mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2025-01-25 11:09:59 +07:00
6da2ec5605
The kmalloc() function has a 2-factor argument form, kmalloc_array(). This patch replaces cases of: kmalloc(a * b, gfp) with: kmalloc_array(a * b, gfp) as well as handling cases of: kmalloc(a * b * c, gfp) with: kmalloc(array3_size(a, b, c), gfp) as it's slightly less ugly than: kmalloc_array(array_size(a, b), c, gfp) This does, however, attempt to ignore constant size factors like: kmalloc(4 * 1024, gfp) though any constants defined via macros get caught up in the conversion. Any factors with a sizeof() of "unsigned char", "char", and "u8" were dropped, since they're redundant. The tools/ directory was manually excluded, since it has its own implementation of kmalloc(). The Coccinelle script used for this was: // Fix redundant parens around sizeof(). @@ type TYPE; expression THING, E; @@ ( kmalloc( - (sizeof(TYPE)) * E + sizeof(TYPE) * E , ...) | kmalloc( - (sizeof(THING)) * E + sizeof(THING) * E , ...) ) // Drop single-byte sizes and redundant parens. @@ expression COUNT; typedef u8; typedef __u8; @@ ( kmalloc( - sizeof(u8) * (COUNT) + COUNT , ...) | kmalloc( - sizeof(__u8) * (COUNT) + COUNT , ...) | kmalloc( - sizeof(char) * (COUNT) + COUNT , ...) | kmalloc( - sizeof(unsigned char) * (COUNT) + COUNT , ...) | kmalloc( - sizeof(u8) * COUNT + COUNT , ...) | kmalloc( - sizeof(__u8) * COUNT + COUNT , ...) | kmalloc( - sizeof(char) * COUNT + COUNT , ...) | kmalloc( - sizeof(unsigned char) * COUNT + COUNT , ...) ) // 2-factor product with sizeof(type/expression) and identifier or constant. @@ type TYPE; expression THING; identifier COUNT_ID; constant COUNT_CONST; @@ ( - kmalloc + kmalloc_array ( - sizeof(TYPE) * (COUNT_ID) + COUNT_ID, sizeof(TYPE) , ...) | - kmalloc + kmalloc_array ( - sizeof(TYPE) * COUNT_ID + COUNT_ID, sizeof(TYPE) , ...) | - kmalloc + kmalloc_array ( - sizeof(TYPE) * (COUNT_CONST) + COUNT_CONST, sizeof(TYPE) , ...) | - kmalloc + kmalloc_array ( - sizeof(TYPE) * COUNT_CONST + COUNT_CONST, sizeof(TYPE) , ...) | - kmalloc + kmalloc_array ( - sizeof(THING) * (COUNT_ID) + COUNT_ID, sizeof(THING) , ...) | - kmalloc + kmalloc_array ( - sizeof(THING) * COUNT_ID + COUNT_ID, sizeof(THING) , ...) | - kmalloc + kmalloc_array ( - sizeof(THING) * (COUNT_CONST) + COUNT_CONST, sizeof(THING) , ...) | - kmalloc + kmalloc_array ( - sizeof(THING) * COUNT_CONST + COUNT_CONST, sizeof(THING) , ...) ) // 2-factor product, only identifiers. @@ identifier SIZE, COUNT; @@ - kmalloc + kmalloc_array ( - SIZE * COUNT + COUNT, SIZE , ...) // 3-factor product with 1 sizeof(type) or sizeof(expression), with // redundant parens removed. @@ expression THING; identifier STRIDE, COUNT; type TYPE; @@ ( kmalloc( - sizeof(TYPE) * (COUNT) * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kmalloc( - sizeof(TYPE) * (COUNT) * STRIDE + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kmalloc( - sizeof(TYPE) * COUNT * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kmalloc( - sizeof(TYPE) * COUNT * STRIDE + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kmalloc( - sizeof(THING) * (COUNT) * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) | kmalloc( - sizeof(THING) * (COUNT) * STRIDE + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) | kmalloc( - sizeof(THING) * COUNT * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) | kmalloc( - sizeof(THING) * COUNT * STRIDE + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) ) // 3-factor product with 2 sizeof(variable), with redundant parens removed. @@ expression THING1, THING2; identifier COUNT; type TYPE1, TYPE2; @@ ( kmalloc( - sizeof(TYPE1) * sizeof(TYPE2) * COUNT + array3_size(COUNT, sizeof(TYPE1), sizeof(TYPE2)) , ...) | kmalloc( - sizeof(TYPE1) * sizeof(THING2) * (COUNT) + array3_size(COUNT, sizeof(TYPE1), sizeof(TYPE2)) , ...) | kmalloc( - sizeof(THING1) * sizeof(THING2) * COUNT + array3_size(COUNT, sizeof(THING1), sizeof(THING2)) , ...) | kmalloc( - sizeof(THING1) * sizeof(THING2) * (COUNT) + array3_size(COUNT, sizeof(THING1), sizeof(THING2)) , ...) | kmalloc( - sizeof(TYPE1) * sizeof(THING2) * COUNT + array3_size(COUNT, sizeof(TYPE1), sizeof(THING2)) , ...) | kmalloc( - sizeof(TYPE1) * sizeof(THING2) * (COUNT) + array3_size(COUNT, sizeof(TYPE1), sizeof(THING2)) , ...) ) // 3-factor product, only identifiers, with redundant parens removed. @@ identifier STRIDE, SIZE, COUNT; @@ ( kmalloc( - (COUNT) * STRIDE * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) | kmalloc( - COUNT * (STRIDE) * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) | kmalloc( - COUNT * STRIDE * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kmalloc( - (COUNT) * (STRIDE) * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) | kmalloc( - COUNT * (STRIDE) * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kmalloc( - (COUNT) * STRIDE * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kmalloc( - (COUNT) * (STRIDE) * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kmalloc( - COUNT * STRIDE * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) ) // Any remaining multi-factor products, first at least 3-factor products, // when they're not all constants... @@ expression E1, E2, E3; constant C1, C2, C3; @@ ( kmalloc(C1 * C2 * C3, ...) | kmalloc( - (E1) * E2 * E3 + array3_size(E1, E2, E3) , ...) | kmalloc( - (E1) * (E2) * E3 + array3_size(E1, E2, E3) , ...) | kmalloc( - (E1) * (E2) * (E3) + array3_size(E1, E2, E3) , ...) | kmalloc( - E1 * E2 * E3 + array3_size(E1, E2, E3) , ...) ) // And then all remaining 2 factors products when they're not all constants, // keeping sizeof() as the second factor argument. @@ expression THING, E1, E2; type TYPE; constant C1, C2, C3; @@ ( kmalloc(sizeof(THING) * C2, ...) | kmalloc(sizeof(TYPE) * C2, ...) | kmalloc(C1 * C2 * C3, ...) | kmalloc(C1 * C2, ...) | - kmalloc + kmalloc_array ( - sizeof(TYPE) * (E2) + E2, sizeof(TYPE) , ...) | - kmalloc + kmalloc_array ( - sizeof(TYPE) * E2 + E2, sizeof(TYPE) , ...) | - kmalloc + kmalloc_array ( - sizeof(THING) * (E2) + E2, sizeof(THING) , ...) | - kmalloc + kmalloc_array ( - sizeof(THING) * E2 + E2, sizeof(THING) , ...) | - kmalloc + kmalloc_array ( - (E1) * E2 + E1, E2 , ...) | - kmalloc + kmalloc_array ( - (E1) * (E2) + E1, E2 , ...) | - kmalloc + kmalloc_array ( - E1 * E2 + E1, E2 , ...) ) Signed-off-by: Kees Cook <keescook@chromium.org>
1608 lines
35 KiB
C
1608 lines
35 KiB
C
/*
|
|
* cistpl.c -- 16-bit PCMCIA Card Information Structure parser
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License version 2 as
|
|
* published by the Free Software Foundation.
