linux_dsm_epyc7002/net/sunrpc/auth_gss/svcauth_gss.c
Chuck Lever 06eb8a56af sunrpc: Disable splice for krb5i
Running a multi-threaded 8KB fio test (70/30 mix), three or four out
of twelve of the jobs fail when using krb5i. The failure is an EIO
on a read.

Troubleshooting confirmed the EIO results when the client fails to
verify the MIC of an NFS READ reply. Bruce suggested the problem
could be due to the data payload changing between the time the
reply's MIC was computed on the server and the time the reply was
actually sent.

krb5p gets around this problem by disabling RQ_SPLICE_OK. Use the
same mechanism for krb5i RPCs.

"iozone -i0 -i1 -s128m -y1k -az -I", export is tmpfs, mount is
sec=krb5i,vers=3,proto=rdma. The important numbers are the
read / reread column.

Here's without the RQ_SPLICE_OK patch:

              kB  reclen    write  rewrite    read    reread
          131072       1     7546     7929     8396     8267
          131072       2    14375    14600    15843    15639
          131072       4    19280    19248    21303    21410
          131072       8    32350    31772    35199    34883
          131072      16    36748    37477    49365    51706
          131072      32    55669    56059    57475    57389
          131072      64    74599    75190    74903    75550
          131072     128    99810   101446   102828   102724
          131072     256   122042   122612   124806   125026
          131072     512   137614   138004   141412   141267
          131072    1024   146601   148774   151356   151409
          131072    2048   180684   181727   293140   292840
          131072    4096   206907   207658   552964   549029
          131072    8192   223982   224360   454493   473469
          131072   16384   228927   228390   654734   632607

And here's with it:

              kB  reclen    write  rewrite    read    reread
          131072       1     7700     7365     7958     8011
          131072       2    13211    13303    14937    14414
          131072       4    19001    19265    20544    20657
          131072       8    30883    31097    34255    33566
          131072      16    36868    34908    51499    49944
          131072      32    56428    55535    58710    56952
          131072      64    73507    74676    75619    74378
          131072     128   100324   101442   103276   102736
          131072     256   122517   122995   124639   124150
          131072     512   137317   139007   140530   140830
          131072    1024   146807   148923   151246   151072
          131072    2048   179656   180732   292631   292034
          131072    4096   206216   208583   543355   541951
          131072    8192   223738   224273   494201   489372
          131072   16384   229313   229840   691719   668427

I would say that there is not much difference in this test.

For good measure, here's the same test with sec=krb5p:

              kB  reclen    write  rewrite    read    reread
          131072       1     5982     5881     6137     6218
          131072       2    10216    10252    10850    10932
          131072       4    12236    12575    15375    15526
          131072       8    15461    15462    23821    22351
          131072      16    25677    25811    27529    27640
          131072      32    31903    32354    34063    33857
          131072      64    42989    43188    45635    45561
          131072     128    52848    53210    56144    56141
          131072     256    59123    59214    62691    62933
          131072     512    63140    63277    66887    67025
          131072    1024    65255    65299    69213    69140
          131072    2048    76454    76555   133767   133862
          131072    4096    84726    84883   251925   250702
          131072    8192    89491    89482   270821   276085
          131072   16384    91572    91597   361768   336868

BugLink: https://bugzilla.linux-nfs.org/show_bug.cgi?id=307
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Reviewed-by: Jeff Layton <jlayton@redhat.com>
Signed-off-by: J. Bruce Fields <bfields@redhat.com>
2017-06-28 14:20:05 -04:00

1879 lines
46 KiB
C

/*
* Neil Brown <neilb@cse.unsw.edu.au>
* J. Bruce Fields <bfields@umich.edu>
* Andy Adamson <andros@umich.edu>
* Dug Song <dugsong@monkey.org>
*
* RPCSEC_GSS server authentication.
* This implements RPCSEC_GSS as defined in rfc2203 (rpcsec_gss) and rfc2078
* (gssapi)
*
* The RPCSEC_GSS involves three stages:
* 1/ context creation
* 2/ data exchange
* 3/ context destruction
*
* Context creation is handled largely by upcalls to user-space.
* In particular, GSS_Accept_sec_context is handled by an upcall
* Data exchange is handled entirely within the kernel
* In particular, GSS_GetMIC, GSS_VerifyMIC, GSS_Seal, GSS_Unseal are in-kernel.
* Context destruction is handled in-kernel
* GSS_Delete_sec_context is in-kernel
*
* Context creation is initiated by a RPCSEC_GSS_INIT request arriving.
* The context handle and gss_token are used as a key into the rpcsec_init cache.
* The content of this cache includes some of the outputs of GSS_Accept_sec_context,
* being major_status, minor_status, context_handle, reply_token.
* These are sent back to the client.
* Sequence window management is handled by the kernel. The window size if currently
* a compile time constant.
*
* When user-space is happy that a context is established, it places an entry
* in the rpcsec_context cache. The key for this cache is the context_handle.
* The content includes:
* uid/gidlist - for determining access rights
* mechanism type
* mechanism specific information, such as a key
*
*/
#include <linux/slab.h>
#include <linux/types.h>
#include <linux/module.h>
#include <linux/pagemap.h>
#include <linux/user_namespace.h>
#include <linux/sunrpc/auth_gss.h>
#include <linux/sunrpc/gss_err.h>
#include <linux/sunrpc/svcauth.h>
#include <linux/sunrpc/svcauth_gss.h>
#include <linux/sunrpc/cache.h>
#include "gss_rpc_upcall.h"
#if IS_ENABLED(CONFIG_SUNRPC_DEBUG)
# define RPCDBG_FACILITY RPCDBG_AUTH
#endif
/* The rpcsec_init cache is used for mapping RPCSEC_GSS_{,CONT_}INIT requests
* into replies.
*
* Key is context handle (\x if empty) and gss_token.
* Content is major_status minor_status (integers) context_handle, reply_token.
