linux_dsm_epyc7002/arch/powerpc/platforms/powernv/opal.c
Oliver O'Halloran 846a17a53a powerpc/powernv: Use common code for the symbol_map export
Long before we had a generic way for firmware to export memory ranges of
interest we added a special case for the skiboot symbol map. The code is
pretty much identical to the generic export so re-use the code.

Signed-off-by: Oliver O'Halloran <oohall@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20191101062611.32610-2-oohall@gmail.com
2020-01-23 21:31:21 +11:00

1245 lines
30 KiB
C

// SPDX-License-Identifier: GPL-2.0-or-later
/*
* PowerNV OPAL high level interfaces
*
* Copyright 2011 IBM Corp.
*/
#define pr_fmt(fmt) "opal: " fmt
#include <linux/printk.h>
#include <linux/types.h>
#include <linux/of.h>
#include <linux/of_fdt.h>
#include <linux/of_platform.h>
#include <linux/of_address.h>
#include <linux/interrupt.h>
#include <linux/notifier.h>
#include <linux/slab.h>
#include <linux/sched.h>
#include <linux/kobject.h>
#include <linux/delay.h>
#include <linux/memblock.h>
#include <linux/kthread.h>
#include <linux/freezer.h>
#include <linux/kmsg_dump.h>
#include <linux/console.h>
#include <linux/sched/debug.h>
#include <asm/machdep.h>
#include <asm/opal.h>
#include <asm/firmware.h>
#include <asm/mce.h>
#include <asm/imc-pmu.h>
#include <asm/bug.h>
#include "powernv.h"
#define OPAL_MSG_QUEUE_MAX 16
struct opal_msg_node {
struct list_head list;
struct opal_msg msg;
};
static DEFINE_SPINLOCK(msg_list_lock);
static LIST_HEAD(msg_list);
/* /sys/firmware/opal */
struct kobject *opal_kobj;
struct opal {
u64 base;
u64 entry;
u64 size;
} opal;
struct mcheck_recoverable_range {
u64 start_addr;
u64 end_addr;
u64 recover_addr;
};
static int msg_list_size;
static struct mcheck_recoverable_range *mc_recoverable_range;
static int mc_recoverable_range_len;
struct device_node *opal_node;
static DEFINE_SPINLOCK(opal_write_lock);
static struct atomic_notifier_head opal_msg_notifier_head[OPAL_MSG_TYPE_MAX];
static uint32_t opal_heartbeat;
static struct task_struct *kopald_tsk;
static struct opal_msg *opal_msg;
static u32 opal_msg_size __ro_after_init;
void opal_configure_cores(void)
{
u64 reinit_flags = 0;
/* Do the actual re-init, This will clobber all FPRs, VRs, etc...
*
* It will preserve non volatile GPRs and HSPRG0/1. It will
* also restore HIDs and other SPRs to their original value
* but it might clobber a bunch.
*/
#ifdef __BIG_ENDIAN__
reinit_flags |= OPAL_REINIT_CPUS_HILE_BE;
#else
reinit_flags |= OPAL_REINIT_CPUS_HILE_LE;
#endif
/*
* POWER9 always support running hash:
* ie. Host hash supports hash guests
* Host radix supports hash/radix guests
*/
if (early_cpu_has_feature(CPU_FTR_ARCH_300)) {
reinit_flags |= OPAL_REINIT_CPUS_MMU_HASH;
if (early_radix_enabled())
reinit_flags |= OPAL_REINIT_CPUS_MMU_RADIX;
}
opal_reinit_cpus(reinit_flags);
/* Restore some bits */
if (cur_cpu_spec->cpu_restore)
cur_cpu_spec->cpu_restore();
}
int __init early_init_dt_scan_opal(unsigned long node,
const char *uname, int depth, void *data)
{
const void *basep, *entryp, *sizep;
int basesz, entrysz, runtimesz;
if (depth != 1 || strcmp(uname, "ibm,opal") != 0)
return 0;
basep = of_get_flat_dt_prop(node, "opal-base-address", &basesz);
entryp = of_get_flat_dt_prop(node, "opal-entry-address", &entrysz);
sizep = of_get_flat_dt_prop(node, "opal-runtime-size", &runtimesz);
if (!basep || !entryp || !sizep)
return 1;
opal.base = of_read_number(basep, basesz/4);
opal.entry = of_read_number(entryp, entrysz/4);
opal.size = of_read_number(sizep, runtimesz/4);
pr_debug("OPAL Base = 0x%llx (basep=%p basesz=%d)\n",
opal.base, basep, basesz);
pr_debug("OPAL Entry = 0x%llx (entryp=%p basesz=%d)\n",
opal.entry, entryp, entrysz);
pr_debug("OPAL Entry = 0x%llx (sizep=%p runtimesz=%d)\n",
opal.size, sizep, runtimesz);
if (of_flat_dt_is_compatible(node, "ibm,opal-v3")) {
powerpc_firmware_features |= FW_FEATURE_OPAL;
pr_debug("OPAL detected !\n");
} else {
panic("OPAL != V3 detected, no longer supported.\n");
}
return 1;
}
int __init early_init_dt_scan_recoverable_ranges(unsigned long node,
const char *uname, int depth, void *data)
{
int i, psize, size;
const __be32 *prop;
if (depth != 1 || strcmp(uname, "ibm,opal") != 0)
return 0;
prop = of_get_flat_dt_prop(node, "mcheck-recoverable-ranges", &psize);
if (!prop)
return 1;
pr_debug("Found machine check recoverable ranges.\n");
/*
* Calculate number of available entries.
