mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2025-01-24 01:19:23 +07:00
5a79859ae0
Remove the 31 bit support in order to reduce maintenance cost and
effectively remove dead code. Since a couple of years there is no
distribution left that comes with a 31 bit kernel.
The 31 bit kernel also has been broken since more than a year before
anybody noticed. In addition I added a removal warning to the kernel
shown at ipl for 5 minutes: a960062e58
("s390: add 31 bit warning
message") which let everybody know about the plan to remove 31 bit
code. We didn't get any response.
Given that the last 31 bit only machine was introduced in 1999 let's
remove the code.
Anybody with 31 bit user space code can still use the compat mode.
Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
149 lines
4.2 KiB
C
149 lines
4.2 KiB
C
#ifndef _S390_TLB_H
|
|
#define _S390_TLB_H
|
|
|
|
/*
|
|
* TLB flushing on s390 is complicated. The following requirement
|
|
* from the principles of operation is the most arduous:
|
|
*
|
|
* "A valid table entry must not be changed while it is attached
|
|
* to any CPU and may be used for translation by that CPU except to
|
|
* (1) invalidate the entry by using INVALIDATE PAGE TABLE ENTRY,
|
|
* or INVALIDATE DAT TABLE ENTRY, (2) alter bits 56-63 of a page
|
|
* table entry, or (3) make a change by means of a COMPARE AND SWAP
|
|
* AND PURGE instruction that purges the TLB."
|
|
*
|
|
* The modification of a pte of an active mm struct therefore is
|
|
* a two step process: i) invalidate the pte, ii) store the new pte.
|
|
* This is true for the page protection bit as well.
|
|
* The only possible optimization is to flush at the beginning of
|
|
* a tlb_gather_mmu cycle if the mm_struct is currently not in use.
|
|
*
|
|
* Pages used for the page tables is a different story. FIXME: more
|
|
*/
|
|
|
|
#include <linux/mm.h>
|
|
#include <linux/pagemap.h>
|
|
#include <linux/swap.h>
|
|
#include <asm/processor.h>
|
|
#include <asm/pgalloc.h>
|
|
#include <asm/tlbflush.h>
|
|
|
|
struct mmu_gather {
|
|
struct mm_struct *mm;
|
|
struct mmu_table_batch *batch;
|
|
unsigned int fullmm;
|
|
unsigned long start, end;
|
|
};
|
|
|
|
struct mmu_table_batch {
|
|
struct rcu_head rcu;
|
|
unsigned int nr;
|
|
void *tables[0];
|
|
};
|
|
|
|
#define MAX_TABLE_BATCH \
|
|
((PAGE_SIZE - sizeof(struct mmu_table_batch)) / sizeof(void *))
|
|
|
|
extern void tlb_table_flush(struct mmu_gather *tlb);
|
|
extern void tlb_remove_table(struct mmu_gather *tlb, void *table);
|
|
|
|
static inline void tlb_gather_mmu(struct mmu_gather *tlb,
|
|
struct mm_struct *mm,
|
|
unsigned long start,
|
|
unsigned long end)
|
|
{
|
|
tlb->mm = mm;
|
|
tlb->start = start;
|
|
tlb->end = end;
|
|
tlb->fullmm = !(start | (end+1));
|
|
tlb->batch = NULL;
|
|
}
|
|
|
|
static inline void tlb_flush_mmu_tlbonly(struct mmu_gather *tlb)
|
|
{
|
|
__tlb_flush_mm_lazy(tlb->mm);
|
|
}
|
|
|
|
static inline void tlb_flush_mmu_free(struct mmu_gather *tlb)
|
|
{
|
|
tlb_table_flush(tlb);
|
|
}
|
|
|
|
|
|
static inline void tlb_flush_mmu(struct mmu_gather *tlb)
|
|
{
|
|
tlb_flush_mmu_tlbonly(tlb);
|
|
tlb_flush_mmu_free(tlb);
|
|
}
|
|
|
|
static inline void tlb_finish_mmu(struct mmu_gather *tlb,
|
|
unsigned long start, unsigned long end)
|
|
{
|
|
tlb_flush_mmu(tlb);
|
|
}
|
|
|
|
/*
|
|
* Release the page cache reference for a pte removed by
|
|
* tlb_ptep_clear_flush. In both flush modes the tlb for a page cache page
|
|
* has already been freed, so just do free_page_and_swap_cache.
|
|
*/
|
|
static inline int __tlb_remove_page(struct mmu_gather *tlb, struct page *page)
|
|
{
|
|
free_page_and_swap_cache(page);
|
|
return 1; /* avoid calling tlb_flush_mmu */
|
|
}
|
|
|
|
static inline void tlb_remove_page(struct mmu_gather *tlb, struct page *page)
|
|
{
|
|
free_page_and_swap_cache(page);
|
|
}
|
|
|
|
/*
|
|
* pte_free_tlb frees a pte table and clears the CRSTE for the
|
|
* page table from the tlb.
|
|
*/
|
|
static inline void pte_free_tlb(struct mmu_gather *tlb, pgtable_t pte,
|
|
unsigned long address)
|
|
{
|
|
page_table_free_rcu(tlb, (unsigned long *) pte, address);
|
|
}
|
|
|
|
/*
|
|
* pmd_free_tlb frees a pmd table and clears the CRSTE for the
|
|
* segment table entry from the tlb.
|
|
* If the mm uses a two level page table the single pmd is freed
|
|
* as the pgd. pmd_free_tlb checks the asce_limit against 2GB
|
|
* to avoid the double free of the pmd in this case.
|
|
*/
|
|
static inline void pmd_free_tlb(struct mmu_gather *tlb, pmd_t *pmd,
|
|
unsigned long address)
|
|
{
|
|
if (tlb->mm->context.asce_limit <= (1UL << 31))
|
|
return;
|
|
pgtable_pmd_page_dtor(virt_to_page(pmd));
|
|
tlb_remove_table(tlb, pmd);
|
|
}
|
|
|
|
/*
|
|
* pud_free_tlb frees a pud table and clears the CRSTE for the
|
|
* region third table entry from the tlb.
|
|
* If the mm uses a three level page table the single pud is freed
|
|
* as the pgd. pud_free_tlb checks the asce_limit against 4TB
|
|
* to avoid the double free of the pud in this case.
|
|
*/
|
|
static inline void pud_free_tlb(struct mmu_gather *tlb, pud_t *pud,
|
|
unsigned long address)
|
|
{
|
|
if (tlb->mm->context.asce_limit <= (1UL << 42))
|
|
return;
|
|
tlb_remove_table(tlb, pud);
|
|
}
|
|
|
|
#define tlb_start_vma(tlb, vma) do { } while (0)
|
|
#define tlb_end_vma(tlb, vma) do { } while (0)
|
|
#define tlb_remove_tlb_entry(tlb, ptep, addr) do { } while (0)
|
|
#define tlb_remove_pmd_tlb_entry(tlb, pmdp, addr) do { } while (0)
|
|
#define tlb_migrate_finish(mm) do { } while (0)
|
|
|
|
#endif /* _S390_TLB_H */
|