mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2024-12-05 07:36:56 +07:00
5a0e3ad6af
percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
543 lines
14 KiB
C
543 lines
14 KiB
C
/*
|
|
* page.c - buffer/page management specific to NILFS
|
|
*
|
|
* Copyright (C) 2005-2008 Nippon Telegraph and Telephone Corporation.
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; either version 2 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software
|
|
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
|
|
*
|
|
* Written by Ryusuke Konishi <ryusuke@osrg.net>,
|
|
* Seiji Kihara <kihara@osrg.net>.
|
|
*/
|
|
|
|
#include <linux/pagemap.h>
|
|
#include <linux/writeback.h>
|
|
#include <linux/swap.h>
|
|
#include <linux/bitops.h>
|
|
#include <linux/page-flags.h>
|
|
#include <linux/list.h>
|
|
#include <linux/highmem.h>
|
|
#include <linux/pagevec.h>
|
|
#include <linux/gfp.h>
|
|
#include "nilfs.h"
|
|
#include "page.h"
|
|
#include "mdt.h"
|
|
|
|
|
|
#define NILFS_BUFFER_INHERENT_BITS \
|
|
((1UL << BH_Uptodate) | (1UL << BH_Mapped) | (1UL << BH_NILFS_Node) | \
|
|
(1UL << BH_NILFS_Volatile) | (1UL << BH_NILFS_Allocated))
|
|
|
|
static struct buffer_head *
|
|
__nilfs_get_page_block(struct page *page, unsigned long block, pgoff_t index,
|
|
int blkbits, unsigned long b_state)
|
|
|
|
{
|
|
unsigned long first_block;
|
|
struct buffer_head *bh;
|
|
|
|
if (!page_has_buffers(page))
|
|
create_empty_buffers(page, 1 << blkbits, b_state);
|
|
|
|
first_block = (unsigned long)index << (PAGE_CACHE_SHIFT - blkbits);
|
|
bh = nilfs_page_get_nth_block(page, block - first_block);
|
|
|
|
touch_buffer(bh);
|
|
wait_on_buffer(bh);
|
|
return bh;
|
|
}
|
|
|
|
/*
|
|
* Since the page cache of B-tree node pages or data page cache of pseudo
|
|
* inodes does not have a valid mapping->host pointer, calling
|
|
* mark_buffer_dirty() for their buffers causes a NULL pointer dereference;
|
|
* it calls __mark_inode_dirty(NULL) through __set_page_dirty().
|
|
* To avoid this problem, the old style mark_buffer_dirty() is used instead.
|
|
*/
|
|
void nilfs_mark_buffer_dirty(struct buffer_head *bh)
|
|
{
|
|
if (!buffer_dirty(bh) && !test_set_buffer_dirty(bh))
|
|
__set_page_dirty_nobuffers(bh->b_page);
|
|
}
|
|
|
|
struct buffer_head *nilfs_grab_buffer(struct inode *inode,
|
|
struct address_space *mapping,
|
|
unsigned long blkoff,
|
|
unsigned long b_state)
|
|
{
|
|
int blkbits = inode->i_blkbits;
|
|
pgoff_t index = blkoff >> (PAGE_CACHE_SHIFT - blkbits);
|
|
struct page *page, *opage;
|
|
struct buffer_head *bh, *obh;
|
|
|
|
page = grab_cache_page(mapping, index);
|
|
if (unlikely(!page))
|
|
return NULL;
|
|
|
|
bh = __nilfs_get_page_block(page, blkoff, index, blkbits, b_state);
|
|
if (unlikely(!bh)) {
|
|
unlock_page(page);
|
|
page_cache_release(page);
|
|
return NULL;
|
|
}
|
|
if (!buffer_uptodate(bh) && mapping->assoc_mapping != NULL) {
|
|
/*
|
|
* Shadow page cache uses assoc_mapping to point its original
|
|
* page cache. The following code tries the original cache
|
|
* if the given cache is a shadow and it didn't hit.
