_page(&cc,
|
|
page->index)) {
|
|
ret = f2fs_write_multi_pages(&cc,
|
|
&submitted, wbc, io_type);
|
|
if (!ret)
|
|
need_readd = true;
|
|
goto result;
|
|
}
|
|
|
|
if (unlikely(f2fs_cp_error(sbi)))
|
|
goto lock_page;
|
|
|
|
if (f2fs_cluster_is_empty(&cc)) {
|
|
void *fsdata = NULL;
|
|
struct page *pagep;
|
|
int ret2;
|
|
|
|
ret2 = f2fs_prepare_compress_overwrite(
|
|
inode, &pagep,
|
|
page->index, &fsdata);
|
|
if (ret2 < 0) {
|
|
ret = ret2;
|
|
done = 1;
|
|
break;
|
|
} else if (ret2 &&
|
|
!f2fs_compress_write_end(inode,
|
|
fsdata, page->index,
|
|
1)) {
|
|
retry = 1;
|
|
break;
|
|
}
|
|
} else {
|
|
goto lock_page;
|
|
}
|
|
}
|
|
#endif
|
|
/* give a priority to WB_SYNC threads */
|
|
if (atomic_read(&sbi->wb_sync_req[DATA]) &&
|
|
wbc->sync_mode == WB_SYNC_NONE) {
|
|
done = 1;
|
|
break;
|
|
}
|
|
#ifdef CONFIG_F2FS_FS_COMPRESSION
|
|
lock_page:
|
|
#endif
|
|
done_index = page->index;
|
|
retry_write:
|
|
lock_page(page);
|
|
|
|
if (unlikely(page->mapping != mapping)) {
|
|
continue_unlock:
|
|
unlock_page(page);
|
|
continue;
|
|
}
|
|
|
|
if (!PageDirty(page)) {
|
|
/* someone wrote it for us */
|
|
goto continue_unlock;
|
|
}
|
|
|
|
if (PageWriteback(page)) {
|
|
if (wbc->sync_mode != WB_SYNC_NONE)
|
|
f2fs_wait_on_page_writeback(page,
|
|
DATA, true, true);
|
|
else
|
|
goto continue_unlock;
|
|
}
|
|
|
|
if (!clear_page_dirty_for_io(page))
|
|
goto continue_unlock;
|
|
|
|
#ifdef CONFIG_F2FS_FS_COMPRESSION
|
|
if (f2fs_compressed_file(inode)) {
|
|
get_page(page);
|
|
f2fs_compress_ctx_add_page(&cc, page);
|
|
continue;
|
|
}
|
|
#endif
|
|
ret = f2fs_write_single_data_page(page, &submitted,
|
|
&bio, &last_block, wbc, io_type, 0);
|
|
if (ret == AOP_WRITEPAGE_ACTIVATE)
|
|
unlock_page(page);
|
|
#ifdef CONFIG_F2FS_FS_COMPRESSION
|
|
result:
|
|
#endif
|
|
nwritten += submitted;
|
|
wbc->nr_to_write -= submitted;
|
|
|
|
if (unlikely(ret)) {
|
|
/*
|
|
* keep nr_to_write, since vfs uses this to
|
|
* get # of written pages.
|
|
*/
|
|
if (ret == AOP_WRITEPAGE_ACTIVATE) {
|
|
ret = 0;
|
|
goto next;
|
|
} else if (ret == -EAGAIN) {
|
|
ret = 0;
|
|
if (wbc->sync_mode == WB_SYNC_ALL) {
|
|
cond_resched();
|
|
congestion_wait(BLK_RW_ASYNC,
|
|
DEFAULT_IO_TIMEOUT);
|
|
goto retry_write;
|
|
}
|
|
goto next;
|
|
}
|
|
done_index = page->index + 1;
|
|
done = 1;
|
|
break;
|
|
}
|
|
|
|
if (wbc->nr_to_write <= 0 &&
|
|
wbc->sync_mode == WB_SYNC_NONE) {
|
|
done = 1;
|
|
break;
|
|
}
|
|
next:
|
|
if (need_readd)
|
|
goto readd;
|
|
}
|
|
pagevec_release(&pvec);
|
|
cond_resched();
|
|
}
|
|
#ifdef CONFIG_F2FS_FS_COMPRESSION
|
|
/* flush remained pages in compress cluster */
|
|
if (f2fs_compressed_file(inode) && !f2fs_cluster_is_empty(&cc)) {
|
|
ret = f2fs_write_multi_pages(&cc, &submitted, wbc, io_type);
|
|
nwritten += submitted;
|
|
wbc->nr_to_write -= submitted;
|
|
if (ret) {
|
|
done = 1;
|
|
retry = 0;
|
|
}
|
|
}
|
|
if (f2fs_compressed_file(inode))
|
|
f2fs_destroy_compress_ctx(&cc);
|
|
#endif
|
|
if (retry) {
|
|
index = 0;
|
|
end = -1;
|
|
goto retry;
|
|
}
|
|
if (wbc->range_cyclic && !done)
|
|
done_index = 0;
|
|
if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
|
|
mapping->writeback_index = done_index;
|
|
|
|
if (nwritten)
|
|
f2fs_submit_merged_write_cond(F2FS_M_SB(mapping), mapping->host,
|
|
NULL, 0, DATA);
|
|
/* submit cached bio of IPU write */
|
|
if (bio)
|
|
f2fs_submit_merged_ipu_write(sbi, &bio, NULL);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static inline bool __should_serialize_io(struct inode *inode,
|
|
struct writeback_control *wbc)
|
|
{
|
|
/* to avoid deadlock in path of data flush */
|
|
if (F2FS_I(inode)->cp_task)
|
|
return false;
|
|
|
|
if (!S_ISREG(inode->i_mode))
|
|
return false;
|
|
if (IS_NOQUOTA(inode))
|