*
* Each recoverable address range entry is (start address, len,
* recovery address), 2 cells each for start and recovery address,
* 1 cell for len, totalling 5 cells per entry.
*/
mc_recoverable_range_len = psize / (sizeof(*prop) * 5);
/* Sanity check */
if (!mc_recoverable_range_len)
return 1;
/* Size required to hold all the entries. */
size = mc_recoverable_range_len *
sizeof(struct mcheck_recoverable_range);
/*
* Allocate a buffer to hold the MC recoverable ranges.
*/
mc_recoverable_range = memblock_alloc(size, __alignof__(u64));
if (!mc_recoverable_range)
panic("%s: Failed to allocate %u bytes align=0x%lx\n",
__func__, size, __alignof__(u64));
for (i = 0; i < mc_recoverable_range_len; i++) {
mc_recoverable_range[i].start_addr =
of_read_number(prop + (i * 5) + 0, 2);
mc_recoverable_range[i].end_addr =
mc_recoverable_range[i].start_addr +
of_read_number(prop + (i * 5) + 2, 1);
mc_recoverable_range[i].recover_addr =
of_read_number(prop + (i * 5) + 3, 2);
pr_debug("Machine check recoverable range: %llx..%llx: %llx\n",
mc_recoverable_range[i].start_addr,
mc_recoverable_range[i].end_addr,
mc_recoverable_range[i].recover_addr);
}
return 1;
}
static int __init opal_register_exception_handlers(void)
{
#ifdef __BIG_ENDIAN__
u64 glue;
if (!(powerpc_firmware_features & FW_FEATURE_OPAL))
return -ENODEV;
/* Hookup some exception handlers except machine check. We use the
* fwnmi area at 0x7000 to provide the glue space to OPAL
*/
glue = 0x7000;
/*
* Only ancient OPAL firmware requires this.
* Specifically, firmware from FW810.00 (released June 2014)
* through FW810.20 (Released October 2014).
*
* Check if we are running on newer (post Oct 2014) firmware that
* exports the OPAL_HANDLE_HMI token. If yes, then don't ask OPAL to
* patch the HMI interrupt and we catch it directly in Linux.
*
* For older firmware (i.e < FW810.20), we fallback to old behavior and
* let OPAL patch the HMI vector and handle it inside OPAL firmware.
*
* For newer firmware we catch/handle the HMI directly in Linux.
*/
if (!opal_check_token(OPAL_HANDLE_HMI)) {
pr_info("Old firmware detected, OPAL handles HMIs.\n");
opal_register_exception_handler(
OPAL_HYPERVISOR_MAINTENANCE_HANDLER,
0, glue);
glue += 128;
}
/*
* Only applicable to ancient firmware, all modern
* (post March 2015/skiboot 5.0) firmware will just return
* OPAL_UNSUPPORTED.
*/
opal_register_exception_handler(OPAL_SOFTPATCH_HANDLER, 0, glue);
#endif
return 0;
}
machine_early_initcall(powernv, opal_register_exception_handlers);
static void queue_replay_msg(void *msg)
{
struct opal_msg_node *msg_node;
if (msg_list_size < OPAL_MSG_QUEUE_MAX) {
msg_node = kzalloc(sizeof(*msg_node), GFP_ATOMIC);
if (msg_node) {
INIT_LIST_HEAD(&msg_node->list);
memcpy(&msg_node->msg, msg, sizeof(struct opal_msg));
list_add_tail(&msg_node->list, &msg_list);
msg_list_size++;
} else
pr_warn_once("message queue no memory\n");
if (msg_list_size >= OPAL_MSG_QUEUE_MAX)
pr_warn_once("message queue full\n");
}
}
static void dequeue_replay_msg(enum opal_msg_type msg_type)
{
struct opal_msg_node *msg_node, *tmp;
list_for_each_entry_safe(msg_node, tmp, &msg_list, list) {
if (be32_to_cpu(msg_node->msg.msg_type) != msg_type)
continue;
atomic_notifier_call_chain(&opal_msg_notifier_head[msg_type],
msg_type,
&msg_node->msg);
list_del(&msg_node->list);
kfree(msg_node);
msg_list_size--;
}
}
/*
* Opal message notifier based on message type. Allow subscribers to get
* notified for specific messgae type.
