linux_dsm_epyc7002/sound/drivers/mts64.c
Tejun Heo 5a0e3ad6af include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h
percpu.h is included by sched.h and module.h and thus ends up being
included when building most .c files.  percpu.h includes slab.h which
in turn includes gfp.h making everything defined by the two files
universally available and complicating inclusion dependencies.

percpu.h -> slab.h dependency is about to be removed.  Prepare for
this change by updating users of gfp and slab facilities include those
headers directly instead of assuming availability.  As this conversion
needs to touch large number of source files, the following script is
used as the basis of conversion.

  http://userweb.kernel.org/~tj/misc/slabh-sweep.py

The script does the followings.

* Scan files for gfp and slab usages and update includes such that
  only the necessary includes are there.  ie. if only gfp is used,
  gfp.h, if slab is used, slab.h.

* When the script inserts a new include, it looks at the include
  blocks and try to put the new include such that its order conforms
  to its surrounding.  It's put in the include block which contains
  core kernel includes, in the same order that the rest are ordered -
  alphabetical, Christmas tree, rev-Xmas-tree or at the end if there
  doesn't seem to be any matching order.

* If the script can't find a place to put a new include (mostly
  because the file doesn't have fitting include block), it prints out
  an error message indicating which .h file needs to be added to the
  file.

The conversion was done in the following steps.

1. The initial automatic conversion of all .c files updated slightly
   over 4000 files, deleting around 700 includes and adding ~480 gfp.h
   and ~3000 slab.h inclusions.  The script emitted errors for ~400
   files.

2. Each error was manually checked.  Some didn't need the inclusion,
   some needed manual addition while adding it to implementation .h or
   embedding .c file was more appropriate for others.  This step added
   inclusions to around 150 files.

3. The script was run again and the output was compared to the edits
   from #2 to make sure no file was left behind.

4. Several build tests were done and a couple of problems were fixed.
   e.g. lib/decompress_*.c used malloc/free() wrappers around slab
   APIs requiring slab.h to be added manually.

5. The script was run on all .h files but without automatically
   editing them as sprinkling gfp.h and slab.h inclusions around .h
   files could easily lead to inclusion dependency hell.  Most gfp.h
   inclusion directives were ignored as stuff from gfp.h was usually
   wildly available and often used in preprocessor macros.  Each
   slab.h inclusion directive was examined and added manually as
   necessary.

6. percpu.h was updated not to include slab.h.

7. Build test were done on the following configurations and failures
   were fixed.  CONFIG_GCOV_KERNEL was turned off for all tests (as my
   distributed build env didn't work with gcov compiles) and a few
   more options had to be turned off depending on archs to make things
   build (like ipr on powerpc/64 which failed due to missing writeq).

   * x86 and x86_64 UP and SMP allmodconfig and a custom test config.
   * powerpc and powerpc64 SMP allmodconfig
   * sparc and sparc64 SMP allmodconfig
   * ia64 SMP allmodconfig
   * s390 SMP allmodconfig
   * alpha SMP allmodconfig
   * um on x86_64 SMP allmodconfig

8. percpu.h modifications were reverted so that it could be applied as
   a separate patch and serve as bisection point.

Given the fact that I had only a couple of failures from tests on step
6, I'm fairly confident about the coverage of this conversion patch.
If there is a breakage, it's likely to be something in one of the arch
headers which should be easily discoverable easily on most builds of
the specific arch.

Signed-off-by: Tejun Heo <tj@kernel.org>
Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-30 22:02:32 +09:00

