mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2025-01-26 08:49:40 +07:00
bfe91afaca
For a channel to make use of SVM features, it requires a different GPU MMU configuration than we would normally use, which is not desirable to switch to unless a client is actively going to use SVM. In order to supporting SVM without more extensive changes to the userspace interfaces, the SVM_INIT ioctl needs to replace the previous configuration safely. The only way we can currently do this safely, accounting for some unlikely failure conditions, is to allocate the new VMM without destroying the last one, and prioritising the SVM-enabled configuration in the code that cares. This will get cleaned up again further down the track. Signed-off-by: Ben Skeggs <bskeggs@redhat.com>
1680 lines
43 KiB
C
1680 lines
43 KiB
C
/*
|
|
* Copyright 2007 Dave Airlied
|
|
* All Rights Reserved.
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a
|
|
* copy of this software and associated documentation files (the "Software"),
|
|
* to deal in the Software without restriction, including without limitation
|
|
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
|
|
* and/or sell copies of the Software, and to permit persons to whom the
|
|
* Software is furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice (including the next
|
|
* paragraph) shall be included in all copies or substantial portions of the
|
|
* Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
|
|
* VA LINUX SYSTEMS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
|
|
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
|
|
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
|
|
* OTHER DEALINGS IN THE SOFTWARE.
|
|
*/
|
|
/*
|
|
* Authors: Dave Airlied <airlied@linux.ie>
|
|
* Ben Skeggs <darktama@iinet.net.au>
|
|
* Jeremy Kolb <jkolb@brandeis.edu>
|
|
*/
|
|
|
|
#include <linux/dma-mapping.h>
|
|
#include <linux/swiotlb.h>
|
|
|
|
#include "nouveau_drv.h"
|
|
#include "nouveau_dma.h"
|
|
#include "nouveau_fence.h"
|
|
|
|
#include "nouveau_bo.h"
|
|
#include "nouveau_ttm.h"
|
|
#include "nouveau_gem.h"
|
|
#include "nouveau_mem.h"
|
|
#include "nouveau_vmm.h"
|
|
|
|
#include <nvif/class.h>
|
|
#include <nvif/if500b.h>
|
|
#include <nvif/if900b.h>
|
|
|
|
/*
|
|
* NV10-NV40 tiling helpers
|
|
*/
|
|
|
|
static void
|
|
nv10_bo_update_tile_region(struct drm_device *dev, struct nouveau_drm_tile *reg,
|
|
u32 addr, u32 size, u32 pitch, u32 flags)
|
|
{
|
|
struct nouveau_drm *drm = nouveau_drm(dev);
|
|
int i = reg - drm->tile.reg;
|
|
struct nvkm_fb *fb = nvxx_fb(&drm->client.device);
|
|
struct nvkm_fb_tile *tile = &fb->tile.region[i];
|
|
|
|
nouveau_fence_unref(®->fence);
|
|
|
|
if (tile->pitch)
|
|
nvkm_fb_tile_fini(fb, i, tile);
|
|
|
|
if (pitch)
|
|
nvkm_fb_tile_init(fb, i, addr, size, pitch, flags, tile);
|
|
|
|
nvkm_fb_tile_prog(fb, i, tile);
|
|
}
|
|
|
|
static struct nouveau_drm_tile *
|
|
nv10_bo_get_tile_region(struct drm_device *dev, int i)
|
|
{
|
|
struct nouveau_drm *drm = nouveau_drm(dev);
|
|
struct nouveau_drm_tile *tile = &drm->tile.reg[i];
|
|
|
|
spin_lock(&drm->tile.lock);
|
|
|
|
if (!tile->used &&
|
|
(!tile->fence || nouveau_fence_done(tile->fence)))
|
|
tile->used = true;
|
|
else
|
|
tile = NULL;
|
|
|
|
spin_unlock(&drm->tile.lock);
|
|
return tile;
|
|
}
|
|
|
|
static void
|
|
nv10_bo_put_tile_region(struct drm_device *dev, struct nouveau_drm_tile *tile,
|
|
struct dma_fence *fence)
|
|
{
|
|
struct nouveau_drm *drm = nouveau_drm(dev);
|
|
|
|
if (tile) {
|
|
spin_lock(&drm->tile.lock);
|
|
tile->fence = (struct nouveau_fence *)dma_fence_get(fence);
|
|
tile->used = false;
|
|
spin_unlock(&drm->tile.lock);
|
|
}
|
|
}
|
|
|
|
static struct nouveau_drm_tile *
|
|
nv10_bo_set_tiling(struct drm_device *dev, u32 addr,
|
|
u32 size, u32 pitch, u32 zeta)
|
|
{
|
|
struct nouveau_drm *drm = nouveau_drm(dev);
|
|
struct nvkm_fb *fb = nvxx_fb(&drm->client.device);
|
|
struct nouveau_drm_tile *tile, *found = NULL;
|
|
int i;
|
|
|
|
for (i = 0; i < fb->tile.regions; i++) {
|
|
tile = nv10_bo_get_tile_region(dev, i);
|
|
|
|
if (pitch && !found) {
|
|
found = tile;
|
|
continue;
|
|
|
|
} else if (tile && fb->tile.region[i].pitch) {
|
|
/* Kill an unused tile region. */
|
|
nv10_bo_update_tile_region(dev, tile, 0, 0, 0, 0);
|
|
}
|
|
|
|
nv10_bo_put_tile_region(dev, tile, NULL);
|
|
}
|
|
|
|
if (found)
|
|
nv10_bo_update_tile_region(dev, found, addr, size, pitch, zeta);
|
|
return found;
|
|
}
|
|
|
|
static void
|
|
nouveau_bo_del_ttm(struct ttm_buffer_object *bo)
|
|
{
|
|
struct nouveau_drm *drm = nouveau_bdev(bo->bdev);
|
|
struct drm_device *dev = drm->dev;
|
|
struct nouveau_bo *nvbo = nouveau_bo(bo);
|
|
|
|
if (unlikely(nvbo->gem.filp))
|
|
DRM_ERROR("bo %p still attached to GEM object\n", bo);
|
|
WARN_ON(nvbo->pin_refcnt > 0);
|
|
nv10_bo_put_tile_region(dev, nvbo->tile, NULL);
|
|
kfree(nvbo);
|
|
}
|
|
|
|
static inline u64
|
|
roundup_64(u64 x, u32 y)
|
|
{
|
|
x += y - 1;
|
|
do_div(x, y);
|
|
return x * y;
|
|
}
|
|
|
|
static void
|
|
nouveau_bo_fixup_align(struct nouveau_bo *nvbo, u32 flags,
|
|
int *align, u64 *size)
|
|
{
|
|
struct nouveau_drm *drm = nouveau_bdev(nvbo->bo.bdev);
|
|
struct nvif_device *device = &drm->client.device;
|
|
|
|
if (device->info.family < NV_DEVICE_INFO_V0_TESLA) {
|
|
if (nvbo->mode) {
|
|
if (device->info.chipset >= 0x40) {
|
|
*align = 65536;
|
|
*size = roundup_64(*size, 64 * nvbo->mode);
|
|
|
|
} else if (device->info.chipset >= 0x30) {
|
|
*align = 32768;
|
|
*size = roundup_64(*size, 64 * nvbo->mode);
|
|
|
|
} else if (device->info.chipset >= 0x20) {
|
|
*align = 16384;
|
|
*size = roundup_64(*size, 64 * nvbo->mode);
|
|
|
|
} else if (device->info.chipset >= 0x10) {
|
|
*align = 16384;
|
|
*size = roundup_64(*size, 32 * nvbo->mode);
|
|
}
|
|
}
|
|
} else {
|
|
*size = roundup_64(*size, (1 << nvbo->page));
|
|
*align = max((1 << nvbo->page), *align);
|
|
}
|
|
|
|
*size = roundup_64(*size, PAGE_SIZE);
|
|
}
|
|
|
|
int
|
|
nouveau_bo_new(struct nouveau_cli *cli, u64 size, int align,
|
|
uint32_t flags, uint32_t tile_mode, uint32_t tile_flags,
|
|
struct sg_table *sg, struct reservation_object *robj,
|
|
struct nouveau_bo **pnvbo)
|
|
{
|
|
struct nouveau_drm *drm = cli->drm;
|
|
struct nouveau_bo *nvbo;
|
|
struct nvif_mmu *mmu = &cli->mmu;
|
|
struct nvif_vmm *vmm = cli->svm.cli ? &cli->svm.vmm : &cli->vmm.vmm;
|
|
size_t acc_size;
|
|
int type = ttm_bo_type_device;
|
|
int ret, i, pi = -1;
|
|
|
|
if (!size) {
|
|
NV_WARN(drm, "skipped size %016llx\n", size);
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (sg)
|
|
type = ttm_bo_type_sg;
|
|
|
|
nvbo = kzalloc(sizeof(struct nouveau_bo), GFP_KERNEL);
|
|
if (!nvbo)
|
|
return -ENOMEM;
|
|
INIT_LIST_HEAD(&nvbo->head);
|
|
INIT_LIST_HEAD(&nvbo->entry);
|
|
INIT_LIST_HEAD(&nvbo->vma_list);
|
|
nvbo->bo.bdev = &drm->ttm.bdev;
|
|
|
|
/* This is confusing, and doesn't actually mean we want an uncached
|
|
* mapping, but is what NOUVEAU_GEM_DOMAIN_COHERENT gets translated
|
|
* into in nouveau_gem_new().
