mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2024-12-28 11:18:45 +07:00
bde2b96d6d
bdisp_dev->dbg.copy_node shall be a copy of (and not point to) bdisp_ctx->node, since this resource is freed upon driver release. Signed-off-by: Fabien Dessenne <fabien.dessenne@st.com> Signed-off-by: Hans Verkuil <hans.verkuil@cisco.com> Signed-off-by: Mauro Carvalho Chehab <mchehab@osg.samsung.com>
824 lines
19 KiB
C
824 lines
19 KiB
C
/*
|
|
* Copyright (C) STMicroelectronics SA 2014
|
|
* Authors: Fabien Dessenne <fabien.dessenne@st.com> for STMicroelectronics.
|
|
* License terms: GNU General Public License (GPL), version 2
|
|
*/
|
|
|
|
#include <linux/delay.h>
|
|
|
|
#include "bdisp.h"
|
|
#include "bdisp-filter.h"
|
|
#include "bdisp-reg.h"
|
|
|
|
/* Max width of the source frame in a single node */
|
|
#define MAX_SRC_WIDTH 2048
|
|
|
|
/* Reset & boot poll config */
|
|
#define POLL_RST_MAX 50
|
|
#define POLL_RST_DELAY_MS 20
|
|
|
|
enum bdisp_target_plan {
|
|
BDISP_RGB,
|
|
BDISP_Y,
|
|
BDISP_CBCR
|
|
};
|
|
|
|
struct bdisp_op_cfg {
|
|
bool cconv; /* RGB - YUV conversion */
|
|
bool hflip; /* Horizontal flip */
|
|
bool vflip; /* Vertical flip */
|
|
bool wide; /* Wide (>MAX_SRC_WIDTH) */
|
|
bool scale; /* Scale */
|
|
u16 h_inc; /* Horizontal increment in 6.10 format */
|
|
u16 v_inc; /* Vertical increment in 6.10 format */
|
|
bool src_interlaced; /* is the src an interlaced buffer */
|
|
u8 src_nbp; /* nb of planes of the src */
|
|
bool src_yuv; /* is the src a YUV color format */
|
|
bool src_420; /* is the src 4:2:0 chroma subsampled */
|
|
u8 dst_nbp; /* nb of planes of the dst */
|
|
bool dst_yuv; /* is the dst a YUV color format */
|
|
bool dst_420; /* is the dst 4:2:0 chroma subsampled */
|
|
};
|
|
|
|
struct bdisp_filter_addr {
|
|
u16 min; /* Filter min scale factor (6.10 fixed point) */
|
|
u16 max; /* Filter max scale factor (6.10 fixed point) */
|
|
void *virt; /* Virtual address for filter table */
|
|
dma_addr_t paddr; /* Physical address for filter table */
|
|
};
|
|
|
|
static struct bdisp_filter_addr bdisp_h_filter[NB_H_FILTER];
|
|
static struct bdisp_filter_addr bdisp_v_filter[NB_V_FILTER];
|
|
|
|
/**
|
|
* bdisp_hw_reset
|
|
* @bdisp: bdisp entity
|
|
*
|
|
* Resets HW
|
|
*
|
|
* RETURNS:
|
|
* 0 on success.
|
|
*/
|
|
int bdisp_hw_reset(struct bdisp_dev *bdisp)
|
|
{
|
|
unsigned int i;
|
|
|
|
dev_dbg(bdisp->dev, "%s\n", __func__);
|
|
|
|
/* Mask Interrupt */
|
|
writel(0, bdisp->regs + BLT_ITM0);
|
|
|
|
/* Reset */
|
|
writel(readl(bdisp->regs + BLT_CTL) | BLT_CTL_RESET,
|
|
bdisp->regs + BLT_CTL);
|
|
writel(0, bdisp->regs + BLT_CTL);
|
|
|
|
/* Wait for reset done */
|
|
for (i = 0; i < POLL_RST_MAX; i++) {
|
|
if (readl(bdisp->regs + BLT_STA1) & BLT_STA1_IDLE)
|
|
break;
|
|
msleep(POLL_RST_DELAY_MS);
|
|
}
|
|
if (i == POLL_RST_MAX)
|
|
dev_err(bdisp->dev, "Reset timeout\n");
|
|
|
|
return (i == POLL_RST_MAX) ? -EAGAIN : 0;
|
|
}
|
|
|
|
/**
|
|
* bdisp_hw_get_and_clear_irq
|
|
* @bdisp: bdisp entity
|
|
*
|
|
* Read then reset interrupt status
|
|
*
|
|
* RETURNS:
|
|
* 0 if expected interrupt was raised.
