linux_dsm_epyc7002/include/net/sock.h
Arnaldo Carvalho de Melo ab1e0a13d7 [SOCK] proto: Add hashinfo member to struct proto
This way we can remove TCP and DCCP specific versions of

sk->sk_prot->get_port: both v4 and v6 use inet_csk_get_port
sk->sk_prot->hash:     inet_hash is directly used, only v6 need
                       a specific version to deal with mapped sockets
sk->sk_prot->unhash:   both v4 and v6 use inet_hash directly

struct inet_connection_sock_af_ops also gets a new member, bind_conflict, so
that inet_csk_get_port can find the per family routine.

Now only the lookup routines receive as a parameter a struct inet_hashtable.

With this we further reuse code, reducing the difference among INET transport
protocols.

Eventually work has to be done on UDP and SCTP to make them share this
infrastructure and get as a bonus inet_diag interfaces so that iproute can be
used with these protocols.

net-2.6/net/ipv4/inet_hashtables.c:
  struct proto			     |   +8
  struct inet_connection_sock_af_ops |   +8
 2 structs changed
  __inet_hash_nolisten               |  +18
  __inet_hash                        | -210
  inet_put_port                      |   +8
  inet_bind_bucket_create            |   +1
  __inet_hash_connect                |   -8
 5 functions changed, 27 bytes added, 218 bytes removed, diff: -191

net-2.6/net/core/sock.c:
  proto_seq_show                     |   +3
 1 function changed, 3 bytes added, diff: +3

net-2.6/net/ipv4/inet_connection_sock.c:
  inet_csk_get_port                  |  +15
 1 function changed, 15 bytes added, diff: +15

net-2.6/net/ipv4/tcp.c:
  tcp_set_state                      |   -7
 1 function changed, 7 bytes removed, diff: -7

net-2.6/net/ipv4/tcp_ipv4.c:
  tcp_v4_get_port                    |  -31
  tcp_v4_hash                        |  -48
  tcp_v4_destroy_sock                |   -7
  tcp_v4_syn_recv_sock               |   -2
  tcp_unhash                         | -179
 5 functions changed, 267 bytes removed, diff: -267

net-2.6/net/ipv6/inet6_hashtables.c:
  __inet6_hash |   +8
 1 function changed, 8 bytes added, diff: +8

net-2.6/net/ipv4/inet_hashtables.c:
  inet_unhash                        | +190
  inet_hash                          | +242
 2 functions changed, 432 bytes added, diff: +432

vmlinux:
 16 functions changed, 485 bytes added, 492 bytes removed, diff: -7

/home/acme/git/net-2.6/net/ipv6/tcp_ipv6.c:
  tcp_v6_get_port                    |  -31
  tcp_v6_hash                        |   -7
  tcp_v6_syn_recv_sock               |   -9
 3 functions changed, 47 bytes removed, diff: -47

/home/acme/git/net-2.6/net/dccp/proto.c:
  dccp_destroy_sock                  |   -7
  dccp_unhash                        | -179
  dccp_hash                          |  -49
  dccp_set_state                     |   -7
  dccp_done                          |   +1
 5 functions changed, 1 bytes added, 242 bytes removed, diff: -241

/home/acme/git/net-2.6/net/dccp/ipv4.c:
  dccp_v4_get_port                   |  -31
  dccp_v4_request_recv_sock          |   -2
 2 functions changed, 33 bytes removed, diff: -33

/home/acme/git/net-2.6/net/dccp/ipv6.c:
  dccp_v6_get_port                   |  -31
  dccp_v6_hash                       |   -7
  dccp_v6_request_recv_sock          |   +5
 3 functions changed, 5 bytes added, 38 bytes removed, diff: -33

Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2008-02-03 04:28:52 -08:00

1384 lines
39 KiB
C

/*
* INET An implementation of the TCP/IP protocol suite for the LINUX
* operating system. INET is implemented using the BSD Socket
* interface as the means of communication with the user level.
*
* Definitions for the AF_INET socket handler.
*
* Version: @(#)sock.h 1.0.4 05/13/93
*
* Authors: Ross Biro
* Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
* Corey Minyard <wf-rch!minyard@relay.EU.net>
* Florian La Roche <flla@stud.uni-sb.de>
*
* Fixes:
* Alan Cox : Volatiles in skbuff pointers. See
* skbuff comments. May be overdone,
* better to prove they can be removed
* than the reverse.
* Alan Cox : Added a zapped field for tcp to note
* a socket is reset and must stay shut up
* Alan Cox : New fields for options
* Pauline Middelink : identd support
* Alan Cox : Eliminate low level recv/recvfrom
* David S. Miller : New socket lookup architecture.
* Steve Whitehouse: Default routines for sock_ops
* Arnaldo C. Melo : removed net_pinfo, tp_pinfo and made
* protinfo be just a void pointer, as the
* protocol specific parts were moved to
* respective headers and ipv4/v6, etc now
* use private slabcaches for its socks
* Pedro Hortas : New flags field for socket options
*
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*/
#ifndef _SOCK_H
#define _SOCK_H
#include <linux/kernel.h>
#include <linux/list.h>
#include <linux/timer.h>
#include <linux/cache.h>
#include <linux/module.h>
#include <linux/lockdep.h>
#include <linux/netdevice.h>
#include <linux/pcounter.h>
#include <linux/skbuff.h> /* struct sk_buff */
#include <linux/mm.h>
#include <linux/security.h>
#include <linux/filter.h>
#include <asm/atomic.h>
#include <net/dst.h>
#include <net/checksum.h>
/*
* This structure really needs to be cleaned up.
* Most of it is for TCP, and not used by any of
* the other protocols.
*/
/* Define this to get the SOCK_DBG debugging facility. */
#define SOCK_DEBUGGING
#ifdef SOCK_DEBUGGING
#define SOCK_DEBUG(sk, msg...) do { if ((sk) && sock_flag((sk), SOCK_DBG)) \
printk(KERN_DEBUG msg); } while (0)
#else
#define SOCK_DEBUG(sk, msg...) do { } while (0)
#endif
/* This is the per-socket lock. The spinlock provides a synchronization
* between user contexts and software interrupt processing, whereas the
* mini-semaphore synchronizes multiple users amongst themselves.
*/
typedef struct {
spinlock_t slock;
int owned;
wait_queue_head_t wq;
/*
* We express the mutex-alike socket_lock semantics
* to the lock validator by explicitly managing
* the slock as a lock variant (in addition to
* the slock itself):
*/
#ifdef CONFIG_DEBUG_LOCK_ALLOC
struct lockdep_map dep_map;
#endif
} socket_lock_t;
struct sock;
struct proto;
struct net;
/**
* struct sock_common - minimal network layer representation of sockets
* @skc_family: network address family
* @skc_state: Connection state
* @skc_reuse: %SO_REUSEADDR setting
* @skc_bound_dev_if: bound device index if != 0
* @skc_node: main hash linkage for various protocol lookup tables
* @skc_bind_node: bind hash linkage for various protocol lookup tables
* @skc_refcnt: reference count
* @skc_hash: hash value used with various protocol lookup tables
* @skc_prot: protocol handlers inside a network family
* @skc_net: reference to the network namespace of this socket
*
* This is the minimal network layer representation of sockets, the header
* for struct sock and struct inet_timewait_sock.
*/
struct sock_common {
unsigned short skc_family;
volatile unsigned char skc_state;
unsigned char skc_reuse;
int skc_bound_dev_if;
struct hlist_node skc_node;
struct hlist_node skc_bind_node;
atomic_t skc_refcnt;
unsigned int skc_hash;
struct proto *skc_prot;
struct net *skc_net;
};
/**
* struct sock - network layer representation of sockets
* @__sk_common: shared layout with inet_timewait_sock
* @sk_shutdown: mask of %SEND_SHUTDOWN and/or %RCV_SHUTDOWN
* @sk_userlocks: %SO_SNDBUF and %SO_RCVBUF settings
* @sk_lock: synchronizer
* @sk_rcvbuf: size of receive buffer in bytes
* @sk_sleep: sock wait queue
* @sk_dst_cache: destination cache
* @sk_dst_lock: destination cache lock
* @sk_policy: flow policy
* @sk_rmem_alloc: receive queue bytes committed
* @sk_receive_queue: incoming packets
* @sk_wmem_alloc: transmit queue bytes committed
* @sk_write_queue: Packet sending queue
* @sk_async_wait_queue: DMA copied packets
* @sk_omem_alloc: "o" is "option" or "other"
* @sk_wmem_queued: persistent queue size
* @sk_forward_alloc: space allocated forward
* @sk_allocation: allocation mode
* @sk_sndbuf: size of send buffer in bytes
* @sk_flags: %SO_LINGER (l_onoff), %SO_BROADCAST, %SO_KEEPALIVE,
* %SO_OOBINLINE settings
* @sk_no_check: %SO_NO_CHECK setting, wether or not checkup packets
* @sk_route_caps: route capabilities (e.g. %NETIF_F_TSO)
* @sk_gso_type: GSO type (e.g. %SKB_GSO_TCPV4)
* @sk_lingertime: %SO_LINGER l_linger setting
* @sk_backlog: always used with the per-socket spinlock held
* @sk_callback_lock: used with the callbacks in the end of this struct
* @sk_error_queue: rarely used
* @sk_prot_creator: sk_prot of original sock creator (see ipv6_setsockopt,
* IPV6_ADDRFORM for instance)
* @sk_err: last error
* @sk_err_soft: errors that don't cause failure but are the cause of a
* persistent failure not just 'timed out'
* @sk_drops: raw drops counter
* @sk_ack_backlog: current listen backlog