|
|
*
|
|
* The initial developer of the original code is David A. Hinds
|
|
* <dahinds@users.sourceforge.net>. Portions created by David A. Hinds
|
|
* are Copyright (C) 1999 David A. Hinds. All Rights Reserved.
|
|
*
|
|
* (C) 1999 David A. Hinds
|
|
*/
|
|
|
|
#include <linux/module.h>
|
|
#include <linux/moduleparam.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/string.h>
|
|
#include <linux/major.h>
|
|
#include <linux/errno.h>
|
|
#include <linux/timer.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/pci.h>
|
|
#include <linux/ioport.h>
|
|
#include <linux/io.h>
|
|
#include <asm/byteorder.h>
|
|
#include <asm/unaligned.h>
|
|
|
|
#include <pcmcia/ss.h>
|
|
#include <pcmcia/cisreg.h>
|
|
#include <pcmcia/cistpl.h>
|
|
#include "cs_internal.h"
|
|
|
|
static const u_char mantissa[] = {
|
|
10, 12, 13, 15, 20, 25, 30, 35,
|
|
40, 45, 50, 55, 60, 70, 80, 90
|
|
};
|
|
|
|
static const u_int exponent[] = {
|
|
1, 10, 100, 1000, 10000, 100000, 1000000, 10000000
|
|
};
|
|
|
|
/* Convert an extended speed byte to a time in nanoseconds */
|
|
#define SPEED_CVT(v) \
|
|
(mantissa[(((v)>>3)&15)-1] * exponent[(v)&7] / 10)
|
|
/* Convert a power byte to a current in 0.1 microamps */
|
|
#define POWER_CVT(v) \
|
|
(mantissa[((v)>>3)&15] * exponent[(v)&7] / 10)
|
|
#define POWER_SCALE(v) (exponent[(v)&7])
|
|
|
|
/* Upper limit on reasonable # of tuples */
|
|
#define MAX_TUPLES 200
|
|
|
|
/* Bits in IRQInfo1 field */
|
|
#define IRQ_INFO2_VALID 0x10
|
|
|
|
/* 16-bit CIS? */
|
|
static int cis_width;
|
|
module_param(cis_width, int, 0444);
|
|
|
|
void release_cis_mem(struct pcmcia_socket *s)
|
|
{
|
|
mutex_lock(&s->ops_mutex);
|
|
if (s->cis_mem.flags & MAP_ACTIVE) {
|
|
s->cis_mem.flags &= ~MAP_ACTIVE;
|
|
s->ops->set_mem_map(s, &s->cis_mem);
|
|
if (s->cis_mem.res) {
|
|
release_resource(s->cis_mem.res);
|
|
kfree(s->cis_mem.res);
|
|
s->cis_mem.res = NULL;
|
|
}
|
|
iounmap(s->cis_virt);
|
|
s->cis_virt = NULL;
|
|
}
|
|
mutex_unlock(&s->ops_mutex);
|
|
}
|
|
|
|
/**
|
|
* set_cis_map() - map the card memory at "card_offset" into virtual space.
|
|
*
|
|
* If flags & MAP_ATTRIB, map the attribute space, otherwise
|
|
* map the memory space.
|
|
*
|
|
* Must be called with ops_mutex held.
|
|
*/
|
|
static void __iomem *set_cis_map(struct pcmcia_socket *s,
|
|
unsigned int card_offset, unsigned int flags)
|
|
{
|
|
pccard_mem_map *mem = &s->cis_mem;
|
|
int ret;
|
|
|
|
if (!(s->features & SS_CAP_STATIC_MAP) && (mem->res == NULL)) {
|
|
mem->res = pcmcia_find_mem_region(0, s->map_size,
|
|
s->map_size, 0, s);
|
|
if (mem->res == NULL) {
|
|
dev_notice(&s->dev, "cs: unable to map card memory!\n");
|
|
return NULL;
|
|
}
|
|
s->cis_virt = NULL;
|
|
}
|
|
|
|
if (!(s->features & SS_CAP_STATIC_MAP) && (!s->cis_virt))
|
|
s->cis_virt = ioremap(mem->res->start, s->map_size);
|
|
|
|
mem->card_start = card_offset;
|
|
mem->flags = flags;
|
|
|
|
ret = s->ops->set_mem_map(s, mem);
|
|
if (ret) {
|
|
iounmap(s->cis_virt);
|
|
s->cis_virt = NULL;
|
|
return NULL;
|
|
}
|
|
|
|
if (s->features & SS_CAP_STATIC_MAP) {
|
|
if (s->cis_virt)
|
|
iounmap(s->cis_virt);
|
|
s->cis_virt = ioremap(mem->static_start, s->map_size);
|
|
}
|
|
|
|
return s->cis_virt;
|
|
}
|
|
|
|
|
|
/* Bits in attr field */
|
|
#define IS_ATTR 1
|
|
#define IS_INDIRECT 8
|
|
|
|
/**
|
|
* pcmcia_read_cis_mem() - low-level function to read CIS memory
|
|
*
|
|
* must be called with ops_mutex held
|
|
*/
|
|
int pcmcia_read_cis_mem(struct pcmcia_socket *s, int attr, u_int addr,
|
|
u_int len, void *ptr)
|
|
{
|
|
void __iomem *sys, *end;
|
|
unsigned char *buf = ptr;
|
|
|
|
dev_dbg(&s->dev, "pcmcia_read_cis_mem(%d, %#x, %u)\n", attr, addr, len);
|
|
|
|
if (attr & IS_INDIRECT) {
|
|
/* Indirect accesses use a bunch of special registers at fixed
|
|