|
|
*/
|
|
int bdisp_hw_get_and_clear_irq(struct bdisp_dev *bdisp)
|
|
{
|
|
u32 its;
|
|
|
|
its = readl(bdisp->regs + BLT_ITS);
|
|
|
|
/* Check for the only expected IT: LastNode of AQ1 */
|
|
if (!(its & BLT_ITS_AQ1_LNA)) {
|
|
dev_dbg(bdisp->dev, "Unexpected IT status: 0x%08X\n", its);
|
|
writel(its, bdisp->regs + BLT_ITS);
|
|
return -1;
|
|
}
|
|
|
|
/* Clear and mask */
|
|
writel(its, bdisp->regs + BLT_ITS);
|
|
writel(0, bdisp->regs + BLT_ITM0);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* bdisp_hw_free_nodes
|
|
* @ctx: bdisp context
|
|
*
|
|
* Free node memory
|
|
*
|
|
* RETURNS:
|
|
* None
|
|
*/
|
|
void bdisp_hw_free_nodes(struct bdisp_ctx *ctx)
|
|
{
|
|
if (ctx && ctx->node[0]) {
|
|
DEFINE_DMA_ATTRS(attrs);
|
|
|
|
dma_set_attr(DMA_ATTR_WRITE_COMBINE, &attrs);
|
|
dma_free_attrs(ctx->bdisp_dev->dev,
|
|
sizeof(struct bdisp_node) * MAX_NB_NODE,
|
|
ctx->node[0], ctx->node_paddr[0], &attrs);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* bdisp_hw_alloc_nodes
|
|
* @ctx: bdisp context
|
|
*
|
|
* Allocate dma memory for nodes
|
|
*
|
|
* RETURNS:
|
|
* 0 on success
|
|
*/
|
|
int bdisp_hw_alloc_nodes(struct bdisp_ctx *ctx)
|
|
{
|
|
struct device *dev = ctx->bdisp_dev->dev;
|
|
unsigned int i, node_size = sizeof(struct bdisp_node);
|
|
void *base;
|
|
dma_addr_t paddr;
|
|
DEFINE_DMA_ATTRS(attrs);
|
|
|
|
/* Allocate all the nodes within a single memory page */
|
|
dma_set_attr(DMA_ATTR_WRITE_COMBINE, &attrs);
|
|
base = dma_alloc_attrs(dev, node_size * MAX_NB_NODE, &paddr,
|
|
GFP_KERNEL | GFP_DMA, &attrs);
|
|
if (!base) {
|
|
dev_err(dev, "%s no mem\n", __func__);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
memset(base, 0, node_size * MAX_NB_NODE);
|
|
|
|
for (i = 0; i < MAX_NB_NODE; i++) {
|
|
ctx->node[i] = base;
|
|
ctx->node_paddr[i] = paddr;
|
|
dev_dbg(dev, "node[%d]=0x%p (paddr=%pad)\n", i, ctx->node[i],
|
|
&paddr);
|
|
base += node_size;
|
|
paddr += node_size;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* bdisp_hw_free_filters
|
|
* @dev: device
|
|
*
|
|
* Free filters memory
|
|
*
|
|
* RETURNS:
|
|
* None
|
|
*/
|
|
void bdisp_hw_free_filters(struct device *dev)
|
|
{
|
|
int size = (BDISP_HF_NB * NB_H_FILTER) + (BDISP_VF_NB * NB_V_FILTER);
|
|
|
|
if (bdisp_h_filter[0].virt) {
|
|
DEFINE_DMA_ATTRS(attrs);
|
|
|
|
dma_set_attr(DMA_ATTR_WRITE_COMBINE, &attrs);
|
|
dma_free_attrs(dev, size, bdisp_h_filter[0].virt,
|
|
bdisp_h_filter[0].paddr, &attrs);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* bdisp_hw_alloc_filters
|
|
* @dev: device
|
|
*
|
|
* Allocate dma memory for filters
|
|
*
|
|
* RETURNS:
|
|
* 0 on success
|
|
*/
|
|
int bdisp_hw_alloc_filters(struct device *dev)
|
|
{
|
|
unsigned int i, size;
|
|
void *base;
|
|
dma_addr_t paddr;
|
|
DEFINE_DMA_ATTRS(attrs);
|
|