|
return false;
|
|
|
|
if (f2fs_compressed_file(inode))
|
|
return true;
|
|
if (wbc->sync_mode != WB_SYNC_ALL)
|
|
return true;
|
|
if (get_dirty_pages(inode) >= SM_I(F2FS_I_SB(inode))->min_seq_blocks)
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
static int __f2fs_write_data_pages(struct address_space *mapping,
|
|
struct writeback_control *wbc,
|
|
enum iostat_type io_type)
|
|
{
|
|
struct inode *inode = mapping->host;
|
|
struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
|
|
struct blk_plug plug;
|
|
int ret;
|
|
bool locked = false;
|
|
|
|
/* deal with chardevs and other special file */
|
|
if (!mapping->a_ops->writepage)
|
|
return 0;
|
|
|
|
/* skip writing if there is no dirty page in this inode */
|
|
if (!get_dirty_pages(inode) && wbc->sync_mode == WB_SYNC_NONE)
|
|
return 0;
|
|
|
|
/* during POR, we don't need to trigger writepage at all. */
|
|
if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
|
|
goto skip_write;
|
|
|
|
if ((S_ISDIR(inode->i_mode) || IS_NOQUOTA(inode)) &&
|
|
wbc->sync_mode == WB_SYNC_NONE &&
|
|
get_dirty_pages(inode) < nr_pages_to_skip(sbi, DATA) &&
|
|
f2fs_available_free_memory(sbi, DIRTY_DENTS))
|
|
goto skip_write;
|
|
|
|
/* skip writing during file defragment */
|
|
if (is_inode_flag_set(inode, FI_DO_DEFRAG))
|
|
goto skip_write;
|
|
|
|
trace_f2fs_writepages(mapping->host, wbc, DATA);
|
|
|
|
/* to avoid spliting IOs due to mixed WB_SYNC_ALL and WB_SYNC_NONE */
|
|
if (wbc->sync_mode == WB_SYNC_ALL)
|
|
atomic_inc(&sbi->wb_sync_req[DATA]);
|
|
else if (atomic_read(&sbi->wb_sync_req[DATA]))
|
|
goto skip_write;
|
|
|
|
if (__should_serialize_io(inode, wbc)) {
|
|
mutex_lock(&sbi->writepages);
|
|
locked = true;
|
|
}
|
|
|
|
blk_start_plug(&plug);
|
|
ret = f2fs_write_cache_pages(mapping, wbc, io_type);
|
|
blk_finish_plug(&plug);
|
|
|
|
if (locked)
|
|
mutex_unlock(&sbi->writepages);
|
|
|
|
if (wbc->sync_mode == WB_SYNC_ALL)
|
|
atomic_dec(&sbi->wb_sync_req[DATA]);
|
|
/*
|
|
* if some pages were truncated, we cannot guarantee its mapping->host
|
|
* to detect pending bios.
|
|
*/
|
|
|
|
f2fs_remove_dirty_inode(inode);
|
|
return ret;
|
|
|
|
skip_write:
|
|
wbc->pages_skipped += get_dirty_pages(inode);
|
|
trace_f2fs_writepages(mapping->host, wbc, DATA);
|
|
return 0;
|
|
}
|
|
|
|
static int f2fs_write_data_pages(struct address_space *mapping,
|
|
struct writeback_control *wbc)
|
|
{
|
|
struct inode *inode = mapping->host;
|
|
|
|
return __f2fs_write_data_pages(mapping, wbc,
|
|
F2FS_I(inode)->cp_task == current ?
|
|
FS_CP_DATA_IO : FS_DATA_IO);
|
|
}
|
|
|
|
static void f2fs_write_failed(struct address_space *mapping, loff_t to)
|
|
{
|
|
struct inode *inode = mapping->host;
|
|
loff_t i_size = i_size_read(inode);
|
|
|
|
if (IS_NOQUOTA(inode))
|
|
return;
|
|
|
|
/* In the fs-verity case, f2fs_end_enable_verity() does the truncate */
|
|
if (to > i_size && !f2fs_verity_in_progress(inode)) {
|
|
down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
|
|
down_write(&F2FS_I(inode)->i_mmap_sem);
|
|
|
|
truncate_pagecache(inode, i_size);
|
|
f2fs_truncate_blocks(inode, i_size, true);
|
|
|
|
up_write(&F2FS_I(inode)->i_mmap_sem);
|
|
up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
|
|
}
|
|
}
|
|
|
|
static int prepare_write_begin(struct f2fs_sb_info *sbi,
|
|
struct page *page, loff_t pos, unsigned len,
|
|
block_t *blk_addr, bool *node_changed)
|
|
{
|
|
struct inode *inode = page->mapping->host;
|
|
pgoff_t index = page->index;
|
|
struct dnode_of_data dn;
|
|
struct page *ipage;
|
|
bool locked = false;
|
|
struct extent_info ei = {0,0,0};
|
|
int err = 0;
|
|
int flag;
|
|
|
|
/*
|
|
* we already allocated all the blocks, so we don't need to get
|
|
* the block addresses when there is no need to fill the page.