locations in common memory */
|
|
u_char flags = ICTRL0_COMMON|ICTRL0_AUTOINC|ICTRL0_BYTEGRAN;
|
|
if (attr & IS_ATTR) {
|
|
addr *= 2;
|
|
flags = ICTRL0_AUTOINC;
|
|
}
|
|
|
|
sys = set_cis_map(s, 0, MAP_ACTIVE |
|
|
((cis_width) ? MAP_16BIT : 0));
|
|
if (!sys) {
|
|
dev_dbg(&s->dev, "could not map memory\n");
|
|
memset(ptr, 0xff, len);
|
|
return -1;
|
|
}
|
|
|
|
writeb(flags, sys+CISREG_ICTRL0);
|
|
writeb(addr & 0xff, sys+CISREG_IADDR0);
|
|
writeb((addr>>8) & 0xff, sys+CISREG_IADDR1);
|
|
writeb((addr>>16) & 0xff, sys+CISREG_IADDR2);
|
|
writeb((addr>>24) & 0xff, sys+CISREG_IADDR3);
|
|
for ( ; len > 0; len--, buf++)
|
|
*buf = readb(sys+CISREG_IDATA0);
|
|
} else {
|
|
u_int inc = 1, card_offset, flags;
|
|
|
|
if (addr > CISTPL_MAX_CIS_SIZE) {
|
|
dev_dbg(&s->dev,
|
|
"attempt to read CIS mem at addr %#x", addr);
|
|
memset(ptr, 0xff, len);
|
|
return -1;
|
|
}
|
|
|
|
flags = MAP_ACTIVE | ((cis_width) ? MAP_16BIT : 0);
|
|
if (attr) {
|
|
flags |= MAP_ATTRIB;
|
|
inc++;
|
|
addr *= 2;
|
|
}
|
|
|
|
card_offset = addr & ~(s->map_size-1);
|
|
while (len) {
|
|
sys = set_cis_map(s, card_offset, flags);
|
|
if (!sys) {
|
|
dev_dbg(&s->dev, "could not map memory\n");
|
|
memset(ptr, 0xff, len);
|
|
return -1;
|
|
}
|
|
end = sys + s->map_size;
|
|
sys = sys + (addr & (s->map_size-1));
|
|
for ( ; len > 0; len--, buf++, sys += inc) {
|
|
if (sys == end)
|
|
break;
|
|
*buf = readb(sys);
|
|
}
|
|
card_offset += s->map_size;
|
|
addr = 0;
|
|
}
|
|
}
|
|
dev_dbg(&s->dev, " %#2.2x %#2.2x %#2.2x %#2.2x ...\n",
|
|
*(u_char *)(ptr+0), *(u_char *)(ptr+1),
|
|
*(u_char *)(ptr+2), *(u_char *)(ptr+3));
|
|
return 0;
|
|
}
|
|
|
|
|
|
/**
|
|
* pcmcia_write_cis_mem() - low-level function to write CIS memory
|
|
*
|
|
* Probably only useful for writing one-byte registers. Must be called
|
|
* with ops_mutex held.
|
|
*/
|
|
int pcmcia_write_cis_mem(struct pcmcia_socket *s, int attr, u_int addr,
|
|
u_int len, void *ptr)
|
|
{
|
|
void __iomem *sys, *end;
|
|
unsigned char *buf = ptr;
|
|
|
|
dev_dbg(&s->dev,
|
|
"pcmcia_write_cis_mem(%d, %#x, %u)\n", attr, addr, len);
|
|
|
|
if (attr & IS_INDIRECT) {
|
|
/* Indirect accesses use a bunch of special registers at fixed
|
|
locations in common memory */
|
|
u_char flags = ICTRL0_COMMON|ICTRL0_AUTOINC|ICTRL0_BYTEGRAN;
|
|
if (attr & IS_ATTR) {
|
|
addr *= 2;
|
|
flags = ICTRL0_AUTOINC;
|
|
}
|
|
|
|
sys = set_cis_map(s, 0, MAP_ACTIVE |
|
|
((cis_width) ? MAP_16BIT : 0));
|
|
if (!sys) {
|
|
dev_dbg(&s->dev, "could not map memory\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
writeb(flags, sys+CISREG_ICTRL0);
|
|
writeb(addr & 0xff, sys+CISREG_IADDR0);
|
|
writeb((addr>>8) & 0xff, sys+CISREG_IADDR1);
|
|
writeb((addr>>16) & 0xff, sys+CISREG_IADDR2);
|
|
writeb((addr>>24) & 0xff, sys+CISREG_IADDR3);
|
|
for ( ; len > 0; len--, buf++)
|
|
writeb(*buf, sys+CISREG_IDATA0);
|
|
} else {
|
|
u_int inc = 1, card_offset, flags;
|
|
|
|
flags = MAP_ACTIVE | ((cis_width) ? MAP_16BIT : 0);
|
|
if (attr & IS_ATTR) {
|
|
flags |= MAP_ATTRIB;
|
|
inc++;
|
|
addr *= 2;
|
|
}
|
|
|
|
card_offset = addr & ~(s->map_size-1);
|
|
while (len) {
|
|
sys = set_cis_map(s, card_offset, flags);
|
|
if (!sys) {
|
|
dev_dbg(&s->dev, "could not map memory\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
end = sys + s->map_size;
|
|
sys = sys + (addr & (s->map_size-1));
|
|
for ( ; len > 0; len--, buf++, sys += inc) {
|
|
if (sys == end)
|
|
break;
|
|
writeb(*buf, sys);
|
|
}
|
|
card_offset += s->map_size;
|
|
addr = 0;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
|
|
/**
|
|
* read_cis_cache() - read CIS memory or its associated cache
|
|
*
|
|
* This is a wrapper around read_cis_mem, with the same interface,
|
|
* but which caches information, for cards whose CIS may not be
|
|
* readable all the time.