*/
int opal_message_notifier_register(enum opal_msg_type msg_type,
struct notifier_block *nb)
{
int ret;
unsigned long flags;
if (!nb || msg_type >= OPAL_MSG_TYPE_MAX) {
pr_warn("%s: Invalid arguments, msg_type:%d\n",
__func__, msg_type);
return -EINVAL;
}
spin_lock_irqsave(&msg_list_lock, flags);
ret = atomic_notifier_chain_register(
&opal_msg_notifier_head[msg_type], nb);
/*
* If the registration succeeded, replay any queued messages that came
* in prior to the notifier chain registration. msg_list_lock held here
* to ensure they're delivered prior to any subsequent messages.
*/
if (ret == 0)
dequeue_replay_msg(msg_type);
spin_unlock_irqrestore(&msg_list_lock, flags);
return ret;
}
EXPORT_SYMBOL_GPL(opal_message_notifier_register);
int opal_message_notifier_unregister(enum opal_msg_type msg_type,
struct notifier_block *nb)
{
return atomic_notifier_chain_unregister(
&opal_msg_notifier_head[msg_type], nb);
}
EXPORT_SYMBOL_GPL(opal_message_notifier_unregister);
static void opal_message_do_notify(uint32_t msg_type, void *msg)
{
unsigned long flags;
bool queued = false;
spin_lock_irqsave(&msg_list_lock, flags);
if (opal_msg_notifier_head[msg_type].head == NULL) {
/*
* Queue up the msg since no notifiers have registered
* yet for this msg_type.
*/
queue_replay_msg(msg);
queued = true;
}
spin_unlock_irqrestore(&msg_list_lock, flags);
if (queued)
return;
/* notify subscribers */
atomic_notifier_call_chain(&opal_msg_notifier_head[msg_type],
msg_type, msg);
}
static void opal_handle_message(void)
{
s64 ret;
u32 type;
ret = opal_get_msg(__pa(opal_msg), opal_msg_size);
/* No opal message pending. */
if (ret == OPAL_RESOURCE)
return;
/* check for errors. */
if (ret) {
pr_warn("%s: Failed to retrieve opal message, err=%lld\n",
__func__, ret);
return;
}
type = be32_to_cpu(opal_msg->msg_type);
/* Sanity check */
if (type >= OPAL_MSG_TYPE_MAX) {
pr_warn_once("%s: Unknown message type: %u\n", __func__, type);
return;
}
opal_message_do_notify(type, (void *)opal_msg);
}
static irqreturn_t opal_message_notify(int irq, void *data)
{
opal_handle_message();
return IRQ_HANDLED;
}
static int __init opal_message_init(struct device_node *opal_node)
{
int ret, i, irq;
ret = of_property_read_u32(opal_node, "opal-msg-size", &opal_msg_size);
if (ret) {
pr_notice("Failed to read opal-msg-size property\n");
opal_msg_size = sizeof(struct opal_msg);
}
opal_msg = kmalloc(opal_msg_size, GFP_KERNEL);
if (!opal_msg) {
opal_msg_size = sizeof(struct opal_msg);
/* Try to allocate fixed message size */
opal_msg = kmalloc(opal_msg_size, GFP_KERNEL);
BUG_ON(opal_msg == NULL);
}
for (i = 0; i < OPAL_MSG_TYPE_MAX; i++)
ATOMIC_INIT_NOTIFIER_HEAD(&opal_msg_notifier_head[i]);
irq = opal_event_request(ilog2(OPAL_EVENT_MSG_PENDING));
if (!irq) {
pr_err("%s: Can't register OPAL event irq (%d)\n",
__func__, irq);
return irq;
}
ret = request_irq(irq, opal_message_notify,
IRQ_TYPE_LEVEL_HIGH, "opal-msg", NULL);
if (ret) {
pr_err("%s: Can't request OPAL event irq (%d)\n",
__func__, ret);
return ret;
}
return 0;
}
int opal_get_chars(uint32_t vtermno, char *buf, int count)
{
s64 rc;
__be64 evt, len;
if (!opal.entry)
return -ENODEV;
opal_poll_events(&evt);
if ((be64_to_cpu(evt) & OPAL_EVENT_CONSOLE_INPUT) == 0)
return 0;
len = cpu_to_be64(count);
rc = opal_console_read(vtermno, &len, buf);
if (rc == OPAL_SUCCESS)
return be64_to_cpu(len);
return 0;
}
static int __opal_put_chars(uint32_t vtermno, const char *data, int total_len, bool atomic)
{
unsigned long flags = 0 /* shut up gcc */;
int written;
__be64 olen;
s64 rc;
if (!opal.entry)