1090 lines
27 KiB
C

/*
* ALSA Driver for Ego Systems Inc. (ESI) Miditerminal 4140
* Copyright (c) 2006 by Matthias König <mk@phasorlab.de>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*
*/
#include <linux/init.h>
#include <linux/platform_device.h>
#include <linux/parport.h>
#include <linux/spinlock.h>
#include <linux/delay.h>
#include <linux/slab.h>
#include <sound/core.h>
#include <sound/initval.h>
#include <sound/rawmidi.h>
#include <sound/control.h>
#define CARD_NAME "Miditerminal 4140"
#define DRIVER_NAME "MTS64"
#define PLATFORM_DRIVER "snd_mts64"
static int index[SNDRV_CARDS] = SNDRV_DEFAULT_IDX;
static char *id[SNDRV_CARDS] = SNDRV_DEFAULT_STR;
static int enable[SNDRV_CARDS] = SNDRV_DEFAULT_ENABLE_PNP;
static struct platform_device *platform_devices[SNDRV_CARDS];
static int device_count;
module_param_array(index, int, NULL, S_IRUGO);
MODULE_PARM_DESC(index, "Index value for " CARD_NAME " soundcard.");
module_param_array(id, charp, NULL, S_IRUGO);
MODULE_PARM_DESC(id, "ID string for " CARD_NAME " soundcard.");
module_param_array(enable, bool, NULL, S_IRUGO);
MODULE_PARM_DESC(enable, "Enable " CARD_NAME " soundcard.");
MODULE_AUTHOR("Matthias Koenig <mk@phasorlab.de>");
MODULE_DESCRIPTION("ESI Miditerminal 4140");
MODULE_LICENSE("GPL");
MODULE_SUPPORTED_DEVICE("{{ESI,Miditerminal 4140}}");
/*********************************************************************
* Chip specific
*********************************************************************/
#define MTS64_NUM_INPUT_PORTS 5
#define MTS64_NUM_OUTPUT_PORTS 4
#define MTS64_SMPTE_SUBSTREAM 4
struct mts64 {
spinlock_t lock;
struct snd_card *card;
struct snd_rawmidi *rmidi;
struct pardevice *pardev;
int pardev_claimed;
int open_count;
int current_midi_output_port;
int current_midi_input_port;
u8 mode[MTS64_NUM_INPUT_PORTS];
struct snd_rawmidi_substream *midi_input_substream[MTS64_NUM_INPUT_PORTS];
int smpte_switch;
u8 time[4]; /* [0]=hh, [1]=mm, [2]=ss, [3]=ff */
u8 fps;
};
static int snd_mts64_free(struct mts64 *mts)
{
kfree(mts);
return 0;
}
static int __devinit snd_mts64_create(struct snd_card *card,
struct pardevice *pardev,
struct mts64 **rchip)
{
struct mts64 *mts;
*rchip = NULL;
mts = kzalloc(sizeof(struct mts64), GFP_KERNEL);
if (mts == NULL)
return -ENOMEM;
/* Init chip specific data */
spin_lock_init(&mts->lock);
mts->card = card;
mts->pardev = pardev;
mts->current_midi_output_port = -1;
mts->current_midi_input_port = -1;
*rchip = mts;
return 0;
}
/*********************************************************************
* HW register related constants
*********************************************************************/
/* Status Bits */
#define MTS64_STAT_BSY 0x80
#define MTS64_STAT_BIT_SET 0x20 /* readout process, bit is set */
#define MTS64_STAT_PORT 0x10 /* read byte is a port number */
/* Control Bits */
#define MTS64_CTL_READOUT 0x08 /* enable readout */
#define MTS64_CTL_WRITE_CMD 0x06
#define MTS64_CTL_WRITE_DATA 0x02
#define MTS64_CTL_STROBE 0x01
/* Command */
#define MTS64_CMD_RESET 0xfe
#define MTS64_CMD_PROBE 0x8f /* Used in probing procedure */
#define MTS64_CMD_SMPTE_SET_TIME 0xe8
#define MTS64_CMD_SMPTE_SET_FPS 0xee
#define MTS64_CMD_SMPTE_STOP 0xef
#define MTS64_CMD_SMPTE_FPS_24 0xe3
#define MTS64_CMD_SMPTE_FPS_25 0xe2
#define MTS64_CMD_SMPTE_FPS_2997 0xe4
#define MTS64_CMD_SMPTE_FPS_30D 0xe1
#define MTS64_CMD_SMPTE_FPS_30 0xe0
#define MTS64_CMD_COM_OPEN 0xf8 /* setting the communication mode */
#define MTS64_CMD_COM_CLOSE1 0xff /* clearing communication mode */
#define MTS64_CMD_COM_CLOSE2 0xf5
/*********************************************************************