|
|
*/
|
|
opage = find_lock_page(mapping->assoc_mapping, index);
|
|
if (!opage)
|
|
return bh;
|
|
|
|
obh = __nilfs_get_page_block(opage, blkoff, index, blkbits,
|
|
b_state);
|
|
if (buffer_uptodate(obh)) {
|
|
nilfs_copy_buffer(bh, obh);
|
|
if (buffer_dirty(obh)) {
|
|
nilfs_mark_buffer_dirty(bh);
|
|
if (!buffer_nilfs_node(bh) && NILFS_MDT(inode))
|
|
nilfs_mdt_mark_dirty(inode);
|
|
}
|
|
}
|
|
brelse(obh);
|
|
unlock_page(opage);
|
|
page_cache_release(opage);
|
|
}
|
|
return bh;
|
|
}
|
|
|
|
/**
|
|
* nilfs_forget_buffer - discard dirty state
|
|
* @inode: owner inode of the buffer
|
|
* @bh: buffer head of the buffer to be discarded
|
|
*/
|
|
void nilfs_forget_buffer(struct buffer_head *bh)
|
|
{
|
|
struct page *page = bh->b_page;
|
|
|
|
lock_buffer(bh);
|
|
clear_buffer_nilfs_volatile(bh);
|
|
clear_buffer_dirty(bh);
|
|
if (nilfs_page_buffers_clean(page))
|
|
__nilfs_clear_page_dirty(page);
|
|
|
|
clear_buffer_uptodate(bh);
|
|
clear_buffer_mapped(bh);
|
|
bh->b_blocknr = -1;
|
|
ClearPageUptodate(page);
|
|
ClearPageMappedToDisk(page);
|
|
unlock_buffer(bh);
|
|
brelse(bh);
|
|
}
|
|
|
|
/**
|
|
* nilfs_copy_buffer -- copy buffer data and flags
|
|
* @dbh: destination buffer
|
|
* @sbh: source buffer
|
|
*/
|
|
void nilfs_copy_buffer(struct buffer_head *dbh, struct buffer_head *sbh)
|
|
{
|
|
void *kaddr0, *kaddr1;
|
|
unsigned long bits;
|
|
struct page *spage = sbh->b_page, *dpage = dbh->b_page;
|
|
struct buffer_head *bh;
|
|
|
|
kaddr0 = kmap_atomic(spage, KM_USER0);
|
|
kaddr1 = kmap_atomic(dpage, KM_USER1);
|
|
memcpy(kaddr1 + bh_offset(dbh), kaddr0 + bh_offset(sbh), sbh->b_size);
|
|
kunmap_atomic(kaddr1, KM_USER1);
|
|
kunmap_atomic(kaddr0, KM_USER0);
|
|
|
|
dbh->b_state = sbh->b_state & NILFS_BUFFER_INHERENT_BITS;
|
|
dbh->b_blocknr = sbh->b_blocknr;
|
|
dbh->b_bdev = sbh->b_bdev;
|
|
|
|
bh = dbh;
|
|
bits = sbh->b_state & ((1UL << BH_Uptodate) | (1UL << BH_Mapped));
|
|
while ((bh = bh->b_this_page) != dbh) {
|
|
lock_buffer(bh);
|
|
bits &= bh->b_state;
|
|
unlock_buffer(bh);
|
|
}
|
|
if (bits & (1UL << BH_Uptodate))
|
|
SetPageUptodate(dpage);
|
|
else
|
|
ClearPageUptodate(dpage);
|
|
if (bits & (1UL << BH_Mapped))
|
|
SetPageMappedToDisk(dpage);
|
|
else
|
|
ClearPageMappedToDisk(dpage);
|
|
}
|
|
|
|
/**
|
|
* nilfs_page_buffers_clean - check if a page has dirty buffers or not.
|
|
* @page: page to be checked
|
|
*
|
|
* nilfs_page_buffers_clean() returns zero if the page has dirty buffers.
|
|
* Otherwise, it returns non-zero value.