|
|
*/
|
|
static int read_cis_cache(struct pcmcia_socket *s, int attr, u_int addr,
|
|
size_t len, void *ptr)
|
|
{
|
|
struct cis_cache_entry *cis;
|
|
int ret = 0;
|
|
|
|
if (s->state & SOCKET_CARDBUS)
|
|
return -EINVAL;
|
|
|
|
mutex_lock(&s->ops_mutex);
|
|
if (s->fake_cis) {
|
|
if (s->fake_cis_len >= addr+len)
|
|
memcpy(ptr, s->fake_cis+addr, len);
|
|
else {
|
|
memset(ptr, 0xff, len);
|
|
ret = -EINVAL;
|
|
}
|
|
mutex_unlock(&s->ops_mutex);
|
|
return ret;
|
|
}
|
|
|
|
list_for_each_entry(cis, &s->cis_cache, node) {
|
|
if (cis->addr == addr && cis->len == len && cis->attr == attr) {
|
|
memcpy(ptr, cis->cache, len);
|
|
mutex_unlock(&s->ops_mutex);
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
ret = pcmcia_read_cis_mem(s, attr, addr, len, ptr);
|
|
|
|
if (ret == 0) {
|
|
/* Copy data into the cache */
|
|
cis = kmalloc(sizeof(struct cis_cache_entry) + len, GFP_KERNEL);
|
|
if (cis) {
|
|
cis->addr = addr;
|
|
cis->len = len;
|
|
cis->attr = attr;
|
|
memcpy(cis->cache, ptr, len);
|
|
list_add(&cis->node, &s->cis_cache);
|
|
}
|
|
}
|
|
mutex_unlock(&s->ops_mutex);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void
|
|
remove_cis_cache(struct pcmcia_socket *s, int attr, u_int addr, u_int len)
|
|
{
|
|
struct cis_cache_entry *cis;
|
|
|
|
mutex_lock(&s->ops_mutex);
|
|
list_for_each_entry(cis, &s->cis_cache, node)
|
|
if (cis->addr == addr && cis->len == len && cis->attr == attr) {
|
|
list_del(&cis->node);
|
|
kfree(cis);
|
|
break;
|
|
}
|
|
mutex_unlock(&s->ops_mutex);
|
|
}
|
|
|
|
/**
|
|
* destroy_cis_cache() - destroy the CIS cache
|
|
* @s: pcmcia_socket for which CIS cache shall be destroyed
|
|
*
|
|
* This destroys the CIS cache but keeps any fake CIS alive. Must be
|
|
* called with ops_mutex held.
|
|
*/
|
|
void destroy_cis_cache(struct pcmcia_socket *s)
|
|
{
|
|
struct list_head *l, *n;
|
|
struct cis_cache_entry *cis;
|
|
|
|
list_for_each_safe(l, n, &s->cis_cache) {
|
|
cis = list_entry(l, struct cis_cache_entry, node);
|
|
list_del(&cis->node);
|
|
kfree(cis);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* verify_cis_cache() - does the CIS match what is in the CIS cache?
|
|
*/
|
|
int verify_cis_cache(struct pcmcia_socket *s)
|
|
{
|
|
struct cis_cache_entry *cis;
|
|
char *buf;
|
|
int ret;
|
|
|
|
if (s->state & SOCKET_CARDBUS)
|
|
return -EINVAL;
|
|
|
|
buf = kmalloc(256, GFP_KERNEL);
|
|
if (buf == NULL) {
|
|
dev_warn(&s->dev, "no memory for verifying CIS\n");
|
|
return -ENOMEM;
|
|
}
|
|
mutex_lock(&s->ops_mutex);
|
|
list_for_each_entry(cis, &s->cis_cache, node) {
|
|
int len = cis->len;
|
|
|
|
if (len > 256)
|
|
len = 256;
|
|
|
|
ret = pcmcia_read_cis_mem(s, cis->attr, cis->addr, len, buf);
|
|
if (ret || memcmp(buf, cis->cache, len) != 0) {
|
|
kfree(buf);
|
|
mutex_unlock(&s->ops_mutex);
|
|
return -1;
|
|
}
|
|
}
|
|
kfree(buf);
|
|
mutex_unlock(&s->ops_mutex);
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* pcmcia_replace_cis() - use a replacement CIS instead of the card's CIS
|
|
*
|
|
* For really bad cards, we provide a facility for uploading a
|
|
* replacement CIS.
|
|
*/
|
|
int pcmcia_replace_cis(struct pcmcia_socket *s,
|
|
const u8 *data, const size_t len)
|
|
{
|
|
if (len > CISTPL_MAX_CIS_SIZE) {
|
|
dev_warn(&s->dev, "replacement CIS too big\n");
|
|
return -EINVAL;
|
|
}
|
|
mutex_lock(&s->ops_mutex);
|
|
kfree(s->fake_cis);
|
|
s->fake_cis = kmalloc(len, GFP_KERNEL);
|
|
if (s->fake_cis == NULL) {
|
|
dev_warn(&s->dev, "no memory to replace CIS\n");
|
|
mutex_unlock(&s->ops_mutex);
|
|
return -ENOMEM;
|
|
}
|
|
s->fake_cis_len = len;
|
|
memcpy(s->fake_cis, data, len);
|
|
dev_info(&s->dev, "Using replacement CIS\n");
|
|
mutex_unlock(&s->ops_mutex);
|
|
return 0;
|
|
}
|
|
|
|
/* The high-level CIS tuple services */
|
|
|
|
struct tuple_flags {
|
|
u_int link_space:4;
|
|
u_int has_link:1;
|
|
u_int mfc_fn:3;
|
|
u_int space:4;
|
|
};
|
|
|
|
#define LINK_SPACE(f) (((struct tuple_flags *)(&(f)))->link_space)
|
|
#define HAS_LINK(f) (((struct tuple_flags *)(&(f)))->has_link)
|
|
#define MFC_FN(f) (((struct tuple_flags *)(&(f)))->mfc_fn)
|
|
#define SPACE(f) (((struct tuple_flags *)(&(f)))->space)
|
|
|
|