* Hardware specific functions
*********************************************************************/
static void mts64_enable_readout(struct parport *p);
static void mts64_disable_readout(struct parport *p);
static int mts64_device_ready(struct parport *p);
static int mts64_device_init(struct parport *p);
static int mts64_device_open(struct mts64 *mts);
static int mts64_device_close(struct mts64 *mts);
static u8 mts64_map_midi_input(u8 c);
static int mts64_probe(struct parport *p);
static u16 mts64_read(struct parport *p);
static u8 mts64_read_char(struct parport *p);
static void mts64_smpte_start(struct parport *p,
u8 hours, u8 minutes,
u8 seconds, u8 frames,
u8 idx);
static void mts64_smpte_stop(struct parport *p);
static void mts64_write_command(struct parport *p, u8 c);
static void mts64_write_data(struct parport *p, u8 c);
static void mts64_write_midi(struct mts64 *mts, u8 c, int midiport);
/* Enables the readout procedure
*
* Before we can read a midi byte from the device, we have to set
* bit 3 of control port.
*/
static void mts64_enable_readout(struct parport *p)
{
u8 c;
c = parport_read_control(p);
c |= MTS64_CTL_READOUT;
parport_write_control(p, c);
}
/* Disables readout
*
* Readout is disabled by clearing bit 3 of control
*/
static void mts64_disable_readout(struct parport *p)
{
u8 c;
c = parport_read_control(p);
c &= ~MTS64_CTL_READOUT;
parport_write_control(p, c);
}
/* waits for device ready
*
* Checks if BUSY (Bit 7 of status) is clear
* 1 device ready
* 0 failure
*/
static int mts64_device_ready(struct parport *p)
{
int i;
u8 c;
for (i = 0; i < 0xffff; ++i) {
c = parport_read_status(p);
c &= MTS64_STAT_BSY;
if (c != 0)
return 1;
}
return 0;
}
/* Init device (LED blinking startup magic)
*
* Returns:
* 0 init ok
* -EIO failure
*/
static int __devinit mts64_device_init(struct parport *p)
{
int i;
mts64_write_command(p, MTS64_CMD_RESET);
for (i = 0; i < 64; ++i) {
msleep(100);
if (mts64_probe(p) == 0) {
/* success */
mts64_disable_readout(p);
return 0;
}
}
mts64_disable_readout(p);
return -EIO;
}
/*
* Opens the device (set communication mode)
*/
static int mts64_device_open(struct mts64 *mts)
{
int i;
struct parport *p = mts->pardev->port;
for (i = 0; i < 5; ++i)
mts64_write_command(p, MTS64_CMD_COM_OPEN);
return 0;
}
/*
* Close device (clear communication mode)
*/
static int mts64_device_close(struct mts64 *mts)
{
int i;
struct parport *p = mts->pardev->port;
for (i = 0; i < 5; ++i) {
mts64_write_command(p, MTS64_CMD_COM_CLOSE1);
mts64_write_command(p, MTS64_CMD_COM_CLOSE2);
}
return 0;
}
/* map hardware port to substream number
*
* When reading a byte from the device, the device tells us
* on what port the byte is. This HW port has to be mapped to
* the midiport (substream number).
* substream 0-3 are Midiports 1-4
* substream 4 is SMPTE Timecode
* The mapping is done by the table:
* HW | 0 | 1 | 2 | 3 | 4
* SW | 0 | 1 | 4 | 2 | 3
*/
static u8 mts64_map_midi_input(u8 c)
{
static u8 map[] = { 0, 1, 4, 2, 3 };
return map[c];
}
/* Probe parport for device
*
* Do we have a Miditerminal 4140 on parport?
* Returns:
* 0 device found
* -ENODEV no device
*/
static int __devinit mts64_probe(struct parport *p)
{
u8 c;
mts64_smpte_stop(p);
mts64_write_command(p, MTS64_CMD_PROBE);
msleep(50);
c = mts64_read(p);
c &= 0x00ff;
if (c != MTS64_CMD_PROBE)
return -ENODEV;
else
return 0;
}
/* Read byte incl. status from device
*
* Returns:
* data in lower 8 bits and status in upper 8 bits
*/
static u16 mts64_read(struct parport *p)
{
u8 data, status;
mts64_device_ready(p);