|
|
*/
|
|
int nilfs_page_buffers_clean(struct page *page)
|
|
{
|
|
struct buffer_head *bh, *head;
|
|
|
|
bh = head = page_buffers(page);
|
|
do {
|
|
if (buffer_dirty(bh))
|
|
return 0;
|
|
bh = bh->b_this_page;
|
|
} while (bh != head);
|
|
return 1;
|
|
}
|
|
|
|
void nilfs_page_bug(struct page *page)
|
|
{
|
|
struct address_space *m;
|
|
unsigned long ino = 0;
|
|
|
|
if (unlikely(!page)) {
|
|
printk(KERN_CRIT "NILFS_PAGE_BUG(NULL)\n");
|
|
return;
|
|
}
|
|
|
|
m = page->mapping;
|
|
if (m) {
|
|
struct inode *inode = NILFS_AS_I(m);
|
|
if (inode != NULL)
|
|
ino = inode->i_ino;
|
|
}
|
|
printk(KERN_CRIT "NILFS_PAGE_BUG(%p): cnt=%d index#=%llu flags=0x%lx "
|
|
"mapping=%p ino=%lu\n",
|
|
page, atomic_read(&page->_count),
|
|
(unsigned long long)page->index, page->flags, m, ino);
|
|
|
|
if (page_has_buffers(page)) {
|
|
struct buffer_head *bh, *head;
|
|
int i = 0;
|
|
|
|
bh = head = page_buffers(page);
|
|
do {
|
|
printk(KERN_CRIT
|
|
" BH[%d] %p: cnt=%d block#=%llu state=0x%lx\n",
|
|
i++, bh, atomic_read(&bh->b_count),
|
|
(unsigned long long)bh->b_blocknr, bh->b_state);
|
|
bh = bh->b_this_page;
|
|
} while (bh != head);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* nilfs_alloc_private_page - allocate a private page with buffer heads
|
|
*
|
|
* Return Value: On success, a pointer to the allocated page is returned.
|
|
* On error, NULL is returned.
|
|
*/
|
|
struct page *nilfs_alloc_private_page(struct block_device *bdev, int size,
|
|
unsigned long state)
|
|
{
|
|
struct buffer_head *bh, *head, *tail;
|
|
struct page *page;
|
|
|
|
page = alloc_page(GFP_NOFS); /* page_count of the returned page is 1 */
|
|
if (unlikely(!page))
|
|
return NULL;
|
|
|
|
lock_page(page);
|
|
head = alloc_page_buffers(page, size, 0);
|
|
if (unlikely(!head)) {
|
|
unlock_page(page);
|
|
__free_page(page);
|
|
return NULL;
|
|
}
|
|
|
|
bh = head;
|
|
do {
|
|
bh->b_state = (1UL << BH_NILFS_Allocated) | state;
|
|
tail = bh;
|
|
bh->b_bdev = bdev;
|
|
bh = bh->b_this_page;
|
|
} while (bh);
|
|
|
|
tail->b_this_page = head;
|
|
attach_page_buffers(page, head);
|
|
|
|
return page;
|
|
}
|
|
|
|
void nilfs_free_private_page(struct page *page)
|
|
{
|
|
BUG_ON(!PageLocked(page));
|
|
BUG_ON(page->mapping);
|
|
|
|
if (page_has_buffers(page) && !try_to_free_buffers(page))
|
|
NILFS_PAGE_BUG(page, "failed to free page");
|
|
|
|
unlock_page(page);
|
|
__free_page(page);
|
|
}
|
|
|
|
/**
|
|
* nilfs_copy_page -- copy the page with buffers
|
|
* @dst: destination page
|
|
* @src: source page
|
|
* @copy_dirty: flag whether to copy dirty states on the page's buffer heads.
|
|
*
|
|
* This function is for both data pages and btnode pages. The dirty flag
|
|
* should be treated by caller. The page must not be under i/o.