* @sk_max_ack_backlog: listen backlog set in listen()
* @sk_priority: %SO_PRIORITY setting
* @sk_type: socket type (%SOCK_STREAM, etc)
* @sk_protocol: which protocol this socket belongs in this network family
* @sk_peercred: %SO_PEERCRED setting
* @sk_rcvlowat: %SO_RCVLOWAT setting
* @sk_rcvtimeo: %SO_RCVTIMEO setting
* @sk_sndtimeo: %SO_SNDTIMEO setting
* @sk_filter: socket filtering instructions
* @sk_protinfo: private area, net family specific, when not using slab
* @sk_timer: sock cleanup timer
* @sk_stamp: time stamp of last packet received
* @sk_socket: Identd and reporting IO signals
* @sk_user_data: RPC layer private data
* @sk_sndmsg_page: cached page for sendmsg
* @sk_sndmsg_off: cached offset for sendmsg
* @sk_send_head: front of stuff to transmit
* @sk_security: used by security modules
* @sk_write_pending: a write to stream socket waits to start
* @sk_state_change: callback to indicate change in the state of the sock
* @sk_data_ready: callback to indicate there is data to be processed
* @sk_write_space: callback to indicate there is bf sending space available
* @sk_error_report: callback to indicate errors (e.g. %MSG_ERRQUEUE)
* @sk_backlog_rcv: callback to process the backlog
* @sk_destruct: called at sock freeing time, i.e. when all refcnt == 0
*/
struct sock {
/*
* Now struct inet_timewait_sock also uses sock_common, so please just
* don't add nothing before this first member (__sk_common) --acme
*/
struct sock_common __sk_common;
#define sk_family __sk_common.skc_family
#define sk_state __sk_common.skc_state
#define sk_reuse __sk_common.skc_reuse
#define sk_bound_dev_if __sk_common.skc_bound_dev_if
#define sk_node __sk_common.skc_node
#define sk_bind_node __sk_common.skc_bind_node
#define sk_refcnt __sk_common.skc_refcnt
#define sk_hash __sk_common.skc_hash
#define sk_prot __sk_common.skc_prot
#define sk_net __sk_common.skc_net
unsigned char sk_shutdown : 2,
sk_no_check : 2,
sk_userlocks : 4;
unsigned char sk_protocol;
unsigned short sk_type;
int sk_rcvbuf;
socket_lock_t sk_lock;
/*
* The backlog queue is special, it is always used with
* the per-socket spinlock held and requires low latency
* access. Therefore we special case it's implementation.
*/
struct {
struct sk_buff *head;
struct sk_buff *tail;
} sk_backlog;
wait_queue_head_t *sk_sleep;
struct dst_entry *sk_dst_cache;
struct xfrm_policy *sk_policy[2];
rwlock_t sk_dst_lock;
atomic_t sk_rmem_alloc;
atomic_t sk_wmem_alloc;
atomic_t sk_omem_alloc;
int sk_sndbuf;
struct sk_buff_head sk_receive_queue;
struct sk_buff_head sk_write_queue;
struct sk_buff_head sk_async_wait_queue;
int sk_wmem_queued;
int sk_forward_alloc;
gfp_t sk_allocation;
int sk_route_caps;
int sk_gso_type;
int sk_rcvlowat;
unsigned long sk_flags;
unsigned long sk_lingertime;
struct sk_buff_head sk_error_queue;
struct proto *sk_prot_creator;
rwlock_t sk_callback_lock;
int sk_err,
sk_err_soft;
atomic_t sk_drops;
unsigned short sk_ack_backlog;
unsigned short sk_max_ack_backlog;
__u32 sk_priority;
struct ucred sk_peercred;
long sk_rcvtimeo;
long sk_sndtimeo;
struct sk_filter *sk_filter;
void *sk_protinfo;
struct timer_list sk_timer;
ktime_t sk_stamp;
struct socket *sk_socket;
void *sk_user_data;
struct page *sk_sndmsg_page;
struct sk_buff *sk_send_head;
__u32 sk_sndmsg_off;
int sk_write_pending;
void *sk_security;
__u32 sk_mark;
/* XXX 4 bytes hole on 64 bit */
void (*sk_state_change)(struct sock *sk);
void (*sk_data_ready)(struct sock *sk, int bytes);
void (*sk_write_space)(struct sock *sk);
void (*sk_error_report)(struct sock *sk);
int (*sk_backlog_rcv)(struct sock *sk,
struct sk_buff *skb);
void (*sk_destruct)(struct sock *sk);
};
/*
* Hashed lists helper routines
*/
static inline struct sock *__sk_head(const struct hlist_head *head)
{
return hlist_entry(head->first, struct sock, sk_node);
}
static inline struct sock *sk_head(const struct hlist_head *head)
{
return hlist_empty(head) ? NULL : __sk_head(head);
}
static inline struct sock *sk_next(const struct sock *sk)
{
return sk->sk_node.next ?
hlist_entry(sk->sk_node.next, struct sock, sk_node) : NULL;
}
static inline int sk_unhashed(const struct sock *sk)
{
return hlist_unhashed(&sk->sk_node);
}
static inline int sk_hashed(const struct sock *sk)
{
return !sk_unhashed(sk);
}
static __inline__ void sk_node_init(struct hlist_node *node)
{
node->pprev = NULL;
}
static __inline__ void __sk_del_node(struct sock *sk)
{
__hlist_del(&sk->sk_node);
}
static __inline__ int __sk_del_node_init(struct sock *sk)
{
if (sk_hashed(sk)) {
__sk_del_node(sk);
sk_node_init(&sk->sk_node);
return 1;
}
return 0;
}
/* Grab socket reference count. This operation is valid only
when sk is ALREADY grabbed f.e. it is found in hash table
or a list and the lookup is made under lock preventing hash table
modifications.
*/
static inline void sock_hold(struct sock *sk)
{
atomic_inc(&sk->sk_refcnt);
}
/* Ungrab socket in the context, which assumes that socket refcnt
cannot hit zero, f.e. it is true in context of any socketcall.
*/
static inline void __sock_put(struct sock *sk)
{
atomic_dec(&sk->sk_refcnt);
}
static __inline__ int sk_del_node_init(struct sock *sk)
{
int rc = __sk_del_node_init(sk);
if (rc) {
/* paranoid for a while -acme */
WARN_ON(atomic_read(&sk->sk_refcnt) == 1);
__sock_put(sk);
}
return rc;
}
static __inline__ void __sk_add_node(struct sock *sk, struct hlist_head *list)
{
hlist_add_head(&sk->sk_node, list);
}
