mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2025-01-25 08:19:32 +07:00
612a9aab56
Pull drm merge (part 1) from Dave Airlie: "So first of all my tree and uapi stuff has a conflict mess, its my fault as the nouveau stuff didn't hit -next as were trying to rebase regressions out of it before we merged. Highlights: - SH mobile modesetting driver and associated helpers - some DRM core documentation - i915 modesetting rework, haswell hdmi, haswell and vlv fixes, write combined pte writing, ilk rc6 support, - nouveau: major driver rework into a hw core driver, makes features like SLI a lot saner to implement, - psb: add eDP/DP support for Cedarview - radeon: 2 layer page tables, async VM pte updates, better PLL selection for > 2 screens, better ACPI interactions The rest is general grab bag of fixes. So why part 1? well I have the exynos pull req which came in a bit late but was waiting for me to do something they shouldn't have and it looks fairly safe, and David Howells has some more header cleanups he'd like me to pull, that seem like a good idea, but I'd like to get this merge out of the way so -next dosen't get blocked." Tons of conflicts mostly due to silly include line changes, but mostly mindless. A few other small semantic conflicts too, noted from Dave's pre-merged branch. * 'drm-next' of git://people.freedesktop.org/~airlied/linux: (447 commits) drm/nv98/crypt: fix fuc build with latest envyas drm/nouveau/devinit: fixup various issues with subdev ctor/init ordering drm/nv41/vm: fix and enable use of "real" pciegart drm/nv44/vm: fix and enable use of "real" pciegart drm/nv04/dmaobj: fixup vm target handling in preparation for nv4x pcie drm/nouveau: store supported dma mask in vmmgr drm/nvc0/ibus: initial implementation of subdev drm/nouveau/therm: add support for fan-control modes drm/nouveau/hwmon: rename pwm0* to pmw1* to follow hwmon's rules drm/nouveau/therm: calculate the pwm divisor on nv50+ drm/nouveau/fan: rewrite the fan tachometer driver to get more precision, faster drm/nouveau/therm: move thermal-related functions to the therm subdev drm/nouveau/bios: parse the pwm divisor from the perf table drm/nouveau/therm: use the EXTDEV table to detect i2c monitoring devices drm/nouveau/therm: rework thermal table parsing drm/nouveau/gpio: expose the PWM/TOGGLE parameter found in the gpio vbios table drm/nouveau: fix pm initialization order drm/nouveau/bios: check that fixed tvdac gpio data is valid before using it drm/nouveau: log channel debug/error messages from client object rather than drm client drm/nouveau: have drm debugging macros build on top of core macros ...
625 lines
17 KiB
C
625 lines
17 KiB
C
/*
|
|
* Copyright 2010 Red Hat Inc.
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a
|
|
* copy of this software and associated documentation files (the "Software"),
|
|
* to deal in the Software without restriction, including without limitation
|
|
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
|
|
* and/or sell copies of the Software, and to permit persons to whom the
|
|
* Software is furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice shall be included in
|
|
* all copies or substantial portions of the Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
|
|
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
|
|
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
|
|
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
|
|
* OTHER DEALINGS IN THE SOFTWARE.