*
*/
static int netobj_equal(struct xdr_netobj *a, struct xdr_netobj *b)
{
return a->len == b->len && 0 == memcmp(a->data, b->data, a->len);
}
#define RSI_HASHBITS 6
#define RSI_HASHMAX (1<<RSI_HASHBITS)
struct rsi {
struct cache_head h;
struct xdr_netobj in_handle, in_token;
struct xdr_netobj out_handle, out_token;
int major_status, minor_status;
};
static struct rsi *rsi_update(struct cache_detail *cd, struct rsi *new, struct rsi *old);
static struct rsi *rsi_lookup(struct cache_detail *cd, struct rsi *item);
static void rsi_free(struct rsi *rsii)
{
kfree(rsii->in_handle.data);
kfree(rsii->in_token.data);
kfree(rsii->out_handle.data);
kfree(rsii->out_token.data);
}
static void rsi_put(struct kref *ref)
{
struct rsi *rsii = container_of(ref, struct rsi, h.ref);
rsi_free(rsii);
kfree(rsii);
}
static inline int rsi_hash(struct rsi *item)
{
return hash_mem(item->in_handle.data, item->in_handle.len, RSI_HASHBITS)
^ hash_mem(item->in_token.data, item->in_token.len, RSI_HASHBITS);
}
static int rsi_match(struct cache_head *a, struct cache_head *b)
{
struct rsi *item = container_of(a, struct rsi, h);
struct rsi *tmp = container_of(b, struct rsi, h);
return netobj_equal(&item->in_handle, &tmp->in_handle) &&
netobj_equal(&item->in_token, &tmp->in_token);
}
static int dup_to_netobj(struct xdr_netobj *dst, char *src, int len)
{
dst->len = len;
dst->data = (len ? kmemdup(src, len, GFP_KERNEL) : NULL);
if (len && !dst->data)
return -ENOMEM;
return 0;
}
static inline int dup_netobj(struct xdr_netobj *dst, struct xdr_netobj *src)
{
return dup_to_netobj(dst, src->data, src->len);
}
static void rsi_init(struct cache_head *cnew, struct cache_head *citem)
{
struct rsi *new = container_of(cnew, struct rsi, h);
struct rsi *item = container_of(citem, struct rsi, h);
new->out_handle.data = NULL;
new->out_handle.len = 0;
new->out_token.data = NULL;
new->out_token.len = 0;
new->in_handle.len = item->in_handle.len;
item->in_handle.len = 0;
new->in_token.len = item->in_token.len;
item->in_token.len = 0;
new->in_handle.data = item->in_handle.data;
item->in_handle.data = NULL;
new->in_token.data = item->in_token.data;
item->in_token.data = NULL;
}
static void update_rsi(struct cache_head *cnew, struct cache_head *citem)
{
struct rsi *new = container_of(cnew, struct rsi, h);
struct rsi *item = container_of(citem, struct rsi, h);
BUG_ON(new->out_handle.data || new->out_token.data);
new->out_handle.len = item->out_handle.len;
item->out_handle.len = 0;
new->out_token.len = item->out_token.len;
item->out_token.len = 0;
new->out_handle.data = item->out_handle.data;
item->out_handle.data = NULL;
new->out_token.data = item->out_token.data;
item->out_token.data = NULL;
new->major_status = item->major_status;
new->minor_status = item->minor_status;
}
static struct cache_head *rsi_alloc(void)
{
struct rsi *rsii = kmalloc(sizeof(*rsii), GFP_KERNEL);
if (rsii)
return &rsii->h;
else
return NULL;
}
static void rsi_request(struct cache_detail *cd,
struct cache_head *h,
char **bpp, int *blen)
{
struct rsi *rsii = container_of(h, struct rsi, h);
qword_addhex(bpp, blen, rsii->in_handle.data, rsii->in_handle.len);
qword_addhex(bpp, blen, rsii->in_token.data, rsii->in_token.len);
(*bpp)[-1] = '\n';
}
static int rsi_parse(struct cache_detail *cd,
char *mesg, int mlen)
{
/* context token expiry major minor context token */
char *buf = mesg;
char *ep;
int len;
struct rsi rsii, *rsip = NULL;
time_t expiry;
int status = -EINVAL;
memset(&rsii, 0, sizeof(rsii));
/* handle */
len = qword_get(&mesg, buf, mlen);
if (len < 0)
goto out;
status = -ENOMEM;
if (dup_to_netobj(&rsii.in_handle, buf, len))
goto out;
/* token */
len = qword_get(&mesg, buf, mlen);
status = -EINVAL;
if (len < 0)
goto out;
status = -ENOMEM;
if (dup_to_netobj(&rsii.in_token, buf, len))
goto out;
rsip = rsi_lookup(cd, &rsii);
if (!rsip)
goto out;
rsii.h.flags = 0;
/* expiry */
expiry = get_expiry(&mesg);
status = -EINVAL;
if (expiry == 0)
goto out;
/* major/minor */
len = qword_get(&mesg, buf, mlen);
if (len <= 0)
goto out;
rsii.major_status = simple_strtoul(buf, &ep, 10);
if (*ep)
goto out;
len = qword_get(&mesg, buf, mlen);
if (len <= 0)
goto out;
rsii.minor_status = simple_strtoul(buf, &ep, 10);
if (*ep)
goto out;
/* out_handle */
len = qword_get(&mesg, buf, mlen);
if (len < 0)
goto out;
status = -ENOMEM;
if (dup_to_netobj(&rsii.out_handle, buf, len))
goto out;
/* out_token */
len = qword_get(&mesg, buf, mlen);
status = -EINVAL;
if (len < 0)
goto out;
status = -ENOMEM;
if (dup_to_netobj(&rsii.out_token, buf, len))
goto out;
rsii.h.expiry_time = expiry;
rsip = rsi_update(cd, &rsii, rsip);
status = 0;
out:
rsi_free(&rsii);
if (rsip)
cache_put(&rsip->h, cd);
else
status = -ENOMEM;
return status;
}
static struct cache_detail rsi_cache_template = {
.owner = THIS_MODULE,
.hash_size = RSI_HASHMAX,
.name = "auth.rpcsec.init",
.cache_put = rsi_put,
.cache_request = rsi_request,
.cache_parse = rsi_parse,
.match = rsi_match,
.init = rsi_init,
.update = update_rsi,
.alloc = rsi_alloc,
};
static struct rsi *rsi_lookup(struct cache_detail *cd, struct rsi *item)
{
struct cache_head *ch;
int hash = rsi_hash(item);
ch = sunrpc_cache_lookup(cd, &item->h, hash);
if (ch)
return container_of(ch, struct rsi, h);
else
return NULL;
}
static struct rsi *rsi_update(struct cache_detail *cd, struct rsi *new, struct rsi *old)
{
struct cache_head *ch;
int hash = rsi_hash(new);
ch = sunrpc_cache_update(cd, &new->h,
&old->h, hash);
if (ch)
return container_of(ch, struct rsi, h);
else
return NULL;
}
/*
* The rpcsec_context cache is used to store a context that is
* used in data exchange.
* The key is a context handle. The content is:
* uid, gidlist, mechanism, service-set, mech-specific-data
*/
#define RSC_HASHBITS 10
#define RSC_HASHMAX (1<<RSC_HASHBITS)
#define GSS_SEQ_WIN 128
struct gss_svc_seq_data {
/* highest seq number seen so far: */
int sd_max;
/* for i such that sd_max-GSS_SEQ_WIN < i <= sd_max, the i-th bit of
* sd_win is nonzero iff sequence number i has been seen already: */
unsigned long sd_win[GSS_SEQ_WIN/BITS_PER_LONG];
spinlock_t sd_lock;
};
struct rsc {
struct cache_head h;
struct xdr_netobj handle;
struct svc_cred cred;
struct gss_svc_seq_data seqdata;
struct gss_ctx *mechctx;
};
static struct rsc *rsc_update(struct cache_detail *cd, struct rsc *new, struct rsc *old);
static struct rsc *rsc_lookup(struct cache_detail *cd, struct rsc *item);
static void rsc_free(struct rsc *rsci)
{
kfree(rsci->handle.data);
if (rsci->mechctx)
gss_delete_sec_context(&rsci->mechctx);
free_svc_cred(&rsci->cred);
}
static void rsc_put(struct kref *ref)
{
struct rsc *rsci = container_of(ref, struct rsc, h.ref);
rsc_free(rsci);
kfree(rsci);
}
static inline int
rsc_hash(struct rsc *rsci)
{
return hash_mem(rsci->handle.data, rsci->handle.len, RSC_HASHBITS);
}
static int
rsc_match(struct cache_head *a, struct cache_head *b)
{
struct rsc *new = container_of(a, struct rsc, h);
struct rsc *tmp = container_of(b, struct rsc, h);
return netobj_equal(&new->handle, &tmp->handle);
}
static void
rsc_init(struct cache_head *cnew, struct cache_head *ctmp)
{
struct rsc *new = container_of(cnew, struct rsc, h);
struct rsc *tmp = container_of(ctmp, struct rsc, h);
new->handle.len = tmp->handle.len;
tmp->handle.len = 0;
new->handle.data = tmp->handle.data;
tmp->handle.data = NULL;
new->mechctx = NULL;
init_svc_cred(&new->cred);
}
static void
update_rsc(struct cache_head *cnew, struct cache_head *ctmp)
{
struct rsc *new = container_of(cnew, struct rsc, h);
struct rsc *tmp = container_of(ctmp, struct rsc, h);
new->mechctx = tmp->mechctx;
tmp->mechctx = NULL;
memset(&new->seqdata, 0, sizeof(new->seqdata));
spin_lock_init(&new->seqdata.sd_lock);
new->cred = tmp->cred;
init_svc_cred(&tmp->cred);
}
static struct cache_head *
rsc_alloc(void)
{
struct rsc *rsci = kmalloc(sizeof(*rsci), GFP_KERNEL);
if (rsci)
return &rsci->h;
else
return NULL;
}
static int rsc_parse(struct cache_detail *cd,
char *mesg, int mlen)
{
/* contexthandle expiry [ uid gid N <n gids> mechname ...mechdata... ] */
char *buf = mesg;
int id;
int len, rv;
struct rsc rsci, *rscp = NULL;
time_t expiry;
int status = -EINVAL;
struct gss_api_mech *gm = NULL;
memset(&rsci, 0, sizeof(rsci));
/* context handle */
len = qword_get(&mesg, buf, mlen);
if (len < 0) goto out;
status = -ENOMEM;
if (dup_to_netobj(&rsci.handle, buf, len))
goto out;
rsci.h.flags = 0;
/* expiry */
expiry = get_expiry(&mesg);
status = -EINVAL;
if (expiry == 0)
goto out;
rscp = rsc_lookup(cd, &rsci);
if (!rscp)
goto out;
/* uid, or NEGATIVE */
rv = get_int(&mesg, &id);
if (rv == -EINVAL)
goto out;
if (rv == -ENOENT)
set_bit(CACHE_NEGATIVE, &rsci.h.flags);
else {
int N, i;
/*
* NOTE: we skip uid_valid()/gid_valid() checks here:
* instead, * -1 id's are later mapped to the
* (export-specific) anonymous id by nfsd_setuser.