static __inline__ void sk_add_node(struct sock *sk, struct hlist_head *list)
{
sock_hold(sk);
__sk_add_node(sk, list);
}
static __inline__ void __sk_del_bind_node(struct sock *sk)
{
__hlist_del(&sk->sk_bind_node);
}
static __inline__ void sk_add_bind_node(struct sock *sk,
struct hlist_head *list)
{
hlist_add_head(&sk->sk_bind_node, list);
}
#define sk_for_each(__sk, node, list) \
hlist_for_each_entry(__sk, node, list, sk_node)
#define sk_for_each_from(__sk, node) \
if (__sk && ({ node = &(__sk)->sk_node; 1; })) \
hlist_for_each_entry_from(__sk, node, sk_node)
#define sk_for_each_continue(__sk, node) \
if (__sk && ({ node = &(__sk)->sk_node; 1; })) \
hlist_for_each_entry_continue(__sk, node, sk_node)
#define sk_for_each_safe(__sk, node, tmp, list) \
hlist_for_each_entry_safe(__sk, node, tmp, list, sk_node)
#define sk_for_each_bound(__sk, node, list) \
hlist_for_each_entry(__sk, node, list, sk_bind_node)
/* Sock flags */
enum sock_flags {
SOCK_DEAD,
SOCK_DONE,
SOCK_URGINLINE,
SOCK_KEEPOPEN,
SOCK_LINGER,
SOCK_DESTROY,
SOCK_BROADCAST,
SOCK_TIMESTAMP,
SOCK_ZAPPED,
SOCK_USE_WRITE_QUEUE, /* whether to call sk->sk_write_space in sock_wfree */
SOCK_DBG, /* %SO_DEBUG setting */
SOCK_RCVTSTAMP, /* %SO_TIMESTAMP setting */
SOCK_RCVTSTAMPNS, /* %SO_TIMESTAMPNS setting */
SOCK_LOCALROUTE, /* route locally only, %SO_DONTROUTE setting */
SOCK_QUEUE_SHRUNK, /* write queue has been shrunk recently */
};
static inline void sock_copy_flags(struct sock *nsk, struct sock *osk)
{
nsk->sk_flags = osk->sk_flags;
}
static inline void sock_set_flag(struct sock *sk, enum sock_flags flag)
{
__set_bit(flag, &sk->sk_flags);
}
static inline void sock_reset_flag(struct sock *sk, enum sock_flags flag)
{
__clear_bit(flag, &sk->sk_flags);
}
static inline int sock_flag(struct sock *sk, enum sock_flags flag)
{
return test_bit(flag, &sk->sk_flags);
}
static inline void sk_acceptq_removed(struct sock *sk)
{
sk->sk_ack_backlog--;
}
static inline void sk_acceptq_added(struct sock *sk)
{
sk->sk_ack_backlog++;
}
static inline int sk_acceptq_is_full(struct sock *sk)
{
return sk->sk_ack_backlog > sk->sk_max_ack_backlog;
}
/*
* Compute minimal free write space needed to queue new packets.
*/
static inline int sk_stream_min_wspace(struct sock *sk)
{
return sk->sk_wmem_queued >> 1;
}
static inline int sk_stream_wspace(struct sock *sk)
{
return sk->sk_sndbuf - sk->sk_wmem_queued;
}
extern void sk_stream_write_space(struct sock *sk);
static inline int sk_stream_memory_free(struct sock *sk)
{
return sk->sk_wmem_queued < sk->sk_sndbuf;
}
/* The per-socket spinlock must be held here. */
static inline void sk_add_backlog(struct sock *sk, struct sk_buff *skb)
{
if (!sk->sk_backlog.tail) {
sk->sk_backlog.head = sk->sk_backlog.tail = skb;
} else {
sk->sk_backlog.tail->next = skb;
sk->sk_backlog.tail = skb;
}
skb->next = NULL;
}
#define sk_wait_event(__sk, __timeo, __condition) \
({ int __rc; \
release_sock(__sk); \
__rc = __condition; \
if (!__rc) { \
*(__timeo) = schedule_timeout(*(__timeo)); \
} \
lock_sock(__sk); \
__rc = __condition; \
__rc; \
})
extern int sk_stream_wait_connect(struct sock *sk, long *timeo_p);
extern int sk_stream_wait_memory(struct sock *sk, long *timeo_p);
extern void sk_stream_wait_close(struct sock *sk, long timeo_p);
extern int sk_stream_error(struct sock *sk, int flags, int err);
extern void sk_stream_kill_queues(struct sock *sk);
extern int sk_wait_data(struct sock *sk, long *timeo);
struct request_sock_ops;
struct timewait_sock_ops;
struct inet_hashinfo;
/* Networking protocol blocks we attach to sockets.
* socket layer -> transport layer interface
* transport -> network interface is defined by struct inet_proto
*/
struct proto {
void (*close)(struct sock *sk,
long timeout);
int (*connect)(struct sock *sk,
struct sockaddr *uaddr,
int addr_len);
int (*disconnect)(struct sock *sk, int flags);
struct sock * (*accept) (struct sock *sk, int flags, int *err);
int (*ioctl)(struct sock *sk, int cmd,
unsigned long arg);
int (*init)(struct sock *sk);
int (*destroy)(struct sock *sk);
void (*shutdown)(struct sock *sk, int how);
int (*setsockopt)(struct sock *sk, int level,
int optname, char __user *optval,
int optlen);
int (*getsockopt)(struct sock *sk, int level,
int optname, char __user *optval,
int __user *option);
int (*compat_setsockopt)(struct sock *sk,
int level,
int optname, char __user *optval,
int optlen);
int (*compat_getsockopt)(struct sock *sk,
int level,
int optname, char __user *optval,
int __user *option);
int (*sendmsg)(struct kiocb *iocb, struct sock *sk,
struct msghdr *msg, size_t len);
int (*recvmsg)(struct kiocb *iocb, struct sock *sk,
struct msghdr *msg,
size_t len, int noblock, int flags,
int *addr_len);
int (*sendpage)(struct sock *sk, struct page *page,
int offset, size_t size, int flags);
int (*bind)(struct sock *sk,
struct sockaddr *uaddr, int addr_len);
int (*backlog_rcv) (struct sock *sk,
struct sk_buff *skb);
/* Keeping track of sk's, looking them up, and port selection methods. */
void (*hash)(struct sock *sk);
void (*unhash)(struct sock *sk);
int (*get_port)(struct sock *sk, unsigned short snum);
/* Keeping track of sockets in use */
#ifdef CONFIG_PROC_FS
struct pcounter inuse;
#endif
/* Memory pressure */
void (*enter_memory_pressure)(void);
atomic_t *memory_allocated; /* Current allocated memory. */
atomic_t *sockets_allocated; /* Current number of sockets. */
/*
* Pressure flag: try to collapse.