int pccard_get_first_tuple(struct pcmcia_socket *s, unsigned int function,
|
|
tuple_t *tuple)
|
|
{
|
|
if (!s)
|
|
return -EINVAL;
|
|
|
|
if (!(s->state & SOCKET_PRESENT) || (s->state & SOCKET_CARDBUS))
|
|
return -ENODEV;
|
|
tuple->TupleLink = tuple->Flags = 0;
|
|
|
|
/* Assume presence of a LONGLINK_C to address 0 */
|
|
tuple->CISOffset = tuple->LinkOffset = 0;
|
|
SPACE(tuple->Flags) = HAS_LINK(tuple->Flags) = 1;
|
|
|
|
if ((s->functions > 1) && !(tuple->Attributes & TUPLE_RETURN_COMMON)) {
|
|
cisdata_t req = tuple->DesiredTuple;
|
|
tuple->DesiredTuple = CISTPL_LONGLINK_MFC;
|
|
if (pccard_get_next_tuple(s, function, tuple) == 0) {
|
|
tuple->DesiredTuple = CISTPL_LINKTARGET;
|
|
if (pccard_get_next_tuple(s, function, tuple) != 0)
|
|
return -ENOSPC;
|
|
} else
|
|
tuple->CISOffset = tuple->TupleLink = 0;
|
|
tuple->DesiredTuple = req;
|
|
}
|
|
return pccard_get_next_tuple(s, function, tuple);
|
|
}
|
|
|
|
static int follow_link(struct pcmcia_socket *s, tuple_t *tuple)
|
|
{
|
|
u_char link[5];
|
|
u_int ofs;
|
|
int ret;
|
|
|
|
if (MFC_FN(tuple->Flags)) {
|
|
/* Get indirect link from the MFC tuple */
|
|
ret = read_cis_cache(s, LINK_SPACE(tuple->Flags),
|
|
tuple->LinkOffset, 5, link);
|
|
if (ret)
|
|
return -1;
|
|
ofs = get_unaligned_le32(link + 1);
|
|
SPACE(tuple->Flags) = (link[0] == CISTPL_MFC_ATTR);
|
|
/* Move to the next indirect link */
|
|
tuple->LinkOffset += 5;
|
|
MFC_FN(tuple->Flags)--;
|
|
} else if (HAS_LINK(tuple->Flags)) {
|
|
ofs = tuple->LinkOffset;
|
|
SPACE(tuple->Flags) = LINK_SPACE(tuple->Flags);
|
|
HAS_LINK(tuple->Flags) = 0;
|
|
} else
|
|
return -1;
|
|
|
|
if (SPACE(tuple->Flags)) {
|
|
/* This is ugly, but a common CIS error is to code the long
|
|
link offset incorrectly, so we check the right spot... */
|
|
ret = read_cis_cache(s, SPACE(tuple->Flags), ofs, 5, link);
|
|
if (ret)
|
|
return -1;
|
|
if ((link[0] == CISTPL_LINKTARGET) && (link[1] >= 3) &&
|
|
(strncmp(link+2, "CIS", 3) == 0))
|
|
return ofs;
|
|
remove_cis_cache(s, SPACE(tuple->Flags), ofs, 5);
|
|
/* Then, we try the wrong spot... */
|
|
ofs = ofs >> 1;
|
|
}
|
|
ret = read_cis_cache(s, SPACE(tuple->Flags), ofs, 5, link);
|
|
if (ret)
|
|
return -1;
|
|
if ((link[0] == CISTPL_LINKTARGET) && (link[1] >= 3) &&
|
|
(strncmp(link+2, "CIS", 3) == 0))
|
|
return ofs;
|
|
remove_cis_cache(s, SPACE(tuple->Flags), ofs, 5);
|
|
return -1;
|
|
}
|
|
|
|
int pccard_get_next_tuple(struct pcmcia_socket *s, unsigned int function,
|
|
tuple_t *tuple)
|
|
{
|
|
u_char link[2], tmp;
|
|
int ofs, i, attr;
|
|
int ret;
|
|
|
|
if (!s)
|
|
return -EINVAL;
|
|
if (!(s->state & SOCKET_PRESENT) || (s->state & SOCKET_CARDBUS))
|
|
return -ENODEV;
|
|
|
|
link[1] = tuple->TupleLink;
|
|
ofs = tuple->CISOffset + tuple->TupleLink;
|
|
attr = SPACE(tuple->Flags);
|
|
|
|
for (i = 0; i < MAX_TUPLES; i++) {
|
|
if (link[1] == 0xff)
|
|
link[0] = CISTPL_END;
|
|
else {
|
|
ret = read_cis_cache(s, attr, ofs, 2, link);
|
|
if (ret)
|
|
return -1;
|
|
if (link[0] == CISTPL_NULL) {
|
|
ofs++;
|
|
continue;
|
|
}
|
|
}
|
|
|
|
/* End of chain? Follow long link if possible */
|
|
if (link[0] == CISTPL_END) {
|
|
ofs = follow_link(s, tuple);
|
|
if (ofs < 0)
|
|
return -ENOSPC;
|
|
attr = SPACE(tuple->Flags);
|
|
ret = read_cis_cache(s, attr, ofs, 2, link);
|
|
if (ret)
|
|
return -1;
|
|
}
|
|
|
|
/* Is this a link tuple? Make a note of it */
|
|
if ((link[0] == CISTPL_LONGLINK_A) ||
|
|
(link[0] == CISTPL_LONGLINK_C) ||
|
|
(link[0] == CISTPL_LONGLINK_MFC) ||
|
|
(link[0] == CISTPL_LINKTARGET) ||
|
|
(link[0] == CISTPL_INDIRECT) ||
|
|
(link[0] == CISTPL_NO_LINK)) {
|
|
switch (link[0]) {
|
|
case CISTPL_LONGLINK_A:
|
|
HAS_LINK(tuple->Flags) = 1;
|
|
LINK_SPACE(tuple->Flags) = attr | IS_ATTR;
|
|
ret = read_cis_cache(s, attr, ofs+2, 4,
|
|
&tuple->LinkOffset);
|
|
if (ret)
|
|
return -1;
|
|
break;
|
|
case CISTPL_LONGLINK_C:
|
|
HAS_LINK(tuple->Flags) = 1;
|
|
LINK_SPACE(tuple->Flags) = attr & ~IS_ATTR;
|
|
ret = read_cis_cache(s, attr, ofs+2, 4,
|
|
&tuple->LinkOffset);
|
|
if (ret)
|
|
return -1;
|
|
break;
|
|
case CISTPL_INDIRECT:
|
|
HAS_LINK(tuple->Flags) = 1;
|
|
LINK_SPACE(tuple->Flags) = IS_ATTR |
|
|
IS_INDIRECT;
|
|
tuple->LinkOffset = 0;
|
|
break;
|
|