|
|
*/
|
|
if (!f2fs_has_inline_data(inode) && len == PAGE_SIZE &&
|
|
!is_inode_flag_set(inode, FI_NO_PREALLOC) &&
|
|
!f2fs_verity_in_progress(inode))
|
|
return 0;
|
|
|
|
/* f2fs_lock_op avoids race between write CP and convert_inline_page */
|
|
if (f2fs_has_inline_data(inode) && pos + len > MAX_INLINE_DATA(inode))
|
|
flag = F2FS_GET_BLOCK_DEFAULT;
|
|
else
|
|
flag = F2FS_GET_BLOCK_PRE_AIO;
|
|
|
|
if (f2fs_has_inline_data(inode) ||
|
|
(pos & PAGE_MASK) >= i_size_read(inode)) {
|
|
f2fs_do_map_lock(sbi, flag, true);
|
|
locked = true;
|
|
}
|
|
|
|
restart:
|
|
/* check inline_data */
|
|
ipage = f2fs_get_node_page(sbi, inode->i_ino);
|
|
if (IS_ERR(ipage)) {
|
|
err = PTR_ERR(ipage);
|
|
goto unlock_out;
|
|
}
|
|
|
|
set_new_dnode(&dn, inode, ipage, ipage, 0);
|
|
|
|
if (f2fs_has_inline_data(inode)) {
|
|
if (pos + len <= MAX_INLINE_DATA(inode)) {
|
|
f2fs_do_read_inline_data(page, ipage);
|
|
set_inode_flag(inode, FI_DATA_EXIST);
|
|
if (inode->i_nlink)
|
|
set_inline_node(ipage);
|
|
} else {
|
|
err = f2fs_convert_inline_page(&dn, page);
|
|
if (err)
|
|
goto out;
|
|
if (dn.data_blkaddr == NULL_ADDR)
|
|
err = f2fs_get_block(&dn, index);
|
|
}
|
|
} else if (locked) {
|
|
err = f2fs_get_block(&dn, index);
|
|
} else {
|
|
if (f2fs_lookup_extent_cache(inode, index, &ei)) {
|
|
dn.data_blkaddr = ei.blk + index - ei.fofs;
|
|
} else {
|
|
/* hole case */
|
|
err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE);
|
|
if (err || dn.data_blkaddr == NULL_ADDR) {
|
|
f2fs_put_dnode(&dn);
|
|
f2fs_do_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO,
|
|
true);
|
|
WARN_ON(flag != F2FS_GET_BLOCK_PRE_AIO);
|
|
locked = true;
|
|
goto restart;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* convert_inline_page can make node_changed */
|
|
*blk_addr = dn.data_blkaddr;
|
|
*node_changed = dn.node_changed;
|
|
out:
|
|
f2fs_put_dnode(&dn);
|
|
unlock_out:
|
|
if (locked)
|
|
f2fs_do_map_lock(sbi, flag, false);
|
|
return err;
|
|
}
|
|
|
|
static int f2fs_write_begin(struct file *file, struct address_space *mapping,
|
|
loff_t pos, unsigned len, unsigned flags,
|
|
struct page **pagep, void **fsdata)
|
|
{
|
|
struct inode *inode = mapping->host;
|
|
struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
|
|
struct page *page = NULL;
|
|
pgoff_t index = ((unsigned long long) pos) >> PAGE_SHIFT;
|
|
bool need_balance = false, drop_atomic = false;
|
|
block_t blkaddr = NULL_ADDR;
|
|
int err = 0;
|
|
|
|
trace_f2fs_write_begin(inode, pos, len, flags);
|
|
|
|
if (!f2fs_is_checkpoint_ready(sbi)) {
|
|
err = -ENOSPC;
|
|
goto fail;
|
|
}
|
|
|
|
if ((f2fs_is_atomic_file(inode) &&
|
|
!f2fs_available_free_memory(sbi, INMEM_PAGES)) ||
|
|
is_inode_flag_set(inode, FI_ATOMIC_REVOKE_REQUEST)) {
|
|
err = -ENOMEM;
|
|
drop_atomic = true;
|
|
goto fail;
|
|
}
|
|
|
|
/*
|
|
* We should check this at this moment to avoid deadlock on inode page
|
|
* and #0 page. The locking rule for inline_data conversion should be:
|
|
* lock_page(page #0) -> lock_page(inode_page)
|
|
*/
|
|
if (index != 0) {
|
|
err = f2fs_convert_inline_inode(inode);
|
|
if (err)
|
|
goto fail;
|
|
}
|
|
|
|
#ifdef CONFIG_F2FS_FS_COMPRESSION
|
|
if (f2fs_compressed_file(inode)) {
|
|
int ret;
|
|
|
|
*fsdata = NULL;
|
|
|
|
ret = f2fs_prepare_compress_overwrite(inode, pagep,
|
|
index, fsdata);
|
|
if (ret < 0) {
|
|
err = ret;
|
|
goto fail;
|
|
} else if (ret) {
|
|
return 0;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
repeat:
|
|
/*
|
|
* Do not use grab_cache_page_write_begin() to avoid deadlock due to
|
|
* wait_for_stable_page. Will wait that below with our IO control.