|
|
/* Allocate all the filters within a single memory page */
|
|
size = (BDISP_HF_NB * NB_H_FILTER) + (BDISP_VF_NB * NB_V_FILTER);
|
|
dma_set_attr(DMA_ATTR_WRITE_COMBINE, &attrs);
|
|
base = dma_alloc_attrs(dev, size, &paddr, GFP_KERNEL | GFP_DMA, &attrs);
|
|
if (!base)
|
|
return -ENOMEM;
|
|
|
|
/* Setup filter addresses */
|
|
for (i = 0; i < NB_H_FILTER; i++) {
|
|
bdisp_h_filter[i].min = bdisp_h_spec[i].min;
|
|
bdisp_h_filter[i].max = bdisp_h_spec[i].max;
|
|
memcpy(base, bdisp_h_spec[i].coef, BDISP_HF_NB);
|
|
bdisp_h_filter[i].virt = base;
|
|
bdisp_h_filter[i].paddr = paddr;
|
|
base += BDISP_HF_NB;
|
|
paddr += BDISP_HF_NB;
|
|
}
|
|
|
|
for (i = 0; i < NB_V_FILTER; i++) {
|
|
bdisp_v_filter[i].min = bdisp_v_spec[i].min;
|
|
bdisp_v_filter[i].max = bdisp_v_spec[i].max;
|
|
memcpy(base, bdisp_v_spec[i].coef, BDISP_VF_NB);
|
|
bdisp_v_filter[i].virt = base;
|
|
bdisp_v_filter[i].paddr = paddr;
|
|
base += BDISP_VF_NB;
|
|
paddr += BDISP_VF_NB;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* bdisp_hw_get_hf_addr
|
|
* @inc: resize increment
|
|
*
|
|
* Find the horizontal filter table that fits the resize increment
|
|
*
|
|
* RETURNS:
|
|
* table physical address
|
|
*/
|
|
static dma_addr_t bdisp_hw_get_hf_addr(u16 inc)
|
|
{
|
|
unsigned int i;
|
|
|
|
for (i = NB_H_FILTER - 1; i > 0; i--)
|
|
if ((bdisp_h_filter[i].min < inc) &&
|
|
(inc <= bdisp_h_filter[i].max))
|
|
break;
|
|
|
|
return bdisp_h_filter[i].paddr;
|
|
}
|
|
|
|
/**
|
|
* bdisp_hw_get_vf_addr
|
|
* @inc: resize increment
|
|
*
|
|
* Find the vertical filter table that fits the resize increment
|
|
*
|
|
* RETURNS:
|
|
* table physical address
|
|
*/
|
|
static dma_addr_t bdisp_hw_get_vf_addr(u16 inc)
|
|
{
|
|
unsigned int i;
|
|
|
|
for (i = NB_V_FILTER - 1; i > 0; i--)
|
|
if ((bdisp_v_filter[i].min < inc) &&
|
|
(inc <= bdisp_v_filter[i].max))
|
|
break;
|
|
|
|
return bdisp_v_filter[i].paddr;
|
|
}
|
|
|
|
/**
|
|
* bdisp_hw_get_inc
|
|
* @from: input size
|
|
* @to: output size
|
|
* @inc: resize increment in 6.10 format
|
|
*
|
|
* Computes the increment (inverse of scale) in 6.10 format
|
|
*
|
|
* RETURNS:
|
|
* 0 on success
|
|
*/
|
|
static int bdisp_hw_get_inc(u32 from, u32 to, u16 *inc)
|
|
{
|
|
u32 tmp;
|
|
|
|
if (!to)
|
|
return -EINVAL;
|
|
|
|
if (to == from) {
|
|
*inc = 1 << 10;
|
|
return 0;
|
|
}
|
|
|
|
tmp = (from << 10) / to;
|
|
if ((tmp > 0xFFFF) || (!tmp))
|
|
/* overflow (downscale x 63) or too small (upscale x 1024) */
|
|
return -EINVAL;
|
|
|
|
*inc = (u16)tmp;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* bdisp_hw_get_hv_inc
|
|
* @ctx: device context
|
|
* @h_inc: horizontal increment
|
|
* @v_inc: vertical increment
|
|
*
|
|
* Computes the horizontal & vertical increments (inverse of scale)
|
|
*
|
|
* RETURNS:
|
|