|
|
* Both src and dst page must be locked
|
|
*/
|
|
static void nilfs_copy_page(struct page *dst, struct page *src, int copy_dirty)
|
|
{
|
|
struct buffer_head *dbh, *dbufs, *sbh, *sbufs;
|
|
unsigned long mask = NILFS_BUFFER_INHERENT_BITS;
|
|
|
|
BUG_ON(PageWriteback(dst));
|
|
|
|
sbh = sbufs = page_buffers(src);
|
|
if (!page_has_buffers(dst))
|
|
create_empty_buffers(dst, sbh->b_size, 0);
|
|
|
|
if (copy_dirty)
|
|
mask |= (1UL << BH_Dirty);
|
|
|
|
dbh = dbufs = page_buffers(dst);
|
|
do {
|
|
lock_buffer(sbh);
|
|
lock_buffer(dbh);
|
|
dbh->b_state = sbh->b_state & mask;
|
|
dbh->b_blocknr = sbh->b_blocknr;
|
|
dbh->b_bdev = sbh->b_bdev;
|
|
sbh = sbh->b_this_page;
|
|
dbh = dbh->b_this_page;
|
|
} while (dbh != dbufs);
|
|
|
|
copy_highpage(dst, src);
|
|
|
|
if (PageUptodate(src) && !PageUptodate(dst))
|
|
SetPageUptodate(dst);
|
|
else if (!PageUptodate(src) && PageUptodate(dst))
|
|
ClearPageUptodate(dst);
|
|
if (PageMappedToDisk(src) && !PageMappedToDisk(dst))
|
|
SetPageMappedToDisk(dst);
|
|
else if (!PageMappedToDisk(src) && PageMappedToDisk(dst))
|
|
ClearPageMappedToDisk(dst);
|
|
|
|
do {
|
|
unlock_buffer(sbh);
|
|
unlock_buffer(dbh);
|
|
sbh = sbh->b_this_page;
|
|
dbh = dbh->b_this_page;
|
|
} while (dbh != dbufs);
|
|
}
|
|
|
|
int nilfs_copy_dirty_pages(struct address_space *dmap,
|
|
struct address_space *smap)
|
|
{
|
|
struct pagevec pvec;
|
|
unsigned int i;
|
|
pgoff_t index = 0;
|
|
int err = 0;
|
|
|
|
pagevec_init(&pvec, 0);
|
|
repeat:
|
|
if (!pagevec_lookup_tag(&pvec, smap, &index, PAGECACHE_TAG_DIRTY,
|
|
PAGEVEC_SIZE))
|
|
return 0;
|
|
|
|
for (i = 0; i < pagevec_count(&pvec); i++) {
|
|
struct page *page = pvec.pages[i], *dpage;
|
|
|
|
lock_page(page);
|
|
if (unlikely(!PageDirty(page)))
|
|
NILFS_PAGE_BUG(page, "inconsistent dirty state");
|
|
|
|
dpage = grab_cache_page(dmap, page->index);
|
|
if (unlikely(!dpage)) {
|
|
/* No empty page is added to the page cache */
|
|
err = -ENOMEM;
|
|
unlock_page(page);
|
|
break;
|
|
}
|
|
if (unlikely(!page_has_buffers(page)))
|
|
NILFS_PAGE_BUG(page,
|
|
"found empty page in dat page cache");
|
|
|
|
nilfs_copy_page(dpage, page, 1);
|
|
__set_page_dirty_nobuffers(dpage);
|
|
|
|
unlock_page(dpage);
|
|
page_cache_release(dpage);
|
|
unlock_page(page);
|
|
}
|
|
pagevec_release(&pvec);
|
|
cond_resched();
|
|
|
|
if (likely(!err))
|
|
goto repeat;
|
|
return err;
|
|
}
|
|
|
|
/**
|
|
* nilfs_copy_back_pages -- copy back pages to original cache from shadow cache
|
|
* @dmap: destination page cache
|
|
* @smap: source page cache
|
|
*
|
|
* No pages must no be added to the cache during this process.
|
|
* This must be ensured by the caller.
|
|
*/
|
|
void nilfs_copy_back_pages(struct address_space *dmap,
|
|
struct address_space *smap)
|
|
{
|
|
struct pagevec pvec;
|
|
unsigned int i, n;
|
|
pgoff_t index = 0;
|
|
int err;
|
|
|
|
pagevec_init(&pvec, 0);
|
|
repeat:
|
|
n = pagevec_lookup(&pvec, smap, index, PAGEVEC_SIZE);
|
|
if (!n)
|
|
return;
|
|
index = pvec.pages[n - 1]->index + 1;
|
|
|
|
for (i = 0; i < pagevec_count(&pvec); i++) {
|
|
struct page *page = pvec.pages[i], *dpage;
|
|
pgoff_t offset = page->index;
|
|
|
|
lock_page(page);
|
|
dpage = find_lock_page(dmap, offset);
|
|
if (dpage) {
|
|
/* override existing page on the destination cache */
|
|