mts64_enable_readout(p);
status = parport_read_status(p);
data = mts64_read_char(p);
mts64_disable_readout(p);
return (status << 8) | data;
}
/* Read a byte from device
*
* Note, that readout mode has to be enabled.
* readout procedure is as follows:
* - Write number of the Bit to read to DATA
* - Read STATUS
* - Bit 5 of STATUS indicates if Bit is set
*
* Returns:
* Byte read from device
*/
static u8 mts64_read_char(struct parport *p)
{
u8 c = 0;
u8 status;
u8 i;
for (i = 0; i < 8; ++i) {
parport_write_data(p, i);
c >>= 1;
status = parport_read_status(p);
if (status & MTS64_STAT_BIT_SET)
c |= 0x80;
}
return c;
}
/* Starts SMPTE Timecode generation
*
* The device creates SMPTE Timecode by hardware.
* 0 24 fps
* 1 25 fps
* 2 29.97 fps
* 3 30 fps (Drop-frame)
* 4 30 fps
*/
static void mts64_smpte_start(struct parport *p,
u8 hours, u8 minutes,
u8 seconds, u8 frames,
u8 idx)
{
static u8 fps[5] = { MTS64_CMD_SMPTE_FPS_24,
MTS64_CMD_SMPTE_FPS_25,
MTS64_CMD_SMPTE_FPS_2997,
MTS64_CMD_SMPTE_FPS_30D,
MTS64_CMD_SMPTE_FPS_30 };
mts64_write_command(p, MTS64_CMD_SMPTE_SET_TIME);
mts64_write_command(p, frames);
mts64_write_command(p, seconds);
mts64_write_command(p, minutes);
mts64_write_command(p, hours);
mts64_write_command(p, MTS64_CMD_SMPTE_SET_FPS);
mts64_write_command(p, fps[idx]);
}
/* Stops SMPTE Timecode generation
*/
static void mts64_smpte_stop(struct parport *p)
{
mts64_write_command(p, MTS64_CMD_SMPTE_STOP);
}
/* Write a command byte to device
*/
static void mts64_write_command(struct parport *p, u8 c)
{
mts64_device_ready(p);
parport_write_data(p, c);
parport_write_control(p, MTS64_CTL_WRITE_CMD);
parport_write_control(p, MTS64_CTL_WRITE_CMD | MTS64_CTL_STROBE);
parport_write_control(p, MTS64_CTL_WRITE_CMD);
}
/* Write a data byte to device
*/
static void mts64_write_data(struct parport *p, u8 c)
{
mts64_device_ready(p);
parport_write_data(p, c);
parport_write_control(p, MTS64_CTL_WRITE_DATA);
parport_write_control(p, MTS64_CTL_WRITE_DATA | MTS64_CTL_STROBE);
parport_write_control(p, MTS64_CTL_WRITE_DATA);
}
/* Write a MIDI byte to midiport
*
* midiport ranges from 0-3 and maps to Ports 1-4
* assumptions: communication mode is on
*/
static void mts64_write_midi(struct mts64 *mts, u8 c,
int midiport)
{
struct parport *p = mts->pardev->port;
/* check current midiport */
if (mts->current_midi_output_port != midiport)
mts64_write_command(p, midiport);
/* write midi byte */
mts64_write_data(p, c);
}
/*********************************************************************
* Control elements
*********************************************************************/
/* SMPTE Switch */
#define snd_mts64_ctl_smpte_switch_info snd_ctl_boolean_mono_info
static int snd_mts64_ctl_smpte_switch_get(struct snd_kcontrol* kctl,
struct snd_ctl_elem_value *uctl)
{
struct mts64 *mts = snd_kcontrol_chip(kctl);
spin_lock_irq(&mts->lock);
uctl->value.integer.value[0] = mts->smpte_switch;
spin_unlock_irq(&mts->lock);
return 0;
}
/* smpte_switch is not accessed from IRQ handler, so we just need
to protect the HW access */
static int snd_mts64_ctl_smpte_switch_put(struct snd_kcontrol* kctl,
struct snd_ctl_elem_value *uctl)
{
struct mts64 *mts = snd_kcontrol_chip(kctl);
int changed = 0;
int val = !!uctl->value.integer.value[0];
spin_lock_irq(&mts->lock);
if (mts->smpte_switch == val)
goto __out;
changed = 1;
mts->smpte_switch = val;
if (mts->smpte_switch) {
mts64_smpte_start(mts->pardev->port,
mts->time[0], mts->time[1],
mts->time[2], mts->time[3],
mts->fps);
} else {
mts64_smpte_stop(mts->pardev->port);
}
__out:
spin_unlock_irq(&mts->lock);
return changed;
}