* 0 on success
|
|
*/
|
|
static int bdisp_hw_get_hv_inc(struct bdisp_ctx *ctx, u16 *h_inc, u16 *v_inc)
|
|
{
|
|
u32 src_w, src_h, dst_w, dst_h;
|
|
|
|
src_w = ctx->src.crop.width;
|
|
src_h = ctx->src.crop.height;
|
|
dst_w = ctx->dst.crop.width;
|
|
dst_h = ctx->dst.crop.height;
|
|
|
|
if (bdisp_hw_get_inc(src_w, dst_w, h_inc) ||
|
|
bdisp_hw_get_inc(src_h, dst_h, v_inc)) {
|
|
dev_err(ctx->bdisp_dev->dev,
|
|
"scale factors failed (%dx%d)->(%dx%d)\n",
|
|
src_w, src_h, dst_w, dst_h);
|
|
return -EINVAL;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* bdisp_hw_get_op_cfg
|
|
* @ctx: device context
|
|
* @c: operation configuration
|
|
*
|
|
* Check which blitter operations are expected and sets the scaling increments
|
|
*
|
|
* RETURNS:
|
|
* 0 on success
|
|
*/
|
|
static int bdisp_hw_get_op_cfg(struct bdisp_ctx *ctx, struct bdisp_op_cfg *c)
|
|
{
|
|
struct device *dev = ctx->bdisp_dev->dev;
|
|
struct bdisp_frame *src = &ctx->src;
|
|
struct bdisp_frame *dst = &ctx->dst;
|
|
|
|
if (src->width > MAX_SRC_WIDTH * MAX_VERTICAL_STRIDES) {
|
|
dev_err(dev, "Image width out of HW caps\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
c->wide = src->width > MAX_SRC_WIDTH;
|
|
|
|
c->hflip = ctx->hflip;
|
|
c->vflip = ctx->vflip;
|
|
|
|
c->src_interlaced = (src->field == V4L2_FIELD_INTERLACED);
|
|
|
|
c->src_nbp = src->fmt->nb_planes;
|
|
c->src_yuv = (src->fmt->pixelformat == V4L2_PIX_FMT_NV12) ||
|
|
(src->fmt->pixelformat == V4L2_PIX_FMT_YUV420);
|
|
c->src_420 = c->src_yuv;
|
|
|
|
c->dst_nbp = dst->fmt->nb_planes;
|
|
c->dst_yuv = (dst->fmt->pixelformat == V4L2_PIX_FMT_NV12) ||
|
|
(dst->fmt->pixelformat == V4L2_PIX_FMT_YUV420);
|
|
c->dst_420 = c->dst_yuv;
|
|
|
|
c->cconv = (c->src_yuv != c->dst_yuv);
|
|
|
|
if (bdisp_hw_get_hv_inc(ctx, &c->h_inc, &c->v_inc)) {
|
|
dev_err(dev, "Scale factor out of HW caps\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* Deinterlacing adjustment : stretch a field to a frame */
|
|
if (c->src_interlaced)
|
|
c->v_inc /= 2;
|
|
|
|
if ((c->h_inc != (1 << 10)) || (c->v_inc != (1 << 10)))
|
|
c->scale = true;
|
|
else
|
|
c->scale = false;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* bdisp_hw_color_format
|
|
* @pixelformat: v4l2 pixel format
|
|
*
|
|
* v4l2 to bdisp pixel format convert
|
|
*
|
|
* RETURNS:
|
|
* bdisp pixel format
|
|
*/
|
|
static u32 bdisp_hw_color_format(u32 pixelformat)
|
|
{
|
|
u32 ret;
|
|
|
|
switch (pixelformat) {
|
|
case V4L2_PIX_FMT_YUV420:
|
|
ret = (BDISP_YUV_3B << BLT_TTY_COL_SHIFT);
|
|
break;
|
|
case V4L2_PIX_FMT_NV12:
|
|
ret = (BDISP_NV12 << BLT_TTY_COL_SHIFT) | BLT_TTY_BIG_END;
|
|
break;
|
|
case V4L2_PIX_FMT_RGB565:
|
|
ret = (BDISP_RGB565 << BLT_TTY_COL_SHIFT);
|
|
break;
|
|
case V4L2_PIX_FMT_XBGR32: /* This V4L format actually refers to xRGB */
|