|
|
*
|
|
* Authors: Ben Skeggs
|
|
*/
|
|
|
|
#include <drm/drmP.h>
|
|
#include "nouveau_drm.h"
|
|
#include "nouveau_bios.h"
|
|
#include "nouveau_pm.h"
|
|
|
|
#include <subdev/bios/pll.h>
|
|
#include <subdev/bios.h>
|
|
#include <subdev/clock.h>
|
|
#include <subdev/timer.h>
|
|
#include <subdev/fb.h>
|
|
|
|
static u32 read_clk(struct drm_device *, int, bool);
|
|
static u32 read_pll(struct drm_device *, int, u32);
|
|
|
|
static u32
|
|
read_vco(struct drm_device *dev, int clk)
|
|
{
|
|
struct nouveau_device *device = nouveau_dev(dev);
|
|
u32 sctl = nv_rd32(device, 0x4120 + (clk * 4));
|
|
if ((sctl & 0x00000030) != 0x00000030)
|
|
return read_pll(dev, 0x41, 0x00e820);
|
|
return read_pll(dev, 0x42, 0x00e8a0);
|
|
}
|
|
|
|
static u32
|
|
read_clk(struct drm_device *dev, int clk, bool ignore_en)
|
|
{
|
|
struct nouveau_device *device = nouveau_dev(dev);
|
|
struct nouveau_drm *drm = nouveau_drm(dev);
|
|
u32 sctl, sdiv, sclk;
|
|
|
|
/* refclk for the 0xe8xx plls is a fixed frequency */
|
|
if (clk >= 0x40) {
|
|
if (nv_device(drm->device)->chipset == 0xaf) {
|
|
/* no joke.. seriously.. sigh.. */
|
|
return nv_rd32(device, 0x00471c) * 1000;
|
|
}
|
|
|
|
return device->crystal;
|
|
}
|
|
|
|
sctl = nv_rd32(device, 0x4120 + (clk * 4));
|
|
if (!ignore_en && !(sctl & 0x00000100))
|
|
return 0;
|
|
|
|
switch (sctl & 0x00003000) {
|
|
case 0x00000000:
|
|
return device->crystal;
|
|
case 0x00002000:
|
|
if (sctl & 0x00000040)
|
|
return 108000;
|
|
return 100000;
|
|
case 0x00003000:
|
|
sclk = read_vco(dev, clk);
|
|
sdiv = ((sctl & 0x003f0000) >> 16) + 2;
|
|
return (sclk * 2) / sdiv;
|
|
default:
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
static u32
|
|
read_pll(struct drm_device *dev, int clk, u32 pll)
|
|
{
|
|
struct nouveau_device *device = nouveau_dev(dev);
|
|
u32 ctrl = nv_rd32(device, pll + 0);
|
|
u32 sclk = 0, P = 1, N = 1, M = 1;
|
|
|
|
if (!(ctrl & 0x00000008)) {
|
|
if (ctrl & 0x00000001) {
|
|
u32 coef = nv_rd32(device, pll + 4);
|
|
M = (coef & 0x000000ff) >> 0;
|
|
N = (coef & 0x0000ff00) >> 8;
|
|
P = (coef & 0x003f0000) >> 16;
|
|
|
|
/* no post-divider on these.. */
|
|
if ((pll & 0x00ff00) == 0x00e800)
|
|
P = 1;
|
|
|
|
sclk = read_clk(dev, 0x00 + clk, false);
|
|
}
|
|
} else {
|
|
sclk = read_clk(dev, 0x10 + clk, false);
|
|
}
|
|
|
|
if (M * P)
|
|
return sclk * N / (M * P);
|
|
return 0;
|
|
}
|
|
|
|
struct creg {
|
|
u32 clk;
|
|
u32 pll;
|
|
};
|
|
|
|
static int
|
|
calc_clk(struct drm_device *dev, int clk, u32 pll, u32 khz, struct creg *reg)
|
|
{
|
|
struct nouveau_drm *drm = nouveau_drm(dev);
|
|
struct nouveau_device *device = nouveau_dev(dev);
|
|
struct nouveau_bios *bios = nouveau_bios(device);
|
|
struct nvbios_pll limits;
|
|
u32 oclk, sclk, sdiv;
|
|
int P, N, M, diff;
|
|
int ret;
|
|
|
|
reg->pll = 0;
|
|
reg->clk = 0;
|
|
if (!khz) {
|
|
NV_DEBUG(drm, "no clock for 0x%04x/0x%02x\n", pll, clk);
|
|
return 0;
|
|
}
|
|
|
|
switch (khz) {
|
|
case 27000:
|
|
reg->clk = 0x00000100;
|
|
return khz;
|
|
case 100000:
|
|
reg->clk = 0x00002100;
|
|
return khz;
|
|
case 108000:
|
|
reg->clk = 0x00002140;
|
|
return khz;
|
|
default:
|
|
sclk = read_vco(dev, clk);
|
|
sdiv = min((sclk * 2) / (khz - 2999), (u32)65);
|
|
/* if the clock has a PLL attached, and we can get a within
|
|
* [-2, 3) MHz of a divider, we'll disable the PLL and use
|
|
* the divider instead.
|
|
*
|
|
* divider can go as low as 2, limited here because NVIDIA
|
|
* and the VBIOS on my NVA8 seem to prefer using the PLL
|
|
* for 810MHz - is there a good reason?