static struct snd_kcontrol_new mts64_ctl_smpte_switch __devinitdata = {
.iface = SNDRV_CTL_ELEM_IFACE_RAWMIDI,
.name = "SMPTE Playback Switch",
.index = 0,
.access = SNDRV_CTL_ELEM_ACCESS_READWRITE,
.private_value = 0,
.info = snd_mts64_ctl_smpte_switch_info,
.get = snd_mts64_ctl_smpte_switch_get,
.put = snd_mts64_ctl_smpte_switch_put
};
/* Time */
static int snd_mts64_ctl_smpte_time_h_info(struct snd_kcontrol *kctl,
struct snd_ctl_elem_info *uinfo)
{
uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
uinfo->count = 1;
uinfo->value.integer.min = 0;
uinfo->value.integer.max = 23;
return 0;
}
static int snd_mts64_ctl_smpte_time_f_info(struct snd_kcontrol *kctl,
struct snd_ctl_elem_info *uinfo)
{
uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
uinfo->count = 1;
uinfo->value.integer.min = 0;
uinfo->value.integer.max = 99;
return 0;
}
static int snd_mts64_ctl_smpte_time_info(struct snd_kcontrol *kctl,
struct snd_ctl_elem_info *uinfo)
{
uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
uinfo->count = 1;
uinfo->value.integer.min = 0;
uinfo->value.integer.max = 59;
return 0;
}
static int snd_mts64_ctl_smpte_time_get(struct snd_kcontrol *kctl,
struct snd_ctl_elem_value *uctl)
{
struct mts64 *mts = snd_kcontrol_chip(kctl);
int idx = kctl->private_value;
spin_lock_irq(&mts->lock);
uctl->value.integer.value[0] = mts->time[idx];
spin_unlock_irq(&mts->lock);
return 0;
}
static int snd_mts64_ctl_smpte_time_put(struct snd_kcontrol *kctl,
struct snd_ctl_elem_value *uctl)
{
struct mts64 *mts = snd_kcontrol_chip(kctl);
int idx = kctl->private_value;
unsigned int time = uctl->value.integer.value[0] % 60;
int changed = 0;
spin_lock_irq(&mts->lock);
if (mts->time[idx] != time) {
changed = 1;
mts->time[idx] = time;
}
spin_unlock_irq(&mts->lock);
return changed;
}
static struct snd_kcontrol_new mts64_ctl_smpte_time_hours __devinitdata = {
.iface = SNDRV_CTL_ELEM_IFACE_RAWMIDI,
.name = "SMPTE Time Hours",
.index = 0,
.access = SNDRV_CTL_ELEM_ACCESS_READWRITE,
.private_value = 0,
.info = snd_mts64_ctl_smpte_time_h_info,
.get = snd_mts64_ctl_smpte_time_get,
.put = snd_mts64_ctl_smpte_time_put
};
static struct snd_kcontrol_new mts64_ctl_smpte_time_minutes __devinitdata = {
.iface = SNDRV_CTL_ELEM_IFACE_RAWMIDI,
.name = "SMPTE Time Minutes",
.index = 0,
.access = SNDRV_CTL_ELEM_ACCESS_READWRITE,
.private_value = 1,
.info = snd_mts64_ctl_smpte_time_info,
.get = snd_mts64_ctl_smpte_time_get,
.put = snd_mts64_ctl_smpte_time_put
};
static struct snd_kcontrol_new mts64_ctl_smpte_time_seconds __devinitdata = {
.iface = SNDRV_CTL_ELEM_IFACE_RAWMIDI,
.name = "SMPTE Time Seconds",
.index = 0,
.access = SNDRV_CTL_ELEM_ACCESS_READWRITE,
.private_value = 2,
.info = snd_mts64_ctl_smpte_time_info,
.get = snd_mts64_ctl_smpte_time_get,
.put = snd_mts64_ctl_smpte_time_put
};
static struct snd_kcontrol_new mts64_ctl_smpte_time_frames __devinitdata = {
.iface = SNDRV_CTL_ELEM_IFACE_RAWMIDI,
.name = "SMPTE Time Frames",
.index = 0,
.access = SNDRV_CTL_ELEM_ACCESS_READWRITE,
.private_value = 3,
.info = snd_mts64_ctl_smpte_time_f_info,
.get = snd_mts64_ctl_smpte_time_get,
.put = snd_mts64_ctl_smpte_time_put
};
/* FPS */
static int snd_mts64_ctl_smpte_fps_info(struct snd_kcontrol *kctl,
struct snd_ctl_elem_info *uinfo)
{
static char *texts[5] = { "24",
"25",
"29.97",
"30D",
"30" };
uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
uinfo->count = 1;
uinfo->value.enumerated.items = 5;
if (uinfo->value.enumerated.item > 4)
uinfo->value.enumerated.item = 4;
strcpy(uinfo->value.enumerated.name,
texts[uinfo->value.enumerated.item]);
return 0;
}