*
* (But supplementary gid's get no such special
* treatment so are checked for validity here.)
*/
/* uid */
rsci.cred.cr_uid = make_kuid(&init_user_ns, id);
/* gid */
if (get_int(&mesg, &id))
goto out;
rsci.cred.cr_gid = make_kgid(&init_user_ns, id);
/* number of additional gid's */
if (get_int(&mesg, &N))
goto out;
if (N < 0 || N > NGROUPS_MAX)
goto out;
status = -ENOMEM;
rsci.cred.cr_group_info = groups_alloc(N);
if (rsci.cred.cr_group_info == NULL)
goto out;
/* gid's */
status = -EINVAL;
for (i=0; i<N; i++) {
kgid_t kgid;
if (get_int(&mesg, &id))
goto out;
kgid = make_kgid(&init_user_ns, id);
if (!gid_valid(kgid))
goto out;
rsci.cred.cr_group_info->gid[i] = kgid;
}
/* mech name */
len = qword_get(&mesg, buf, mlen);
if (len < 0)
goto out;
gm = rsci.cred.cr_gss_mech = gss_mech_get_by_name(buf);
status = -EOPNOTSUPP;
if (!gm)
goto out;
status = -EINVAL;
/* mech-specific data: */
len = qword_get(&mesg, buf, mlen);
if (len < 0)
goto out;
status = gss_import_sec_context(buf, len, gm, &rsci.mechctx,
NULL, GFP_KERNEL);
if (status)
goto out;
/* get client name */
len = qword_get(&mesg, buf, mlen);
if (len > 0) {
rsci.cred.cr_principal = kstrdup(buf, GFP_KERNEL);
if (!rsci.cred.cr_principal) {
status = -ENOMEM;
goto out;
}
}
}
rsci.h.expiry_time = expiry;
rscp = rsc_update(cd, &rsci, rscp);
status = 0;
out:
rsc_free(&rsci);
if (rscp)
cache_put(&rscp->h, cd);
else
status = -ENOMEM;
return status;
}
static struct cache_detail rsc_cache_template = {
.owner = THIS_MODULE,
.hash_size = RSC_HASHMAX,
.name = "auth.rpcsec.context",
.cache_put = rsc_put,
.cache_parse = rsc_parse,
.match = rsc_match,
.init = rsc_init,
.update = update_rsc,
.alloc = rsc_alloc,
};
static struct rsc *rsc_lookup(struct cache_detail *cd, struct rsc *item)
{
struct cache_head *ch;
int hash = rsc_hash(item);
ch = sunrpc_cache_lookup(cd, &item->h, hash);
if (ch)
return container_of(ch, struct rsc, h);
else
return NULL;
}
static struct rsc *rsc_update(struct cache_detail *cd, struct rsc *new, struct rsc *old)
{
struct cache_head *ch;
int hash = rsc_hash(new);
ch = sunrpc_cache_update(cd, &new->h,
&old->h, hash);
if (ch)
return container_of(ch, struct rsc, h);
else
return NULL;
}
static struct rsc *
gss_svc_searchbyctx(struct cache_detail *cd, struct xdr_netobj *handle)
{
struct rsc rsci;
struct rsc *found;
memset(&rsci, 0, sizeof(rsci));
if (dup_to_netobj(&rsci.handle, handle->data, handle->len))
return NULL;
found = rsc_lookup(cd, &rsci);
rsc_free(&rsci);
if (!found)
return NULL;
if (cache_check(cd, &found->h, NULL))
return NULL;
return found;
}
/* Implements sequence number algorithm as specified in RFC 2203. */
static int
gss_check_seq_num(struct rsc *rsci, int seq_num)
{
struct gss_svc_seq_data *sd = &rsci->seqdata;
spin_lock(&sd->sd_lock);
if (seq_num > sd->sd_max) {
if (seq_num >= sd->sd_max + GSS_SEQ_WIN) {
memset(sd->sd_win,0,sizeof(sd->sd_win));
sd->sd_max = seq_num;
} else while (sd->sd_max < seq_num) {
sd->sd_max++;
__clear_bit(sd->sd_max % GSS_SEQ_WIN, sd->sd_win);
}
__set_bit(seq_num % GSS_SEQ_WIN, sd->sd_win);
goto ok;
} else if (seq_num <= sd->sd_max - GSS_SEQ_WIN) {
goto drop;
}
/* sd_max - GSS_SEQ_WIN < seq_num <= sd_max */
if (__test_and_set_bit(seq_num % GSS_SEQ_WIN, sd->sd_win))
goto drop;
ok:
spin_unlock(&sd->sd_lock);
return 1;
drop:
spin_unlock(&sd->sd_lock);
return 0;
}
static inline u32 round_up_to_quad(u32 i)
{
return (i + 3 ) & ~3;
}
static inline int
svc_safe_getnetobj(struct kvec *argv, struct xdr_netobj *o)
{
int l;
if (argv->iov_len < 4)
return -1;
o->len = svc_getnl(argv);
l = round_up_to_quad(o->len);
if (argv->iov_len < l)
return -1;
o->data = argv->iov_base;
argv->iov_base += l;
argv->iov_len -= l;
return 0;
}
static inline int
svc_safe_putnetobj(struct kvec *resv, struct xdr_netobj *o)
{
u8 *p;
if (resv->iov_len + 4 > PAGE_SIZE)
return -1;
svc_putnl(resv, o->len);
p = resv->iov_base + resv->iov_len;
resv->iov_len += round_up_to_quad(o->len);
if (resv->iov_len > PAGE_SIZE)
return -1;
memcpy(p, o->data, o->len);
memset(p + o->len, 0, round_up_to_quad(o->len) - o->len);
return 0;
}
/*
* Verify the checksum on the header and return SVC_OK on success.
* Otherwise, return SVC_DROP (in the case of a bad sequence number)
* or return SVC_DENIED and indicate error in authp.