case CISTPL_LONGLINK_MFC:
|
|
tuple->LinkOffset = ofs + 3;
|
|
LINK_SPACE(tuple->Flags) = attr;
|
|
if (function == BIND_FN_ALL) {
|
|
/* Follow all the MFC links */
|
|
ret = read_cis_cache(s, attr, ofs+2,
|
|
1, &tmp);
|
|
if (ret)
|
|
return -1;
|
|
MFC_FN(tuple->Flags) = tmp;
|
|
} else {
|
|
/* Follow exactly one of the links */
|
|
MFC_FN(tuple->Flags) = 1;
|
|
tuple->LinkOffset += function * 5;
|
|
}
|
|
break;
|
|
case CISTPL_NO_LINK:
|
|
HAS_LINK(tuple->Flags) = 0;
|
|
break;
|
|
}
|
|
if ((tuple->Attributes & TUPLE_RETURN_LINK) &&
|
|
(tuple->DesiredTuple == RETURN_FIRST_TUPLE))
|
|
break;
|
|
} else
|
|
if (tuple->DesiredTuple == RETURN_FIRST_TUPLE)
|
|
break;
|
|
|
|
if (link[0] == tuple->DesiredTuple)
|
|
break;
|
|
ofs += link[1] + 2;
|
|
}
|
|
if (i == MAX_TUPLES) {
|
|
dev_dbg(&s->dev, "cs: overrun in pcmcia_get_next_tuple\n");
|
|
return -ENOSPC;
|
|
}
|
|
|
|
tuple->TupleCode = link[0];
|
|
tuple->TupleLink = link[1];
|
|
tuple->CISOffset = ofs + 2;
|
|
return 0;
|
|
}
|
|
|
|
int pccard_get_tuple_data(struct pcmcia_socket *s, tuple_t *tuple)
|
|
{
|
|
u_int len;
|
|
int ret;
|
|
|
|
if (!s)
|
|
return -EINVAL;
|
|
|
|
if (tuple->TupleLink < tuple->TupleOffset)
|
|
return -ENOSPC;
|
|
len = tuple->TupleLink - tuple->TupleOffset;
|
|
tuple->TupleDataLen = tuple->TupleLink;
|
|
if (len == 0)
|
|
return 0;
|
|
ret = read_cis_cache(s, SPACE(tuple->Flags),
|
|
tuple->CISOffset + tuple->TupleOffset,
|
|
min(len, (u_int) tuple->TupleDataMax),
|
|
tuple->TupleData);
|
|
if (ret)
|
|
return -1;
|
|
return 0;
|
|
}
|
|
|
|
|
|
/* Parsing routines for individual tuples */
|
|
|
|
static int parse_device(tuple_t *tuple, cistpl_device_t *device)
|
|
{
|
|
int i;
|
|
u_char scale;
|
|
u_char *p, *q;
|
|
|
|
p = (u_char *)tuple->TupleData;
|
|
q = p + tuple->TupleDataLen;
|
|
|
|
device->ndev = 0;
|
|
for (i = 0; i < CISTPL_MAX_DEVICES; i++) {
|
|
|
|
if (*p == 0xff)
|
|
break;
|
|
device->dev[i].type = (*p >> 4);
|
|
device->dev[i].wp = (*p & 0x08) ? 1 : 0;
|
|
switch (*p & 0x07) {
|
|
case 0:
|
|
device->dev[i].speed = 0;
|
|
break;
|
|
case 1:
|
|
device->dev[i].speed = 250;
|
|
break;
|
|
case 2:
|
|
device->dev[i].speed = 200;
|
|
break;
|
|
case 3:
|
|
device->dev[i].speed = 150;
|
|
break;
|
|
case 4:
|
|
device->dev[i].speed = 100;
|
|
break;
|
|
case 7:
|
|
if (++p == q)
|
|
return -EINVAL;
|
|
device->dev[i].speed = SPEED_CVT(*p);
|
|
while (*p & 0x80)
|
|
if (++p == q)
|
|
return -EINVAL;
|
|
break;
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (++p == q)
|
|
return -EINVAL;
|
|
if (*p == 0xff)
|
|
break;
|
|
scale = *p & 7;
|
|
if (scale == 7)
|
|
return -EINVAL;
|
|
device->dev[i].size = ((*p >> 3) + 1) * (512 << (scale*2));
|
|
device->ndev++;
|
|
if (++p == q)
|
|
break;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
static int parse_checksum(tuple_t *tuple, cistpl_checksum_t *csum)
|
|
{
|
|
u_char *p;
|
|
if (tuple->TupleDataLen < 5)
|
|
return -EINVAL;
|
|
p = (u_char *) tuple->TupleData;
|
|
csum->addr = tuple->CISOffset + get_unaligned_le16(p) - 2;
|
|
csum->len = get_unaligned_le16(p + 2);
|
|
csum->sum = *(p + 4);
|
|
return 0;
|
|
}
|
|
|
|
|
|
static int parse_longlink(tuple_t *tuple, cistpl_longlink_t *link)
|
|
{
|
|
if (tuple->TupleDataLen < 4)
|
|
return -EINVAL;
|
|
link->addr = get_unaligned_le32(tuple->TupleData);
|
|
return 0;
|
|
}
|
|
|
|
|
|
static int parse_longlink_mfc(tuple_t *tuple, cistpl_longlink_mfc_t *link)
|
|
{
|
|
u_char *p;
|
|
int i;
|
|
|
|
p = (u_char *)tuple->TupleData;
|
|
|
|
link->nfn = *p; p++;
|
|
if (tuple->TupleDataLen <= link->nfn*5)
|
|
return -EINVAL;
|
|
for (i = 0; i < link->nfn; i++) {
|
|
link->fn[i].space = *p; p++;
|
|
link->fn[i].addr = get_unaligned_le32(p);
|
|
p += 4;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
|
|
static int parse_strings(u_char *p, u_char *q, int max,
|
|
char *s, u_char *ofs, u_char *found)
|
|
{
|
|
int i, j, ns;
|
|
|
|
if (p == q)
|
|
return -EINVAL;
|
|
ns = 0; j = 0;
|
|
for (i = 0; i < max; i++) {
|
|
if (*p == 0xff)
|
|
break;
|
|
ofs[i] = j;
|
|
ns++;
|
|
for (;;) {
|
|
s[j++] = (*p == 0xff) ? '\0' : *p;
|
|
if ((*p == '\0') || (*p == 0xff))
|
|
break;
|
|
if (++p == q)
|
|
return -EINVAL;
|
|
}
|
|