|
|
*/
|
|
if (flags & TTM_PL_FLAG_UNCACHED) {
|
|
/* Determine if we can get a cache-coherent map, forcing
|
|
* uncached mapping if we can't.
|
|
*/
|
|
if (!nouveau_drm_use_coherent_gpu_mapping(drm))
|
|
nvbo->force_coherent = true;
|
|
}
|
|
|
|
if (cli->device.info.family >= NV_DEVICE_INFO_V0_FERMI) {
|
|
nvbo->kind = (tile_flags & 0x0000ff00) >> 8;
|
|
if (!nvif_mmu_kind_valid(mmu, nvbo->kind)) {
|
|
kfree(nvbo);
|
|
return -EINVAL;
|
|
}
|
|
|
|
nvbo->comp = mmu->kind[nvbo->kind] != nvbo->kind;
|
|
} else
|
|
if (cli->device.info.family >= NV_DEVICE_INFO_V0_TESLA) {
|
|
nvbo->kind = (tile_flags & 0x00007f00) >> 8;
|
|
nvbo->comp = (tile_flags & 0x00030000) >> 16;
|
|
if (!nvif_mmu_kind_valid(mmu, nvbo->kind)) {
|
|
kfree(nvbo);
|
|
return -EINVAL;
|
|
}
|
|
} else {
|
|
nvbo->zeta = (tile_flags & 0x00000007);
|
|
}
|
|
nvbo->mode = tile_mode;
|
|
nvbo->contig = !(tile_flags & NOUVEAU_GEM_TILE_NONCONTIG);
|
|
|
|
/* Determine the desirable target GPU page size for the buffer. */
|
|
for (i = 0; i < vmm->page_nr; i++) {
|
|
/* Because we cannot currently allow VMM maps to fail
|
|
* during buffer migration, we need to determine page
|
|
* size for the buffer up-front, and pre-allocate its
|
|
* page tables.
|
|
*
|
|
* Skip page sizes that can't support needed domains.
|
|
*/
|
|
if (cli->device.info.family > NV_DEVICE_INFO_V0_CURIE &&
|
|
(flags & TTM_PL_FLAG_VRAM) && !vmm->page[i].vram)
|
|
continue;
|
|
if ((flags & TTM_PL_FLAG_TT) &&
|
|
(!vmm->page[i].host || vmm->page[i].shift > PAGE_SHIFT))
|
|
continue;
|
|
|
|
/* Select this page size if it's the first that supports
|
|
* the potential memory domains, or when it's compatible
|
|
* with the requested compression settings.
|
|
*/
|
|
if (pi < 0 || !nvbo->comp || vmm->page[i].comp)
|
|
pi = i;
|
|
|
|
/* Stop once the buffer is larger than the current page size. */
|
|
if (size >= 1ULL << vmm->page[i].shift)
|
|
break;
|
|
}
|
|
|
|
if (WARN_ON(pi < 0))
|
|
return -EINVAL;
|
|
|
|
/* Disable compression if suitable settings couldn't be found. */
|
|
if (nvbo->comp && !vmm->page[pi].comp) {
|
|
if (mmu->object.oclass >= NVIF_CLASS_MMU_GF100)
|
|
nvbo->kind = mmu->kind[nvbo->kind];
|
|
nvbo->comp = 0;
|
|
}
|
|
nvbo->page = vmm->page[pi].shift;
|
|
|
|
nouveau_bo_fixup_align(nvbo, flags, &align, &size);
|
|
nvbo->bo.mem.num_pages = size >> PAGE_SHIFT;
|
|
nouveau_bo_placement_set(nvbo, flags, 0);
|
|
|
|
acc_size = ttm_bo_dma_acc_size(&drm->ttm.bdev, size,
|
|
sizeof(struct nouveau_bo));
|
|
|
|
ret = ttm_bo_init(&drm->ttm.bdev, &nvbo->bo, size,
|
|
type, &nvbo->placement,
|
|
align >> PAGE_SHIFT, false, acc_size, sg,
|
|
robj, nouveau_bo_del_ttm);
|
|
if (ret) {
|
|
/* ttm will call nouveau_bo_del_ttm if it fails.. */
|
|
return ret;
|
|
}
|
|
|
|
*pnvbo = nvbo;
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
set_placement_list(struct ttm_place *pl, unsigned *n, uint32_t type, uint32_t flags)
|
|
{
|
|
*n = 0;
|
|
|
|
if (type & TTM_PL_FLAG_VRAM)
|
|
pl[(*n)++].flags = TTM_PL_FLAG_VRAM | flags;
|
|
if (type & TTM_PL_FLAG_TT)
|
|
pl[(*n)++].flags = TTM_PL_FLAG_TT | flags;
|
|
if (type & TTM_PL_FLAG_SYSTEM)
|
|
pl[(*n)++].flags = TTM_PL_FLAG_SYSTEM | flags;
|
|
}
|
|
|
|
static void
|
|
set_placement_range(struct nouveau_bo *nvbo, uint32_t type)
|
|
{
|
|
struct nouveau_drm *drm = nouveau_bdev(nvbo->bo.bdev);
|
|
u32 vram_pages = drm->client.device.info.ram_size >> PAGE_SHIFT;
|
|
unsigned i, fpfn, lpfn;
|
|
|
|
if (drm->client.device.info.family == NV_DEVICE_INFO_V0_CELSIUS &&
|
|
nvbo->mode && (type & TTM_PL_FLAG_VRAM) &&
|
|
nvbo->bo.mem.num_pages < vram_pages / 4) {
|
|
/*
|
|
* Make sure that the color and depth buffers are handled
|
|
* by independent memory controller units. Up to a 9x
|
|
* speed up when alpha-blending and depth-test are enabled
|
|
* at the same time.
|
|
*/
|
|
if (nvbo->zeta) {
|
|
fpfn = vram_pages / 2;
|
|
lpfn = ~0;
|
|
} else {
|
|
fpfn = 0;
|
|
lpfn = vram_pages / 2;
|
|
}
|
|
for (i = 0; i < nvbo->placement.num_placement; ++i) {
|
|
nvbo->placements[i].fpfn = fpfn;
|
|
nvbo->placements[i].lpfn = lpfn;
|
|
}
|
|
for (i = 0; i < nvbo->placement.num_busy_placement; ++i) {
|
|
nvbo->busy_placements[i].fpfn = fpfn;
|
|
nvbo->busy_placements[i].lpfn = lpfn;
|
|
}
|
|
}
|
|
}
|
|
|
|
void
|
|
nouveau_bo_placement_set(struct nouveau_bo *nvbo, uint32_t type, uint32_t busy)
|
|
{
|
|
struct ttm_placement *pl = &nvbo->placement;
|
|
uint32_t flags = (nvbo->force_coherent ? TTM_PL_FLAG_UNCACHED :
|
|
TTM_PL_MASK_CACHING) |
|
|
(nvbo->pin_refcnt ? TTM_PL_FLAG_NO_EVICT : 0);
|
|
|
|
pl->placement = nvbo->placements;
|
|
set_placement_list(nvbo->placements, &pl->num_placement,
|
|
type, flags);
|
|
|
|
pl->busy_placement = nvbo->busy_placements;
|
|
set_placement_list(nvbo->busy_placements, &pl->num_busy_placement,
|
|
type | busy, flags);
|
|
|
|
set_placement_range(nvbo, type);
|
|
}
|
|
|
|
int
|
|
nouveau_bo_pin(struct nouveau_bo *nvbo, uint32_t memtype, bool contig)
|
|
{
|
|
struct nouveau_drm *drm = nouveau_bdev(nvbo->bo.bdev);
|
|
struct ttm_buffer_object *bo = &nvbo->bo;
|
|
bool force = false, evict = false;
|
|
int ret;
|
|
|
|
ret = ttm_bo_reserve(bo, false, false, NULL);
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (drm->client.device.info.family >= NV_DEVICE_INFO_V0_TESLA &&
|
|
memtype == TTM_PL_FLAG_VRAM && contig) {
|
|
if (!nvbo->contig) {
|
|
nvbo->contig = true;
|
|
force = true;
|
|
evict = true;
|
|
}
|
|
}
|
|
|
|
if (nvbo->pin_refcnt) {
|
|
if (!(memtype & (1 << bo->mem.mem_type)) || evict) {
|
|
NV_ERROR(drm, "bo %p pinned elsewhere: "
|
|
"0x%08x vs 0x%08x\n", bo,
|
|
1 << bo->mem.mem_type, memtype);
|
|
ret = -EBUSY;
|
|
}
|
|
nvbo->pin_refcnt++;
|
|
goto out;
|
|
}
|
|
|
|
if (evict) {
|
|
nouveau_bo_placement_set(nvbo, TTM_PL_FLAG_TT, 0);
|
|
ret = nouveau_bo_validate(nvbo, false, false);
|
|
if (ret)
|
|
goto out;
|
|
}
|
|
|
|
nvbo->pin_refcnt++;
|
|
nouveau_bo_placement_set(nvbo, memtype, 0);
|
|
|
|
/* drop pin_refcnt temporarily, so we don't trip the assertion
|
|
* in nouveau_bo_move() that makes sure we're not trying to
|
|
* move a pinned buffer
|
|
*/
|
|
nvbo->pin_refcnt--;
|
|