|
|
*/
|
|
if (sdiv > 4) {
|
|
oclk = (sclk * 2) / sdiv;
|
|
diff = khz - oclk;
|
|
if (!pll || (diff >= -2000 && diff < 3000)) {
|
|
reg->clk = (((sdiv - 2) << 16) | 0x00003100);
|
|
return oclk;
|
|
}
|
|
}
|
|
|
|
if (!pll) {
|
|
NV_ERROR(drm, "bad freq %02x: %d %d\n", clk, khz, sclk);
|
|
return -ERANGE;
|
|
}
|
|
|
|
break;
|
|
}
|
|
|
|
ret = nvbios_pll_parse(bios, pll, &limits);
|
|
if (ret)
|
|
return ret;
|
|
|
|
limits.refclk = read_clk(dev, clk - 0x10, true);
|
|
if (!limits.refclk)
|
|
return -EINVAL;
|
|
|
|
ret = nva3_calc_pll(dev, &limits, khz, &N, NULL, &M, &P);
|
|
if (ret >= 0) {
|
|
reg->clk = nv_rd32(device, 0x4120 + (clk * 4));
|
|
reg->pll = (P << 16) | (N << 8) | M;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void
|
|
prog_pll(struct drm_device *dev, int clk, u32 pll, struct creg *reg)
|
|
{
|
|
struct nouveau_device *device = nouveau_dev(dev);
|
|
struct nouveau_drm *drm = nouveau_drm(dev);
|
|
const u32 src0 = 0x004120 + (clk * 4);
|
|
const u32 src1 = 0x004160 + (clk * 4);
|
|
const u32 ctrl = pll + 0;
|
|
const u32 coef = pll + 4;
|
|
|
|
if (!reg->clk && !reg->pll) {
|
|
NV_DEBUG(drm, "no clock for %02x\n", clk);
|
|
return;
|
|
}
|
|
|
|
if (reg->pll) {
|
|
nv_mask(device, src0, 0x00000101, 0x00000101);
|
|
nv_wr32(device, coef, reg->pll);
|
|
nv_mask(device, ctrl, 0x00000015, 0x00000015);
|
|
nv_mask(device, ctrl, 0x00000010, 0x00000000);
|
|
nv_wait(device, ctrl, 0x00020000, 0x00020000);
|
|
nv_mask(device, ctrl, 0x00000010, 0x00000010);
|
|
nv_mask(device, ctrl, 0x00000008, 0x00000000);
|
|
nv_mask(device, src1, 0x00000100, 0x00000000);
|
|
nv_mask(device, src1, 0x00000001, 0x00000000);
|
|
} else {
|
|
nv_mask(device, src1, 0x003f3141, 0x00000101 | reg->clk);
|
|
nv_mask(device, ctrl, 0x00000018, 0x00000018);
|
|
udelay(20);
|
|
nv_mask(device, ctrl, 0x00000001, 0x00000000);
|
|
nv_mask(device, src0, 0x00000100, 0x00000000);
|
|
nv_mask(device, src0, 0x00000001, 0x00000000);
|
|
}
|
|
}
|
|
|
|
static void
|
|
prog_clk(struct drm_device *dev, int clk, struct creg *reg)
|
|
{
|
|
struct nouveau_device *device = nouveau_dev(dev);
|
|
struct nouveau_drm *drm = nouveau_drm(dev);
|
|
|
|
if (!reg->clk) {
|
|
NV_DEBUG(drm, "no clock for %02x\n", clk);
|
|
return;
|
|
}
|
|
|
|
nv_mask(device, 0x004120 + (clk * 4), 0x003f3141, 0x00000101 | reg->clk);
|
|
}
|
|
|
|
int
|
|
nva3_pm_clocks_get(struct drm_device *dev, struct nouveau_pm_level *perflvl)
|
|
{
|
|
perflvl->core = read_pll(dev, 0x00, 0x4200);
|
|
perflvl->shader = read_pll(dev, 0x01, 0x4220);
|
|
perflvl->memory = read_pll(dev, 0x02, 0x4000);
|
|
perflvl->unka0 = read_clk(dev, 0x20, false);
|
|
perflvl->vdec = read_clk(dev, 0x21, false);
|
|
perflvl->daemon = read_clk(dev, 0x25, false);
|
|
perflvl->copy = perflvl->core;
|
|
return 0;
|
|
}
|