* Technical note: it is used by multiple contexts non atomically.
* All the __sk_mem_schedule() is of this nature: accounting
* is strict, actions are advisory and have some latency.
*/
int *memory_pressure;
int *sysctl_mem;
int *sysctl_wmem;
int *sysctl_rmem;
int max_header;
struct kmem_cache *slab;
unsigned int obj_size;
atomic_t *orphan_count;
struct request_sock_ops *rsk_prot;
struct timewait_sock_ops *twsk_prot;
struct inet_hashinfo *hashinfo;
struct module *owner;
char name[32];
struct list_head node;
#ifdef SOCK_REFCNT_DEBUG
atomic_t socks;
#endif
};
extern int proto_register(struct proto *prot, int alloc_slab);
extern void proto_unregister(struct proto *prot);
#ifdef SOCK_REFCNT_DEBUG
static inline void sk_refcnt_debug_inc(struct sock *sk)
{
atomic_inc(&sk->sk_prot->socks);
}
static inline void sk_refcnt_debug_dec(struct sock *sk)
{
atomic_dec(&sk->sk_prot->socks);
printk(KERN_DEBUG "%s socket %p released, %d are still alive\n",
sk->sk_prot->name, sk, atomic_read(&sk->sk_prot->socks));
}
static inline void sk_refcnt_debug_release(const struct sock *sk)
{
if (atomic_read(&sk->sk_refcnt) != 1)
printk(KERN_DEBUG "Destruction of the %s socket %p delayed, refcnt=%d\n",
sk->sk_prot->name, sk, atomic_read(&sk->sk_refcnt));
}
#else /* SOCK_REFCNT_DEBUG */
#define sk_refcnt_debug_inc(sk) do { } while (0)
#define sk_refcnt_debug_dec(sk) do { } while (0)
#define sk_refcnt_debug_release(sk) do { } while (0)
#endif /* SOCK_REFCNT_DEBUG */
#ifdef CONFIG_PROC_FS
# define DEFINE_PROTO_INUSE(NAME) DEFINE_PCOUNTER(NAME)
# define REF_PROTO_INUSE(NAME) PCOUNTER_MEMBER_INITIALIZER(NAME, .inuse)
/* Called with local bh disabled */
static inline void sock_prot_inuse_add(struct proto *prot, int inc)
{
pcounter_add(&prot->inuse, inc);
}
static inline int sock_prot_inuse_init(struct proto *proto)
{
return pcounter_alloc(&proto->inuse);
}
static inline int sock_prot_inuse_get(struct proto *proto)
{
return pcounter_getval(&proto->inuse);
}
static inline void sock_prot_inuse_free(struct proto *proto)
{
pcounter_free(&proto->inuse);
}
#else
# define DEFINE_PROTO_INUSE(NAME)
# define REF_PROTO_INUSE(NAME)
static void inline sock_prot_inuse_add(struct proto *prot, int inc)
{
}
static int inline sock_prot_inuse_init(struct proto *proto)
{
return 0;
}
static void inline sock_prot_inuse_free(struct proto *proto)
{
}
#endif
/* With per-bucket locks this operation is not-atomic, so that
* this version is not worse.
*/
static inline void __sk_prot_rehash(struct sock *sk)
{
sk->sk_prot->unhash(sk);
sk->sk_prot->hash(sk);
}
/* About 10 seconds */
#define SOCK_DESTROY_TIME (10*HZ)
/* Sockets 0-1023 can't be bound to unless you are superuser */
#define PROT_SOCK 1024
#define SHUTDOWN_MASK 3
#define RCV_SHUTDOWN 1
#define SEND_SHUTDOWN 2
#define SOCK_SNDBUF_LOCK 1
#define SOCK_RCVBUF_LOCK 2
#define SOCK_BINDADDR_LOCK 4
#define SOCK_BINDPORT_LOCK 8
/* sock_iocb: used to kick off async processing of socket ios */
struct sock_iocb {
struct list_head list;
int flags;
int size;
struct socket *sock;
struct sock *sk;
struct scm_cookie *scm;
struct msghdr *msg, async_msg;
struct kiocb *kiocb;
};
static inline struct sock_iocb *kiocb_to_siocb(struct kiocb *iocb)
{
return (struct sock_iocb *)iocb->private;
}
static inline struct kiocb *siocb_to_kiocb(struct sock_iocb *si)
{
return si->kiocb;
}
struct socket_alloc {
struct socket socket;
struct inode vfs_inode;
};
static inline struct socket *SOCKET_I(struct inode *inode)
{
return &container_of(inode, struct socket_alloc, vfs_inode)->socket;
}
static inline struct inode *SOCK_INODE(struct socket *socket)
{
return &container_of(socket, struct socket_alloc, socket)->vfs_inode;
}
/*
* Functions for memory accounting
*/
extern int __sk_mem_schedule(struct sock *sk, int size, int kind);
extern void __sk_mem_reclaim(struct sock *sk);
#define SK_MEM_QUANTUM ((int)PAGE_SIZE)
#define SK_MEM_QUANTUM_SHIFT ilog2(SK_MEM_QUANTUM)
#define SK_MEM_SEND 0
#define SK_MEM_RECV 1
static inline int sk_mem_pages(int amt)
{
return (amt + SK_MEM_QUANTUM - 1) >> SK_MEM_QUANTUM_SHIFT;
}
static inline int sk_has_account(struct sock *sk)
{
/* return true if protocol supports memory accounting */
return !!sk->sk_prot->memory_allocated;
}
static inline int sk_wmem_schedule(struct sock *sk, int size)
{
if (!sk_has_account(sk))
return 1;
return size <= sk->sk_forward_alloc ||
__sk_mem_schedule(sk, size, SK_MEM_SEND);
}
static inline int sk_rmem_schedule(struct sock *sk, int size)
{
if (!sk_has_account(sk))
return 1;
return size <= sk->sk_forward_alloc ||
__sk_mem_schedule(sk, size, SK_MEM_RECV);
}
static inline void sk_mem_reclaim(struct sock *sk)
{
if (!sk_has_account(sk))
return;
if (sk->sk_forward_alloc >= SK_MEM_QUANTUM)
__sk_mem_reclaim(sk);
}
static inline void sk_mem_reclaim_partial(struct sock *sk)
{
if (!sk_has_account(sk))
return;
if (sk->sk_forward_alloc > SK_MEM_QUANTUM)
__sk_mem_reclaim(sk);
}
static inline void sk_mem_charge(struct sock *sk, int size)
{
if (!sk_has_account(sk))
return;
sk->sk_forward_alloc -= size;
}
static inline void sk_mem_uncharge(struct sock *sk, int size)
{
if (!sk_has_account(sk))
return;
sk->sk_forward_alloc += size;
}
static inline void sk_wmem_free_skb(struct sock *sk, struct sk_buff *skb)
{
skb_truesize_check(skb);
sock_set_flag(sk, SOCK_QUEUE_SHRUNK);
sk->sk_wmem_queued -= skb->truesize;
sk_mem_uncharge(sk, skb->truesize);
__kfree_skb(skb);
}