*/
static int
gss_verify_header(struct svc_rqst *rqstp, struct rsc *rsci,
__be32 *rpcstart, struct rpc_gss_wire_cred *gc, __be32 *authp)
{
struct gss_ctx *ctx_id = rsci->mechctx;
struct xdr_buf rpchdr;
struct xdr_netobj checksum;
u32 flavor = 0;
struct kvec *argv = &rqstp->rq_arg.head[0];
struct kvec iov;
/* data to compute the checksum over: */
iov.iov_base = rpcstart;
iov.iov_len = (u8 *)argv->iov_base - (u8 *)rpcstart;
xdr_buf_from_iov(&iov, &rpchdr);
*authp = rpc_autherr_badverf;
if (argv->iov_len < 4)
return SVC_DENIED;
flavor = svc_getnl(argv);
if (flavor != RPC_AUTH_GSS)
return SVC_DENIED;
if (svc_safe_getnetobj(argv, &checksum))
return SVC_DENIED;
if (rqstp->rq_deferred) /* skip verification of revisited request */
return SVC_OK;
if (gss_verify_mic(ctx_id, &rpchdr, &checksum) != GSS_S_COMPLETE) {
*authp = rpcsec_gsserr_credproblem;
return SVC_DENIED;
}
if (gc->gc_seq > MAXSEQ) {
dprintk("RPC: svcauth_gss: discarding request with "
"large sequence number %d\n", gc->gc_seq);
*authp = rpcsec_gsserr_ctxproblem;
return SVC_DENIED;
}
if (!gss_check_seq_num(rsci, gc->gc_seq)) {
dprintk("RPC: svcauth_gss: discarding request with "
"old sequence number %d\n", gc->gc_seq);
return SVC_DROP;
}
return SVC_OK;
}
static int
gss_write_null_verf(struct svc_rqst *rqstp)
{
__be32 *p;
svc_putnl(rqstp->rq_res.head, RPC_AUTH_NULL);
p = rqstp->rq_res.head->iov_base + rqstp->rq_res.head->iov_len;
/* don't really need to check if head->iov_len > PAGE_SIZE ... */
*p++ = 0;
if (!xdr_ressize_check(rqstp, p))
return -1;
return 0;
}
static int
gss_write_verf(struct svc_rqst *rqstp, struct gss_ctx *ctx_id, u32 seq)
{
__be32 *xdr_seq;
u32 maj_stat;
struct xdr_buf verf_data;
struct xdr_netobj mic;
__be32 *p;
struct kvec iov;
int err = -1;
svc_putnl(rqstp->rq_res.head, RPC_AUTH_GSS);
xdr_seq = kmalloc(4, GFP_KERNEL);
if (!xdr_seq)
return -1;
*xdr_seq = htonl(seq);
iov.iov_base = xdr_seq;
iov.iov_len = 4;
xdr_buf_from_iov(&iov, &verf_data);
p = rqstp->rq_res.head->iov_base + rqstp->rq_res.head->iov_len;
mic.data = (u8 *)(p + 1);
maj_stat = gss_get_mic(ctx_id, &verf_data, &mic);
if (maj_stat != GSS_S_COMPLETE)
goto out;
*p++ = htonl(mic.len);
memset((u8 *)p + mic.len, 0, round_up_to_quad(mic.len) - mic.len);
p += XDR_QUADLEN(mic.len);
if (!xdr_ressize_check(rqstp, p))
goto out;
err = 0;
out:
kfree(xdr_seq);
return err;
}
struct gss_domain {
struct auth_domain h;
u32 pseudoflavor;
};
static struct auth_domain *
find_gss_auth_domain(struct gss_ctx *ctx, u32 svc)
{
char *name;
name = gss_service_to_auth_domain_name(ctx->mech_type, svc);
if (!name)
return NULL;
return auth_domain_find(name);
}
static struct auth_ops svcauthops_gss;
u32 svcauth_gss_flavor(struct auth_domain *dom)
{
struct gss_domain *gd = container_of(dom, struct gss_domain, h);
return gd->pseudoflavor;
}
EXPORT_SYMBOL_GPL(svcauth_gss_flavor);
int
svcauth_gss_register_pseudoflavor(u32 pseudoflavor, char * name)
{
struct gss_domain *new;
struct auth_domain *test;
int stat = -ENOMEM;
new = kmalloc(sizeof(*new), GFP_KERNEL);
if (!new)
goto out;
kref_init(&new->h.ref);
new->h.name = kstrdup(name, GFP_KERNEL);
if (!new->h.name)
goto out_free_dom;
new->h.flavour = &svcauthops_gss;
new->pseudoflavor = pseudoflavor;
stat = 0;
test = auth_domain_lookup(name, &new->h);
if (test != &new->h) { /* Duplicate registration */
auth_domain_put(test);
kfree(new->h.name);
goto out_free_dom;
}
return 0;
out_free_dom:
kfree(new);
out:
return stat;
}
EXPORT_SYMBOL_GPL(svcauth_gss_register_pseudoflavor);
static inline int
read_u32_from_xdr_buf(struct xdr_buf *buf, int base, u32 *obj)
{
__be32 raw;
int status;
status = read_bytes_from_xdr_buf(buf, base, &raw, sizeof(*obj));
if (status)
return status;
*obj = ntohl(raw);
return 0;
}
/* It would be nice if this bit of code could be shared with the client.
* Obstacles:
* The client shouldn't malloc(), would have to pass in own memory.
* The server uses base of head iovec as read pointer, while the
* client uses separate pointer. */
static int
unwrap_integ_data(struct svc_rqst *rqstp, struct xdr_buf *buf, u32 seq, struct gss_ctx *ctx)
{
int stat = -EINVAL;
u32 integ_len, maj_stat;
struct xdr_netobj mic;
struct xdr_buf integ_buf;
/* NFS READ normally uses splice to send data in-place. However
* the data in cache can change after the reply's MIC is computed
* but before the RPC reply is sent. To prevent the client from
* rejecting the server-computed MIC in this somewhat rare case,
* do not use splice with the GSS integrity service.
*/
clear_bit(RQ_SPLICE_OK, &rqstp->rq_flags);
/* Did we already verify the signature on the original pass through? */
if (rqstp->rq_deferred)
return 0;
integ_len = svc_getnl(&buf->head[0]);
if (integ_len & 3)
return stat;
if (integ_len > buf->len)
return stat;
if (xdr_buf_subsegment(buf, &integ_buf, 0, integ_len))
BUG();
/* copy out mic... */
if (read_u32_from_xdr_buf(buf, integ_len, &mic.len))
BUG();
if (mic.len > RPC_MAX_AUTH_SIZE)
return stat;
mic.data = kmalloc(mic.len, GFP_KERNEL);
if (!mic.data)
return stat;
if (read_bytes_from_xdr_buf(buf, integ_len + 4, mic.data, mic.len))
goto out;
maj_stat = gss_verify_mic(ctx, &integ_buf, &mic);
if (maj_stat != GSS_S_COMPLETE)
goto out;
if (svc_getnl(&buf->head[0]) != seq)
goto out;
/* trim off the mic and padding at the end before returning */
xdr_buf_trim(buf, round_up_to_quad(mic.len) + 4);
stat = 0;
out:
kfree(mic.data);
return stat;
}
static inline int
total_buf_len(struct xdr_buf *buf)
{
return buf->head[0].iov_len + buf->page_len + buf->tail[0].iov_len;
}
static void
fix_priv_head(struct xdr_buf *buf, int pad)
{
if (buf->page_len == 0) {
/* We need to adjust head and buf->len in tandem in this
* case to make svc_defer() work--it finds the original
* buffer start using buf->len - buf->head[0].iov_len. */
buf->head[0].iov_len -= pad;
}
}
static int
unwrap_priv_data(struct svc_rqst *rqstp, struct xdr_buf *buf, u32 seq, struct gss_ctx *ctx)
{
u32 priv_len, maj_stat;
int pad, saved_len, remaining_len, offset;
clear_bit(RQ_SPLICE_OK, &rqstp->rq_flags);
priv_len = svc_getnl(&buf->head[0]);
if (rqstp->rq_deferred) {
/* Already decrypted last time through! The sequence number
* check at out_seq is unnecessary but harmless: */
goto out_seq;
}
/* buf->len is the number of bytes from the original start of the
* request to the end, where head[0].iov_len is just the bytes
* not yet read from the head, so these two values are different: */
remaining_len = total_buf_len(buf);
if (priv_len > remaining_len)
return -EINVAL;
pad = remaining_len - priv_len;
buf->len -= pad;
fix_priv_head(buf, pad);
/* Maybe it would be better to give gss_unwrap a length parameter: */
saved_len = buf->len;
buf->len = priv_len;
maj_stat = gss_unwrap(ctx, 0, buf);
pad = priv_len - buf->len;
buf->len = saved_len;
buf->len -= pad;
/* The upper layers assume the buffer is aligned on 4-byte boundaries.