|
ret = (BDISP_XRGB8888 << BLT_TTY_COL_SHIFT);
|
|
break;
|
|
case V4L2_PIX_FMT_RGB24: /* RGB888 format */
|
|
ret = (BDISP_RGB888 << BLT_TTY_COL_SHIFT) | BLT_TTY_BIG_END;
|
|
break;
|
|
case V4L2_PIX_FMT_ABGR32: /* This V4L format actually refers to ARGB */
|
|
|
|
default:
|
|
ret = (BDISP_ARGB8888 << BLT_TTY_COL_SHIFT) | BLT_TTY_ALPHA_R;
|
|
break;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* bdisp_hw_build_node
|
|
* @ctx: device context
|
|
* @cfg: operation configuration
|
|
* @node: node to be set
|
|
* @t_plan: whether the node refers to a RGB/Y or a CbCr plane
|
|
* @src_x_offset: x offset in the source image
|
|
*
|
|
* Build a node
|
|
*
|
|
* RETURNS:
|
|
* None
|
|
*/
|
|
static void bdisp_hw_build_node(struct bdisp_ctx *ctx,
|
|
struct bdisp_op_cfg *cfg,
|
|
struct bdisp_node *node,
|
|
enum bdisp_target_plan t_plan, int src_x_offset)
|
|
{
|
|
struct bdisp_frame *src = &ctx->src;
|
|
struct bdisp_frame *dst = &ctx->dst;
|
|
u16 h_inc, v_inc, yh_inc, yv_inc;
|
|
struct v4l2_rect src_rect = src->crop;
|
|
struct v4l2_rect dst_rect = dst->crop;
|
|
int dst_x_offset;
|
|
s32 dst_width = dst->crop.width;
|
|
u32 src_fmt, dst_fmt;
|
|
const u32 *ivmx;
|
|
|
|
dev_dbg(ctx->bdisp_dev->dev, "%s\n", __func__);
|
|
|
|
memset(node, 0, sizeof(*node));
|
|
|
|
/* Adjust src and dst areas wrt src_x_offset */
|
|
src_rect.left += src_x_offset;
|
|
src_rect.width -= src_x_offset;
|
|
src_rect.width = min_t(__s32, MAX_SRC_WIDTH, src_rect.width);
|
|
|
|
dst_x_offset = (src_x_offset * dst_width) / ctx->src.crop.width;
|
|
dst_rect.left += dst_x_offset;
|
|
dst_rect.width = (src_rect.width * dst_width) / ctx->src.crop.width;
|
|
|
|
/* General */
|
|
src_fmt = src->fmt->pixelformat;
|
|
dst_fmt = dst->fmt->pixelformat;
|
|
|
|
node->nip = 0;
|
|
node->cic = BLT_CIC_ALL_GRP;
|
|
node->ack = BLT_ACK_BYPASS_S2S3;
|
|
|
|
switch (cfg->src_nbp) {
|
|
case 1:
|
|
/* Src2 = RGB / Src1 = Src3 = off */
|
|
node->ins = BLT_INS_S1_OFF | BLT_INS_S2_MEM | BLT_INS_S3_OFF;
|
|
break;
|
|
case 2:
|
|
/* Src3 = Y
|
|
* Src2 = CbCr or ColorFill if writing the Y plane
|
|
* Src1 = off */
|
|
node->ins = BLT_INS_S1_OFF | BLT_INS_S3_MEM;
|
|
if (t_plan == BDISP_Y)
|
|
node->ins |= BLT_INS_S2_CF;
|
|
else
|
|
node->ins |= BLT_INS_S2_MEM;
|
|
break;
|
|
case 3:
|
|
default:
|
|
/* Src3 = Y
|
|
* Src2 = Cb or ColorFill if writing the Y plane
|
|
* Src1 = Cr or ColorFill if writing the Y plane */
|
|
node->ins = BLT_INS_S3_MEM;
|
|
if (t_plan == BDISP_Y)
|
|
node->ins |= BLT_INS_S2_CF | BLT_INS_S1_CF;
|
|
else
|
|
node->ins |= BLT_INS_S2_MEM | BLT_INS_S1_MEM;
|
|
break;
|
|
}
|
|
|
|
/* Color convert */
|
|
node->ins |= cfg->cconv ? BLT_INS_IVMX : 0;
|
|
/* Scale needed if scaling OR 4:2:0 up/downsampling */
|
|
node->ins |= (cfg->scale || cfg->src_420 || cfg->dst_420) ?