/* Used by processes to "lock" a socket state, so that
* interrupts and bottom half handlers won't change it
* from under us. It essentially blocks any incoming
* packets, so that we won't get any new data or any
* packets that change the state of the socket.
*
* While locked, BH processing will add new packets to
* the backlog queue. This queue is processed by the
* owner of the socket lock right before it is released.
*
* Since ~2.3.5 it is also exclusive sleep lock serializing
* accesses from user process context.
*/
#define sock_owned_by_user(sk) ((sk)->sk_lock.owned)
/*
* Macro so as to not evaluate some arguments when
* lockdep is not enabled.
*
* Mark both the sk_lock and the sk_lock.slock as a
* per-address-family lock class.
*/
#define sock_lock_init_class_and_name(sk, sname, skey, name, key) \
do { \
sk->sk_lock.owned = 0; \
init_waitqueue_head(&sk->sk_lock.wq); \
spin_lock_init(&(sk)->sk_lock.slock); \
debug_check_no_locks_freed((void *)&(sk)->sk_lock, \
sizeof((sk)->sk_lock)); \
lockdep_set_class_and_name(&(sk)->sk_lock.slock, \
(skey), (sname)); \
lockdep_init_map(&(sk)->sk_lock.dep_map, (name), (key), 0); \
} while (0)
extern void lock_sock_nested(struct sock *sk, int subclass);
static inline void lock_sock(struct sock *sk)
{
lock_sock_nested(sk, 0);
}
extern void release_sock(struct sock *sk);
/* BH context may only use the following locking interface. */
#define bh_lock_sock(__sk) spin_lock(&((__sk)->sk_lock.slock))
#define bh_lock_sock_nested(__sk) \
spin_lock_nested(&((__sk)->sk_lock.slock), \
SINGLE_DEPTH_NESTING)
#define bh_unlock_sock(__sk) spin_unlock(&((__sk)->sk_lock.slock))
extern struct sock *sk_alloc(struct net *net, int family,
gfp_t priority,
struct proto *prot);
extern void sk_free(struct sock *sk);
extern struct sock *sk_clone(const struct sock *sk,
const gfp_t priority);
extern struct sk_buff *sock_wmalloc(struct sock *sk,
unsigned long size, int force,
gfp_t priority);
extern struct sk_buff *sock_rmalloc(struct sock *sk,
unsigned long size, int force,
gfp_t priority);
extern void sock_wfree(struct sk_buff *skb);
extern void sock_rfree(struct sk_buff *skb);
extern int sock_setsockopt(struct socket *sock, int level,
int op, char __user *optval,
int optlen);
extern int sock_getsockopt(struct socket *sock, int level,
int op, char __user *optval,
int __user *optlen);
extern struct sk_buff *sock_alloc_send_skb(struct sock *sk,
unsigned long size,
int noblock,
int *errcode);
extern void *sock_kmalloc(struct sock *sk, int size,
gfp_t priority);
extern void sock_kfree_s(struct sock *sk, void *mem, int size);
extern void sk_send_sigurg(struct sock *sk);
/*
* Functions to fill in entries in struct proto_ops when a protocol
* does not implement a particular function.
*/
extern int sock_no_bind(struct socket *,
struct sockaddr *, int);
extern int sock_no_connect(struct socket *,
struct sockaddr *, int, int);
extern int sock_no_socketpair(struct socket *,
struct socket *);
extern int sock_no_accept(struct socket *,
struct socket *, int);
extern int sock_no_getname(struct socket *,
struct sockaddr *, int *, int);
extern unsigned int sock_no_poll(struct file *, struct socket *,
struct poll_table_struct *);
extern int sock_no_ioctl(struct socket *, unsigned int,
unsigned long);
extern int sock_no_listen(struct socket *, int);
extern int sock_no_shutdown(struct socket *, int);
extern int sock_no_getsockopt(struct socket *, int , int,
char __user *, int __user *);
extern int sock_no_setsockopt(struct socket *, int, int,
char __user *, int);
extern int sock_no_sendmsg(struct kiocb *, struct socket *,
struct msghdr *, size_t);
extern int sock_no_recvmsg(struct kiocb *, struct socket *,
struct msghdr *, size_t, int);
extern int sock_no_mmap(struct file *file,
struct socket *sock,
struct vm_area_struct *vma);
extern ssize_t sock_no_sendpage(struct socket *sock,
struct page *page,
int offset, size_t size,
int flags);
/*
* Functions to fill in entries in struct proto_ops when a protocol
* uses the inet style.
*/
extern int sock_common_getsockopt(struct socket *sock, int level, int optname,
char __user *optval, int __user *optlen);
extern int sock_common_recvmsg(struct kiocb *iocb, struct socket *sock,
struct msghdr *msg, size_t size, int flags);
extern int sock_common_setsockopt(struct socket *sock, int level, int optname,
char __user *optval, int optlen);
extern int compat_sock_common_getsockopt(struct socket *sock, int level,
int optname, char __user *optval, int __user *optlen);
extern int compat_sock_common_setsockopt(struct socket *sock, int level,
int optname, char __user *optval, int optlen);
extern void sk_common_release(struct sock *sk);
/*
* Default socket callbacks and setup code
*/
/* Initialise core socket variables */
extern void sock_init_data(struct socket *sock, struct sock *sk);
/**
* sk_filter - run a packet through a socket filter
* @sk: sock associated with &sk_buff
* @skb: buffer to filter
* @needlock: set to 1 if the sock is not locked by caller.
*
* Run the filter code and then cut skb->data to correct size returned by
* sk_run_filter. If pkt_len is 0 we toss packet. If skb->len is smaller
* than pkt_len we keep whole skb->data. This is the socket level
* wrapper to sk_run_filter. It returns 0 if the packet should
* be accepted or -EPERM if the packet should be tossed.
*
*/
static inline int sk_filter(struct sock *sk, struct sk_buff *skb)
{
int err;
struct sk_filter *filter;