* In the krb5p case, at least, the data ends up offset, so we need to
* move it around. */
/* XXX: This is very inefficient. It would be better to either do
* this while we encrypt, or maybe in the receive code, if we can peak
* ahead and work out the service and mechanism there. */
offset = buf->head[0].iov_len % 4;
if (offset) {
buf->buflen = RPCSVC_MAXPAYLOAD;
xdr_shift_buf(buf, offset);
fix_priv_head(buf, pad);
}
if (maj_stat != GSS_S_COMPLETE)
return -EINVAL;
out_seq:
if (svc_getnl(&buf->head[0]) != seq)
return -EINVAL;
return 0;
}
struct gss_svc_data {
/* decoded gss client cred: */
struct rpc_gss_wire_cred clcred;
/* save a pointer to the beginning of the encoded verifier,
* for use in encryption/checksumming in svcauth_gss_release: */
__be32 *verf_start;
struct rsc *rsci;
};
static int
svcauth_gss_set_client(struct svc_rqst *rqstp)
{
struct gss_svc_data *svcdata = rqstp->rq_auth_data;
struct rsc *rsci = svcdata->rsci;
struct rpc_gss_wire_cred *gc = &svcdata->clcred;
int stat;
/*
* A gss export can be specified either by:
* export *(sec=krb5,rw)
* or by
* export gss/krb5(rw)
* The latter is deprecated; but for backwards compatibility reasons
* the nfsd code will still fall back on trying it if the former
* doesn't work; so we try to make both available to nfsd, below.
*/
rqstp->rq_gssclient = find_gss_auth_domain(rsci->mechctx, gc->gc_svc);
if (rqstp->rq_gssclient == NULL)
return SVC_DENIED;
stat = svcauth_unix_set_client(rqstp);
if (stat == SVC_DROP || stat == SVC_CLOSE)
return stat;
return SVC_OK;
}
static inline int
gss_write_init_verf(struct cache_detail *cd, struct svc_rqst *rqstp,
struct xdr_netobj *out_handle, int *major_status)
{
struct rsc *rsci;
int rc;
if (*major_status != GSS_S_COMPLETE)
return gss_write_null_verf(rqstp);
rsci = gss_svc_searchbyctx(cd, out_handle);
if (rsci == NULL) {
*major_status = GSS_S_NO_CONTEXT;
return gss_write_null_verf(rqstp);
}
rc = gss_write_verf(rqstp, rsci->mechctx, GSS_SEQ_WIN);
cache_put(&rsci->h, cd);
return rc;
}
static inline int
gss_read_common_verf(struct rpc_gss_wire_cred *gc,
struct kvec *argv, __be32 *authp,
struct xdr_netobj *in_handle)
{
/* Read the verifier; should be NULL: */
*authp = rpc_autherr_badverf;
if (argv->iov_len < 2 * 4)
return SVC_DENIED;
if (svc_getnl(argv) != RPC_AUTH_NULL)
return SVC_DENIED;
if (svc_getnl(argv) != 0)
return SVC_DENIED;
/* Martial context handle and token for upcall: */
*authp = rpc_autherr_badcred;
if (gc->gc_proc == RPC_GSS_PROC_INIT && gc->gc_ctx.len != 0)
return SVC_DENIED;
if (dup_netobj(in_handle, &gc->gc_ctx))
return SVC_CLOSE;
*authp = rpc_autherr_badverf;
return 0;
}
static inline int
gss_read_verf(struct rpc_gss_wire_cred *gc,
struct kvec *argv, __be32 *authp,
struct xdr_netobj *in_handle,
struct xdr_netobj *in_token)
{
struct xdr_netobj tmpobj;
int res;
res = gss_read_common_verf(gc, argv, authp, in_handle);
if (res)
return res;
if (svc_safe_getnetobj(argv, &tmpobj)) {
kfree(in_handle->data);
return SVC_DENIED;
}
if (dup_netobj(in_token, &tmpobj)) {
kfree(in_handle->data);
return SVC_CLOSE;
}
return 0;
}
/* Ok this is really heavily depending on a set of semantics in
* how rqstp is set up by svc_recv and pages laid down by the
* server when reading a request. We are basically guaranteed that
* the token lays all down linearly across a set of pages, starting
* at iov_base in rq_arg.head[0] which happens to be the first of a
* set of pages stored in rq_pages[].
* rq_arg.head[0].iov_base will provide us the page_base to pass
* to the upcall.
*/
static inline int
gss_read_proxy_verf(struct svc_rqst *rqstp,
struct rpc_gss_wire_cred *gc, __be32 *authp,
struct xdr_netobj *in_handle,
struct gssp_in_token *in_token)
{
struct kvec *argv = &rqstp->rq_arg.head[0];
u32 inlen;
int res;
res = gss_read_common_verf(gc, argv, authp, in_handle);
if (res)
return res;
inlen = svc_getnl(argv);
if (inlen > (argv->iov_len + rqstp->rq_arg.page_len))
return SVC_DENIED;
in_token->pages = rqstp->rq_pages;
in_token->page_base = (ulong)argv->iov_base & ~PAGE_MASK;
in_token->page_len = inlen;
return 0;
}
static inline int
gss_write_resv(struct kvec *resv, size_t size_limit,
struct xdr_netobj *out_handle, struct xdr_netobj *out_token,
int major_status, int minor_status)
{
if (resv->iov_len + 4 > size_limit)
return -1;
svc_putnl(resv, RPC_SUCCESS);
if (svc_safe_putnetobj(resv, out_handle))
return -1;
if (resv->iov_len + 3 * 4 > size_limit)
return -1;
svc_putnl(resv, major_status);
svc_putnl(resv, minor_status);
svc_putnl(resv, GSS_SEQ_WIN);
if (svc_safe_putnetobj(resv, out_token))
return -1;
return 0;
}
/*
* Having read the cred already and found we're in the context
* initiation case, read the verifier and initiate (or check the results
* of) upcalls to userspace for help with context initiation. If
* the upcall results are available, write the verifier and result.
* Otherwise, drop the request pending an answer to the upcall.
