linux_dsm_epyc7002/net/bluetooth/ecc.h
Johan Hedberg 05ddb47a91 Bluetooth: Add ECC library for LE Secure Connections
This patch adds a simple ECC library that will act as a fundamental
building block for LE Secure Connections. The library has a simple API
consisting of two functions: one for generating a public/private key
pair and another one for generating a Diffie-Hellman key from a local
private key and a remote public key.

The code has been taken from https://github.com/kmackay/easy-ecc and
modified to conform with the kernel coding style.

Signed-off-by: Johan Hedberg <johan.hedberg@intel.com>
Signed-off-by: Marcel Holtmann <marcel@holtmann.org>
2014-12-03 16:51:16 +01:00

55 lines
2.3 KiB
C

/*
* Copyright (c) 2013, Kenneth MacKay
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/* Create a public/private key pair.
* Outputs:
* public_key - Will be filled in with the public key.
* private_key - Will be filled in with the private key.
*
* Returns true if the key pair was generated successfully, false
* if an error occurred. The keys are with the LSB first.
*/
bool ecc_make_key(u8 public_key[64], u8 private_key[32]);
/* Compute a shared secret given your secret key and someone else's
* public key.
* Note: It is recommended that you hash the result of ecdh_shared_secret
* before using it for symmetric encryption or HMAC.
*
* Inputs:
* public_key - The public key of the remote party
* private_key - Your private key.
*
* Outputs:
* secret - Will be filled in with the shared secret value.
*
* Returns true if the shared secret was generated successfully, false
* if an error occurred. Both input and output parameters are with the
* LSB first.
*/
bool ecdh_shared_secret(const u8 public_key[64], const u8 private_key[32],
u8 secret[32]);