err = security_sock_rcv_skb(sk, skb);
if (err)
return err;
rcu_read_lock_bh();
filter = rcu_dereference(sk->sk_filter);
if (filter) {
unsigned int pkt_len = sk_run_filter(skb, filter->insns,
filter->len);
err = pkt_len ? pskb_trim(skb, pkt_len) : -EPERM;
}
rcu_read_unlock_bh();
return err;
}
/**
* sk_filter_release: Release a socket filter
* @sk: socket
* @fp: filter to remove
*
* Remove a filter from a socket and release its resources.
*/
static inline void sk_filter_release(struct sk_filter *fp)
{
if (atomic_dec_and_test(&fp->refcnt))
kfree(fp);
}
static inline void sk_filter_uncharge(struct sock *sk, struct sk_filter *fp)
{
unsigned int size = sk_filter_len(fp);
atomic_sub(size, &sk->sk_omem_alloc);
sk_filter_release(fp);
}
static inline void sk_filter_charge(struct sock *sk, struct sk_filter *fp)
{
atomic_inc(&fp->refcnt);
atomic_add(sk_filter_len(fp), &sk->sk_omem_alloc);
}
/*
* Socket reference counting postulates.
*
* * Each user of socket SHOULD hold a reference count.
* * Each access point to socket (an hash table bucket, reference from a list,
* running timer, skb in flight MUST hold a reference count.
* * When reference count hits 0, it means it will never increase back.
* * When reference count hits 0, it means that no references from
* outside exist to this socket and current process on current CPU
* is last user and may/should destroy this socket.
* * sk_free is called from any context: process, BH, IRQ. When
* it is called, socket has no references from outside -> sk_free
* may release descendant resources allocated by the socket, but
* to the time when it is called, socket is NOT referenced by any
* hash tables, lists etc.
* * Packets, delivered from outside (from network or from another process)
* and enqueued on receive/error queues SHOULD NOT grab reference count,
* when they sit in queue. Otherwise, packets will leak to hole, when
* socket is looked up by one cpu and unhasing is made by another CPU.
* It is true for udp/raw, netlink (leak to receive and error queues), tcp
* (leak to backlog). Packet socket does all the processing inside
* BR_NETPROTO_LOCK, so that it has not this race condition. UNIX sockets
* use separate SMP lock, so that they are prone too.
*/
/* Ungrab socket and destroy it, if it was the last reference. */
static inline void sock_put(struct sock *sk)
{
if (atomic_dec_and_test(&sk->sk_refcnt))
sk_free(sk);
}
extern int sk_receive_skb(struct sock *sk, struct sk_buff *skb,
const int nested);
/* Detach socket from process context.
* Announce socket dead, detach it from wait queue and inode.
* Note that parent inode held reference count on this struct sock,
* we do not release it in this function, because protocol
* probably wants some additional cleanups or even continuing
* to work with this socket (TCP).
*/
static inline void sock_orphan(struct sock *sk)
{
write_lock_bh(&sk->sk_callback_lock);
sock_set_flag(sk, SOCK_DEAD);
sk->sk_socket = NULL;
sk->sk_sleep = NULL;
write_unlock_bh(&sk->sk_callback_lock);
}
static inline void sock_graft(struct sock *sk, struct socket *parent)
{
write_lock_bh(&sk->sk_callback_lock);
sk->sk_sleep = &parent->wait;
parent->sk = sk;
sk->sk_socket = parent;
security_sock_graft(sk, parent);
write_unlock_bh(&sk->sk_callback_lock);
}
extern int sock_i_uid(struct sock *sk);
extern unsigned long sock_i_ino(struct sock *sk);
static inline struct dst_entry *
__sk_dst_get(struct sock *sk)
{
return sk->sk_dst_cache;
}
static inline struct dst_entry *
sk_dst_get(struct sock *sk)
{
struct dst_entry *dst;
read_lock(&sk->sk_dst_lock);
dst = sk->sk_dst_cache;
if (dst)
dst_hold(dst);
read_unlock(&sk->sk_dst_lock);
return dst;
}
static inline void
__sk_dst_set(struct sock *sk, struct dst_entry *dst)
{
struct dst_entry *old_dst;
old_dst = sk->sk_dst_cache;
sk->sk_dst_cache = dst;
dst_release(old_dst);
}
static inline void
sk_dst_set(struct sock *sk, struct dst_entry *dst)
{
write_lock(&sk->sk_dst_lock);
__sk_dst_set(sk, dst);
write_unlock(&sk->sk_dst_lock);
}
static inline void
__sk_dst_reset(struct sock *sk)
{
struct dst_entry *old_dst;
old_dst = sk->sk_dst_cache;
sk->sk_dst_cache = NULL;
dst_release(old_dst);
}
static inline void
sk_dst_reset(struct sock *sk)
{
write_lock(&sk->sk_dst_lock);
__sk_dst_reset(sk);
write_unlock(&sk->sk_dst_lock);
}
extern struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie);
extern struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie);
static inline int sk_can_gso(const struct sock *sk)
{
return net_gso_ok(sk->sk_route_caps, sk->sk_gso_type);
}
extern void sk_setup_caps(struct sock *sk, struct dst_entry *dst);
static inline int skb_copy_to_page(struct sock *sk, char __user *from,
struct sk_buff *skb, struct page *page,
int off, int copy)
{
if (skb->ip_summed == CHECKSUM_NONE) {
int err = 0;
__wsum csum = csum_and_copy_from_user(from,
page_address(page) + off,
copy, 0, &err);
if (err)
return err;
skb->csum = csum_block_add(skb->csum, csum, skb->len);
} else if (copy_from_user(page_address(page) + off, from, copy))
return -EFAULT;
skb->len += copy;
skb->data_len += copy;
skb->truesize += copy;
sk->sk_wmem_queued += copy;
sk_mem_charge(sk, copy);
return 0;
}
/*
* Queue a received datagram if it will fit. Stream and sequenced
* protocols can't normally use this as they need to fit buffers in
* and play with them.
*
* Inlined as it's very short and called for pretty much every
* packet ever received.