|
|
|
struct nva3_pm_state {
|
|
struct nouveau_pm_level *perflvl;
|
|
|
|
struct creg nclk;
|
|
struct creg sclk;
|
|
struct creg vdec;
|
|
struct creg unka0;
|
|
|
|
struct creg mclk;
|
|
u8 *rammap;
|
|
u8 rammap_ver;
|
|
u8 rammap_len;
|
|
u8 *ramcfg;
|
|
u8 ramcfg_len;
|
|
u32 r004018;
|
|
u32 r100760;
|
|
};
|
|
|
|
void *
|
|
nva3_pm_clocks_pre(struct drm_device *dev, struct nouveau_pm_level *perflvl)
|
|
{
|
|
struct nva3_pm_state *info;
|
|
u8 ramcfg_cnt;
|
|
int ret;
|
|
|
|
info = kzalloc(sizeof(*info), GFP_KERNEL);
|
|
if (!info)
|
|
return ERR_PTR(-ENOMEM);
|
|
|
|
ret = calc_clk(dev, 0x10, 0x4200, perflvl->core, &info->nclk);
|
|
if (ret < 0)
|
|
goto out;
|
|
|
|
ret = calc_clk(dev, 0x11, 0x4220, perflvl->shader, &info->sclk);
|
|
if (ret < 0)
|
|
goto out;
|
|
|
|
ret = calc_clk(dev, 0x12, 0x4000, perflvl->memory, &info->mclk);
|
|
if (ret < 0)
|
|
goto out;
|
|
|
|
ret = calc_clk(dev, 0x20, 0x0000, perflvl->unka0, &info->unka0);
|
|
if (ret < 0)
|
|
goto out;
|
|
|
|
ret = calc_clk(dev, 0x21, 0x0000, perflvl->vdec, &info->vdec);
|
|
if (ret < 0)
|
|
goto out;
|
|
|
|
info->rammap = nouveau_perf_rammap(dev, perflvl->memory,
|
|
&info->rammap_ver,
|
|
&info->rammap_len,
|
|
&ramcfg_cnt, &info->ramcfg_len);
|
|
if (info->rammap_ver != 0x10 || info->rammap_len < 5)
|
|
info->rammap = NULL;
|
|
|
|
info->ramcfg = nouveau_perf_ramcfg(dev, perflvl->memory,
|
|
&info->rammap_ver,
|
|
&info->ramcfg_len);
|
|
if (info->rammap_ver != 0x10)
|
|
info->ramcfg = NULL;
|
|
|
|
info->perflvl = perflvl;
|
|
out:
|
|
if (ret < 0) {
|
|
kfree(info);
|
|
info = ERR_PTR(ret);
|
|
}
|
|
return info;
|
|
}
|
|
|
|
static bool
|
|
nva3_pm_grcp_idle(void *data)
|
|
{
|
|
struct drm_device *dev = data;
|
|
struct nouveau_device *device = nouveau_dev(dev);
|
|
|
|
if (!(nv_rd32(device, 0x400304) & 0x00000001))
|
|
return true;
|
|
if (nv_rd32(device, 0x400308) == 0x0050001c)
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
static void
|
|
mclk_precharge(struct nouveau_mem_exec_func *exec)
|
|
{
|
|
struct nouveau_device *device = nouveau_dev(exec->dev);
|
|
nv_wr32(device, 0x1002d4, 0x00000001);
|
|
}
|
|
|
|
static void
|
|
mclk_refresh(struct nouveau_mem_exec_func *exec)
|
|
{
|
|
struct nouveau_device *device = nouveau_dev(exec->dev);
|
|
nv_wr32(device, 0x1002d0, 0x00000001);
|
|
}
|
|
|
|
static void
|
|
mclk_refresh_auto(struct nouveau_mem_exec_func *exec, bool enable)
|
|
{
|
|
struct nouveau_device *device = nouveau_dev(exec->dev);
|
|
nv_wr32(device, 0x100210, enable ? 0x80000000 : 0x00000000);
|
|
}
|
|
|
|
static void
|
|
mclk_refresh_self(struct nouveau_mem_exec_func *exec, bool enable)
|
|
{
|
|
struct nouveau_device *device = nouveau_dev(exec->dev);
|
|
nv_wr32(device, 0x1002dc, enable ? 0x00000001 : 0x00000000);
|
|
}
|
|
|
|