return -ENODEV;
if (atomic)
spin_lock_irqsave(&opal_write_lock, flags);
rc = opal_console_write_buffer_space(vtermno, &olen);
if (rc || be64_to_cpu(olen) < total_len) {
/* Closed -> drop characters */
if (rc)
written = total_len;
else
written = -EAGAIN;
goto out;
}
/* Should not get a partial write here because space is available. */
olen = cpu_to_be64(total_len);
rc = opal_console_write(vtermno, &olen, data);
if (rc == OPAL_BUSY || rc == OPAL_BUSY_EVENT) {
if (rc == OPAL_BUSY_EVENT)
opal_poll_events(NULL);
written = -EAGAIN;
goto out;
}
/* Closed or other error drop */
if (rc != OPAL_SUCCESS) {
written = opal_error_code(rc);
goto out;
}
written = be64_to_cpu(olen);
if (written < total_len) {
if (atomic) {
/* Should not happen */
pr_warn("atomic console write returned partial "
"len=%d written=%d\n", total_len, written);
}
if (!written)
written = -EAGAIN;
}
out:
if (atomic)
spin_unlock_irqrestore(&opal_write_lock, flags);
return written;
}
int opal_put_chars(uint32_t vtermno, const char *data, int total_len)
{
return __opal_put_chars(vtermno, data, total_len, false);
}
/*
* opal_put_chars_atomic will not perform partial-writes. Data will be
* atomically written to the terminal or not at all. This is not strictly
* true at the moment because console space can race with OPAL's console
* writes.
*/
int opal_put_chars_atomic(uint32_t vtermno, const char *data, int total_len)
{
return __opal_put_chars(vtermno, data, total_len, true);
}
static s64 __opal_flush_console(uint32_t vtermno)
{
s64 rc;
if (!opal_check_token(OPAL_CONSOLE_FLUSH)) {
__be64 evt;
/*
* If OPAL_CONSOLE_FLUSH is not implemented in the firmware,
* the console can still be flushed by calling the polling
* function while it has OPAL_EVENT_CONSOLE_OUTPUT events.
*/
WARN_ONCE(1, "opal: OPAL_CONSOLE_FLUSH missing.\n");
opal_poll_events(&evt);
if (!(be64_to_cpu(evt) & OPAL_EVENT_CONSOLE_OUTPUT))
return OPAL_SUCCESS;
return OPAL_BUSY;
} else {
rc = opal_console_flush(vtermno);
if (rc == OPAL_BUSY_EVENT) {
opal_poll_events(NULL);
rc = OPAL_BUSY;
}
return rc;
}
}
/*
* opal_flush_console spins until the console is flushed
*/
int opal_flush_console(uint32_t vtermno)
{
for (;;) {
s64 rc = __opal_flush_console(vtermno);
if (rc == OPAL_BUSY || rc == OPAL_PARTIAL) {
mdelay(1);
continue;
}
return opal_error_code(rc);
}
}
/*
* opal_flush_chars is an hvc interface that sleeps until the console is
* flushed if wait, otherwise it will return -EBUSY if the console has data,
* -EAGAIN if it has data and some of it was flushed.
*/
int opal_flush_chars(uint32_t vtermno, bool wait)
{
for (;;) {
s64 rc = __opal_flush_console(vtermno);
if (rc == OPAL_BUSY || rc == OPAL_PARTIAL) {
if (wait) {
msleep(OPAL_BUSY_DELAY_MS);
continue;
}
if (rc == OPAL_PARTIAL)
return -EAGAIN;
}
return opal_error_code(rc);
}
}
static int opal_recover_mce(struct pt_regs *regs,
struct machine_check_event *evt)
{
int recovered = 0;
if (!(regs->msr & MSR_RI)) {
/* If MSR_RI isn't set, we cannot recover */
pr_err("Machine check interrupt unrecoverable: MSR(RI=0)\n");
recovered = 0;
} else if (evt->disposition == MCE_DISPOSITION_RECOVERED) {
/* Platform corrected itself */
recovered = 1;
} else if (evt->severity == MCE_SEV_FATAL) {
/* Fatal machine check */
pr_err("Machine check interrupt is fatal\n");
recovered = 0;
}
if (!recovered && evt->sync_error) {
/*
* Try to kill processes if we get a synchronous machine check
* (e.g., one caused by execution of this instruction). This
* will devolve into a panic if we try to kill init or are in
* an interrupt etc.