ret = nouveau_bo_validate(nvbo, false, false);
|
|
if (ret)
|
|
goto out;
|
|
nvbo->pin_refcnt++;
|
|
|
|
switch (bo->mem.mem_type) {
|
|
case TTM_PL_VRAM:
|
|
drm->gem.vram_available -= bo->mem.size;
|
|
break;
|
|
case TTM_PL_TT:
|
|
drm->gem.gart_available -= bo->mem.size;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
out:
|
|
if (force && ret)
|
|
nvbo->contig = false;
|
|
ttm_bo_unreserve(bo);
|
|
return ret;
|
|
}
|
|
|
|
int
|
|
nouveau_bo_unpin(struct nouveau_bo *nvbo)
|
|
{
|
|
struct nouveau_drm *drm = nouveau_bdev(nvbo->bo.bdev);
|
|
struct ttm_buffer_object *bo = &nvbo->bo;
|
|
int ret, ref;
|
|
|
|
ret = ttm_bo_reserve(bo, false, false, NULL);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ref = --nvbo->pin_refcnt;
|
|
WARN_ON_ONCE(ref < 0);
|
|
if (ref)
|
|
goto out;
|
|
|
|
nouveau_bo_placement_set(nvbo, bo->mem.placement, 0);
|
|
|
|
ret = nouveau_bo_validate(nvbo, false, false);
|
|
if (ret == 0) {
|
|
switch (bo->mem.mem_type) {
|
|
case TTM_PL_VRAM:
|
|
drm->gem.vram_available += bo->mem.size;
|
|
break;
|
|
case TTM_PL_TT:
|
|
drm->gem.gart_available += bo->mem.size;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
out:
|
|
ttm_bo_unreserve(bo);
|
|
return ret;
|
|
}
|
|
|
|
int
|
|
nouveau_bo_map(struct nouveau_bo *nvbo)
|
|
{
|
|
int ret;
|
|
|
|
ret = ttm_bo_reserve(&nvbo->bo, false, false, NULL);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = ttm_bo_kmap(&nvbo->bo, 0, nvbo->bo.mem.num_pages, &nvbo->kmap);
|
|
|
|
ttm_bo_unreserve(&nvbo->bo);
|
|
return ret;
|
|
}
|
|
|
|
void
|
|
nouveau_bo_unmap(struct nouveau_bo *nvbo)
|
|
{
|
|
if (!nvbo)
|
|
return;
|
|
|
|
ttm_bo_kunmap(&nvbo->kmap);
|
|
}
|
|
|
|
void
|
|
nouveau_bo_sync_for_device(struct nouveau_bo *nvbo)
|
|
{
|
|
struct nouveau_drm *drm = nouveau_bdev(nvbo->bo.bdev);
|
|
struct ttm_dma_tt *ttm_dma = (struct ttm_dma_tt *)nvbo->bo.ttm;
|
|
int i;
|
|
|
|
if (!ttm_dma)
|
|
return;
|
|
|
|
/* Don't waste time looping if the object is coherent */
|
|
if (nvbo->force_coherent)
|
|
return;
|
|
|
|
for (i = 0; i < ttm_dma->ttm.num_pages; i++)
|
|
dma_sync_single_for_device(drm->dev->dev,
|
|
ttm_dma->dma_address[i],
|
|
PAGE_SIZE, DMA_TO_DEVICE);
|
|
}
|
|
|
|
void
|
|
nouveau_bo_sync_for_cpu(struct nouveau_bo *nvbo)
|
|
{
|
|
struct nouveau_drm *drm = nouveau_bdev(nvbo->bo.bdev);
|
|
struct ttm_dma_tt *ttm_dma = (struct ttm_dma_tt *)nvbo->bo.ttm;
|
|
int i;
|
|
|
|
if (!ttm_dma)
|
|
return;
|
|
|
|
/* Don't waste time looping if the object is coherent */
|
|
if (nvbo->force_coherent)
|
|
return;
|
|
|
|
for (i = 0; i < ttm_dma->ttm.num_pages; i++)
|
|
dma_sync_single_for_cpu(drm->dev->dev, ttm_dma->dma_address[i],
|
|
PAGE_SIZE, DMA_FROM_DEVICE);
|
|
}
|
|
|
|
int
|
|
nouveau_bo_validate(struct nouveau_bo *nvbo, bool interruptible,
|
|
bool no_wait_gpu)
|
|
{
|
|
struct ttm_operation_ctx ctx = { interruptible, no_wait_gpu };
|
|
int ret;
|
|
|
|
ret = ttm_bo_validate(&nvbo->bo, &nvbo->placement, &ctx);
|
|
if (ret)
|
|
return ret;
|
|
|
|
nouveau_bo_sync_for_device(nvbo);
|
|
|
|
return 0;
|
|
}
|
|
|
|
void
|
|
nouveau_bo_wr16(struct nouveau_bo *nvbo, unsigned index, u16 val)
|
|
{
|
|
bool is_iomem;
|
|
u16 *mem = ttm_kmap_obj_virtual(&nvbo->kmap, &is_iomem);
|
|
|
|
mem += index;
|
|
|
|
if (is_iomem)
|
|
iowrite16_native(val, (void __force __iomem *)mem);
|
|
else
|
|
*mem = val;
|
|
}
|
|
|
|
u32
|
|
nouveau_bo_rd32(struct nouveau_bo *nvbo, unsigned index)
|
|
{
|
|
bool is_iomem;
|
|
u32 *mem = ttm_kmap_obj_virtual(&nvbo->kmap, &is_iomem);
|
|
|
|
mem += index;
|
|
|
|
if (is_iomem)
|
|
return ioread32_native((void __force __iomem *)mem);
|
|
else
|
|
return *mem;
|
|
}
|
|
|
|
void
|
|
nouveau_bo_wr32(struct nouveau_bo *nvbo, unsigned index, u32 val)
|
|
{
|
|
bool is_iomem;
|
|
u32 *mem = ttm_kmap_obj_virtual(&nvbo->kmap, &is_iomem);
|
|
|
|
mem += index;
|
|
|
|
if (is_iomem)
|
|
iowrite32_native(val, (void __force __iomem *)mem);
|
|
else
|
|
*mem = val;
|
|
}
|
|
|
|
static struct ttm_tt *
|
|
nouveau_ttm_tt_create(struct ttm_buffer_object *bo, uint32_t page_flags)
|
|
{
|
|
#if IS_ENABLED(CONFIG_AGP)
|
|
struct nouveau_drm *drm = nouveau_bdev(bo->bdev);
|
|
|
|
if (drm->agp.bridge) {
|
|
return ttm_agp_tt_create(bo, drm->agp.bridge, page_flags);
|
|
}
|
|
#endif
|
|
|
|
return nouveau_sgdma_create_ttm(bo, page_flags);
|
|
}
|
|
|
|
static int
|
|
nouveau_bo_invalidate_caches(struct ttm_bo_device *bdev, uint32_t flags)
|
|
{
|
|
/* We'll do this from user space. */
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
nouveau_bo_init_mem_type(struct ttm_bo_device *bdev, uint32_t type,
|
|
struct ttm_mem_type_manager *man)
|
|
{
|
|
struct nouveau_drm *drm = nouveau_bdev(bdev);
|
|
struct nvif_mmu *mmu = &drm->client.mmu;
|
|
|
|
switch (type) {
|
|
case TTM_PL_SYSTEM:
|
|
man->flags = TTM_MEMTYPE_FLAG_MAPPABLE;
|
|
man->available_caching = TTM_PL_MASK_CACHING;
|
|
man->default_caching = TTM_PL_FLAG_CACHED;
|
|
break;
|
|
case TTM_PL_VRAM:
|
|
man->flags = TTM_MEMTYPE_FLAG_FIXED |
|
|
TTM_MEMTYPE_FLAG_MAPPABLE;
|
|
man->available_caching = TTM_PL_FLAG_UNCACHED |
|
|
TTM_PL_FLAG_WC;
|
|
man->default_caching = TTM_PL_FLAG_WC;
|
|
|
|
if (drm->client.device.info.family >= NV_DEVICE_INFO_V0_TESLA) {
|
|
/* Some BARs do not support being ioremapped WC */
|
|
const u8 type = mmu->type[drm->ttm.type_vram].type;
|
|
if (type & NVIF_MEM_UNCACHED) {
|
|
man->available_caching = TTM_PL_FLAG_UNCACHED;
|
|
man->default_caching = TTM_PL_FLAG_UNCACHED;
|
|
}
|
|
|
|
man->func = &nouveau_vram_manager;
|
|
man->io_reserve_fastpath = false;
|
|
man->use_io_reserve_lru = true;
|
|
} else {
|
|
man->func = &ttm_bo_manager_func;
|
|
}
|
|
break;
|
|
case TTM_PL_TT:
|
|
if (drm->client.device.info.family >= NV_DEVICE_INFO_V0_TESLA)
|
|
man->func = &nouveau_gart_manager;
|
|
else
|
|
if (!drm->agp.bridge)
|
|
man->func = &nv04_gart_manager;
|
|
else
|
|
man->func = &ttm_bo_manager_func;
|
|
|
|
if (drm->agp.bridge) {
|
|
man->flags = TTM_MEMTYPE_FLAG_MAPPABLE;
|
|
man->available_caching = TTM_PL_FLAG_UNCACHED |
|
|
TTM_PL_FLAG_WC;
|
|
man->default_caching = TTM_PL_FLAG_WC;
|
|
} else {
|
|
man->flags = TTM_MEMTYPE_FLAG_MAPPABLE |
|
|
TTM_MEMTYPE_FLAG_CMA;
|
|