|
|
*/
|
|
page = f2fs_pagecache_get_page(mapping, index,
|
|
FGP_LOCK | FGP_WRITE | FGP_CREAT, GFP_NOFS);
|
|
if (!page) {
|
|
err = -ENOMEM;
|
|
goto fail;
|
|
}
|
|
|
|
/* TODO: cluster can be compressed due to race with .writepage */
|
|
|
|
*pagep = page;
|
|
|
|
err = prepare_write_begin(sbi, page, pos, len,
|
|
&blkaddr, &need_balance);
|
|
if (err)
|
|
goto fail;
|
|
|
|
if (need_balance && !IS_NOQUOTA(inode) &&
|
|
has_not_enough_free_secs(sbi, 0, 0)) {
|
|
unlock_page(page);
|
|
f2fs_balance_fs(sbi, true);
|
|
lock_page(page);
|
|
if (page->mapping != mapping) {
|
|
/* The page got truncated from under us */
|
|
f2fs_put_page(page, 1);
|
|
goto repeat;
|
|
}
|
|
}
|
|
|
|
f2fs_wait_on_page_writeback(page, DATA, false, true);
|
|
|
|
if (len == PAGE_SIZE || PageUptodate(page))
|
|
return 0;
|
|
|
|
if (!(pos & (PAGE_SIZE - 1)) && (pos + len) >= i_size_read(inode) &&
|
|
!f2fs_verity_in_progress(inode)) {
|
|
zero_user_segment(page, len, PAGE_SIZE);
|
|
return 0;
|
|
}
|
|
|
|
if (blkaddr == NEW_ADDR) {
|
|
zero_user_segment(page, 0, PAGE_SIZE);
|
|
SetPageUptodate(page);
|
|
} else {
|
|
if (!f2fs_is_valid_blkaddr(sbi, blkaddr,
|
|
DATA_GENERIC_ENHANCE_READ)) {
|
|
err = -EFSCORRUPTED;
|
|
goto fail;
|
|
}
|
|
err = f2fs_submit_page_read(inode, page, blkaddr, 0, true);
|
|
if (err)
|
|
goto fail;
|
|
|
|
lock_page(page);
|
|
if (unlikely(page->mapping != mapping)) {
|
|
f2fs_put_page(page, 1);
|
|
goto repeat;
|
|
}
|
|
if (unlikely(!PageUptodate(page))) {
|
|
err = -EIO;
|
|
goto fail;
|
|
}
|
|
}
|
|
return 0;
|
|
|
|
fail:
|
|
f2fs_put_page(page, 1);
|
|
f2fs_write_failed(mapping, pos + len);
|
|
if (drop_atomic)
|
|
f2fs_drop_inmem_pages_all(sbi, false);
|
|
return err;
|
|
}
|
|
|
|
static int f2fs_write_end(struct file *file,
|
|
struct address_space *mapping,
|
|
loff_t pos, unsigned len, unsigned copied,
|
|
struct page *page, void *fsdata)
|
|
{
|
|
struct inode *inode = page->mapping->host;
|
|
|
|
trace_f2fs_write_end(inode, pos, len, copied);
|
|
|
|
/*
|
|
* This should be come from len == PAGE_SIZE, and we expect copied
|
|
* should be PAGE_SIZE. Otherwise, we treat it with zero copied and
|
|
* let generic_perform_write() try to copy data again through copied=0.
|
|
*/
|
|
if (!PageUptodate(page)) {
|
|
if (unlikely(copied != len))
|
|
copied = 0;
|
|
else
|
|
SetPageUptodate(page);
|
|
}
|
|
|
|
#ifdef CONFIG_F2FS_FS_COMPRESSION
|
|
/* overwrite compressed file */
|
|
if (f2fs_compressed_file(inode) && fsdata) {
|
|
f2fs_compress_write_end(inode, fsdata, page->index, copied);
|
|
f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
|
|
|
|
if (pos + copied > i_size_read(inode) &&
|
|
!f2fs_verity_in_progress(inode))
|
|
f2fs_i_size_write(inode, pos + copied);
|
|
return copied;
|
|
}
|
|
#endif
|
|
|
|
if (!copied)
|
|
goto unlock_out;
|
|
|
|
set_page_dirty(page);
|
|
|
|
if (pos + copied > i_size_read(inode) &&
|
|
!f2fs_verity_in_progress(inode))
|
|
f2fs_i_size_write(inode, pos + copied);
|
|
unlock_out:
|
|
f2fs_put_page(page, 1);
|
|
f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
|
|
return copied;
|
|
}
|
|
|
|
static int check_direct_IO(struct inode *inode, struct iov_iter *iter,
|
|
loff_t offset)
|
|
{
|
|
unsigned i_blkbits = READ_ONCE(inode->i_blkbits);
|
|
unsigned blkbits = i_blkbits;
|
|
unsigned blocksize_mask = (1 << blkbits) - 1;
|
|
unsigned long align = offset | iov_iter_alignment(iter);
|
|
struct block_device *bdev = inode->i_sb->s_bdev;
|
|
|
|
if (iov_iter_rw(iter) == READ && offset >= i_size_read(inode))
|
|
return 1;
|
|
|
|
if (align & blocksize_mask) {
|
|
if (bdev)
|
|
blkbits = blksize_bits(bdev_logical_block_size(bdev));
|
|
blocksize_mask = (1 << blkbits) - 1;
|
|
if (align & blocksize_mask)
|
|
return -EINVAL;
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static void f2fs_dio_end_io(struct bio *bio)
|
|
{
|
|
struct f2fs_private_dio *dio = bio->bi_private;
|
|
|
|
dec_page_count(F2FS_I_SB(dio->inode),
|
|
dio->write ? F2FS_DIO_WRITE : F2FS_DIO_READ);
|
|
|
|
bio->bi_private = dio->orig_private;
|
|
bio->bi_end_io = dio->orig_end_io;
|
|
|
|
kfree(dio);
|
|
|
|
bio_endio(bio);
|
|
}
|
|
|
|
static void f2fs_dio_submit_bio(struct bio *bio, struct inode *inode,
|
|
loff_t file_offset)
|
|
{
|
|
struct f2fs_private_dio *dio;
|
|
bool write = (bio_op(bio) == REQ_OP_WRITE);
|
|
|
|
dio = f2fs_kzalloc(F2FS_I_SB(inode),
|
|
sizeof(struct f2fs_private_dio), GFP_NOFS);
|
|
if (!dio)
|
|
goto out;
|
|
|
|
dio->inode = inode;
|
|
dio->orig_end_io = bio->bi_end_io;