|
|
BLT_INS_SCALE : 0;
|
|
|
|
/* Target */
|
|
node->tba = (t_plan == BDISP_CBCR) ? dst->paddr[1] : dst->paddr[0];
|
|
|
|
node->tty = dst->bytesperline;
|
|
node->tty |= bdisp_hw_color_format(dst_fmt);
|
|
node->tty |= BLT_TTY_DITHER;
|
|
node->tty |= (t_plan == BDISP_CBCR) ? BLT_TTY_CHROMA : 0;
|
|
node->tty |= cfg->hflip ? BLT_TTY_HSO : 0;
|
|
node->tty |= cfg->vflip ? BLT_TTY_VSO : 0;
|
|
|
|
if (cfg->dst_420 && (t_plan == BDISP_CBCR)) {
|
|
/* 420 chroma downsampling */
|
|
dst_rect.height /= 2;
|
|
dst_rect.width /= 2;
|
|
dst_rect.left /= 2;
|
|
dst_rect.top /= 2;
|
|
dst_x_offset /= 2;
|
|
dst_width /= 2;
|
|
}
|
|
|
|
node->txy = cfg->vflip ? (dst_rect.height - 1) : dst_rect.top;
|
|
node->txy <<= 16;
|
|
node->txy |= cfg->hflip ? (dst_width - dst_x_offset - 1) :
|
|
dst_rect.left;
|
|
|
|
node->tsz = dst_rect.height << 16 | dst_rect.width;
|
|
|
|
if (cfg->src_interlaced) {
|
|
/* handle only the top field which is half height of a frame */
|
|
src_rect.top /= 2;
|
|
src_rect.height /= 2;
|
|
}
|
|
|
|
if (cfg->src_nbp == 1) {
|
|
/* Src 2 : RGB */
|
|
node->s2ba = src->paddr[0];
|
|
|
|
node->s2ty = src->bytesperline;
|
|
if (cfg->src_interlaced)
|
|
node->s2ty *= 2;
|
|
|
|
node->s2ty |= bdisp_hw_color_format(src_fmt);
|
|
|
|
node->s2xy = src_rect.top << 16 | src_rect.left;
|
|
node->s2sz = src_rect.height << 16 | src_rect.width;
|
|
} else {
|
|
/* Src 2 : Cb or CbCr */
|
|
if (cfg->src_420) {
|
|
/* 420 chroma upsampling */
|
|
src_rect.top /= 2;
|
|
src_rect.left /= 2;
|
|
src_rect.width /= 2;
|
|
src_rect.height /= 2;
|
|
}
|
|
|
|
node->s2ba = src->paddr[1];
|
|
|
|
node->s2ty = src->bytesperline;
|
|
if (cfg->src_nbp == 3)
|
|
node->s2ty /= 2;
|
|
if (cfg->src_interlaced)
|
|
node->s2ty *= 2;
|
|
|
|
node->s2ty |= bdisp_hw_color_format(src_fmt);
|
|
|
|
node->s2xy = src_rect.top << 16 | src_rect.left;
|
|
node->s2sz = src_rect.height << 16 | src_rect.width;
|
|
|
|
if (cfg->src_nbp == 3) {
|
|
/* Src 1 : Cr */
|
|
node->s1ba = src->paddr[2];
|
|
|
|
node->s1ty = node->s2ty;
|
|
node->s1xy = node->s2xy;
|
|
}
|
|
|
|
/* Src 3 : Y */
|
|
node->s3ba = src->paddr[0];
|
|
|
|
node->s3ty = src->bytesperline;
|
|
if (cfg->src_interlaced)
|
|
node->s3ty *= 2;
|
|
node->s3ty |= bdisp_hw_color_format(src_fmt);
|
|
|
|
if ((t_plan != BDISP_CBCR) && cfg->src_420) {
|
|
/* No chroma upsampling for output RGB / Y plane */
|
|
node->s3xy = node->s2xy * 2;
|
|
node->s3sz = node->s2sz * 2;
|
|
} else {
|
|
/* No need to read Y (Src3) when writing Chroma */
|
|
node->s3ty |= BLT_S3TY_BLANK_ACC;
|
|
node->s3xy = node->s2xy;
|
|