static int snd_mts64_ctl_smpte_fps_get(struct snd_kcontrol *kctl,
struct snd_ctl_elem_value *uctl)
{
struct mts64 *mts = snd_kcontrol_chip(kctl);
spin_lock_irq(&mts->lock);
uctl->value.enumerated.item[0] = mts->fps;
spin_unlock_irq(&mts->lock);
return 0;
}
static int snd_mts64_ctl_smpte_fps_put(struct snd_kcontrol *kctl,
struct snd_ctl_elem_value *uctl)
{
struct mts64 *mts = snd_kcontrol_chip(kctl);
int changed = 0;
if (uctl->value.enumerated.item[0] >= 5)
return -EINVAL;
spin_lock_irq(&mts->lock);
if (mts->fps != uctl->value.enumerated.item[0]) {
changed = 1;
mts->fps = uctl->value.enumerated.item[0];
}
spin_unlock_irq(&mts->lock);
return changed;
}
static struct snd_kcontrol_new mts64_ctl_smpte_fps __devinitdata = {
.iface = SNDRV_CTL_ELEM_IFACE_RAWMIDI,
.name = "SMPTE Fps",
.index = 0,
.access = SNDRV_CTL_ELEM_ACCESS_READWRITE,
.private_value = 0,
.info = snd_mts64_ctl_smpte_fps_info,
.get = snd_mts64_ctl_smpte_fps_get,
.put = snd_mts64_ctl_smpte_fps_put
};
static int __devinit snd_mts64_ctl_create(struct snd_card *card,
struct mts64 *mts)
{
int err, i;
static struct snd_kcontrol_new *control[] __devinitdata = {
&mts64_ctl_smpte_switch,
&mts64_ctl_smpte_time_hours,
&mts64_ctl_smpte_time_minutes,
&mts64_ctl_smpte_time_seconds,
&mts64_ctl_smpte_time_frames,
&mts64_ctl_smpte_fps,
NULL };
for (i = 0; control[i]; ++i) {
err = snd_ctl_add(card, snd_ctl_new1(control[i], mts));
if (err < 0) {
snd_printd("Cannot create control: %s\n",
control[i]->name);
return err;
}
}
return 0;
}
/*********************************************************************
* Rawmidi
*********************************************************************/
#define MTS64_MODE_INPUT_TRIGGERED 0x01
static int snd_mts64_rawmidi_open(struct snd_rawmidi_substream *substream)
{
struct mts64 *mts = substream->rmidi->private_data;
if (mts->open_count == 0) {
/* We don't need a spinlock here, because this is just called
if the device has not been opened before.
So there aren't any IRQs from the device */
mts64_device_open(mts);
msleep(50);
}
++(mts->open_count);
return 0;
}
static int snd_mts64_rawmidi_close(struct snd_rawmidi_substream *substream)
{
struct mts64 *mts = substream->rmidi->private_data;
unsigned long flags;
--(mts->open_count);
if (mts->open_count == 0) {
/* We need the spinlock_irqsave here because we can still
have IRQs at this point */
spin_lock_irqsave(&mts->lock, flags);
mts64_device_close(mts);
spin_unlock_irqrestore(&mts->lock, flags);
msleep(500);
} else if (mts->open_count < 0)
mts->open_count = 0;
return 0;
}
static void snd_mts64_rawmidi_output_trigger(struct snd_rawmidi_substream *substream,
int up)
{
struct mts64 *mts = substream->rmidi->private_data;
u8 data;
unsigned long flags;
spin_lock_irqsave(&mts->lock, flags);
while (snd_rawmidi_transmit_peek(substream, &data, 1) == 1) {
mts64_write_midi(mts, data, substream->number+1);
snd_rawmidi_transmit_ack(substream, 1);
}
spin_unlock_irqrestore(&mts->lock, flags);
}
static void snd_mts64_rawmidi_input_trigger(struct snd_rawmidi_substream *substream,
int up)
{
struct mts64 *mts = substream->rmidi->private_data;
unsigned long flags;
spin_lock_irqsave(&mts->lock, flags);
if (up)
mts->mode[substream->number] |= MTS64_MODE_INPUT_TRIGGERED;
else
mts->mode[substream->number] &= ~MTS64_MODE_INPUT_TRIGGERED;
spin_unlock_irqrestore(&mts->lock, flags);
}
static struct snd_rawmidi_ops snd_mts64_rawmidi_output_ops = {
.open = snd_mts64_rawmidi_open,
.close = snd_mts64_rawmidi_close,
.trigger = snd_mts64_rawmidi_output_trigger
};
static struct snd_rawmidi_ops snd_mts64_rawmidi_input_ops = {