|
|
dio->orig_private = bio->bi_private;
|
|
dio->write = write;
|
|
|
|
bio->bi_end_io = f2fs_dio_end_io;
|
|
bio->bi_private = dio;
|
|
|
|
inc_page_count(F2FS_I_SB(inode),
|
|
write ? F2FS_DIO_WRITE : F2FS_DIO_READ);
|
|
|
|
submit_bio(bio);
|
|
return;
|
|
out:
|
|
bio->bi_status = BLK_STS_IOERR;
|
|
bio_endio(bio);
|
|
}
|
|
|
|
static ssize_t f2fs_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
|
|
{
|
|
struct address_space *mapping = iocb->ki_filp->f_mapping;
|
|
struct inode *inode = mapping->host;
|
|
struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
|
|
struct f2fs_inode_info *fi = F2FS_I(inode);
|
|
size_t count = iov_iter_count(iter);
|
|
loff_t offset = iocb->ki_pos;
|
|
int rw = iov_iter_rw(iter);
|
|
int err;
|
|
enum rw_hint hint = iocb->ki_hint;
|
|
int whint_mode = F2FS_OPTION(sbi).whint_mode;
|
|
bool do_opu;
|
|
|
|
err = check_direct_IO(inode, iter, offset);
|
|
if (err)
|
|
return err < 0 ? err : 0;
|
|
|
|
if (f2fs_force_buffered_io(inode, iocb, iter))
|
|
return 0;
|
|
|
|
do_opu = allow_outplace_dio(inode, iocb, iter);
|
|
|
|
trace_f2fs_direct_IO_enter(inode, offset, count, rw);
|
|
|
|
if (rw == WRITE && whint_mode == WHINT_MODE_OFF)
|
|
iocb->ki_hint = WRITE_LIFE_NOT_SET;
|
|
|
|
if (iocb->ki_flags & IOCB_NOWAIT) {
|
|
if (!down_read_trylock(&fi->i_gc_rwsem[rw])) {
|
|
iocb->ki_hint = hint;
|
|
err = -EAGAIN;
|
|
goto out;
|
|
}
|
|
if (do_opu && !down_read_trylock(&fi->i_gc_rwsem[READ])) {
|
|
up_read(&fi->i_gc_rwsem[rw]);
|
|
iocb->ki_hint = hint;
|
|
err = -EAGAIN;
|
|
goto out;
|
|
}
|
|
} else {
|
|
down_read(&fi->i_gc_rwsem[rw]);
|
|
if (do_opu)
|
|
down_read(&fi->i_gc_rwsem[READ]);
|
|
}
|
|
|
|
err = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev,
|
|
iter, rw == WRITE ? get_data_block_dio_write :
|
|
get_data_block_dio, NULL, f2fs_dio_submit_bio,
|
|
rw == WRITE ? DIO_LOCKING | DIO_SKIP_HOLES :
|
|
DIO_SKIP_HOLES);
|
|
|
|
if (do_opu)
|
|
up_read(&fi->i_gc_rwsem[READ]);
|
|
|
|
up_read(&fi->i_gc_rwsem[rw]);
|
|
|
|
if (rw == WRITE) {
|
|
if (whint_mode == WHINT_MODE_OFF)
|
|
iocb->ki_hint = hint;
|
|
if (err > 0) {
|
|
f2fs_update_iostat(F2FS_I_SB(inode), APP_DIRECT_IO,
|
|
err);
|
|
if (!do_opu)
|
|
set_inode_flag(inode, FI_UPDATE_WRITE);
|
|
} else if (err == -EIOCBQUEUED) {
|
|
f2fs_update_iostat(F2FS_I_SB(inode), APP_DIRECT_IO,
|
|
count - iov_iter_count(iter));
|
|
} else if (err < 0) {
|
|
f2fs_write_failed(mapping, offset + count);
|
|
}
|
|
} else {
|
|
if (err > 0)
|
|
f2fs_update_iostat(sbi, APP_DIRECT_READ_IO, err);
|
|
else if (err == -EIOCBQUEUED)
|
|
f2fs_update_iostat(F2FS_I_SB(inode), APP_DIRECT_READ_IO,
|
|
count - iov_iter_count(iter));
|
|
}
|
|
|
|
out:
|
|
trace_f2fs_direct_IO_exit(inode, offset, count, rw, err);
|
|
|
|
return err;
|
|
}
|
|
|
|
void f2fs_invalidate_page(struct page *page, unsigned int offset,
|
|
unsigned int length)
|
|
{
|
|
struct inode *inode = page->mapping->host;
|
|
struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
|
|
|
|
if (inode->i_ino >= F2FS_ROOT_INO(sbi) &&
|
|
(offset % PAGE_SIZE || length != PAGE_SIZE))
|
|
return;
|
|
|
|
if (PageDirty(page)) {
|
|
if (inode->i_ino == F2FS_META_INO(sbi)) {
|
|
dec_page_count(sbi, F2FS_DIRTY_META);
|
|
} else if (inode->i_ino == F2FS_NODE_INO(sbi)) {
|
|
dec_page_count(sbi, F2FS_DIRTY_NODES);
|
|
} else {
|
|
inode_dec_dirty_pages(inode);
|
|
f2fs_remove_dirty_inode(inode);
|
|
}
|
|
}
|
|
|
|
clear_cold_data(page);
|
|
|
|
if (IS_ATOMIC_WRITTEN_PAGE(page))
|
|
return f2fs_drop_inmem_page(inode, page);
|
|
|
|
f2fs_clear_page_private(page);
|
|
}
|
|
|
|
int f2fs_release_page(struct page *page, gfp_t wait)
|
|
{
|
|
/* If this is dirty page, keep PagePrivate */
|
|
if (PageDirty(page))
|
|
return 0;
|
|
|
|
/* This is atomic written page, keep Private */
|
|
if (IS_ATOMIC_WRITTEN_PAGE(page))
|
|
return 0;
|
|
|
|
clear_cold_data(page);
|
|
f2fs_clear_page_private(page);
|
|
return 1;
|
|
}
|
|
|
|
static int f2fs_set_data_page_dirty(struct page *page)
|
|
{
|
|
struct inode *inode = page_file_mapping(page)->host;
|
|
|
|
trace_f2fs_set_page_dirty(page, DATA);
|
|
|
|
if (!PageUptodate(page))
|
|
SetPageUptodate(page);
|
|
if (PageSwapCache(page))
|
|
return __set_page_dirty_nobuffers(page);
|
|
|
|
if (f2fs_is_atomic_file(inode) && !f2fs_is_commit_atomic_write(inode)) {
|
|
if (!IS_ATOMIC_WRITTEN_PAGE(page)) {
|
|
f2fs_register_inmem_page(inode, page);
|
|
return 1;
|
|
}
|
|
/*
|
|
* Previously, this page has been registered, we just
|
|
* return here.