*
* TODO: Queue up this address for hwpoisioning later.
* TODO: This is not quite right for d-side machine
* checks ->nip is not necessarily the important
* address.
*/
if ((user_mode(regs))) {
_exception(SIGBUS, regs, BUS_MCEERR_AR, regs->nip);
recovered = 1;
} else if (die_will_crash()) {
/*
* die() would kill the kernel, so better to go via
* the platform reboot code that will log the
* machine check.
*/
recovered = 0;
} else {
die("Machine check", regs, SIGBUS);
recovered = 1;
}
}
return recovered;
}
void __noreturn pnv_platform_error_reboot(struct pt_regs *regs, const char *msg)
{
panic_flush_kmsg_start();
pr_emerg("Hardware platform error: %s\n", msg);
if (regs)
show_regs(regs);
smp_send_stop();
panic_flush_kmsg_end();
/*
* Don't bother to shut things down because this will
* xstop the system.
*/
if (opal_cec_reboot2(OPAL_REBOOT_PLATFORM_ERROR, msg)
== OPAL_UNSUPPORTED) {
pr_emerg("Reboot type %d not supported for %s\n",
OPAL_REBOOT_PLATFORM_ERROR, msg);
}
/*
* We reached here. There can be three possibilities:
* 1. We are running on a firmware level that do not support
* opal_cec_reboot2()
* 2. We are running on a firmware level that do not support
* OPAL_REBOOT_PLATFORM_ERROR reboot type.
* 3. We are running on FSP based system that does not need
* opal to trigger checkstop explicitly for error analysis.
* The FSP PRD component would have already got notified
* about this error through other channels.
* 4. We are running on a newer skiboot that by default does
* not cause a checkstop, drops us back to the kernel to
* extract context and state at the time of the error.
*/
panic(msg);
}
int opal_machine_check(struct pt_regs *regs)
{
struct machine_check_event evt;
if (!get_mce_event(&evt, MCE_EVENT_RELEASE))
return 0;
/* Print things out */
if (evt.version != MCE_V1) {
pr_err("Machine Check Exception, Unknown event version %d !\n",
evt.version);
return 0;
}
machine_check_print_event_info(&evt, user_mode(regs), false);
if (opal_recover_mce(regs, &evt))
return 1;
pnv_platform_error_reboot(regs, "Unrecoverable Machine Check exception");
}
/* Early hmi handler called in real mode. */
int opal_hmi_exception_early(struct pt_regs *regs)
{
s64 rc;
/*
* call opal hmi handler. Pass paca address as token.
* The return value OPAL_SUCCESS is an indication that there is
* an HMI event generated waiting to pull by Linux.
*/
rc = opal_handle_hmi();
if (rc == OPAL_SUCCESS) {
local_paca->hmi_event_available = 1;
return 1;
}
return 0;
}
int opal_hmi_exception_early2(struct pt_regs *regs)
{
s64 rc;
__be64 out_flags;
/*
* call opal hmi handler.
* Check 64-bit flag mask to find out if an event was generated,
* and whether TB is still valid or not etc.
*/
rc = opal_handle_hmi2(&out_flags);
if (rc != OPAL_SUCCESS)
return 0;
if (be64_to_cpu(out_flags) & OPAL_HMI_FLAGS_NEW_EVENT)
local_paca->hmi_event_available = 1;
if (be64_to_cpu(out_flags) & OPAL_HMI_FLAGS_TOD_TB_FAIL)
tb_invalid = true;
return 1;
}
/* HMI exception handler called in virtual mode during check_irq_replay. */
int opal_handle_hmi_exception(struct pt_regs *regs)
{
/*
* Check if HMI event is available.
* if Yes, then wake kopald to process them.
*/
if (!local_paca->hmi_event_available)
return 0;
local_paca->hmi_event_available = 0;
opal_wake_poller();
return 1;
}
static uint64_t find_recovery_address(uint64_t nip)
{
int i;
for (i = 0; i < mc_recoverable_range_len; i++)
if ((nip >= mc_recoverable_range[i].start_addr) &&
(nip < mc_recoverable_range[i].end_addr))
return mc_recoverable_range[i].recover_addr;
return 0;
}
bool opal_mce_check_early_recovery(struct pt_regs *regs)
{
uint64_t recover_addr = 0;
if (!opal.base || !opal.size)
goto out;
if ((regs->nip >= opal.base) &&
(regs->nip < (opal.base + opal.size)))
recover_addr = find_recovery_address(regs->nip);
/*
* Setup regs->nip to rfi into fixup address.