man->available_caching = TTM_PL_MASK_CACHING;
|
|
man->default_caching = TTM_PL_FLAG_CACHED;
|
|
}
|
|
|
|
break;
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
nouveau_bo_evict_flags(struct ttm_buffer_object *bo, struct ttm_placement *pl)
|
|
{
|
|
struct nouveau_bo *nvbo = nouveau_bo(bo);
|
|
|
|
switch (bo->mem.mem_type) {
|
|
case TTM_PL_VRAM:
|
|
nouveau_bo_placement_set(nvbo, TTM_PL_FLAG_TT,
|
|
TTM_PL_FLAG_SYSTEM);
|
|
break;
|
|
default:
|
|
nouveau_bo_placement_set(nvbo, TTM_PL_FLAG_SYSTEM, 0);
|
|
break;
|
|
}
|
|
|
|
*pl = nvbo->placement;
|
|
}
|
|
|
|
|
|
static int
|
|
nve0_bo_move_init(struct nouveau_channel *chan, u32 handle)
|
|
{
|
|
int ret = RING_SPACE(chan, 2);
|
|
if (ret == 0) {
|
|
BEGIN_NVC0(chan, NvSubCopy, 0x0000, 1);
|
|
OUT_RING (chan, handle & 0x0000ffff);
|
|
FIRE_RING (chan);
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
static int
|
|
nve0_bo_move_copy(struct nouveau_channel *chan, struct ttm_buffer_object *bo,
|
|
struct ttm_mem_reg *old_reg, struct ttm_mem_reg *new_reg)
|
|
{
|
|
struct nouveau_mem *mem = nouveau_mem(old_reg);
|
|
int ret = RING_SPACE(chan, 10);
|
|
if (ret == 0) {
|
|
BEGIN_NVC0(chan, NvSubCopy, 0x0400, 8);
|
|
OUT_RING (chan, upper_32_bits(mem->vma[0].addr));
|
|
OUT_RING (chan, lower_32_bits(mem->vma[0].addr));
|
|
OUT_RING (chan, upper_32_bits(mem->vma[1].addr));
|
|
OUT_RING (chan, lower_32_bits(mem->vma[1].addr));
|
|
OUT_RING (chan, PAGE_SIZE);
|
|
OUT_RING (chan, PAGE_SIZE);
|
|
OUT_RING (chan, PAGE_SIZE);
|
|
OUT_RING (chan, new_reg->num_pages);
|
|
BEGIN_IMC0(chan, NvSubCopy, 0x0300, 0x0386);
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
static int
|
|
nvc0_bo_move_init(struct nouveau_channel *chan, u32 handle)
|
|
{
|
|
int ret = RING_SPACE(chan, 2);
|
|
if (ret == 0) {
|
|
BEGIN_NVC0(chan, NvSubCopy, 0x0000, 1);
|
|
OUT_RING (chan, handle);
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
static int
|
|
nvc0_bo_move_copy(struct nouveau_channel *chan, struct ttm_buffer_object *bo,
|
|
struct ttm_mem_reg *old_reg, struct ttm_mem_reg *new_reg)
|
|
{
|
|
struct nouveau_mem *mem = nouveau_mem(old_reg);
|
|
u64 src_offset = mem->vma[0].addr;
|
|
u64 dst_offset = mem->vma[1].addr;
|
|
u32 page_count = new_reg->num_pages;
|
|
int ret;
|
|
|
|
page_count = new_reg->num_pages;
|
|
while (page_count) {
|
|
int line_count = (page_count > 8191) ? 8191 : page_count;
|
|
|
|
ret = RING_SPACE(chan, 11);
|
|
if (ret)
|
|
return ret;
|
|
|
|
BEGIN_NVC0(chan, NvSubCopy, 0x030c, 8);
|
|
OUT_RING (chan, upper_32_bits(src_offset));
|
|
OUT_RING (chan, lower_32_bits(src_offset));
|
|
OUT_RING (chan, upper_32_bits(dst_offset));
|
|
OUT_RING (chan, lower_32_bits(dst_offset));
|
|
OUT_RING (chan, PAGE_SIZE);
|
|
OUT_RING (chan, PAGE_SIZE);
|
|
OUT_RING (chan, PAGE_SIZE);
|
|
OUT_RING (chan, line_count);
|
|
BEGIN_NVC0(chan, NvSubCopy, 0x0300, 1);
|
|
OUT_RING (chan, 0x00000110);
|
|
|
|
page_count -= line_count;
|
|
src_offset += (PAGE_SIZE * line_count);
|
|
dst_offset += (PAGE_SIZE * line_count);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
nvc0_bo_move_m2mf(struct nouveau_channel *chan, struct ttm_buffer_object *bo,
|
|
struct ttm_mem_reg *old_reg, struct ttm_mem_reg *new_reg)
|
|
{
|
|
struct nouveau_mem *mem = nouveau_mem(old_reg);
|
|
u64 src_offset = mem->vma[0].addr;
|
|
u64 dst_offset = mem->vma[1].addr;
|
|
u32 page_count = new_reg->num_pages;
|
|
int ret;
|
|
|
|
page_count = new_reg->num_pages;
|
|
while (page_count) {
|
|
int line_count = (page_count > 2047) ? 2047 : page_count;
|
|
|
|
ret = RING_SPACE(chan, 12);
|
|
if (ret)
|
|
return ret;
|
|
|
|
BEGIN_NVC0(chan, NvSubCopy, 0x0238, 2);
|
|
OUT_RING (chan, upper_32_bits(dst_offset));
|
|
OUT_RING (chan, lower_32_bits(dst_offset));
|
|
BEGIN_NVC0(chan, NvSubCopy, 0x030c, 6);
|
|
OUT_RING (chan, upper_32_bits(src_offset));
|
|
OUT_RING (chan, lower_32_bits(src_offset));
|
|
OUT_RING (chan, PAGE_SIZE); /* src_pitch */
|
|
OUT_RING (chan, PAGE_SIZE); /* dst_pitch */
|
|
OUT_RING (chan, PAGE_SIZE); /* line_length */
|
|
OUT_RING (chan, line_count);
|
|
BEGIN_NVC0(chan, NvSubCopy, 0x0300, 1);
|
|
OUT_RING (chan, 0x00100110);
|
|
|
|
page_count -= line_count;
|
|
src_offset += (PAGE_SIZE * line_count);
|
|
dst_offset += (PAGE_SIZE * line_count);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
nva3_bo_move_copy(struct nouveau_channel *chan, struct ttm_buffer_object *bo,
|
|
struct ttm_mem_reg *old_reg, struct ttm_mem_reg *new_reg)
|
|
{
|
|
struct nouveau_mem *mem = nouveau_mem(old_reg);
|
|
u64 src_offset = mem->vma[0].addr;
|
|
u64 dst_offset = mem->vma[1].addr;
|
|
u32 page_count = new_reg->num_pages;
|
|
int ret;
|
|
|
|
page_count = new_reg->num_pages;
|
|
while (page_count) {
|
|
int line_count = (page_count > 8191) ? 8191 : page_count;
|
|
|
|
ret = RING_SPACE(chan, 11);
|
|
if (ret)
|
|
return ret;
|
|
|
|
BEGIN_NV04(chan, NvSubCopy, 0x030c, 8);
|
|
OUT_RING (chan, upper_32_bits(src_offset));
|
|
OUT_RING (chan, lower_32_bits(src_offset));
|
|
OUT_RING (chan, upper_32_bits(dst_offset));
|
|
OUT_RING (chan, lower_32_bits(dst_offset));
|
|
OUT_RING (chan, PAGE_SIZE);
|
|
OUT_RING (chan, PAGE_SIZE);
|
|
OUT_RING (chan, PAGE_SIZE);
|
|
OUT_RING (chan, line_count);
|
|
BEGIN_NV04(chan, NvSubCopy, 0x0300, 1);
|
|
OUT_RING (chan, 0x00000110);
|
|
|
|
page_count -= line_count;
|
|
src_offset += (PAGE_SIZE * line_count);
|
|
dst_offset += (PAGE_SIZE * line_count);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
nv98_bo_move_exec(struct nouveau_channel *chan, struct ttm_buffer_object *bo,
|
|
struct ttm_mem_reg *old_reg, struct ttm_mem_reg *new_reg)
|
|
{
|
|
struct nouveau_mem *mem = nouveau_mem(old_reg);
|
|
int ret = RING_SPACE(chan, 7);
|
|
if (ret == 0) {
|
|
BEGIN_NV04(chan, NvSubCopy, 0x0320, 6);
|
|
OUT_RING (chan, upper_32_bits(mem->vma[0].addr));
|
|
OUT_RING (chan, lower_32_bits(mem->vma[0].addr));
|
|
OUT_RING (chan, upper_32_bits(mem->vma[1].addr));
|
|
OUT_RING (chan, lower_32_bits(mem->vma[1].addr));
|
|
OUT_RING (chan, 0x00000000 /* COPY */);
|
|
OUT_RING (chan, new_reg->num_pages << PAGE_SHIFT);
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
static int
|
|