|
|
*/
|
|
return 0;
|
|
}
|
|
|
|
if (!PageDirty(page)) {
|
|
__set_page_dirty_nobuffers(page);
|
|
f2fs_update_dirty_page(inode, page);
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
|
|
static sector_t f2fs_bmap_compress(struct inode *inode, sector_t block)
|
|
{
|
|
#ifdef CONFIG_F2FS_FS_COMPRESSION
|
|
struct dnode_of_data dn;
|
|
sector_t start_idx, blknr = 0;
|
|
int ret;
|
|
|
|
start_idx = round_down(block, F2FS_I(inode)->i_cluster_size);
|
|
|
|
set_new_dnode(&dn, inode, NULL, NULL, 0);
|
|
ret = f2fs_get_dnode_of_data(&dn, start_idx, LOOKUP_NODE);
|
|
if (ret)
|
|
return 0;
|
|
|
|
if (dn.data_blkaddr != COMPRESS_ADDR) {
|
|
dn.ofs_in_node += block - start_idx;
|
|
blknr = f2fs_data_blkaddr(&dn);
|
|
if (!__is_valid_data_blkaddr(blknr))
|
|
blknr = 0;
|
|
}
|
|
|
|
f2fs_put_dnode(&dn);
|
|
return blknr;
|
|
#else
|
|
return 0;
|
|
#endif
|
|
}
|
|
|
|
|
|
static sector_t f2fs_bmap(struct address_space *mapping, sector_t block)
|
|
{
|
|
struct inode *inode = mapping->host;
|
|
struct buffer_head tmp = {
|
|
.b_size = i_blocksize(inode),
|
|
};
|
|
sector_t blknr = 0;
|
|
|
|
if (f2fs_has_inline_data(inode))
|
|
goto out;
|
|
|
|
/* make sure allocating whole blocks */
|
|
if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
|
|
filemap_write_and_wait(mapping);
|
|
|
|
/* Block number less than F2FS MAX BLOCKS */
|
|
if (unlikely(block >= F2FS_I_SB(inode)->max_file_blocks))
|
|
goto out;
|
|
|
|
if (f2fs_compressed_file(inode)) {
|
|
blknr = f2fs_bmap_compress(inode, block);
|
|
} else {
|
|
if (!get_data_block_bmap(inode, block, &tmp, 0))
|
|
blknr = tmp.b_blocknr;
|
|
}
|
|
out:
|
|
trace_f2fs_bmap(inode, block, blknr);
|
|
return blknr;
|
|
}
|
|
|
|
#ifdef CONFIG_MIGRATION
|
|
#include <linux/migrate.h>
|
|
|
|
int f2fs_migrate_page(struct address_space *mapping,
|
|
struct page *newpage, struct page *page, enum migrate_mode mode)
|
|
{
|
|
int rc, extra_count;
|
|
struct f2fs_inode_info *fi = F2FS_I(mapping->host);
|
|
bool atomic_written = IS_ATOMIC_WRITTEN_PAGE(page);
|
|
|
|
BUG_ON(PageWriteback(page));
|
|
|
|
/* migrating an atomic written page is safe with the inmem_lock hold */
|
|
if (atomic_written) {
|
|
if (mode != MIGRATE_SYNC)
|
|
return -EBUSY;
|
|
if (!mutex_trylock(&fi->inmem_lock))
|
|
return -EAGAIN;
|
|
}
|
|
|
|
/* one extra reference was held for atomic_write page */
|
|
extra_count = atomic_written ? 1 : 0;
|
|
rc = migrate_page_move_mapping(mapping, newpage,
|
|
page, extra_count);
|
|
if (rc != MIGRATEPAGE_SUCCESS) {
|
|
if (atomic_written)
|
|
mutex_unlock(&fi->inmem_lock);
|
|
return rc;
|
|
}
|
|
|
|
if (atomic_written) {
|
|
struct inmem_pages *cur;
|
|
list_for_each_entry(cur, &fi->inmem_pages, list)
|
|
if (cur->page == page) {
|
|
cur->page = newpage;
|
|
break;
|
|
}
|
|
mutex_unlock(&fi->inmem_lock);
|
|
put_page(page);
|
|
get_page(newpage);
|
|
}
|
|
|
|
if (PagePrivate(page)) {
|
|
f2fs_set_page_private(newpage, page_private(page));
|
|
f2fs_clear_page_private(page);
|
|
}
|
|
|
|
if (mode != MIGRATE_SYNC_NO_COPY)
|
|
migrate_page_copy(newpage, page);
|
|
else
|
|
migrate_page_states(newpage, page);
|
|
|
|
return MIGRATEPAGE_SUCCESS;
|
|
}
|
|
#endif
|
|
|
|
#ifdef CONFIG_SWAP
|
|
static int check_swap_activate_fast(struct swap_info_struct *sis,
|
|
struct file *swap_file, sector_t *span)
|
|
{
|
|
struct address_space *mapping = swap_file->f_mapping;
|
|
struct inode *inode = mapping->host;
|
|
sector_t cur_lblock;
|
|
sector_t last_lblock;
|
|
sector_t pblock;
|
|
sector_t lowest_pblock = -1;
|
|
sector_t highest_pblock = 0;
|
|
int nr_extents = 0;
|
|
unsigned long nr_pblocks;
|
|
unsigned long len;
|
|
int ret;
|
|
|
|
/*
|
|
* Map all the blocks into the extent list. This code doesn't try
|
|
* to be very smart.