WARN_ON(PageDirty(dpage));
|
|
nilfs_copy_page(dpage, page, 0);
|
|
unlock_page(dpage);
|
|
page_cache_release(dpage);
|
|
} else {
|
|
struct page *page2;
|
|
|
|
/* move the page to the destination cache */
|
|
spin_lock_irq(&smap->tree_lock);
|
|
page2 = radix_tree_delete(&smap->page_tree, offset);
|
|
WARN_ON(page2 != page);
|
|
|
|
smap->nrpages--;
|
|
spin_unlock_irq(&smap->tree_lock);
|
|
|
|
spin_lock_irq(&dmap->tree_lock);
|
|
err = radix_tree_insert(&dmap->page_tree, offset, page);
|
|
if (unlikely(err < 0)) {
|
|
WARN_ON(err == -EEXIST);
|
|
page->mapping = NULL;
|
|
page_cache_release(page); /* for cache */
|
|
} else {
|
|
page->mapping = dmap;
|
|
dmap->nrpages++;
|
|
if (PageDirty(page))
|
|
radix_tree_tag_set(&dmap->page_tree,
|
|
offset,
|
|
PAGECACHE_TAG_DIRTY);
|
|
}
|
|
spin_unlock_irq(&dmap->tree_lock);
|
|
}
|
|
unlock_page(page);
|
|
}
|
|
pagevec_release(&pvec);
|
|
cond_resched();
|
|
|
|
goto repeat;
|
|
}
|
|
|
|
void nilfs_clear_dirty_pages(struct address_space *mapping)
|
|
{
|
|
struct pagevec pvec;
|
|
unsigned int i;
|
|
pgoff_t index = 0;
|
|
|
|
pagevec_init(&pvec, 0);
|
|
|
|
while (pagevec_lookup_tag(&pvec, mapping, &index, PAGECACHE_TAG_DIRTY,
|
|
PAGEVEC_SIZE)) {
|
|
for (i = 0; i < pagevec_count(&pvec); i++) {
|
|
struct page *page = pvec.pages[i];
|
|
struct buffer_head *bh, *head;
|
|
|
|
lock_page(page);
|
|
ClearPageUptodate(page);
|
|
ClearPageMappedToDisk(page);
|
|
bh = head = page_buffers(page);
|
|
do {
|
|
lock_buffer(bh);
|
|
clear_buffer_dirty(bh);
|
|
clear_buffer_nilfs_volatile(bh);
|
|
clear_buffer_uptodate(bh);
|
|
clear_buffer_mapped(bh);
|
|
unlock_buffer(bh);
|
|
bh = bh->b_this_page;
|
|
} while (bh != head);
|
|
|
|
__nilfs_clear_page_dirty(page);
|
|
unlock_page(page);
|
|
}
|
|
pagevec_release(&pvec);
|
|
cond_resched();
|
|
}
|
|
}
|
|
|
|
unsigned nilfs_page_count_clean_buffers(struct page *page,
|
|
unsigned from, unsigned to)
|
|
{
|
|
unsigned block_start, block_end;
|
|
struct buffer_head *bh, *head;
|
|
unsigned nc = 0;
|
|
|
|
for (bh = head = page_buffers(page), block_start = 0;
|
|
bh != head || !block_start;
|
|
block_start = block_end, bh = bh->b_this_page) {
|
|
block_end = block_start + bh->b_size;
|
|
if (block_end > from && block_start < to && !buffer_dirty(bh))
|
|
nc++;
|
|
}
|
|
return nc;
|
|
}
|
|
|
|
/*
|
|
* NILFS2 needs clear_page_dirty() in the following two cases:
|
|
*
|
|
* 1) For B-tree node pages and data pages of the dat/gcdat, NILFS2 clears
|
|
* page dirty flags when it copies back pages from the shadow cache
|
|
* (gcdat->{i_mapping,i_btnode_cache}) to its original cache
|
|
* (dat->{i_mapping,i_btnode_cache}).
|
|
*
|
|
* 2) Some B-tree operations like insertion or deletion may dispose buffers
|
|
* in dirty state, and this needs to cancel the dirty state of their pages.
|
|
*/
|
|
int __nilfs_clear_page_dirty(struct page *page)
|
|
{
|
|
struct address_space *mapping = page->mapping;
|
|
|
|
if (mapping) {
|
|
spin_lock_irq(&mapping->tree_lock);
|
|
if (test_bit(PG_dirty, &page->flags)) {
|
|
radix_tree_tag_clear(&mapping->page_tree,
|
|
page_index(page),
|
|
PAGECACHE_TAG_DIRTY);
|
|
spin_unlock_irq(&mapping->tree_lock);
|
|
return clear_page_dirty_for_io(page);
|
|
}
|
|
spin_unlock_irq(&mapping->tree_lock);
|
|
return 0;
|
|
}
|
|
return TestClearPageDirty(page);
|
|
}
|