nv84_bo_move_exec(struct nouveau_channel *chan, struct ttm_buffer_object *bo,
|
|
struct ttm_mem_reg *old_reg, struct ttm_mem_reg *new_reg)
|
|
{
|
|
struct nouveau_mem *mem = nouveau_mem(old_reg);
|
|
int ret = RING_SPACE(chan, 7);
|
|
if (ret == 0) {
|
|
BEGIN_NV04(chan, NvSubCopy, 0x0304, 6);
|
|
OUT_RING (chan, new_reg->num_pages << PAGE_SHIFT);
|
|
OUT_RING (chan, upper_32_bits(mem->vma[0].addr));
|
|
OUT_RING (chan, lower_32_bits(mem->vma[0].addr));
|
|
OUT_RING (chan, upper_32_bits(mem->vma[1].addr));
|
|
OUT_RING (chan, lower_32_bits(mem->vma[1].addr));
|
|
OUT_RING (chan, 0x00000000 /* MODE_COPY, QUERY_NONE */);
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
static int
|
|
nv50_bo_move_init(struct nouveau_channel *chan, u32 handle)
|
|
{
|
|
int ret = RING_SPACE(chan, 6);
|
|
if (ret == 0) {
|
|
BEGIN_NV04(chan, NvSubCopy, 0x0000, 1);
|
|
OUT_RING (chan, handle);
|
|
BEGIN_NV04(chan, NvSubCopy, 0x0180, 3);
|
|
OUT_RING (chan, chan->drm->ntfy.handle);
|
|
OUT_RING (chan, chan->vram.handle);
|
|
OUT_RING (chan, chan->vram.handle);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int
|
|
nv50_bo_move_m2mf(struct nouveau_channel *chan, struct ttm_buffer_object *bo,
|
|
struct ttm_mem_reg *old_reg, struct ttm_mem_reg *new_reg)
|
|
{
|
|
struct nouveau_mem *mem = nouveau_mem(old_reg);
|
|
u64 length = (new_reg->num_pages << PAGE_SHIFT);
|
|
u64 src_offset = mem->vma[0].addr;
|
|
u64 dst_offset = mem->vma[1].addr;
|
|
int src_tiled = !!mem->kind;
|
|
int dst_tiled = !!nouveau_mem(new_reg)->kind;
|
|
int ret;
|
|
|
|
while (length) {
|
|
u32 amount, stride, height;
|
|
|
|
ret = RING_SPACE(chan, 18 + 6 * (src_tiled + dst_tiled));
|
|
if (ret)
|
|
return ret;
|
|
|
|
amount = min(length, (u64)(4 * 1024 * 1024));
|
|
stride = 16 * 4;
|
|
height = amount / stride;
|
|
|
|
if (src_tiled) {
|
|
BEGIN_NV04(chan, NvSubCopy, 0x0200, 7);
|
|
OUT_RING (chan, 0);
|
|
OUT_RING (chan, 0);
|
|
OUT_RING (chan, stride);
|
|
OUT_RING (chan, height);
|
|
OUT_RING (chan, 1);
|
|
OUT_RING (chan, 0);
|
|
OUT_RING (chan, 0);
|
|
} else {
|
|
BEGIN_NV04(chan, NvSubCopy, 0x0200, 1);
|
|
OUT_RING (chan, 1);
|
|
}
|
|
if (dst_tiled) {
|
|
BEGIN_NV04(chan, NvSubCopy, 0x021c, 7);
|
|
OUT_RING (chan, 0);
|
|
OUT_RING (chan, 0);
|
|
OUT_RING (chan, stride);
|
|
OUT_RING (chan, height);
|
|
OUT_RING (chan, 1);
|
|
OUT_RING (chan, 0);
|
|
OUT_RING (chan, 0);
|
|
} else {
|
|
BEGIN_NV04(chan, NvSubCopy, 0x021c, 1);
|
|
OUT_RING (chan, 1);
|
|
}
|
|
|
|
BEGIN_NV04(chan, NvSubCopy, 0x0238, 2);
|
|
OUT_RING (chan, upper_32_bits(src_offset));
|
|
OUT_RING (chan, upper_32_bits(dst_offset));
|
|
BEGIN_NV04(chan, NvSubCopy, 0x030c, 8);
|
|
OUT_RING (chan, lower_32_bits(src_offset));
|
|
OUT_RING (chan, lower_32_bits(dst_offset));
|
|
OUT_RING (chan, stride);
|
|
OUT_RING (chan, stride);
|
|
OUT_RING (chan, stride);
|
|
OUT_RING (chan, height);
|
|
OUT_RING (chan, 0x00000101);
|
|
OUT_RING (chan, 0x00000000);
|
|
BEGIN_NV04(chan, NvSubCopy, NV_MEMORY_TO_MEMORY_FORMAT_NOP, 1);
|
|
OUT_RING (chan, 0);
|
|
|
|
length -= amount;
|
|
src_offset += amount;
|
|
dst_offset += amount;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
nv04_bo_move_init(struct nouveau_channel *chan, u32 handle)
|
|
{
|
|
int ret = RING_SPACE(chan, 4);
|
|
if (ret == 0) {
|
|
BEGIN_NV04(chan, NvSubCopy, 0x0000, 1);
|
|
OUT_RING (chan, handle);
|
|
BEGIN_NV04(chan, NvSubCopy, 0x0180, 1);
|
|
OUT_RING (chan, chan->drm->ntfy.handle);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static inline uint32_t
|
|
nouveau_bo_mem_ctxdma(struct ttm_buffer_object *bo,
|
|
struct nouveau_channel *chan, struct ttm_mem_reg *reg)
|
|
{
|
|
if (reg->mem_type == TTM_PL_TT)
|
|
return NvDmaTT;
|
|
return chan->vram.handle;
|
|
}
|
|
|
|
static int
|
|
nv04_bo_move_m2mf(struct nouveau_channel *chan, struct ttm_buffer_object *bo,
|
|
struct ttm_mem_reg *old_reg, struct ttm_mem_reg *new_reg)
|
|
{
|
|
u32 src_offset = old_reg->start << PAGE_SHIFT;
|
|
u32 dst_offset = new_reg->start << PAGE_SHIFT;
|
|
u32 page_count = new_reg->num_pages;
|
|
int ret;
|
|
|
|
ret = RING_SPACE(chan, 3);
|
|
if (ret)
|
|
return ret;
|
|
|
|
BEGIN_NV04(chan, NvSubCopy, NV_MEMORY_TO_MEMORY_FORMAT_DMA_SOURCE, 2);
|
|
OUT_RING (chan, nouveau_bo_mem_ctxdma(bo, chan, old_reg));
|
|
OUT_RING (chan, nouveau_bo_mem_ctxdma(bo, chan, new_reg));
|
|
|
|
page_count = new_reg->num_pages;
|
|
while (page_count) {
|
|
int line_count = (page_count > 2047) ? 2047 : page_count;
|
|
|
|
ret = RING_SPACE(chan, 11);
|
|
if (ret)
|
|
return ret;
|
|
|
|
BEGIN_NV04(chan, NvSubCopy,
|
|
NV_MEMORY_TO_MEMORY_FORMAT_OFFSET_IN, 8);
|
|
OUT_RING (chan, src_offset);
|
|
OUT_RING (chan, dst_offset);
|
|
OUT_RING (chan, PAGE_SIZE); /* src_pitch */
|
|
OUT_RING (chan, PAGE_SIZE); /* dst_pitch */
|
|
OUT_RING (chan, PAGE_SIZE); /* line_length */
|
|
OUT_RING (chan, line_count);
|
|
OUT_RING (chan, 0x00000101);
|
|
OUT_RING (chan, 0x00000000);
|
|
BEGIN_NV04(chan, NvSubCopy, NV_MEMORY_TO_MEMORY_FORMAT_NOP, 1);
|
|
OUT_RING (chan, 0);
|
|
|
|
page_count -= line_count;
|
|
src_offset += (PAGE_SIZE * line_count);
|
|
dst_offset += (PAGE_SIZE * line_count);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
nouveau_bo_move_prep(struct nouveau_drm *drm, struct ttm_buffer_object *bo,
|
|
struct ttm_mem_reg *reg)
|
|
{
|
|
struct nouveau_mem *old_mem = nouveau_mem(&bo->mem);
|
|
struct nouveau_mem *new_mem = nouveau_mem(reg);
|
|
struct nvif_vmm *vmm = &drm->client.vmm.vmm;
|
|
int ret;
|
|
|
|
ret = nvif_vmm_get(vmm, LAZY, false, old_mem->mem.page, 0,
|
|
old_mem->mem.size, &old_mem->vma[0]);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = nvif_vmm_get(vmm, LAZY, false, new_mem->mem.page, 0,
|
|
new_mem->mem.size, &old_mem->vma[1]);
|
|
if (ret)
|
|
goto done;
|
|
|
|
ret = nouveau_mem_map(old_mem, vmm, &old_mem->vma[0]);
|
|
if (ret)
|
|
goto done;
|
|
|
|
ret = nouveau_mem_map(new_mem, vmm, &old_mem->vma[1]);
|
|
done:
|
|
if (ret) {
|
|
nvif_vmm_put(vmm, &old_mem->vma[1]);
|
|
nvif_vmm_put(vmm, &old_mem->vma[0]);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
nouveau_bo_move_m2mf(struct ttm_buffer_object *bo, int evict, bool intr,
|
|