|
|
*/
|
|
cur_lblock = 0;
|
|
last_lblock = logical_to_blk(inode, i_size_read(inode));
|
|
len = i_size_read(inode);
|
|
|
|
while (cur_lblock <= last_lblock && cur_lblock < sis->max) {
|
|
struct buffer_head map_bh;
|
|
pgoff_t next_pgofs;
|
|
|
|
cond_resched();
|
|
|
|
memset(&map_bh, 0, sizeof(struct buffer_head));
|
|
map_bh.b_size = len - cur_lblock;
|
|
|
|
ret = get_data_block(inode, cur_lblock, &map_bh, 0,
|
|
F2FS_GET_BLOCK_FIEMAP, &next_pgofs);
|
|
if (ret)
|
|
goto err_out;
|
|
|
|
/* hole */
|
|
if (!buffer_mapped(&map_bh))
|
|
goto err_out;
|
|
|
|
pblock = map_bh.b_blocknr;
|
|
nr_pblocks = logical_to_blk(inode, map_bh.b_size);
|
|
|
|
if (cur_lblock + nr_pblocks >= sis->max)
|
|
nr_pblocks = sis->max - cur_lblock;
|
|
|
|
if (cur_lblock) { /* exclude the header page */
|
|
if (pblock < lowest_pblock)
|
|
lowest_pblock = pblock;
|
|
if (pblock + nr_pblocks - 1 > highest_pblock)
|
|
highest_pblock = pblock + nr_pblocks - 1;
|
|
}
|
|
|
|
/*
|
|
* We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks
|
|
*/
|
|
ret = add_swap_extent(sis, cur_lblock, nr_pblocks, pblock);
|
|
if (ret < 0)
|
|
goto out;
|
|
nr_extents += ret;
|
|
cur_lblock += nr_pblocks;
|
|
}
|
|
ret = nr_extents;
|
|
*span = 1 + highest_pblock - lowest_pblock;
|
|
if (cur_lblock == 0)
|
|
cur_lblock = 1; /* force Empty message */
|
|
sis->max = cur_lblock;
|
|
sis->pages = cur_lblock - 1;
|
|
sis->highest_bit = cur_lblock - 1;
|
|
out:
|
|
return ret;
|
|
err_out:
|
|
pr_err("swapon: swapfile has holes\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* Copied from generic_swapfile_activate() to check any holes */
|
|
static int check_swap_activate(struct swap_info_struct *sis,
|
|
struct file *swap_file, sector_t *span)
|
|
{
|
|
struct address_space *mapping = swap_file->f_mapping;
|
|
struct inode *inode = mapping->host;
|
|
unsigned blocks_per_page;
|
|
unsigned long page_no;
|
|
unsigned blkbits;
|
|
sector_t probe_block;
|
|
sector_t last_block;
|
|
sector_t lowest_block = -1;
|
|
sector_t highest_block = 0;
|
|
int nr_extents = 0;
|
|
int ret;
|
|
|
|
if (PAGE_SIZE == F2FS_BLKSIZE)
|
|
return check_swap_activate_fast(sis, swap_file, span);
|
|
|
|
blkbits = inode->i_blkbits;
|
|
blocks_per_page = PAGE_SIZE >> blkbits;
|
|
|
|
/*
|
|
* Map all the blocks into the extent list. This code doesn't try
|
|
* to be very smart.
|
|
*/
|
|
probe_block = 0;
|
|
page_no = 0;
|
|
last_block = i_size_read(inode) >> blkbits;
|
|
while ((probe_block + blocks_per_page) <= last_block &&
|
|
page_no < sis->max) {
|
|
unsigned block_in_page;
|
|
sector_t first_block;
|
|
sector_t block = 0;
|
|
int err = 0;
|
|
|
|
cond_resched();
|
|
|
|
block = probe_block;
|
|
err = bmap(inode, &block);
|
|
if (err || !block)
|
|
goto bad_bmap;
|
|
first_block = block;
|
|
|
|
/*
|
|
* It must be PAGE_SIZE aligned on-disk
|
|
*/
|
|
if (first_block & (blocks_per_page - 1)) {
|
|
probe_block++;
|
|
goto reprobe;
|
|
}
|
|
|
|
for (block_in_page = 1; block_in_page < blocks_per_page;
|
|
block_in_page++) {
|
|
|
|
block = probe_block + block_in_page;
|
|
err = bmap(inode, &block);
|
|
|
|
if (err || !block)
|
|
goto bad_bmap;
|
|
|
|
if (block != first_block + block_in_page) {
|
|
/* Discontiguity */
|
|
probe_block++;
|
|
goto reprobe;
|
|
}
|
|
}
|
|
|
|
first_block >>= (PAGE_SHIFT - blkbits);
|
|
if (page_no) { /* exclude the header page */
|
|
if (first_block < lowest_block)
|
|
lowest_block = first_block;
|
|
if (first_block > highest_block)
|
|
highest_block = first_block;
|
|
}
|
|
|
|
/*
|
|
* We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks
|
|
*/
|
|
ret = add_swap_extent(sis, page_no, 1, first_block);
|
|
if (ret < 0)
|
|
goto out;
|
|
nr_extents += ret;
|
|
page_no++;
|
|
probe_block += blocks_per_page;
|
|
reprobe:
|
|
continue;
|
|
}
|
|
ret = nr_extents;
|
|
*span = 1 + highest_block - lowest_block;
|
|
if (page_no == 0)
|
|