*/
static int svcauth_gss_legacy_init(struct svc_rqst *rqstp,
struct rpc_gss_wire_cred *gc, __be32 *authp)
{
struct kvec *argv = &rqstp->rq_arg.head[0];
struct kvec *resv = &rqstp->rq_res.head[0];
struct rsi *rsip, rsikey;
int ret;
struct sunrpc_net *sn = net_generic(rqstp->rq_xprt->xpt_net, sunrpc_net_id);
memset(&rsikey, 0, sizeof(rsikey));
ret = gss_read_verf(gc, argv, authp,
&rsikey.in_handle, &rsikey.in_token);
if (ret)
return ret;
/* Perform upcall, or find upcall result: */
rsip = rsi_lookup(sn->rsi_cache, &rsikey);
rsi_free(&rsikey);
if (!rsip)
return SVC_CLOSE;
if (cache_check(sn->rsi_cache, &rsip->h, &rqstp->rq_chandle) < 0)
/* No upcall result: */
return SVC_CLOSE;
ret = SVC_CLOSE;
/* Got an answer to the upcall; use it: */
if (gss_write_init_verf(sn->rsc_cache, rqstp,
&rsip->out_handle, &rsip->major_status))
goto out;
if (gss_write_resv(resv, PAGE_SIZE,
&rsip->out_handle, &rsip->out_token,
rsip->major_status, rsip->minor_status))
goto out;
ret = SVC_COMPLETE;
out:
cache_put(&rsip->h, sn->rsi_cache);
return ret;
}
static int gss_proxy_save_rsc(struct cache_detail *cd,
struct gssp_upcall_data *ud,
uint64_t *handle)
{
struct rsc rsci, *rscp = NULL;
static atomic64_t ctxhctr;
long long ctxh;
struct gss_api_mech *gm = NULL;
time_t expiry;
int status = -EINVAL;
memset(&rsci, 0, sizeof(rsci));
/* context handle */
status = -ENOMEM;
/* the handle needs to be just a unique id,
* use a static counter */
ctxh = atomic64_inc_return(&ctxhctr);
/* make a copy for the caller */
*handle = ctxh;
/* make a copy for the rsc cache */
if (dup_to_netobj(&rsci.handle, (char *)handle, sizeof(uint64_t)))
goto out;
rscp = rsc_lookup(cd, &rsci);
if (!rscp)
goto out;
/* creds */
if (!ud->found_creds) {
/* userspace seem buggy, we should always get at least a
* mapping to nobody */
dprintk("RPC: No creds found!\n");
goto out;
} else {
/* steal creds */
rsci.cred = ud->creds;
memset(&ud->creds, 0, sizeof(struct svc_cred));
status = -EOPNOTSUPP;
/* get mech handle from OID */
gm = gss_mech_get_by_OID(&ud->mech_oid);
if (!gm)
goto out;
rsci.cred.cr_gss_mech = gm;
status = -EINVAL;
/* mech-specific data: */
status = gss_import_sec_context(ud->out_handle.data,
ud->out_handle.len,
gm, &rsci.mechctx,
&expiry, GFP_KERNEL);
if (status)
goto out;
}
rsci.h.expiry_time = expiry;
rscp = rsc_update(cd, &rsci, rscp);
status = 0;
out:
rsc_free(&rsci);
if (rscp)
cache_put(&rscp->h, cd);
else
status = -ENOMEM;
return status;
}
static int svcauth_gss_proxy_init(struct svc_rqst *rqstp,
struct rpc_gss_wire_cred *gc, __be32 *authp)
{
struct kvec *resv = &rqstp->rq_res.head[0];
struct xdr_netobj cli_handle;
struct gssp_upcall_data ud;
uint64_t handle;
int status;
int ret;
struct net *net = rqstp->rq_xprt->xpt_net;
struct sunrpc_net *sn = net_generic(net, sunrpc_net_id);
memset(&ud, 0, sizeof(ud));
ret = gss_read_proxy_verf(rqstp, gc, authp,
&ud.in_handle, &ud.in_token);
if (ret)
return ret;
ret = SVC_CLOSE;
/* Perform synchronous upcall to gss-proxy */
status = gssp_accept_sec_context_upcall(net, &ud);
if (status)
goto out;
dprintk("RPC: svcauth_gss: gss major status = %d "
"minor status = %d\n",
ud.major_status, ud.minor_status);
switch (ud.major_status) {
case GSS_S_CONTINUE_NEEDED:
cli_handle = ud.out_handle;
break;
case GSS_S_COMPLETE:
status = gss_proxy_save_rsc(sn->rsc_cache, &ud, &handle);
if (status)
goto out;
cli_handle.data = (u8 *)&handle;
cli_handle.len = sizeof(handle);
break;
default:
ret = SVC_CLOSE;
goto out;
}
/* Got an answer to the upcall; use it: */
if (gss_write_init_verf(sn->rsc_cache, rqstp,
&cli_handle, &ud.major_status))
goto out;
if (gss_write_resv(resv, PAGE_SIZE,
&cli_handle, &ud.out_token,
ud.major_status, ud.minor_status))
goto out;
ret = SVC_COMPLETE;
out:
gssp_free_upcall_data(&ud);
return ret;
}
/*
* Try to set the sn->use_gss_proxy variable to a new value. We only allow
* it to be changed if it's currently undefined (-1). If it's any other value
* then return -EBUSY unless the type wouldn't have changed anyway.
*/
static int set_gss_proxy(struct net *net, int type)
{
struct sunrpc_net *sn = net_generic(net, sunrpc_net_id);
int ret;
WARN_ON_ONCE(type != 0 && type != 1);
ret = cmpxchg(&sn->use_gss_proxy, -1, type);
if (ret != -1 && ret != type)
return -EBUSY;
return 0;
}
static bool use_gss_proxy(struct net *net)
{
struct sunrpc_net *sn = net_generic(net, sunrpc_net_id);
/* If use_gss_proxy is still undefined, then try to disable it */
if (sn->use_gss_proxy == -1)
set_gss_proxy(net, 0);
return sn->use_gss_proxy;
}
#ifdef CONFIG_PROC_FS
static ssize_t write_gssp(struct file *file, const char __user *buf,
size_t count, loff_t *ppos)
{
struct net *net = PDE_DATA(file_inode(file));
char tbuf[20];
unsigned long i;
int res;
if (*ppos || count > sizeof(tbuf)-1)
return -EINVAL;
if (copy_from_user(tbuf, buf, count))
return -EFAULT;
tbuf[count] = 0;
res = kstrtoul(tbuf, 0, &i);
if (res)
return res;
if (i != 1)
return -EINVAL;
res = set_gssp_clnt(net);
if (res)
return res;
res = set_gss_proxy(net, 1);
if (res)
return res;
return count;
}
static ssize_t read_gssp(struct file *file, char __user *buf,
size_t count, loff_t *ppos)
{
struct net *net = PDE_DATA(file_inode(file));
struct sunrpc_net *sn = net_generic(net, sunrpc_net_id);
unsigned long p = *ppos;
char tbuf[10];
size_t len;
snprintf(tbuf, sizeof(tbuf), "%d\n", sn->use_gss_proxy);
len = strlen(tbuf);
if (p >= len)
return 0;
len -= p;
if (len > count)
len = count;
if (copy_to_user(buf, (void *)(tbuf+p), len))
return -EFAULT;
*ppos += len;
return len;
}
static const struct file_operations use_gss_proxy_ops = {
.open = nonseekable_open,
.write = write_gssp,
.read = read_gssp,
};
static int create_use_gss_proxy_proc_entry(struct net *net)
{
struct sunrpc_net *sn = net_generic(net, sunrpc_net_id);
struct proc_dir_entry **p = &sn->use_gssp_proc;
sn->use_gss_proxy = -1;
*p = proc_create_data("use-gss-proxy", S_IFREG|S_IRUSR|S_IWUSR,
sn->proc_net_rpc,
&use_gss_proxy_ops, net);
if (!*p)
return -ENOMEM;
init_gssp_clnt(sn);
return 0;
}
static void destroy_use_gss_proxy_proc_entry(struct net *net)
{
struct sunrpc_net *sn = net_generic(net, sunrpc_net_id);
if (sn->use_gssp_proc) {
remove_proc_entry("use-gss-proxy", sn->proc_net_rpc);
clear_gssp_clnt(sn);
}
}
#else /* CONFIG_PROC_FS */
static int create_use_gss_proxy_proc_entry(struct net *net)
{
return 0;
}
static void destroy_use_gss_proxy_proc_entry(struct net *net) {}
#endif /* CONFIG_PROC_FS */
/*
* Accept an rpcsec packet.
* If context establishment, punt to user space
* If data exchange, verify/decrypt
* If context destruction, handle here
* In the context establishment and destruction case we encode
* response here and return SVC_COMPLETE.