bool no_wait_gpu, struct ttm_mem_reg *new_reg)
|
|
{
|
|
struct nouveau_drm *drm = nouveau_bdev(bo->bdev);
|
|
struct nouveau_channel *chan = drm->ttm.chan;
|
|
struct nouveau_cli *cli = (void *)chan->user.client;
|
|
struct nouveau_fence *fence;
|
|
int ret;
|
|
|
|
/* create temporary vmas for the transfer and attach them to the
|
|
* old nvkm_mem node, these will get cleaned up after ttm has
|
|
* destroyed the ttm_mem_reg
|
|
*/
|
|
if (drm->client.device.info.family >= NV_DEVICE_INFO_V0_TESLA) {
|
|
ret = nouveau_bo_move_prep(drm, bo, new_reg);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
|
|
mutex_lock_nested(&cli->mutex, SINGLE_DEPTH_NESTING);
|
|
ret = nouveau_fence_sync(nouveau_bo(bo), chan, true, intr);
|
|
if (ret == 0) {
|
|
ret = drm->ttm.move(chan, bo, &bo->mem, new_reg);
|
|
if (ret == 0) {
|
|
ret = nouveau_fence_new(chan, false, &fence);
|
|
if (ret == 0) {
|
|
ret = ttm_bo_move_accel_cleanup(bo,
|
|
&fence->base,
|
|
evict,
|
|
new_reg);
|
|
nouveau_fence_unref(&fence);
|
|
}
|
|
}
|
|
}
|
|
mutex_unlock(&cli->mutex);
|
|
return ret;
|
|
}
|
|
|
|
void
|
|
nouveau_bo_move_init(struct nouveau_drm *drm)
|
|
{
|
|
static const struct {
|
|
const char *name;
|
|
int engine;
|
|
s32 oclass;
|
|
int (*exec)(struct nouveau_channel *,
|
|
struct ttm_buffer_object *,
|
|
struct ttm_mem_reg *, struct ttm_mem_reg *);
|
|
int (*init)(struct nouveau_channel *, u32 handle);
|
|
} _methods[] = {
|
|
{ "COPY", 4, 0xc5b5, nve0_bo_move_copy, nve0_bo_move_init },
|
|
{ "GRCE", 0, 0xc5b5, nve0_bo_move_copy, nvc0_bo_move_init },
|
|
{ "COPY", 4, 0xc3b5, nve0_bo_move_copy, nve0_bo_move_init },
|
|
{ "GRCE", 0, 0xc3b5, nve0_bo_move_copy, nvc0_bo_move_init },
|
|
{ "COPY", 4, 0xc1b5, nve0_bo_move_copy, nve0_bo_move_init },
|
|
{ "GRCE", 0, 0xc1b5, nve0_bo_move_copy, nvc0_bo_move_init },
|
|
{ "COPY", 4, 0xc0b5, nve0_bo_move_copy, nve0_bo_move_init },
|
|
{ "GRCE", 0, 0xc0b5, nve0_bo_move_copy, nvc0_bo_move_init },
|
|
{ "COPY", 4, 0xb0b5, nve0_bo_move_copy, nve0_bo_move_init },
|
|
{ "GRCE", 0, 0xb0b5, nve0_bo_move_copy, nvc0_bo_move_init },
|
|
{ "COPY", 4, 0xa0b5, nve0_bo_move_copy, nve0_bo_move_init },
|
|
{ "GRCE", 0, 0xa0b5, nve0_bo_move_copy, nvc0_bo_move_init },
|
|
{ "COPY1", 5, 0x90b8, nvc0_bo_move_copy, nvc0_bo_move_init },
|
|
{ "COPY0", 4, 0x90b5, nvc0_bo_move_copy, nvc0_bo_move_init },
|
|
{ "COPY", 0, 0x85b5, nva3_bo_move_copy, nv50_bo_move_init },
|
|
{ "CRYPT", 0, 0x74c1, nv84_bo_move_exec, nv50_bo_move_init },
|
|
{ "M2MF", 0, 0x9039, nvc0_bo_move_m2mf, nvc0_bo_move_init },
|
|
{ "M2MF", 0, 0x5039, nv50_bo_move_m2mf, nv50_bo_move_init },
|
|
{ "M2MF", 0, 0x0039, nv04_bo_move_m2mf, nv04_bo_move_init },
|
|
{},
|
|
{ "CRYPT", 0, 0x88b4, nv98_bo_move_exec, nv50_bo_move_init },
|
|
}, *mthd = _methods;
|
|
const char *name = "CPU";
|
|
int ret;
|
|
|
|
do {
|
|
struct nouveau_channel *chan;
|
|
|
|
if (mthd->engine)
|
|
chan = drm->cechan;
|
|
else
|
|
chan = drm->channel;
|
|
if (chan == NULL)
|
|
continue;
|
|
|
|
ret = nvif_object_init(&chan->user,
|
|
mthd->oclass | (mthd->engine << 16),
|
|
mthd->oclass, NULL, 0,
|
|
&drm->ttm.copy);
|
|
if (ret == 0) {
|
|
ret = mthd->init(chan, drm->ttm.copy.handle);
|
|
if (ret) {
|
|
nvif_object_fini(&drm->ttm.copy);
|
|
continue;
|
|
}
|
|
|
|
drm->ttm.move = mthd->exec;
|
|
drm->ttm.chan = chan;
|
|
name = mthd->name;
|
|
break;
|
|
}
|
|
} while ((++mthd)->exec);
|
|
|
|
NV_INFO(drm, "MM: using %s for buffer copies\n", name);
|
|
}
|
|
|
|
static int
|
|
nouveau_bo_move_flipd(struct ttm_buffer_object *bo, bool evict, bool intr,
|
|
bool no_wait_gpu, struct ttm_mem_reg *new_reg)
|
|
{
|
|
struct ttm_operation_ctx ctx = { intr, no_wait_gpu };
|
|
struct ttm_place placement_memtype = {
|
|
.fpfn = 0,
|
|
.lpfn = 0,
|
|
.flags = TTM_PL_FLAG_TT | TTM_PL_MASK_CACHING
|
|
};
|
|
struct ttm_placement placement;
|
|
struct ttm_mem_reg tmp_reg;
|
|
int ret;
|
|
|
|
placement.num_placement = placement.num_busy_placement = 1;
|
|
placement.placement = placement.busy_placement = &placement_memtype;
|
|
|
|
tmp_reg = *new_reg;
|
|
tmp_reg.mm_node = NULL;
|
|
ret = ttm_bo_mem_space(bo, &placement, &tmp_reg, &ctx);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = ttm_tt_bind(bo->ttm, &tmp_reg, &ctx);
|
|
if (ret)
|
|
goto out;
|
|
|
|
ret = nouveau_bo_move_m2mf(bo, true, intr, no_wait_gpu, &tmp_reg);
|
|
if (ret)
|
|
goto out;
|
|
|
|
ret = ttm_bo_move_ttm(bo, &ctx, new_reg);
|
|
out:
|
|
ttm_bo_mem_put(bo, &tmp_reg);
|
|
return ret;
|
|
}
|
|
|
|
static int
|
|
nouveau_bo_move_flips(struct ttm_buffer_object *bo, bool evict, bool intr,
|
|
bool no_wait_gpu, struct ttm_mem_reg *new_reg)
|
|
{
|
|
struct ttm_operation_ctx ctx = { intr, no_wait_gpu };
|
|
struct ttm_place placement_memtype = {
|
|
.fpfn = 0,
|
|
.lpfn = 0,
|
|
.flags = TTM_PL_FLAG_TT | TTM_PL_MASK_CACHING
|
|
};
|
|
struct ttm_placement placement;
|
|
struct ttm_mem_reg tmp_reg;
|
|
int ret;
|
|
|
|
placement.num_placement = placement.num_busy_placement = 1;
|
|
placement.placement = placement.busy_placement = &placement_memtype;
|
|
|
|
tmp_reg = *new_reg;
|
|
tmp_reg.mm_node = NULL;
|
|
ret = ttm_bo_mem_space(bo, &placement, &tmp_reg, &ctx);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = ttm_bo_move_ttm(bo, &ctx, &tmp_reg);
|
|
if (ret)
|
|
goto out;
|
|
|
|
ret = nouveau_bo_move_m2mf(bo, true, intr, no_wait_gpu, new_reg);
|
|
if (ret)
|
|
goto out;
|
|
|
|
out:
|
|
ttm_bo_mem_put(bo, &tmp_reg);
|
|
return ret;
|
|
}
|
|
|
|
static void
|
|
nouveau_bo_move_ntfy(struct ttm_buffer_object *bo, bool evict,
|
|
struct ttm_mem_reg *new_reg)
|
|
{
|
|
struct nouveau_mem *mem = new_reg ? nouveau_mem(new_reg) : NULL;
|
|
struct nouveau_bo *nvbo = nouveau_bo(bo);
|
|
struct nouveau_vma *vma;
|
|
|
|
/* ttm can now (stupidly) pass the driver bos it didn't create... */
|
|
if (bo->destroy != nouveau_bo_del_ttm)
|
|
return;
|
|
|
|
if (mem && new_reg->mem_type != TTM_PL_SYSTEM &&
|
|
mem->mem.page == nvbo->page) {
|
|
list_for_each_entry(vma, &nvbo->vma_list, head) {
|
|
nouveau_vma_map(vma, mem);
|
|
}
|
|
} else {
|
|
list_for_each_entry(vma, &nvbo->vma_list, head) {
|
|
WARN_ON(ttm_bo_wait(bo, false, false));
|
|
nouveau_vma_unmap(vma);