page_no = 1; /* force Empty message */
|
|
sis->max = page_no;
|
|
sis->pages = page_no - 1;
|
|
sis->highest_bit = page_no - 1;
|
|
out:
|
|
return ret;
|
|
bad_bmap:
|
|
pr_err("swapon: swapfile has holes\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
static int f2fs_swap_activate(struct swap_info_struct *sis, struct file *file,
|
|
sector_t *span)
|
|
{
|
|
struct inode *inode = file_inode(file);
|
|
int ret;
|
|
|
|
if (!S_ISREG(inode->i_mode))
|
|
return -EINVAL;
|
|
|
|
if (f2fs_readonly(F2FS_I_SB(inode)->sb))
|
|
return -EROFS;
|
|
|
|
ret = f2fs_convert_inline_inode(inode);
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (!f2fs_disable_compressed_file(inode))
|
|
return -EINVAL;
|
|
|
|
ret = check_swap_activate(sis, file, span);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
set_inode_flag(inode, FI_PIN_FILE);
|
|
f2fs_precache_extents(inode);
|
|
f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
|
|
return ret;
|
|
}
|
|
|
|
static void f2fs_swap_deactivate(struct file *file)
|
|
{
|
|
struct inode *inode = file_inode(file);
|
|
|
|
clear_inode_flag(inode, FI_PIN_FILE);
|
|
}
|
|
#else
|
|
static int f2fs_swap_activate(struct swap_info_struct *sis, struct file *file,
|
|
sector_t *span)
|
|
{
|
|
return -EOPNOTSUPP;
|
|
}
|
|
|
|
static void f2fs_swap_deactivate(struct file *file)
|
|
{
|
|
}
|
|
#endif
|
|
|
|
const struct address_space_operations f2fs_dblock_aops = {
|
|
.readpage = f2fs_read_data_page,
|
|
.readahead = f2fs_readahead,
|
|
.writepage = f2fs_write_data_page,
|
|
.writepages = f2fs_write_data_pages,
|
|
.write_begin = f2fs_write_begin,
|
|
.write_end = f2fs_write_end,
|
|
.set_page_dirty = f2fs_set_data_page_dirty,
|
|
.invalidatepage = f2fs_invalidate_page,
|
|
.releasepage = f2fs_release_page,
|
|
.direct_IO = f2fs_direct_IO,
|
|
.bmap = f2fs_bmap,
|
|
.swap_activate = f2fs_swap_activate,
|
|
.swap_deactivate = f2fs_swap_deactivate,
|
|
#ifdef CONFIG_MIGRATION
|
|
.migratepage = f2fs_migrate_page,
|
|
#endif
|
|
};
|
|
|
|
void f2fs_clear_page_cache_dirty_tag(struct page *page)
|
|
{
|
|
struct address_space *mapping = page_mapping(page);
|
|
unsigned long flags;
|
|
|
|
xa_lock_irqsave(&mapping->i_pages, flags);
|
|
__xa_clear_mark(&mapping->i_pages, page_index(page),
|
|
PAGECACHE_TAG_DIRTY);
|
|
xa_unlock_irqrestore(&mapping->i_pages, flags);
|
|
}
|
|
|
|
int __init f2fs_init_post_read_processing(void)
|
|
{
|
|
bio_post_read_ctx_cache =
|
|
kmem_cache_create("f2fs_bio_post_read_ctx",
|
|
sizeof(struct bio_post_read_ctx), 0, 0, NULL);
|
|
if (!bio_post_read_ctx_cache)
|
|
goto fail;
|
|
bio_post_read_ctx_pool =
|
|
mempool_create_slab_pool(NUM_PREALLOC_POST_READ_CTXS,
|
|
bio_post_read_ctx_cache);
|
|
if (!bio_post_read_ctx_pool)
|
|
goto fail_free_cache;
|
|
return 0;
|
|
|
|
fail_free_cache:
|
|
kmem_cache_destroy(bio_post_read_ctx_cache);
|
|
fail:
|
|
return -ENOMEM;
|
|
}
|
|
|
|
void f2fs_destroy_post_read_processing(void)
|
|
{
|
|
mempool_destroy(bio_post_read_ctx_pool);
|
|
kmem_cache_destroy(bio_post_read_ctx_cache);
|
|
}
|
|
|
|
int f2fs_init_post_read_wq(struct f2fs_sb_info *sbi)
|
|
{
|
|
if (!f2fs_sb_has_encrypt(sbi) &&
|
|
!f2fs_sb_has_verity(sbi) &&
|
|
!f2fs_sb_has_compression(sbi))
|
|
return 0;
|
|
|
|
sbi->post_read_wq = alloc_workqueue("f2fs_post_read_wq",
|
|
WQ_UNBOUND | WQ_HIGHPRI,
|
|
num_online_cpus());
|
|
if (!sbi->post_read_wq)
|
|
return -ENOMEM;
|
|
return 0;
|
|
}
|
|
|
|
void f2fs_destroy_post_read_wq(struct f2fs_sb_info *sbi)
|
|
{
|
|
if (sbi->post_read_wq)
|
|
destroy_workqueue(sbi->post_read_wq);
|
|
}
|
|
|
|
int __init f2fs_init_bio_entry_cache(void)
|
|
{
|
|
bio_entry_slab = f2fs_kmem_cache_create("f2fs_bio_entry_slab",
|
|
sizeof(struct bio_entry));
|
|
if (!bio_entry_slab)
|
|
return -ENOMEM;
|
|
return 0;
|
|
}
|
|
|
|
void f2fs_destroy_bio_entry_cache(void)
|
|
{
|
|
kmem_cache_destroy(bio_entry_slab);
|
|
}
|