static void
|
|
mclk_wait(struct nouveau_mem_exec_func *exec, u32 nsec)
|
|
{
|
|
struct nouveau_device *device = nouveau_dev(exec->dev);
|
|
volatile u32 post = nv_rd32(device, 0); (void)post;
|
|
udelay((nsec + 500) / 1000);
|
|
}
|
|
|
|
static u32
|
|
mclk_mrg(struct nouveau_mem_exec_func *exec, int mr)
|
|
{
|
|
struct nouveau_device *device = nouveau_dev(exec->dev);
|
|
if (mr <= 1)
|
|
return nv_rd32(device, 0x1002c0 + ((mr - 0) * 4));
|
|
if (mr <= 3)
|
|
return nv_rd32(device, 0x1002e0 + ((mr - 2) * 4));
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
mclk_mrs(struct nouveau_mem_exec_func *exec, int mr, u32 data)
|
|
{
|
|
struct nouveau_device *device = nouveau_dev(exec->dev);
|
|
struct nouveau_fb *pfb = nouveau_fb(device);
|
|
if (mr <= 1) {
|
|
if (pfb->ram.ranks > 1)
|
|
nv_wr32(device, 0x1002c8 + ((mr - 0) * 4), data);
|
|
nv_wr32(device, 0x1002c0 + ((mr - 0) * 4), data);
|
|
} else
|
|
if (mr <= 3) {
|
|
if (pfb->ram.ranks > 1)
|
|
nv_wr32(device, 0x1002e8 + ((mr - 2) * 4), data);
|
|
nv_wr32(device, 0x1002e0 + ((mr - 2) * 4), data);
|
|
}
|
|
}
|
|
|
|
static void
|
|
mclk_clock_set(struct nouveau_mem_exec_func *exec)
|
|
{
|
|
struct nouveau_device *device = nouveau_dev(exec->dev);
|
|
struct nva3_pm_state *info = exec->priv;
|
|
u32 ctrl;
|
|
|
|
ctrl = nv_rd32(device, 0x004000);
|
|
if (!(ctrl & 0x00000008) && info->mclk.pll) {
|
|
nv_wr32(device, 0x004000, (ctrl |= 0x00000008));
|
|
nv_mask(device, 0x1110e0, 0x00088000, 0x00088000);
|
|
nv_wr32(device, 0x004018, 0x00001000);
|
|
nv_wr32(device, 0x004000, (ctrl &= ~0x00000001));
|
|
nv_wr32(device, 0x004004, info->mclk.pll);
|
|
nv_wr32(device, 0x004000, (ctrl |= 0x00000001));
|
|
udelay(64);
|
|
nv_wr32(device, 0x004018, 0x00005000 | info->r004018);
|
|
udelay(20);
|
|
} else
|
|
if (!info->mclk.pll) {
|
|
nv_mask(device, 0x004168, 0x003f3040, info->mclk.clk);
|
|
nv_wr32(device, 0x004000, (ctrl |= 0x00000008));
|
|
nv_mask(device, 0x1110e0, 0x00088000, 0x00088000);
|
|
nv_wr32(device, 0x004018, 0x0000d000 | info->r004018);
|
|
}
|
|
|
|
if (info->rammap) {
|
|
if (info->ramcfg && (info->rammap[4] & 0x08)) {
|
|
u32 unk5a0 = (ROM16(info->ramcfg[5]) << 8) |
|
|
info->ramcfg[5];
|
|
u32 unk5a4 = ROM16(info->ramcfg[7]);
|
|
u32 unk804 = (info->ramcfg[9] & 0xf0) << 16 |
|
|
(info->ramcfg[3] & 0x0f) << 16 |
|
|
(info->ramcfg[9] & 0x0f) |
|
|
0x80000000;
|
|
nv_wr32(device, 0x1005a0, unk5a0);
|
|
nv_wr32(device, 0x1005a4, unk5a4);
|
|
nv_wr32(device, 0x10f804, unk804);
|
|
nv_mask(device, 0x10053c, 0x00001000, 0x00000000);
|
|
} else {
|
|
nv_mask(device, 0x10053c, 0x00001000, 0x00001000);
|
|
nv_mask(device, 0x10f804, 0x80000000, 0x00000000);
|
|
nv_mask(device, 0x100760, 0x22222222, info->r100760);
|
|
nv_mask(device, 0x1007a0, 0x22222222, info->r100760);
|
|