*/
if (recover_addr)
regs->nip = recover_addr;
out:
return !!recover_addr;
}
static int opal_sysfs_init(void)
{
opal_kobj = kobject_create_and_add("opal", firmware_kobj);
if (!opal_kobj) {
pr_warn("kobject_create_and_add opal failed\n");
return -ENOMEM;
}
return 0;
}
static ssize_t export_attr_read(struct file *fp, struct kobject *kobj,
struct bin_attribute *bin_attr, char *buf,
loff_t off, size_t count)
{
return memory_read_from_buffer(buf, count, &off, bin_attr->private,
bin_attr->size);
}
static int opal_add_one_export(struct kobject *parent, const char *export_name,
struct device_node *np, const char *prop_name)
{
struct bin_attribute *attr = NULL;
const char *name = NULL;
u64 vals[2];
int rc;
rc = of_property_read_u64_array(np, prop_name, &vals[0], 2);
if (rc)
goto out;
attr = kzalloc(sizeof(*attr), GFP_KERNEL);
name = kstrdup(export_name, GFP_KERNEL);
if (!name) {
rc = -ENOMEM;
goto out;
}
sysfs_bin_attr_init(attr);
attr->attr.name = name;
attr->attr.mode = 0400;
attr->read = export_attr_read;
attr->private = __va(vals[0]);
attr->size = vals[1];
rc = sysfs_create_bin_file(parent, attr);
out:
if (rc) {
kfree(name);
kfree(attr);
}
return rc;
}
static void opal_add_exported_attrs(struct device_node *np,
struct kobject *kobj)
{
struct device_node *child;
struct property *prop;
for_each_property_of_node(np, prop) {
int rc;
if (!strcmp(prop->name, "name") ||
!strcmp(prop->name, "phandle"))
continue;
rc = opal_add_one_export(kobj, prop->name, np, prop->name);
if (rc) {
pr_warn("Unable to add export %pOF/%s, rc = %d!\n",
np, prop->name, rc);
}
}
for_each_child_of_node(np, child) {
struct kobject *child_kobj;
child_kobj = kobject_create_and_add(child->name, kobj);
if (!child_kobj) {
pr_err("Unable to create export dir for %pOF\n", child);
continue;
}
opal_add_exported_attrs(child, child_kobj);
}
}
/*
* opal_export_attrs: creates a sysfs node for each property listed in
* the device-tree under /ibm,opal/firmware/exports/
* All new sysfs nodes are created under /opal/exports/.
* This allows for reserved memory regions (e.g. HDAT) to be read.
* The new sysfs nodes are only readable by root.
*/
static void opal_export_attrs(void)
{
struct device_node *np;
struct kobject *kobj;
int rc;
np = of_find_node_by_path("/ibm,opal/firmware/exports");
if (!np)
return;
/* Create new 'exports' directory - /sys/firmware/opal/exports */
kobj = kobject_create_and_add("exports", opal_kobj);
if (!kobj) {
pr_warn("kobject_create_and_add() of exports failed\n");
return;
}
opal_add_exported_attrs(np, kobj);
/*
* NB: symbol_map existed before the generic export interface so it
* lives under the top level opal_kobj.