.open = snd_mts64_rawmidi_open,
.close = snd_mts64_rawmidi_close,
.trigger = snd_mts64_rawmidi_input_trigger
};
/* Create and initialize the rawmidi component */
static int __devinit snd_mts64_rawmidi_create(struct snd_card *card)
{
struct mts64 *mts = card->private_data;
struct snd_rawmidi *rmidi;
struct snd_rawmidi_substream *substream;
struct list_head *list;
int err;
err = snd_rawmidi_new(card, CARD_NAME, 0,
MTS64_NUM_OUTPUT_PORTS,
MTS64_NUM_INPUT_PORTS,
&rmidi);
if (err < 0)
return err;
rmidi->private_data = mts;
strcpy(rmidi->name, CARD_NAME);
rmidi->info_flags = SNDRV_RAWMIDI_INFO_OUTPUT |
SNDRV_RAWMIDI_INFO_INPUT |
SNDRV_RAWMIDI_INFO_DUPLEX;
mts->rmidi = rmidi;
/* register rawmidi ops */
snd_rawmidi_set_ops(rmidi, SNDRV_RAWMIDI_STREAM_OUTPUT,
&snd_mts64_rawmidi_output_ops);
snd_rawmidi_set_ops(rmidi, SNDRV_RAWMIDI_STREAM_INPUT,
&snd_mts64_rawmidi_input_ops);
/* name substreams */
/* output */
list_for_each(list,
&rmidi->streams[SNDRV_RAWMIDI_STREAM_OUTPUT].substreams) {
substream = list_entry(list, struct snd_rawmidi_substream, list);
sprintf(substream->name,
"Miditerminal %d", substream->number+1);
}
/* input */
list_for_each(list,
&rmidi->streams[SNDRV_RAWMIDI_STREAM_INPUT].substreams) {
substream = list_entry(list, struct snd_rawmidi_substream, list);
mts->midi_input_substream[substream->number] = substream;
switch(substream->number) {
case MTS64_SMPTE_SUBSTREAM:
strcpy(substream->name, "Miditerminal SMPTE");
break;
default:
sprintf(substream->name,
"Miditerminal %d", substream->number+1);
}
}
/* controls */
err = snd_mts64_ctl_create(card, mts);
return err;
}
/*********************************************************************
* parport stuff
*********************************************************************/
static void snd_mts64_interrupt(void *private)
{
struct mts64 *mts = ((struct snd_card*)private)->private_data;
u16 ret;
u8 status, data;
struct snd_rawmidi_substream *substream;
spin_lock(&mts->lock);
ret = mts64_read(mts->pardev->port);
data = ret & 0x00ff;
status = ret >> 8;
if (status & MTS64_STAT_PORT) {
mts->current_midi_input_port = mts64_map_midi_input(data);
} else {
if (mts->current_midi_input_port == -1)
goto __out;
substream = mts->midi_input_substream[mts->current_midi_input_port];
if (mts->mode[substream->number] & MTS64_MODE_INPUT_TRIGGERED)
snd_rawmidi_receive(substream, &data, 1);
}
__out:
spin_unlock(&mts->lock);
}
static int __devinit snd_mts64_probe_port(struct parport *p)
{
struct pardevice *pardev;
int res;
pardev = parport_register_device(p, DRIVER_NAME,
NULL, NULL, NULL,
0, NULL);
if (!pardev)
return -EIO;
if (parport_claim(pardev)) {
parport_unregister_device(pardev);
return -EIO;
}
res = mts64_probe(p);
parport_release(pardev);
parport_unregister_device(pardev);
return res;
}
static void __devinit snd_mts64_attach(struct parport *p)
{
struct platform_device *device;
device = platform_device_alloc(PLATFORM_DRIVER, device_count);
if (!device)
return;
/* Temporary assignment to forward the parport */
platform_set_drvdata(device, p);
if (platform_device_add(device) < 0) {
platform_device_put(device);
return;
}
/* Since we dont get the return value of probe
* We need to check if device probing succeeded or not */
if (!platform_get_drvdata(device)) {
platform_device_unregister(device);
return;
}
/* register device in global table */
platform_devices[device_count] = device;
device_count++;
}
static void snd_mts64_detach(struct parport *p)
{
/* nothing to do here */
}
static struct parport_driver mts64_parport_driver = {
.name = "mts64",
.attach = snd_mts64_attach,
.detach = snd_mts64_detach