*/
static inline void skb_set_owner_w(struct sk_buff *skb, struct sock *sk)
{
sock_hold(sk);
skb->sk = sk;
skb->destructor = sock_wfree;
atomic_add(skb->truesize, &sk->sk_wmem_alloc);
}
static inline void skb_set_owner_r(struct sk_buff *skb, struct sock *sk)
{
skb->sk = sk;
skb->destructor = sock_rfree;
atomic_add(skb->truesize, &sk->sk_rmem_alloc);
sk_mem_charge(sk, skb->truesize);
}
extern void sk_reset_timer(struct sock *sk, struct timer_list* timer,
unsigned long expires);
extern void sk_stop_timer(struct sock *sk, struct timer_list* timer);
extern int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
static inline int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb)
{
/* Cast skb->rcvbuf to unsigned... It's pointless, but reduces
number of warnings when compiling with -W --ANK
*/
if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
(unsigned)sk->sk_rcvbuf)
return -ENOMEM;
skb_set_owner_r(skb, sk);
skb_queue_tail(&sk->sk_error_queue, skb);
if (!sock_flag(sk, SOCK_DEAD))
sk->sk_data_ready(sk, skb->len);
return 0;
}
/*
* Recover an error report and clear atomically
*/
static inline int sock_error(struct sock *sk)
{
int err;
if (likely(!sk->sk_err))
return 0;
err = xchg(&sk->sk_err, 0);
return -err;
}
static inline unsigned long sock_wspace(struct sock *sk)
{
int amt = 0;
if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
amt = sk->sk_sndbuf - atomic_read(&sk->sk_wmem_alloc);
if (amt < 0)
amt = 0;
}
return amt;
}
static inline void sk_wake_async(struct sock *sk, int how, int band)
{
if (sk->sk_socket && sk->sk_socket->fasync_list)
sock_wake_async(sk->sk_socket, how, band);
}
#define SOCK_MIN_SNDBUF 2048
#define SOCK_MIN_RCVBUF 256
static inline void sk_stream_moderate_sndbuf(struct sock *sk)
{
if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK)) {
sk->sk_sndbuf = min(sk->sk_sndbuf, sk->sk_wmem_queued >> 1);
sk->sk_sndbuf = max(sk->sk_sndbuf, SOCK_MIN_SNDBUF);
}
}
struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp);
static inline struct page *sk_stream_alloc_page(struct sock *sk)
{
struct page *page = NULL;
page = alloc_pages(sk->sk_allocation, 0);
if (!page) {
sk->sk_prot->enter_memory_pressure();
sk_stream_moderate_sndbuf(sk);
}
return page;
}
/*
* Default write policy as shown to user space via poll/select/SIGIO
*/
static inline int sock_writeable(const struct sock *sk)
{
return atomic_read(&sk->sk_wmem_alloc) < (sk->sk_sndbuf >> 1);
}
static inline gfp_t gfp_any(void)
{
return in_atomic() ? GFP_ATOMIC : GFP_KERNEL;
}
static inline long sock_rcvtimeo(const struct sock *sk, int noblock)
{
return noblock ? 0 : sk->sk_rcvtimeo;
}
static inline long sock_sndtimeo(const struct sock *sk, int noblock)
{
return noblock ? 0 : sk->sk_sndtimeo;
}
static inline int sock_rcvlowat(const struct sock *sk, int waitall, int len)
{
return (waitall ? len : min_t(int, sk->sk_rcvlowat, len)) ? : 1;
}
/* Alas, with timeout socket operations are not restartable.
* Compare this to poll().
*/
static inline int sock_intr_errno(long timeo)
{
return timeo == MAX_SCHEDULE_TIMEOUT ? -ERESTARTSYS : -EINTR;
}
extern void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
struct sk_buff *skb);
static __inline__ void
sock_recv_timestamp(struct msghdr *msg, struct sock *sk, struct sk_buff *skb)
{
ktime_t kt = skb->tstamp;
if (sock_flag(sk, SOCK_RCVTSTAMP))
__sock_recv_timestamp(msg, sk, skb);
else
sk->sk_stamp = kt;
}
/**
* sk_eat_skb - Release a skb if it is no longer needed
* @sk: socket to eat this skb from
* @skb: socket buffer to eat
* @copied_early: flag indicating whether DMA operations copied this data early
*
* This routine must be called with interrupts disabled or with the socket
* locked so that the sk_buff queue operation is ok.
*/
#ifdef CONFIG_NET_DMA
static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb, int copied_early)
{
__skb_unlink(skb, &sk->sk_receive_queue);
if (!copied_early)
__kfree_skb(skb);
else
__skb_queue_tail(&sk->sk_async_wait_queue, skb);
}
#else
static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb, int copied_early)
{
__skb_unlink(skb, &sk->sk_receive_queue);
__kfree_skb(skb);
}
#endif
extern void sock_enable_timestamp(struct sock *sk);
extern int sock_get_timestamp(struct sock *, struct timeval __user *);
extern int sock_get_timestampns(struct sock *, struct timespec __user *);
/*
* Enable debug/info messages
*/
extern int net_msg_warn;
#define NETDEBUG(fmt, args...) \
do { if (net_msg_warn) printk(fmt,##args); } while (0)
#define LIMIT_NETDEBUG(fmt, args...) \
do { if (net_msg_warn && net_ratelimit()) printk(fmt,##args); } while(0)
/*
* Macros for sleeping on a socket. Use them like this:
*
* SOCK_SLEEP_PRE(sk)
* if (condition)
* schedule();
* SOCK_SLEEP_POST(sk)
*
* N.B. These are now obsolete and were, afaik, only ever used in DECnet
* and when the last use of them in DECnet has gone, I'm intending to
* remove them.
*/
#define SOCK_SLEEP_PRE(sk) { struct task_struct *tsk = current; \
DECLARE_WAITQUEUE(wait, tsk); \
tsk->state = TASK_INTERRUPTIBLE; \
add_wait_queue((sk)->sk_sleep, &wait); \
release_sock(sk);
#define SOCK_SLEEP_POST(sk) tsk->state = TASK_RUNNING; \
remove_wait_queue((sk)->sk_sleep, &wait); \
lock_sock(sk); \
}
extern __u32 sysctl_wmem_max;
extern __u32 sysctl_rmem_max;
extern void sk_init(void);
extern int sysctl_optmem_max;
extern __u32 sysctl_wmem_default;
extern __u32 sysctl_rmem_default;
#endif /* _SOCK_H */