node->s3sz = node->s2sz;
|
|
}
|
|
}
|
|
|
|
/* Resize (scale OR 4:2:0: chroma up/downsampling) */
|
|
if (node->ins & BLT_INS_SCALE) {
|
|
/* no need to compute Y when writing CbCr from RGB input */
|
|
bool skip_y = (t_plan == BDISP_CBCR) && !cfg->src_yuv;
|
|
|
|
/* FCTL */
|
|
if (cfg->scale) {
|
|
node->fctl = BLT_FCTL_HV_SCALE;
|
|
if (!skip_y)
|
|
node->fctl |= BLT_FCTL_Y_HV_SCALE;
|
|
} else {
|
|
node->fctl = BLT_FCTL_HV_SAMPLE;
|
|
if (!skip_y)
|
|
node->fctl |= BLT_FCTL_Y_HV_SAMPLE;
|
|
}
|
|
|
|
/* RSF - Chroma may need to be up/downsampled */
|
|
h_inc = cfg->h_inc;
|
|
v_inc = cfg->v_inc;
|
|
if (!cfg->src_420 && cfg->dst_420 && (t_plan == BDISP_CBCR)) {
|
|
/* RGB to 4:2:0 for Chroma: downsample */
|
|
h_inc *= 2;
|
|
v_inc *= 2;
|
|
} else if (cfg->src_420 && !cfg->dst_420) {
|
|
/* 4:2:0: to RGB: upsample*/
|
|
h_inc /= 2;
|
|
v_inc /= 2;
|
|
}
|
|
node->rsf = v_inc << 16 | h_inc;
|
|
|
|
/* RZI */
|
|
node->rzi = BLT_RZI_DEFAULT;
|
|
|
|
/* Filter table physical addr */
|
|
node->hfp = bdisp_hw_get_hf_addr(h_inc);
|
|
node->vfp = bdisp_hw_get_vf_addr(v_inc);
|
|
|
|
/* Y version */
|
|
if (!skip_y) {
|
|
yh_inc = cfg->h_inc;
|
|
yv_inc = cfg->v_inc;
|
|
|
|
node->y_rsf = yv_inc << 16 | yh_inc;
|
|
node->y_rzi = BLT_RZI_DEFAULT;
|
|
node->y_hfp = bdisp_hw_get_hf_addr(yh_inc);
|
|
node->y_vfp = bdisp_hw_get_vf_addr(yv_inc);
|
|
}
|
|
}
|
|
|
|
/* Versatile matrix for RGB / YUV conversion */
|
|
if (cfg->cconv) {
|
|
ivmx = cfg->src_yuv ? bdisp_yuv_to_rgb : bdisp_rgb_to_yuv;
|
|
|
|
node->ivmx0 = ivmx[0];
|
|
node->ivmx1 = ivmx[1];
|
|
node->ivmx2 = ivmx[2];
|
|
node->ivmx3 = ivmx[3];
|
|
}
|
|
}
|
|
|
|
/**
|
|
* bdisp_hw_build_all_nodes
|
|
* @ctx: device context
|
|
*
|
|
* Build all the nodes for the blitter operation
|
|
*
|
|
* RETURNS:
|
|
* 0 on success
|
|
*/
|
|
static int bdisp_hw_build_all_nodes(struct bdisp_ctx *ctx)
|
|
{
|
|
struct bdisp_op_cfg cfg;
|
|
unsigned int i, nid = 0;
|
|
int src_x_offset = 0;
|
|
|
|
for (i = 0; i < MAX_NB_NODE; i++)
|
|
if (!ctx->node[i]) {
|
|
dev_err(ctx->bdisp_dev->dev, "node %d is null\n", i);
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* Get configuration (scale, flip, ...) */
|
|
if (bdisp_hw_get_op_cfg(ctx, &cfg))
|
|
return -EINVAL;
|
|
|
|
/* Split source in vertical strides (HW constraint) */
|
|
for (i = 0; i < MAX_VERTICAL_STRIDES; i++) {
|
|
/* Build RGB/Y node and link it to the previous node */
|
|
bdisp_hw_build_node(ctx, &cfg, ctx->node[nid],
|
|
cfg.dst_nbp == 1 ? BDISP_RGB : BDISP_Y,
|
|
src_x_offset);
|
|
if (nid)
|
|
ctx->node[nid - 1]->nip = ctx->node_paddr[nid];