*/
rc = opal_add_one_export(opal_kobj, "symbol_map",
np->parent, "symbol-map");
if (rc)
pr_warn("Error %d creating OPAL symbols file\n", rc);
of_node_put(np);
}
static void __init opal_dump_region_init(void)
{
void *addr;
uint64_t size;
int rc;
if (!opal_check_token(OPAL_REGISTER_DUMP_REGION))
return;
/* Register kernel log buffer */
addr = log_buf_addr_get();
if (addr == NULL)
return;
size = log_buf_len_get();
if (size == 0)
return;
rc = opal_register_dump_region(OPAL_DUMP_REGION_LOG_BUF,
__pa(addr), size);
/* Don't warn if this is just an older OPAL that doesn't
* know about that call
*/
if (rc && rc != OPAL_UNSUPPORTED)
pr_warn("DUMP: Failed to register kernel log buffer. "
"rc = %d\n", rc);
}
static void opal_pdev_init(const char *compatible)
{
struct device_node *np;
for_each_compatible_node(np, NULL, compatible)
of_platform_device_create(np, NULL, NULL);
}
static void __init opal_imc_init_dev(void)
{
struct device_node *np;
np = of_find_compatible_node(NULL, NULL, IMC_DTB_COMPAT);
if (np)
of_platform_device_create(np, NULL, NULL);
}
static int kopald(void *unused)
{
unsigned long timeout = msecs_to_jiffies(opal_heartbeat) + 1;
set_freezable();
do {
try_to_freeze();
opal_handle_events();
set_current_state(TASK_INTERRUPTIBLE);
if (opal_have_pending_events())
__set_current_state(TASK_RUNNING);
else
schedule_timeout(timeout);
} while (!kthread_should_stop());
return 0;
}
void opal_wake_poller(void)
{
if (kopald_tsk)
wake_up_process(kopald_tsk);
}
static void opal_init_heartbeat(void)
{
/* Old firwmware, we assume the HVC heartbeat is sufficient */
if (of_property_read_u32(opal_node, "ibm,heartbeat-ms",
&opal_heartbeat) != 0)
opal_heartbeat = 0;
if (opal_heartbeat)
kopald_tsk = kthread_run(kopald, NULL, "kopald");
}
static int __init opal_init(void)
{
struct device_node *np, *consoles, *leds;
int rc;
opal_node = of_find_node_by_path("/ibm,opal");
if (!opal_node) {
pr_warn("Device node not found\n");
return -ENODEV;
}
/* Register OPAL consoles if any ports */
consoles = of_find_node_by_path("/ibm,opal/consoles");
if (consoles) {
for_each_child_of_node(consoles, np) {
if (!of_node_name_eq(np, "serial"))
continue;
of_platform_device_create(np, NULL, NULL);
}
of_node_put(consoles);
}
/* Initialise OPAL messaging system */
opal_message_init(opal_node);
/* Initialise OPAL asynchronous completion interface */
opal_async_comp_init();
/* Initialise OPAL sensor interface */
opal_sensor_init();
/* Initialise OPAL hypervisor maintainence interrupt handling */
opal_hmi_handler_init();
/* Create i2c platform devices */
opal_pdev_init("ibm,opal-i2c");
/* Handle non-volatile memory devices */
opal_pdev_init("pmem-region");
/* Setup a heatbeat thread if requested by OPAL */
opal_init_heartbeat();
/* Detect In-Memory Collection counters and create devices*/
opal_imc_init_dev();
/* Create leds platform devices */
leds = of_find_node_by_path("/ibm,opal/leds");
if (leds) {
of_platform_device_create(leds, "opal_leds", NULL);
of_node_put(leds);
}
/* Initialise OPAL message log interface */
opal_msglog_init();
/* Create "opal" kobject under /sys/firmware */
rc = opal_sysfs_init();
if (rc == 0) {
/* Setup dump region interface */
opal_dump_region_init();
/* Setup error log interface */
rc = opal_elog_init();
/* Setup code update interface */
opal_flash_update_init();
/* Setup platform dump extract interface */
opal_platform_dump_init();
/* Setup system parameters interface */
opal_sys_param_init();
/* Setup message log sysfs interface. */
opal_msglog_sysfs_init();
/* Add all export properties*/
opal_export_attrs();
}
/* Initialize platform devices: IPMI backend, PRD & flash interface */
opal_pdev_init("ibm,opal-ipmi");
opal_pdev_init("ibm,opal-flash");
opal_pdev_init("ibm,opal-prd");
/* Initialise platform device: oppanel interface */
opal_pdev_init("ibm,opal-oppanel");
/* Initialise OPAL kmsg dumper for flushing console on panic */
opal_kmsg_init();