};
/*********************************************************************
* platform stuff
*********************************************************************/
static void snd_mts64_card_private_free(struct snd_card *card)
{
struct mts64 *mts = card->private_data;
struct pardevice *pardev = mts->pardev;
if (pardev) {
if (mts->pardev_claimed)
parport_release(pardev);
parport_unregister_device(pardev);
}
snd_mts64_free(mts);
}
static int __devinit snd_mts64_probe(struct platform_device *pdev)
{
struct pardevice *pardev;
struct parport *p;
int dev = pdev->id;
struct snd_card *card = NULL;
struct mts64 *mts = NULL;
int err;
p = platform_get_drvdata(pdev);
platform_set_drvdata(pdev, NULL);
if (dev >= SNDRV_CARDS)
return -ENODEV;
if (!enable[dev])
return -ENOENT;
if ((err = snd_mts64_probe_port(p)) < 0)
return err;
err = snd_card_create(index[dev], id[dev], THIS_MODULE, 0, &card);
if (err < 0) {
snd_printd("Cannot create card\n");
return err;
}
strcpy(card->driver, DRIVER_NAME);
strcpy(card->shortname, "ESI " CARD_NAME);
sprintf(card->longname, "%s at 0x%lx, irq %i",
card->shortname, p->base, p->irq);
pardev = parport_register_device(p, /* port */
DRIVER_NAME, /* name */
NULL, /* preempt */
NULL, /* wakeup */
snd_mts64_interrupt, /* ISR */
PARPORT_DEV_EXCL, /* flags */
(void *)card); /* private */
if (pardev == NULL) {
snd_printd("Cannot register pardevice\n");
err = -EIO;
goto __err;
}
if ((err = snd_mts64_create(card, pardev, &mts)) < 0) {
snd_printd("Cannot create main component\n");
parport_unregister_device(pardev);
goto __err;
}
card->private_data = mts;
card->private_free = snd_mts64_card_private_free;
if ((err = snd_mts64_rawmidi_create(card)) < 0) {
snd_printd("Creating Rawmidi component failed\n");
goto __err;
}
/* claim parport */
if (parport_claim(pardev)) {
snd_printd("Cannot claim parport 0x%lx\n", pardev->port->base);
err = -EIO;
goto __err;
}
mts->pardev_claimed = 1;
/* init device */
if ((err = mts64_device_init(p)) < 0)
goto __err;
platform_set_drvdata(pdev, card);
snd_card_set_dev(card, &pdev->dev);
/* At this point card will be usable */
if ((err = snd_card_register(card)) < 0) {
snd_printd("Cannot register card\n");
goto __err;
}
snd_printk(KERN_INFO "ESI Miditerminal 4140 on 0x%lx\n", p->base);
return 0;
__err:
snd_card_free(card);
return err;
}
static int __devexit snd_mts64_remove(struct platform_device *pdev)
{
struct snd_card *card = platform_get_drvdata(pdev);
if (card)
snd_card_free(card);
return 0;
}
static struct platform_driver snd_mts64_driver = {
.probe = snd_mts64_probe,
.remove = __devexit_p(snd_mts64_remove),
.driver = {
.name = PLATFORM_DRIVER
}
};
/*********************************************************************
* module init stuff
*********************************************************************/
static void snd_mts64_unregister_all(void)
{
int i;
for (i = 0; i < SNDRV_CARDS; ++i) {
if (platform_devices[i]) {
platform_device_unregister(platform_devices[i]);
platform_devices[i] = NULL;
}
}
platform_driver_unregister(&snd_mts64_driver);
parport_unregister_driver(&mts64_parport_driver);
}
static int __init snd_mts64_module_init(void)
{
int err;
if ((err = platform_driver_register(&snd_mts64_driver)) < 0)
return err;
if (parport_register_driver(&mts64_parport_driver) != 0) {
platform_driver_unregister(&snd_mts64_driver);
return -EIO;
}
if (device_count == 0) {
snd_mts64_unregister_all();
return -ENODEV;
}
return 0;
}
static void __exit snd_mts64_module_exit(void)
{
snd_mts64_unregister_all();
}
module_init(snd_mts64_module_init);
module_exit(snd_mts64_module_exit);