nv_mask(device, 0x1007e0, 0x22222222, info->r100760);
|
|
}
|
|
}
|
|
|
|
if (info->mclk.pll) {
|
|
nv_mask(device, 0x1110e0, 0x00088000, 0x00011000);
|
|
nv_wr32(device, 0x004000, (ctrl &= ~0x00000008));
|
|
}
|
|
}
|
|
|
|
static void
|
|
mclk_timing_set(struct nouveau_mem_exec_func *exec)
|
|
{
|
|
struct nouveau_device *device = nouveau_dev(exec->dev);
|
|
struct nva3_pm_state *info = exec->priv;
|
|
struct nouveau_pm_level *perflvl = info->perflvl;
|
|
int i;
|
|
|
|
for (i = 0; i < 9; i++)
|
|
nv_wr32(device, 0x100220 + (i * 4), perflvl->timing.reg[i]);
|
|
|
|
if (info->ramcfg) {
|
|
u32 data = (info->ramcfg[2] & 0x08) ? 0x00000000 : 0x00001000;
|
|
nv_mask(device, 0x100200, 0x00001000, data);
|
|
}
|
|
|
|
if (info->ramcfg) {
|
|
u32 unk714 = nv_rd32(device, 0x100714) & ~0xf0000010;
|
|
u32 unk718 = nv_rd32(device, 0x100718) & ~0x00000100;
|
|
u32 unk71c = nv_rd32(device, 0x10071c) & ~0x00000100;
|
|
if ( (info->ramcfg[2] & 0x20))
|
|
unk714 |= 0xf0000000;
|
|
if (!(info->ramcfg[2] & 0x04))
|
|
unk714 |= 0x00000010;
|
|
nv_wr32(device, 0x100714, unk714);
|
|
|
|
if (info->ramcfg[2] & 0x01)
|
|
unk71c |= 0x00000100;
|
|
nv_wr32(device, 0x10071c, unk71c);
|
|
|
|
if (info->ramcfg[2] & 0x02)
|
|
unk718 |= 0x00000100;
|
|
nv_wr32(device, 0x100718, unk718);
|
|
|
|
if (info->ramcfg[2] & 0x10)
|
|
nv_wr32(device, 0x111100, 0x48000000); /*XXX*/
|
|
}
|
|
}
|
|
|
|
static void
|
|
prog_mem(struct drm_device *dev, struct nva3_pm_state *info)
|
|
{
|
|
struct nouveau_device *device = nouveau_dev(dev);
|
|
struct nouveau_mem_exec_func exec = {
|
|
.dev = dev,
|
|
.precharge = mclk_precharge,
|
|
.refresh = mclk_refresh,
|
|
.refresh_auto = mclk_refresh_auto,
|
|
.refresh_self = mclk_refresh_self,
|
|
.wait = mclk_wait,
|
|
.mrg = mclk_mrg,
|
|
.mrs = mclk_mrs,
|
|
.clock_set = mclk_clock_set,
|
|
.timing_set = mclk_timing_set,
|
|
.priv = info
|
|
};
|
|
u32 ctrl;
|
|
|
|
/* XXX: where the fuck does 750MHz come from? */
|
|
if (info->perflvl->memory <= 750000) {
|
|
info->r004018 = 0x10000000;
|
|
info->r100760 = 0x22222222;
|
|
}
|
|
|
|
ctrl = nv_rd32(device, 0x004000);
|
|
if (ctrl & 0x00000008) {
|
|
if (info->mclk.pll) {
|
|
nv_mask(device, 0x004128, 0x00000101, 0x00000101);
|
|
nv_wr32(device, 0x004004, info->mclk.pll);
|
|
nv_wr32(device, 0x004000, (ctrl |= 0x00000001));
|
|
nv_wr32(device, 0x004000, (ctrl &= 0xffffffef));
|
|
nv_wait(device, 0x004000, 0x00020000, 0x00020000);
|
|
nv_wr32(device, 0x004000, (ctrl |= 0x00000010));
|
|
nv_wr32(device, 0x004018, 0x00005000 | info->r004018);
|
|
nv_wr32(device, 0x004000, (ctrl |= 0x00000004));
|
|
}
|
|
} else {
|
|
u32 ssel = 0x00000101;
|
|
if (info->mclk.clk)
|
|
ssel |= info->mclk.clk;
|
|
else
|
|
ssel |= 0x00080000; /* 324MHz, shouldn't matter... */
|
|
nv_mask(device, 0x004168, 0x003f3141, ctrl);