*/
static int
svcauth_gss_accept(struct svc_rqst *rqstp, __be32 *authp)
{
struct kvec *argv = &rqstp->rq_arg.head[0];
struct kvec *resv = &rqstp->rq_res.head[0];
u32 crlen;
struct gss_svc_data *svcdata = rqstp->rq_auth_data;
struct rpc_gss_wire_cred *gc;
struct rsc *rsci = NULL;
__be32 *rpcstart;
__be32 *reject_stat = resv->iov_base + resv->iov_len;
int ret;
struct sunrpc_net *sn = net_generic(rqstp->rq_xprt->xpt_net, sunrpc_net_id);
dprintk("RPC: svcauth_gss: argv->iov_len = %zd\n",
argv->iov_len);
*authp = rpc_autherr_badcred;
if (!svcdata)
svcdata = kmalloc(sizeof(*svcdata), GFP_KERNEL);
if (!svcdata)
goto auth_err;
rqstp->rq_auth_data = svcdata;
svcdata->verf_start = NULL;
svcdata->rsci = NULL;
gc = &svcdata->clcred;
/* start of rpc packet is 7 u32's back from here:
* xid direction rpcversion prog vers proc flavour
*/
rpcstart = argv->iov_base;
rpcstart -= 7;
/* credential is:
* version(==1), proc(0,1,2,3), seq, service (1,2,3), handle
* at least 5 u32s, and is preceded by length, so that makes 6.
*/
if (argv->iov_len < 5 * 4)
goto auth_err;
crlen = svc_getnl(argv);
if (svc_getnl(argv) != RPC_GSS_VERSION)
goto auth_err;
gc->gc_proc = svc_getnl(argv);
gc->gc_seq = svc_getnl(argv);
gc->gc_svc = svc_getnl(argv);
if (svc_safe_getnetobj(argv, &gc->gc_ctx))
goto auth_err;
if (crlen != round_up_to_quad(gc->gc_ctx.len) + 5 * 4)
goto auth_err;
if ((gc->gc_proc != RPC_GSS_PROC_DATA) && (rqstp->rq_proc != 0))
goto auth_err;
*authp = rpc_autherr_badverf;
switch (gc->gc_proc) {
case RPC_GSS_PROC_INIT:
case RPC_GSS_PROC_CONTINUE_INIT:
if (use_gss_proxy(SVC_NET(rqstp)))
return svcauth_gss_proxy_init(rqstp, gc, authp);
else
return svcauth_gss_legacy_init(rqstp, gc, authp);
case RPC_GSS_PROC_DATA:
case RPC_GSS_PROC_DESTROY:
/* Look up the context, and check the verifier: */
*authp = rpcsec_gsserr_credproblem;
rsci = gss_svc_searchbyctx(sn->rsc_cache, &gc->gc_ctx);
if (!rsci)
goto auth_err;
switch (gss_verify_header(rqstp, rsci, rpcstart, gc, authp)) {
case SVC_OK:
break;
case SVC_DENIED:
goto auth_err;
case SVC_DROP:
goto drop;
}
break;
default:
*authp = rpc_autherr_rejectedcred;
goto auth_err;
}
/* now act upon the command: */
switch (gc->gc_proc) {
case RPC_GSS_PROC_DESTROY:
if (gss_write_verf(rqstp, rsci->mechctx, gc->gc_seq))
goto auth_err;
/* Delete the entry from the cache_list and call cache_put */
sunrpc_cache_unhash(sn->rsc_cache, &rsci->h);
if (resv->iov_len + 4 > PAGE_SIZE)
goto drop;
svc_putnl(resv, RPC_SUCCESS);
goto complete;
case RPC_GSS_PROC_DATA:
*authp = rpcsec_gsserr_ctxproblem;
svcdata->verf_start = resv->iov_base + resv->iov_len;
if (gss_write_verf(rqstp, rsci->mechctx, gc->gc_seq))
goto auth_err;
rqstp->rq_cred = rsci->cred;
get_group_info(rsci->cred.cr_group_info);
*authp = rpc_autherr_badcred;
switch (gc->gc_svc) {
case RPC_GSS_SVC_NONE:
break;
case RPC_GSS_SVC_INTEGRITY:
/* placeholders for length and seq. number: */
svc_putnl(resv, 0);
svc_putnl(resv, 0);
if (unwrap_integ_data(rqstp, &rqstp->rq_arg,
gc->gc_seq, rsci->mechctx))
goto garbage_args;
rqstp->rq_auth_slack = RPC_MAX_AUTH_SIZE;
break;
case RPC_GSS_SVC_PRIVACY:
/* placeholders for length and seq. number: */
svc_putnl(resv, 0);
svc_putnl(resv, 0);
if (unwrap_priv_data(rqstp, &rqstp->rq_arg,
gc->gc_seq, rsci->mechctx))
goto garbage_args;
rqstp->rq_auth_slack = RPC_MAX_AUTH_SIZE * 2;
break;
default:
goto auth_err;
}
svcdata->rsci = rsci;
cache_get(&rsci->h);
rqstp->rq_cred.cr_flavor = gss_svc_to_pseudoflavor(
rsci->mechctx->mech_type,
GSS_C_QOP_DEFAULT,
gc->gc_svc);
ret = SVC_OK;
goto out;
}
garbage_args:
ret = SVC_GARBAGE;
goto out;
auth_err:
/* Restore write pointer to its original value: */
xdr_ressize_check(rqstp, reject_stat);
ret = SVC_DENIED;
goto out;
complete:
ret = SVC_COMPLETE;
goto out;
drop:
ret = SVC_CLOSE;
out:
if (rsci)
cache_put(&rsci->h, sn->rsc_cache);
return ret;
}
static __be32 *
svcauth_gss_prepare_to_wrap(struct xdr_buf *resbuf, struct gss_svc_data *gsd)
{
__be32 *p;
u32 verf_len;
p = gsd->verf_start;
gsd->verf_start = NULL;
/* If the reply stat is nonzero, don't wrap: */
if (*(p-1) != rpc_success)
return NULL;
/* Skip the verifier: */
p += 1;
verf_len = ntohl(*p++);
p += XDR_QUADLEN(verf_len);
/* move accept_stat to right place: */
memcpy(p, p + 2, 4);
/* Also don't wrap if the accept stat is nonzero: */
if (*p != rpc_success) {
resbuf->head[0].iov_len -= 2 * 4;
return NULL;
}
p++;
return p;
}
static inline int
svcauth_gss_wrap_resp_integ(struct svc_rqst *rqstp)
{
struct gss_svc_data *gsd = (struct gss_svc_data *)rqstp->rq_auth_data;
struct rpc_gss_wire_cred *gc = &gsd->clcred;
struct xdr_buf *resbuf = &rqstp->rq_res;
struct xdr_buf integ_buf;
struct xdr_netobj mic;
struct kvec *resv;
__be32 *p;
int integ_offset, integ_len;
int stat = -EINVAL;
p = svcauth_gss_prepare_to_wrap(resbuf, gsd);
if (p == NULL)
goto out;
integ_offset = (u8 *)(p + 1) - (u8 *)resbuf->head[0].iov_base;
integ_len = resbuf->len - integ_offset;
BUG_ON(integ_len % 4);
*p++ = htonl(integ_len);
*p++ = htonl(gc->gc_seq);
if (xdr_buf_subsegment(resbuf, &integ_buf, integ_offset, integ_len))
BUG();
if (resbuf->tail[0].iov_base == NULL) {
if (resbuf->head[0].iov_len + RPC_MAX_AUTH_SIZE > PAGE_SIZE)
goto out_err;
resbuf->tail[0].iov_base = resbuf->head[0].iov_base
+ resbuf->head[0].iov_len;
resbuf->tail[0].iov_len = 0;
}
resv = &resbuf->tail[0];
mic.data = (u8 *)resv->iov_base + resv->iov_len + 4;
if (gss_get_mic(gsd->rsci->mechctx, &integ_buf, &mic))
goto out_err;
svc_putnl(resv, mic.len);
memset(mic.data + mic.len, 0,
round_up_to_quad(mic.len) - mic.len);
resv->iov_len += XDR_QUADLEN(mic.len) << 2;
/* not strictly required: */
resbuf->len += XDR_QUADLEN(mic.len) << 2;
BUG_ON(resv->iov_len > PAGE_SIZE);
out:
stat = 0;
out_err:
return stat;
}
static inline int
svcauth_gss_wrap_resp_priv(struct svc_rqst *rqstp)
{
struct gss_svc_data *gsd = (struct gss_svc_data *)rqstp->rq_auth_data;
struct rpc_gss_wire_cred *gc = &gsd->clcred;
struct xdr_buf *resbuf = &rqstp->rq_res;
struct page **inpages = NULL;
__be32 *p, *len;
int offset;
int pad;
p = svcauth_gss_prepare_to_wrap(resbuf, gsd);
if (p == NULL)
return 0;
len = p++;
offset = (u8 *)p - (u8 *)resbuf->head[0].iov_base;
*p++ = htonl(gc->gc_seq);
inpages = resbuf->pages;
/* XXX: Would be better to write some xdr helper functions for
* nfs{2,3,4}xdr.c that place the data right, instead of copying: */
/*
* If there is currently tail data, make sure there is
* room for the head, tail, and 2 * RPC_MAX_AUTH_SIZE in
* the page, and move the current tail data such that
* there is RPC_MAX_AUTH_SIZE slack space available in
* both the head and tail.