|
|
}
|
|
}
|
|
}
|
|
|
|
static int
|
|
nouveau_bo_vm_bind(struct ttm_buffer_object *bo, struct ttm_mem_reg *new_reg,
|
|
struct nouveau_drm_tile **new_tile)
|
|
{
|
|
struct nouveau_drm *drm = nouveau_bdev(bo->bdev);
|
|
struct drm_device *dev = drm->dev;
|
|
struct nouveau_bo *nvbo = nouveau_bo(bo);
|
|
u64 offset = new_reg->start << PAGE_SHIFT;
|
|
|
|
*new_tile = NULL;
|
|
if (new_reg->mem_type != TTM_PL_VRAM)
|
|
return 0;
|
|
|
|
if (drm->client.device.info.family >= NV_DEVICE_INFO_V0_CELSIUS) {
|
|
*new_tile = nv10_bo_set_tiling(dev, offset, new_reg->size,
|
|
nvbo->mode, nvbo->zeta);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
nouveau_bo_vm_cleanup(struct ttm_buffer_object *bo,
|
|
struct nouveau_drm_tile *new_tile,
|
|
struct nouveau_drm_tile **old_tile)
|
|
{
|
|
struct nouveau_drm *drm = nouveau_bdev(bo->bdev);
|
|
struct drm_device *dev = drm->dev;
|
|
struct dma_fence *fence = reservation_object_get_excl(bo->resv);
|
|
|
|
nv10_bo_put_tile_region(dev, *old_tile, fence);
|
|
*old_tile = new_tile;
|
|
}
|
|
|
|
static int
|
|
nouveau_bo_move(struct ttm_buffer_object *bo, bool evict,
|
|
struct ttm_operation_ctx *ctx,
|
|
struct ttm_mem_reg *new_reg)
|
|
{
|
|
struct nouveau_drm *drm = nouveau_bdev(bo->bdev);
|
|
struct nouveau_bo *nvbo = nouveau_bo(bo);
|
|
struct ttm_mem_reg *old_reg = &bo->mem;
|
|
struct nouveau_drm_tile *new_tile = NULL;
|
|
int ret = 0;
|
|
|
|
ret = ttm_bo_wait(bo, ctx->interruptible, ctx->no_wait_gpu);
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (nvbo->pin_refcnt)
|
|
NV_WARN(drm, "Moving pinned object %p!\n", nvbo);
|
|
|
|
if (drm->client.device.info.family < NV_DEVICE_INFO_V0_TESLA) {
|
|
ret = nouveau_bo_vm_bind(bo, new_reg, &new_tile);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
|
|
/* Fake bo copy. */
|
|
if (old_reg->mem_type == TTM_PL_SYSTEM && !bo->ttm) {
|
|
BUG_ON(bo->mem.mm_node != NULL);
|
|
bo->mem = *new_reg;
|
|
new_reg->mm_node = NULL;
|
|
goto out;
|
|
}
|
|
|
|
/* Hardware assisted copy. */
|
|
if (drm->ttm.move) {
|
|
if (new_reg->mem_type == TTM_PL_SYSTEM)
|
|
ret = nouveau_bo_move_flipd(bo, evict,
|
|
ctx->interruptible,
|
|
ctx->no_wait_gpu, new_reg);
|
|
else if (old_reg->mem_type == TTM_PL_SYSTEM)
|
|
ret = nouveau_bo_move_flips(bo, evict,
|
|
ctx->interruptible,
|
|
ctx->no_wait_gpu, new_reg);
|
|
else
|
|
ret = nouveau_bo_move_m2mf(bo, evict,
|
|
ctx->interruptible,
|
|
ctx->no_wait_gpu, new_reg);
|
|
if (!ret)
|
|
goto out;
|
|
}
|
|
|
|
/* Fallback to software copy. */
|
|
ret = ttm_bo_wait(bo, ctx->interruptible, ctx->no_wait_gpu);
|
|
if (ret == 0)
|
|
ret = ttm_bo_move_memcpy(bo, ctx, new_reg);
|
|
|
|
out:
|
|
if (drm->client.device.info.family < NV_DEVICE_INFO_V0_TESLA) {
|
|
if (ret)
|
|
nouveau_bo_vm_cleanup(bo, NULL, &new_tile);
|
|
else
|
|
nouveau_bo_vm_cleanup(bo, new_tile, &nvbo->tile);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int
|
|
nouveau_bo_verify_access(struct ttm_buffer_object *bo, struct file *filp)
|
|
{
|
|
struct nouveau_bo *nvbo = nouveau_bo(bo);
|
|
|
|
return drm_vma_node_verify_access(&nvbo->gem.vma_node,
|
|
filp->private_data);
|
|
}
|
|
|
|
static int
|
|
nouveau_ttm_io_mem_reserve(struct ttm_bo_device *bdev, struct ttm_mem_reg *reg)
|
|
{
|
|
struct ttm_mem_type_manager *man = &bdev->man[reg->mem_type];
|
|
struct nouveau_drm *drm = nouveau_bdev(bdev);
|
|
struct nvkm_device *device = nvxx_device(&drm->client.device);
|
|
struct nouveau_mem *mem = nouveau_mem(reg);
|
|
|
|
reg->bus.addr = NULL;
|
|
reg->bus.offset = 0;
|
|
reg->bus.size = reg->num_pages << PAGE_SHIFT;
|
|
reg->bus.base = 0;
|
|
reg->bus.is_iomem = false;
|
|
if (!(man->flags & TTM_MEMTYPE_FLAG_MAPPABLE))
|
|
return -EINVAL;
|
|
switch (reg->mem_type) {
|
|
case TTM_PL_SYSTEM:
|
|
/* System memory */
|
|
return 0;
|
|
case TTM_PL_TT:
|
|
#if IS_ENABLED(CONFIG_AGP)
|
|
if (drm->agp.bridge) {
|
|
reg->bus.offset = reg->start << PAGE_SHIFT;
|
|
reg->bus.base = drm->agp.base;
|
|
reg->bus.is_iomem = !drm->agp.cma;
|
|
}
|
|
#endif
|
|
if (drm->client.mem->oclass < NVIF_CLASS_MEM_NV50 || !mem->kind)
|
|
/* untiled */
|
|
break;
|
|
/* fall through - tiled memory */
|
|
case TTM_PL_VRAM:
|
|
reg->bus.offset = reg->start << PAGE_SHIFT;
|
|
reg->bus.base = device->func->resource_addr(device, 1);
|
|
reg->bus.is_iomem = true;
|
|
if (drm->client.mem->oclass >= NVIF_CLASS_MEM_NV50) {
|
|
union {
|
|
struct nv50_mem_map_v0 nv50;
|
|
struct gf100_mem_map_v0 gf100;
|
|
} args;
|
|
u64 handle, length;
|
|
u32 argc = 0;
|
|
int ret;
|
|
|
|
switch (mem->mem.object.oclass) {
|
|
case NVIF_CLASS_MEM_NV50:
|
|
args.nv50.version = 0;
|
|
args.nv50.ro = 0;
|
|
args.nv50.kind = mem->kind;
|
|
args.nv50.comp = mem->comp;
|
|
argc = sizeof(args.nv50);
|
|
break;
|
|
case NVIF_CLASS_MEM_GF100:
|
|
args.gf100.version = 0;
|
|
args.gf100.ro = 0;
|
|
args.gf100.kind = mem->kind;
|
|
argc = sizeof(args.gf100);
|
|
break;
|
|
default:
|
|
WARN_ON(1);
|
|
break;
|
|
}
|
|
|
|
ret = nvif_object_map_handle(&mem->mem.object,
|
|
&args, argc,
|
|
&handle, &length);
|
|
if (ret != 1)
|
|
return ret ? ret : -EINVAL;
|
|
|
|
reg->bus.base = 0;
|
|
reg->bus.offset = handle;
|
|
}
|
|
break;
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
nouveau_ttm_io_mem_free(struct ttm_bo_device *bdev, struct ttm_mem_reg *reg)
|
|
{
|
|
struct nouveau_drm *drm = nouveau_bdev(bdev);
|
|
struct nouveau_mem *mem = nouveau_mem(reg);
|
|
|
|
if (drm->client.mem->oclass >= NVIF_CLASS_MEM_NV50) {
|
|
switch (reg->mem_type) {
|
|
case TTM_PL_TT:
|
|
if (mem->kind)
|
|
nvif_object_unmap_handle(&mem->mem.object);
|
|
break;
|
|
case TTM_PL_VRAM:
|
|
nvif_object_unmap_handle(&mem->mem.object);
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
static int
|
|
nouveau_ttm_fault_reserve_notify(struct ttm_buffer_object *bo)
|
|
{
|
|
struct nouveau_drm *drm = nouveau_bdev(bo->bdev);
|
|
struct nouveau_bo *nvbo = nouveau_bo(bo);
|
|
struct nvkm_device *device = nvxx_device(&drm->client.device);
|
|
u32 mappable = device->func->resource_size(device, 1) >> PAGE_SHIFT;
|
|
int i, ret;
|
|
|
|
/* as long as the bo isn't in vram, and isn't tiled, we've got
|
|
* nothing to do here.