|
|
}
|
|
|
|
if (info->ramcfg) {
|
|
if (info->ramcfg[2] & 0x10) {
|
|
nv_mask(device, 0x111104, 0x00000600, 0x00000000);
|
|
} else {
|
|
nv_mask(device, 0x111100, 0x40000000, 0x40000000);
|
|
nv_mask(device, 0x111104, 0x00000180, 0x00000000);
|
|
}
|
|
}
|
|
if (info->rammap && !(info->rammap[4] & 0x02))
|
|
nv_mask(device, 0x100200, 0x00000800, 0x00000000);
|
|
nv_wr32(device, 0x611200, 0x00003300);
|
|
if (!(info->ramcfg[2] & 0x10))
|
|
nv_wr32(device, 0x111100, 0x4c020000); /*XXX*/
|
|
|
|
nouveau_mem_exec(&exec, info->perflvl);
|
|
|
|
nv_wr32(device, 0x611200, 0x00003330);
|
|
if (info->rammap && (info->rammap[4] & 0x02))
|
|
nv_mask(device, 0x100200, 0x00000800, 0x00000800);
|
|
if (info->ramcfg) {
|
|
if (info->ramcfg[2] & 0x10) {
|
|
nv_mask(device, 0x111104, 0x00000180, 0x00000180);
|
|
nv_mask(device, 0x111100, 0x40000000, 0x00000000);
|
|
} else {
|
|
nv_mask(device, 0x111104, 0x00000600, 0x00000600);
|
|
}
|
|
}
|
|
|
|
if (info->mclk.pll) {
|
|
nv_mask(device, 0x004168, 0x00000001, 0x00000000);
|
|
nv_mask(device, 0x004168, 0x00000100, 0x00000000);
|
|
} else {
|
|
nv_mask(device, 0x004000, 0x00000001, 0x00000000);
|
|
nv_mask(device, 0x004128, 0x00000001, 0x00000000);
|
|
nv_mask(device, 0x004128, 0x00000100, 0x00000000);
|
|
}
|
|
}
|
|
|
|
int
|
|
nva3_pm_clocks_set(struct drm_device *dev, void *pre_state)
|
|
{
|
|
struct nouveau_device *device = nouveau_dev(dev);
|
|
struct nouveau_drm *drm = nouveau_drm(dev);
|
|
struct nva3_pm_state *info = pre_state;
|
|
int ret = -EAGAIN;
|
|
|
|
/* prevent any new grctx switches from starting */
|
|
nv_wr32(device, 0x400324, 0x00000000);
|
|
nv_wr32(device, 0x400328, 0x0050001c); /* wait flag 0x1c */
|
|
/* wait for any pending grctx switches to complete */
|
|
if (!nv_wait_cb(device, nva3_pm_grcp_idle, dev)) {
|
|
NV_ERROR(drm, "pm: ctxprog didn't go idle\n");
|
|
goto cleanup;
|
|
}
|
|
/* freeze PFIFO */
|
|
nv_mask(device, 0x002504, 0x00000001, 0x00000001);
|
|
if (!nv_wait(device, 0x002504, 0x00000010, 0x00000010)) {
|
|
NV_ERROR(drm, "pm: fifo didn't go idle\n");
|
|
goto cleanup;
|
|
}
|
|
|
|
prog_pll(dev, 0x00, 0x004200, &info->nclk);
|
|
prog_pll(dev, 0x01, 0x004220, &info->sclk);
|
|
prog_clk(dev, 0x20, &info->unka0);
|
|
prog_clk(dev, 0x21, &info->vdec);
|
|
|
|
if (info->mclk.clk || info->mclk.pll)
|
|
prog_mem(dev, info);
|
|
|
|
ret = 0;
|
|
|
|
cleanup:
|
|
/* unfreeze PFIFO */
|
|
nv_mask(device, 0x002504, 0x00000001, 0x00000000);
|
|
/* restore ctxprog to normal */
|
|
nv_wr32(device, 0x400324, 0x00000000);
|
|
nv_wr32(device, 0x400328, 0x0070009c); /* set flag 0x1c */
|
|
/* unblock it if necessary */
|
|
if (nv_rd32(device, 0x400308) == 0x0050001c)
|
|
nv_mask(device, 0x400824, 0x10000000, 0x10000000);
|
|
kfree(info);
|
|
return ret;
|
|
}
|