/* Initialise OPAL powercap interface */
opal_powercap_init();
/* Initialise OPAL Power-Shifting-Ratio interface */
opal_psr_init();
/* Initialise OPAL sensor groups */
opal_sensor_groups_init();
/* Initialise OPAL Power control interface */
opal_power_control_init();
/* Initialize OPAL secure variables */
opal_pdev_init("ibm,secvar-backend");
return 0;
}
machine_subsys_initcall(powernv, opal_init);
void opal_shutdown(void)
{
long rc = OPAL_BUSY;
opal_event_shutdown();
/*
* Then sync with OPAL which ensure anything that can
* potentially write to our memory has completed such
* as an ongoing dump retrieval
*/
while (rc == OPAL_BUSY || rc == OPAL_BUSY_EVENT) {
rc = opal_sync_host_reboot();
if (rc == OPAL_BUSY)
opal_poll_events(NULL);
else
mdelay(10);
}
/* Unregister memory dump region */
if (opal_check_token(OPAL_UNREGISTER_DUMP_REGION))
opal_unregister_dump_region(OPAL_DUMP_REGION_LOG_BUF);
}
/* Export this so that test modules can use it */
EXPORT_SYMBOL_GPL(opal_invalid_call);
EXPORT_SYMBOL_GPL(opal_xscom_read);
EXPORT_SYMBOL_GPL(opal_xscom_write);
EXPORT_SYMBOL_GPL(opal_ipmi_send);
EXPORT_SYMBOL_GPL(opal_ipmi_recv);
EXPORT_SYMBOL_GPL(opal_flash_read);
EXPORT_SYMBOL_GPL(opal_flash_write);
EXPORT_SYMBOL_GPL(opal_flash_erase);
EXPORT_SYMBOL_GPL(opal_prd_msg);
EXPORT_SYMBOL_GPL(opal_check_token);
/* Convert a region of vmalloc memory to an opal sg list */
struct opal_sg_list *opal_vmalloc_to_sg_list(void *vmalloc_addr,
unsigned long vmalloc_size)
{
struct opal_sg_list *sg, *first = NULL;
unsigned long i = 0;
sg = kzalloc(PAGE_SIZE, GFP_KERNEL);
if (!sg)
goto nomem;
first = sg;
while (vmalloc_size > 0) {
uint64_t data = vmalloc_to_pfn(vmalloc_addr) << PAGE_SHIFT;
uint64_t length = min(vmalloc_size, PAGE_SIZE);
sg->entry[i].data = cpu_to_be64(data);
sg->entry[i].length = cpu_to_be64(length);
i++;
if (i >= SG_ENTRIES_PER_NODE) {
struct opal_sg_list *next;
next = kzalloc(PAGE_SIZE, GFP_KERNEL);
if (!next)
goto nomem;
sg->length = cpu_to_be64(
i * sizeof(struct opal_sg_entry) + 16);
i = 0;
sg->next = cpu_to_be64(__pa(next));
sg = next;
}
vmalloc_addr += length;
vmalloc_size -= length;
}
sg->length = cpu_to_be64(i * sizeof(struct opal_sg_entry) + 16);
return first;
nomem:
pr_err("%s : Failed to allocate memory\n", __func__);
opal_free_sg_list(first);
return NULL;
}
void opal_free_sg_list(struct opal_sg_list *sg)
{
while (sg) {
uint64_t next = be64_to_cpu(sg->next);
kfree(sg);
if (next)
sg = __va(next);
else
sg = NULL;
}
}
int opal_error_code(int rc)
{
switch (rc) {
case OPAL_SUCCESS: return 0;
case OPAL_PARAMETER: return -EINVAL;
case OPAL_ASYNC_COMPLETION: return -EINPROGRESS;
case OPAL_BUSY:
case OPAL_BUSY_EVENT: return -EBUSY;
case OPAL_NO_MEM: return -ENOMEM;
case OPAL_PERMISSION: return -EPERM;
case OPAL_UNSUPPORTED: return -EIO;
case OPAL_HARDWARE: return -EIO;
case OPAL_INTERNAL_ERROR: return -EIO;
case OPAL_TIMEOUT: return -ETIMEDOUT;
default:
pr_err("%s: unexpected OPAL error %d\n", __func__, rc);
return -EIO;
}
}
void powernv_set_nmmu_ptcr(unsigned long ptcr)
{
int rc;
if (firmware_has_feature(FW_FEATURE_OPAL)) {
rc = opal_nmmu_set_ptcr(-1UL, ptcr);
if (rc != OPAL_SUCCESS && rc != OPAL_UNSUPPORTED)
pr_warn("%s: Unable to set nest mmu ptcr\n", __func__);
}
}
EXPORT_SYMBOL_GPL(opal_poll_events);
EXPORT_SYMBOL_GPL(opal_rtc_read);
EXPORT_SYMBOL_GPL(opal_rtc_write);
EXPORT_SYMBOL_GPL(opal_tpo_read);
EXPORT_SYMBOL_GPL(opal_tpo_write);
EXPORT_SYMBOL_GPL(opal_i2c_request);
/* Export these symbols for PowerNV LED class driver */
EXPORT_SYMBOL_GPL(opal_leds_get_ind);
EXPORT_SYMBOL_GPL(opal_leds_set_ind);
/* Export this symbol for PowerNV Operator Panel class driver */
EXPORT_SYMBOL_GPL(opal_write_oppanel_async);
/* Export this for KVM */
EXPORT_SYMBOL_GPL(opal_int_set_mfrr);
EXPORT_SYMBOL_GPL(opal_int_eoi);
EXPORT_SYMBOL_GPL(opal_error_code);
/* Export the below symbol for NX compression */
EXPORT_SYMBOL(opal_nx_coproc_init);