|
|
*/
|
|
if (bo->mem.mem_type != TTM_PL_VRAM) {
|
|
if (drm->client.device.info.family < NV_DEVICE_INFO_V0_TESLA ||
|
|
!nvbo->kind)
|
|
return 0;
|
|
|
|
if (bo->mem.mem_type == TTM_PL_SYSTEM) {
|
|
nouveau_bo_placement_set(nvbo, TTM_PL_TT, 0);
|
|
|
|
ret = nouveau_bo_validate(nvbo, false, false);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/* make sure bo is in mappable vram */
|
|
if (drm->client.device.info.family >= NV_DEVICE_INFO_V0_TESLA ||
|
|
bo->mem.start + bo->mem.num_pages < mappable)
|
|
return 0;
|
|
|
|
for (i = 0; i < nvbo->placement.num_placement; ++i) {
|
|
nvbo->placements[i].fpfn = 0;
|
|
nvbo->placements[i].lpfn = mappable;
|
|
}
|
|
|
|
for (i = 0; i < nvbo->placement.num_busy_placement; ++i) {
|
|
nvbo->busy_placements[i].fpfn = 0;
|
|
nvbo->busy_placements[i].lpfn = mappable;
|
|
}
|
|
|
|
nouveau_bo_placement_set(nvbo, TTM_PL_FLAG_VRAM, 0);
|
|
return nouveau_bo_validate(nvbo, false, false);
|
|
}
|
|
|
|
static int
|
|
nouveau_ttm_tt_populate(struct ttm_tt *ttm, struct ttm_operation_ctx *ctx)
|
|
{
|
|
struct ttm_dma_tt *ttm_dma = (void *)ttm;
|
|
struct nouveau_drm *drm;
|
|
struct device *dev;
|
|
unsigned i;
|
|
int r;
|
|
bool slave = !!(ttm->page_flags & TTM_PAGE_FLAG_SG);
|
|
|
|
if (ttm->state != tt_unpopulated)
|
|
return 0;
|
|
|
|
if (slave && ttm->sg) {
|
|
/* make userspace faulting work */
|
|
drm_prime_sg_to_page_addr_arrays(ttm->sg, ttm->pages,
|
|
ttm_dma->dma_address, ttm->num_pages);
|
|
ttm->state = tt_unbound;
|
|
return 0;
|
|
}
|
|
|
|
drm = nouveau_bdev(ttm->bdev);
|
|
dev = drm->dev->dev;
|
|
|
|
#if IS_ENABLED(CONFIG_AGP)
|
|
if (drm->agp.bridge) {
|
|
return ttm_agp_tt_populate(ttm, ctx);
|
|
}
|
|
#endif
|
|
|
|
#if IS_ENABLED(CONFIG_SWIOTLB) && IS_ENABLED(CONFIG_X86)
|
|
if (swiotlb_nr_tbl()) {
|
|
return ttm_dma_populate((void *)ttm, dev, ctx);
|
|
}
|
|
#endif
|
|
|
|
r = ttm_pool_populate(ttm, ctx);
|
|
if (r) {
|
|
return r;
|
|
}
|
|
|
|
for (i = 0; i < ttm->num_pages; i++) {
|
|
dma_addr_t addr;
|
|
|
|
addr = dma_map_page(dev, ttm->pages[i], 0, PAGE_SIZE,
|
|
DMA_BIDIRECTIONAL);
|
|
|
|
if (dma_mapping_error(dev, addr)) {
|
|
while (i--) {
|
|
dma_unmap_page(dev, ttm_dma->dma_address[i],
|
|
PAGE_SIZE, DMA_BIDIRECTIONAL);
|
|
ttm_dma->dma_address[i] = 0;
|
|
}
|
|
ttm_pool_unpopulate(ttm);
|
|
return -EFAULT;
|
|
}
|
|
|
|
ttm_dma->dma_address[i] = addr;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
nouveau_ttm_tt_unpopulate(struct ttm_tt *ttm)
|
|
{
|
|
struct ttm_dma_tt *ttm_dma = (void *)ttm;
|
|
struct nouveau_drm *drm;
|
|
struct device *dev;
|
|
unsigned i;
|
|
bool slave = !!(ttm->page_flags & TTM_PAGE_FLAG_SG);
|
|
|
|
if (slave)
|
|
return;
|
|
|
|
drm = nouveau_bdev(ttm->bdev);
|
|
dev = drm->dev->dev;
|
|
|
|
#if IS_ENABLED(CONFIG_AGP)
|
|
if (drm->agp.bridge) {
|
|
ttm_agp_tt_unpopulate(ttm);
|
|
return;
|
|
}
|
|
#endif
|
|
|
|
#if IS_ENABLED(CONFIG_SWIOTLB) && IS_ENABLED(CONFIG_X86)
|
|
if (swiotlb_nr_tbl()) {
|
|
ttm_dma_unpopulate((void *)ttm, dev);
|
|
return;
|
|
}
|
|
#endif
|
|
|
|
for (i = 0; i < ttm->num_pages; i++) {
|
|
if (ttm_dma->dma_address[i]) {
|
|
dma_unmap_page(dev, ttm_dma->dma_address[i], PAGE_SIZE,
|
|
DMA_BIDIRECTIONAL);
|
|
}
|
|
}
|
|
|
|
ttm_pool_unpopulate(ttm);
|
|
}
|
|
|
|
void
|
|
nouveau_bo_fence(struct nouveau_bo *nvbo, struct nouveau_fence *fence, bool exclusive)
|
|
{
|
|
struct reservation_object *resv = nvbo->bo.resv;
|
|
|
|
if (exclusive)
|
|
reservation_object_add_excl_fence(resv, &fence->base);
|
|
else if (fence)
|
|
reservation_object_add_shared_fence(resv, &fence->base);
|
|
}
|
|
|
|
struct ttm_bo_driver nouveau_bo_driver = {
|
|
.ttm_tt_create = &nouveau_ttm_tt_create,
|
|
.ttm_tt_populate = &nouveau_ttm_tt_populate,
|
|
.ttm_tt_unpopulate = &nouveau_ttm_tt_unpopulate,
|
|
.invalidate_caches = nouveau_bo_invalidate_caches,
|
|
.init_mem_type = nouveau_bo_init_mem_type,
|
|
.eviction_valuable = ttm_bo_eviction_valuable,
|
|
.evict_flags = nouveau_bo_evict_flags,
|
|
.move_notify = nouveau_bo_move_ntfy,
|
|
.move = nouveau_bo_move,
|
|
.verify_access = nouveau_bo_verify_access,
|
|
.fault_reserve_notify = &nouveau_ttm_fault_reserve_notify,
|
|
.io_mem_reserve = &nouveau_ttm_io_mem_reserve,
|
|
.io_mem_free = &nouveau_ttm_io_mem_free,
|
|
};
|