*/
if (resbuf->tail[0].iov_base) {
BUG_ON(resbuf->tail[0].iov_base >= resbuf->head[0].iov_base
+ PAGE_SIZE);
BUG_ON(resbuf->tail[0].iov_base < resbuf->head[0].iov_base);
if (resbuf->tail[0].iov_len + resbuf->head[0].iov_len
+ 2 * RPC_MAX_AUTH_SIZE > PAGE_SIZE)
return -ENOMEM;
memmove(resbuf->tail[0].iov_base + RPC_MAX_AUTH_SIZE,
resbuf->tail[0].iov_base,
resbuf->tail[0].iov_len);
resbuf->tail[0].iov_base += RPC_MAX_AUTH_SIZE;
}
/*
* If there is no current tail data, make sure there is
* room for the head data, and 2 * RPC_MAX_AUTH_SIZE in the
* allotted page, and set up tail information such that there
* is RPC_MAX_AUTH_SIZE slack space available in both the
* head and tail.
*/
if (resbuf->tail[0].iov_base == NULL) {
if (resbuf->head[0].iov_len + 2*RPC_MAX_AUTH_SIZE > PAGE_SIZE)
return -ENOMEM;
resbuf->tail[0].iov_base = resbuf->head[0].iov_base
+ resbuf->head[0].iov_len + RPC_MAX_AUTH_SIZE;
resbuf->tail[0].iov_len = 0;
}
if (gss_wrap(gsd->rsci->mechctx, offset, resbuf, inpages))
return -ENOMEM;
*len = htonl(resbuf->len - offset);
pad = 3 - ((resbuf->len - offset - 1)&3);
p = (__be32 *)(resbuf->tail[0].iov_base + resbuf->tail[0].iov_len);
memset(p, 0, pad);
resbuf->tail[0].iov_len += pad;
resbuf->len += pad;
return 0;
}
static int
svcauth_gss_release(struct svc_rqst *rqstp)
{
struct gss_svc_data *gsd = (struct gss_svc_data *)rqstp->rq_auth_data;
struct rpc_gss_wire_cred *gc = &gsd->clcred;
struct xdr_buf *resbuf = &rqstp->rq_res;
int stat = -EINVAL;
struct sunrpc_net *sn = net_generic(rqstp->rq_xprt->xpt_net, sunrpc_net_id);
if (gc->gc_proc != RPC_GSS_PROC_DATA)
goto out;
/* Release can be called twice, but we only wrap once. */
if (gsd->verf_start == NULL)
goto out;
/* normally not set till svc_send, but we need it here: */
/* XXX: what for? Do we mess it up the moment we call svc_putu32
* or whatever? */
resbuf->len = total_buf_len(resbuf);
switch (gc->gc_svc) {
case RPC_GSS_SVC_NONE:
break;
case RPC_GSS_SVC_INTEGRITY:
stat = svcauth_gss_wrap_resp_integ(rqstp);
if (stat)
goto out_err;
break;
case RPC_GSS_SVC_PRIVACY:
stat = svcauth_gss_wrap_resp_priv(rqstp);
if (stat)
goto out_err;
break;
/*
* For any other gc_svc value, svcauth_gss_accept() already set
* the auth_error appropriately; just fall through:
*/
}
out:
stat = 0;
out_err:
if (rqstp->rq_client)
auth_domain_put(rqstp->rq_client);
rqstp->rq_client = NULL;
if (rqstp->rq_gssclient)
auth_domain_put(rqstp->rq_gssclient);
rqstp->rq_gssclient = NULL;
if (rqstp->rq_cred.cr_group_info)
put_group_info(rqstp->rq_cred.cr_group_info);
rqstp->rq_cred.cr_group_info = NULL;
if (gsd->rsci)
cache_put(&gsd->rsci->h, sn->rsc_cache);
gsd->rsci = NULL;
return stat;
}
static void
svcauth_gss_domain_release(struct auth_domain *dom)
{
struct gss_domain *gd = container_of(dom, struct gss_domain, h);
kfree(dom->name);
kfree(gd);
}
static struct auth_ops svcauthops_gss = {
.name = "rpcsec_gss",
.owner = THIS_MODULE,
.flavour = RPC_AUTH_GSS,
.accept = svcauth_gss_accept,
.release = svcauth_gss_release,
.domain_release = svcauth_gss_domain_release,
.set_client = svcauth_gss_set_client,
};
static int rsi_cache_create_net(struct net *net)
{
struct sunrpc_net *sn = net_generic(net, sunrpc_net_id);
struct cache_detail *cd;
int err;
cd = cache_create_net(&rsi_cache_template, net);
if (IS_ERR(cd))
return PTR_ERR(cd);
err = cache_register_net(cd, net);
if (err) {
cache_destroy_net(cd, net);
return err;
}
sn->rsi_cache = cd;
return 0;
}
static void rsi_cache_destroy_net(struct net *net)
{
struct sunrpc_net *sn = net_generic(net, sunrpc_net_id);
struct cache_detail *cd = sn->rsi_cache;
sn->rsi_cache = NULL;
cache_purge(cd);
cache_unregister_net(cd, net);
cache_destroy_net(cd, net);
}
static int rsc_cache_create_net(struct net *net)
{
struct sunrpc_net *sn = net_generic(net, sunrpc_net_id);
struct cache_detail *cd;
int err;
cd = cache_create_net(&rsc_cache_template, net);
if (IS_ERR(cd))
return PTR_ERR(cd);
err = cache_register_net(cd, net);
if (err) {
cache_destroy_net(cd, net);
return err;
}
sn->rsc_cache = cd;
return 0;
}
static void rsc_cache_destroy_net(struct net *net)
{
struct sunrpc_net *sn = net_generic(net, sunrpc_net_id);
struct cache_detail *cd = sn->rsc_cache;
sn->rsc_cache = NULL;
cache_purge(cd);
cache_unregister_net(cd, net);
cache_destroy_net(cd, net);
}
int
gss_svc_init_net(struct net *net)
{
int rv;
rv = rsc_cache_create_net(net);
if (rv)
return rv;
rv = rsi_cache_create_net(net);
if (rv)
goto out1;
rv = create_use_gss_proxy_proc_entry(net);
if (rv)
goto out2;
return 0;
out2:
destroy_use_gss_proxy_proc_entry(net);
out1:
rsc_cache_destroy_net(net);
return rv;
}
void
gss_svc_shutdown_net(struct net *net)
{
destroy_use_gss_proxy_proc_entry(net);
rsi_cache_destroy_net(net);
rsc_cache_destroy_net(net);
}
int
gss_svc_init(void)
{
return svc_auth_register(RPC_AUTH_GSS, &svcauthops_gss);
}
void
gss_svc_shutdown(void)
{
svc_auth_unregister(RPC_AUTH_GSS);
}