if ((*p == 0xff) || (++p == q))
|
|
break;
|
|
}
|
|
if (found) {
|
|
*found = ns;
|
|
return 0;
|
|
}
|
|
|
|
return (ns == max) ? 0 : -EINVAL;
|
|
}
|
|
|
|
|
|
static int parse_vers_1(tuple_t *tuple, cistpl_vers_1_t *vers_1)
|
|
{
|
|
u_char *p, *q;
|
|
|
|
p = (u_char *)tuple->TupleData;
|
|
q = p + tuple->TupleDataLen;
|
|
|
|
vers_1->major = *p; p++;
|
|
vers_1->minor = *p; p++;
|
|
if (p >= q)
|
|
return -EINVAL;
|
|
|
|
return parse_strings(p, q, CISTPL_VERS_1_MAX_PROD_STRINGS,
|
|
vers_1->str, vers_1->ofs, &vers_1->ns);
|
|
}
|
|
|
|
|
|
static int parse_altstr(tuple_t *tuple, cistpl_altstr_t *altstr)
|
|
{
|
|
u_char *p, *q;
|
|
|
|
p = (u_char *)tuple->TupleData;
|
|
q = p + tuple->TupleDataLen;
|
|
|
|
return parse_strings(p, q, CISTPL_MAX_ALTSTR_STRINGS,
|
|
altstr->str, altstr->ofs, &altstr->ns);
|
|
}
|
|
|
|
|
|
static int parse_jedec(tuple_t *tuple, cistpl_jedec_t *jedec)
|
|
{
|
|
u_char *p, *q;
|
|
int nid;
|
|
|
|
p = (u_char *)tuple->TupleData;
|
|
q = p + tuple->TupleDataLen;
|
|
|
|
for (nid = 0; nid < CISTPL_MAX_DEVICES; nid++) {
|
|
if (p > q-2)
|
|
break;
|
|
jedec->id[nid].mfr = p[0];
|
|
jedec->id[nid].info = p[1];
|
|
p += 2;
|
|
}
|
|
jedec->nid = nid;
|
|
return 0;
|
|
}
|
|
|
|
|
|
static int parse_manfid(tuple_t *tuple, cistpl_manfid_t *m)
|
|
{
|
|
if (tuple->TupleDataLen < 4)
|
|
return -EINVAL;
|
|
m->manf = get_unaligned_le16(tuple->TupleData);
|
|
m->card = get_unaligned_le16(tuple->TupleData + 2);
|
|
return 0;
|
|
}
|
|
|
|
|
|
static int parse_funcid(tuple_t *tuple, cistpl_funcid_t *f)
|
|
{
|
|
u_char *p;
|
|
if (tuple->TupleDataLen < 2)
|
|
return -EINVAL;
|
|
p = (u_char *)tuple->TupleData;
|
|
f->func = p[0];
|
|
f->sysinit = p[1];
|
|
return 0;
|
|
}
|
|
|
|
|
|
static int parse_funce(tuple_t *tuple, cistpl_funce_t *f)
|
|
{
|
|
u_char *p;
|
|
int i;
|
|
if (tuple->TupleDataLen < 1)
|
|
return -EINVAL;
|
|
p = (u_char *)tuple->TupleData;
|
|
f->type = p[0];
|
|
for (i = 1; i < tuple->TupleDataLen; i++)
|
|
f->data[i-1] = p[i];
|
|
return 0;
|
|
}
|
|
|
|
|
|
static int parse_config(tuple_t *tuple, cistpl_config_t *config)
|
|
{
|
|
int rasz, rmsz, i;
|
|
u_char *p;
|
|
|
|
p = (u_char *)tuple->TupleData;
|
|
rasz = *p & 0x03;
|
|
rmsz = (*p & 0x3c) >> 2;
|
|
if (tuple->TupleDataLen < rasz+rmsz+4)
|
|
return -EINVAL;
|
|
config->last_idx = *(++p);
|
|
p++;
|
|
config->base = 0;
|
|
for (i = 0; i <= rasz; i++)
|
|
config->base += p[i] << (8*i);
|
|
p += rasz+1;
|
|
for (i = 0; i < 4; i++)
|
|
config->rmask[i] = 0;
|
|
for (i = 0; i <= rmsz; i++)
|
|
config->rmask[i>>2] += p[i] << (8*(i%4));
|
|
config->subtuples = tuple->TupleDataLen - (rasz+rmsz+4);
|
|
return 0;
|
|
}
|
|
|
|
/* The following routines are all used to parse the nightmarish
|
|
* config table entries.
|
|
*/
|
|
|
|
static u_char *parse_power(u_char *p, u_char *q, cistpl_power_t *pwr)
|
|
{
|
|
int i;
|
|
u_int scale;
|
|
|
|
if (p == q)
|
|
return NULL;
|
|
pwr->present = *p;
|
|
pwr->flags = 0;
|
|
p++;
|
|
for (i = 0; i < 7; i++)
|
|
if (pwr->present & (1<<i)) {
|
|
if (p == q)
|
|
return NULL;
|
|
pwr->param[i] = POWER_CVT(*p);
|
|
scale = POWER_SCALE(*p);
|
|
while (*p & 0x80) {
|
|
if (++p == q)
|
|
return NULL;
|
|
if ((*p & 0x7f) < 100)
|
|
pwr->param[i] +=
|
|
(*p & 0x7f) * scale / 100;
|
|
else if (*p == 0x7d)
|
|
pwr->flags |= CISTPL_POWER_HIGHZ_OK;
|
|
else if (*p == 0x7e)
|
|
pwr->param[i] = 0;
|
|
else if (*p == 0x7f)
|
|
pwr->flags |= CISTPL_POWER_HIGHZ_REQ;
|
|
else
|
|
return NULL;
|
|
}
|
|
p++;
|
|
}
|
|
return p;
|
|
}
|
|
|
|
|
|
static u_char *parse_timing(u_char *p, u_char *q, cistpl_timing_t *timing)
|
|
{
|
|
u_char scale;
|
|
|
|
if (p == q)
|
|
return NULL;
|
|
scale = *p;
|
|
if ((scale & 3) != 3) {
|
|
if (++p == q)
|
|
return NULL;
|
|
timing->wait = SPEED_CVT(*p);
|
|
timing->waitscale = exponent[scale & 3];
|
|
} else
|
|
timing->wait = 0;
|
|
scale >>= 2;
|
|
if ((scale & 7) != 7) {
|
|
if (++p == q)
|
|
return NULL;
|
|
timing->ready = SPEED_CVT(*p);
|
|
timing->rdyscale = exponent[scale & 7];
|
|
} else
|
|
timing->ready = 0;
|
|
scale >>= 3;
|
|
if (scale != 7) {
|
|
if (++p == q)
|
|
return NULL;
|
|
timing->reserved = SPEED_CVT(*p);
|
|
timing->rsvscale = exponent[scale];
|
|
} else