|
|
nid++;
|
|
|
|
/* Build additional Cb(Cr) node, link it to the previous one */
|
|
if (cfg.dst_nbp > 1) {
|
|
bdisp_hw_build_node(ctx, &cfg, ctx->node[nid],
|
|
BDISP_CBCR, src_x_offset);
|
|
ctx->node[nid - 1]->nip = ctx->node_paddr[nid];
|
|
nid++;
|
|
}
|
|
|
|
/* Next stride until full width covered */
|
|
src_x_offset += MAX_SRC_WIDTH;
|
|
if (src_x_offset >= ctx->src.crop.width)
|
|
break;
|
|
}
|
|
|
|
/* Mark last node as the last */
|
|
ctx->node[nid - 1]->nip = 0;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* bdisp_hw_save_request
|
|
* @ctx: device context
|
|
*
|
|
* Save a copy of the request and of the built nodes
|
|
*
|
|
* RETURNS:
|
|
* None
|
|
*/
|
|
static void bdisp_hw_save_request(struct bdisp_ctx *ctx)
|
|
{
|
|
struct bdisp_node **copy_node = ctx->bdisp_dev->dbg.copy_node;
|
|
struct bdisp_request *request = &ctx->bdisp_dev->dbg.copy_request;
|
|
struct bdisp_node **node = ctx->node;
|
|
int i;
|
|
|
|
/* Request copy */
|
|
request->src = ctx->src;
|
|
request->dst = ctx->dst;
|
|
request->hflip = ctx->hflip;
|
|
request->vflip = ctx->vflip;
|
|
request->nb_req++;
|
|
|
|
/* Nodes copy */
|
|
for (i = 0; i < MAX_NB_NODE; i++) {
|
|
/* Allocate memory if not done yet */
|
|
if (!copy_node[i]) {
|
|
copy_node[i] = devm_kzalloc(ctx->bdisp_dev->dev,
|
|
sizeof(*copy_node[i]),
|
|
GFP_KERNEL);
|
|
if (!copy_node[i])
|
|
return;
|
|
}
|
|
*copy_node[i] = *node[i];
|
|
}
|
|
}
|
|
|
|
/**
|
|
* bdisp_hw_update
|
|
* @ctx: device context
|
|
*
|
|
* Send the request to the HW
|
|
*
|
|
* RETURNS:
|
|
* 0 on success
|
|
*/
|
|
int bdisp_hw_update(struct bdisp_ctx *ctx)
|
|
{
|
|
int ret;
|
|
struct bdisp_dev *bdisp = ctx->bdisp_dev;
|
|
struct device *dev = bdisp->dev;
|
|
unsigned int node_id;
|
|
|
|
dev_dbg(dev, "%s\n", __func__);
|
|
|
|
/* build nodes */
|
|
ret = bdisp_hw_build_all_nodes(ctx);
|
|
if (ret) {
|
|
dev_err(dev, "cannot build nodes (%d)\n", ret);
|
|
return ret;
|
|
}
|
|
|
|
/* Save a copy of the request */
|
|
bdisp_hw_save_request(ctx);
|
|
|
|
/* Configure interrupt to 'Last Node Reached for AQ1' */
|
|
writel(BLT_AQ1_CTL_CFG, bdisp->regs + BLT_AQ1_CTL);
|
|
writel(BLT_ITS_AQ1_LNA, bdisp->regs + BLT_ITM0);
|
|
|
|
/* Write first node addr */
|
|
writel(ctx->node_paddr[0], bdisp->regs + BLT_AQ1_IP);
|
|
|
|
/* Find and write last node addr : this starts the HW processing */
|
|
for (node_id = 0; node_id < MAX_NB_NODE - 1; node_id++) {
|
|
if (!ctx->node[node_id]->nip)
|
|
break;
|
|
}
|
|
writel(ctx->node_paddr[node_id], bdisp->regs + BLT_AQ1_LNA);
|
|
|
|
return 0;
|
|
}
|