|
|
timing->reserved = 0;
|
|
p++;
|
|
return p;
|
|
}
|
|
|
|
|
|
static u_char *parse_io(u_char *p, u_char *q, cistpl_io_t *io)
|
|
{
|
|
int i, j, bsz, lsz;
|
|
|
|
if (p == q)
|
|
return NULL;
|
|
io->flags = *p;
|
|
|
|
if (!(*p & 0x80)) {
|
|
io->nwin = 1;
|
|
io->win[0].base = 0;
|
|
io->win[0].len = (1 << (io->flags & CISTPL_IO_LINES_MASK));
|
|
return p+1;
|
|
}
|
|
|
|
if (++p == q)
|
|
return NULL;
|
|
io->nwin = (*p & 0x0f) + 1;
|
|
bsz = (*p & 0x30) >> 4;
|
|
if (bsz == 3)
|
|
bsz++;
|
|
lsz = (*p & 0xc0) >> 6;
|
|
if (lsz == 3)
|
|
lsz++;
|
|
p++;
|
|
|
|
for (i = 0; i < io->nwin; i++) {
|
|
io->win[i].base = 0;
|
|
io->win[i].len = 1;
|
|
for (j = 0; j < bsz; j++, p++) {
|
|
if (p == q)
|
|
return NULL;
|
|
io->win[i].base += *p << (j*8);
|
|
}
|
|
for (j = 0; j < lsz; j++, p++) {
|
|
if (p == q)
|
|
return NULL;
|
|
io->win[i].len += *p << (j*8);
|
|
}
|
|
}
|
|
return p;
|
|
}
|
|
|
|
|
|
static u_char *parse_mem(u_char *p, u_char *q, cistpl_mem_t *mem)
|
|
{
|
|
int i, j, asz, lsz, has_ha;
|
|
u_int len, ca, ha;
|
|
|
|
if (p == q)
|
|
return NULL;
|
|
|
|
mem->nwin = (*p & 0x07) + 1;
|
|
lsz = (*p & 0x18) >> 3;
|
|
asz = (*p & 0x60) >> 5;
|
|
has_ha = (*p & 0x80);
|
|
if (++p == q)
|
|
return NULL;
|
|
|
|
for (i = 0; i < mem->nwin; i++) {
|
|
len = ca = ha = 0;
|
|
for (j = 0; j < lsz; j++, p++) {
|
|
if (p == q)
|
|
return NULL;
|
|
len += *p << (j*8);
|
|
}
|
|
for (j = 0; j < asz; j++, p++) {
|
|
if (p == q)
|
|
return NULL;
|
|
ca += *p << (j*8);
|
|
}
|
|
if (has_ha)
|
|
for (j = 0; j < asz; j++, p++) {
|
|
if (p == q)
|
|
return NULL;
|
|
ha += *p << (j*8);
|
|
}
|
|
mem->win[i].len = len << 8;
|
|
mem->win[i].card_addr = ca << 8;
|
|
mem->win[i].host_addr = ha << 8;
|
|
}
|
|
return p;
|
|
}
|
|
|
|
|
|
static u_char *parse_irq(u_char *p, u_char *q, cistpl_irq_t *irq)
|
|
{
|
|
if (p == q)
|
|
return NULL;
|
|
irq->IRQInfo1 = *p; p++;
|
|
if (irq->IRQInfo1 & IRQ_INFO2_VALID) {
|
|
if (p+2 > q)
|
|
return NULL;
|
|
irq->IRQInfo2 = (p[1]<<8) + p[0];
|
|
p += 2;
|
|
}
|
|
return p;
|
|
}
|
|
|
|
|
|
static int parse_cftable_entry(tuple_t *tuple,
|
|
cistpl_cftable_entry_t *entry)
|
|
{
|
|
u_char *p, *q, features;
|
|
|
|
p = tuple->TupleData;
|
|
q = p + tuple->TupleDataLen;
|
|
entry->index = *p & 0x3f;
|
|
entry->flags = 0;
|
|
if (*p & 0x40)
|
|
entry->flags |= CISTPL_CFTABLE_DEFAULT;
|
|
if (*p & 0x80) {
|
|
if (++p == q)
|
|
return -EINVAL;
|
|
if (*p & 0x10)
|
|
entry->flags |= CISTPL_CFTABLE_BVDS;
|
|
if (*p & 0x20)
|
|
entry->flags |= CISTPL_CFTABLE_WP;
|
|
if (*p & 0x40)
|
|
entry->flags |= CISTPL_CFTABLE_RDYBSY;
|
|
if (*p & 0x80)
|
|
entry->flags |= CISTPL_CFTABLE_MWAIT;
|
|
entry->interface = *p & 0x0f;
|
|
} else
|
|
entry->interface = 0;
|
|
|
|
/* Process optional features */
|
|
if (++p == q)
|
|
return -EINVAL;
|
|
features = *p; p++;
|
|
|
|
/* Power options */
|
|
if ((features & 3) > 0) {
|
|
p = parse_power(p, q, &entry->vcc);
|
|
if (p == NULL)
|
|
return -EINVAL;
|
|
} else
|
|
entry->vcc.present = 0;
|
|
if ((features & 3) > 1) {
|
|
p = parse_power(p, q, &entry->vpp1);
|
|
if (p == NULL)
|
|
return -EINVAL;
|
|
} else
|
|
entry->vpp1.present = 0;
|
|
if ((features & 3) > 2) {
|
|
p = parse_power(p, q, &entry->vpp2);
|
|
if (p == NULL)
|
|
return -EINVAL;
|
|
} else
|
|
entry->vpp2.present = 0;
|
|
|
|
/* Timing options */
|
|
if (features & 0x04) {
|
|
p = parse_timing(p, q, &entry->timing);
|
|
if (p == NULL)
|
|
return -EINVAL;
|
|
} else {
|
|
entry->timing.wait = 0;
|
|
entry->timing.ready = 0;
|
|
entry->timing.reserved = 0;
|
|
}
|
|
|
|
/* I/O window options */
|
|
if (features & 0x08) {
|
|
p = parse_io(p, q, &entry->io);
|
|
if (p == NULL)
|
|
return -EINVAL;
|
|
} else
|
|
entry->io.nwin = 0;
|
|
|
|
/* Interrupt options */
|
|
if (features & 0x10) {
|
|
p = parse_irq(p, q, &entry->irq);
|
|
if (p == NULL)
|
|
return -EINVAL;
|
|
} else
|
|
entry->irq.IRQInfo1 = 0;
|
|
|
|
switch (features & 0x60) {
|
|
case 0x00:
|
|
entry->mem.nwin = 0;
|
|
break;
|
|
case 0x20:
|
|
entry->mem.nwin = 1;
|
|
entry->mem.win[0].len = get_unaligned_le16(p) << 8;
|
|
entry->mem.win[0].card_addr = 0;
|
|
entry->mem.win[0].host_addr = 0;
|
|
p += 2;
|
|
if (p > q)
|
|
return -EINVAL;
|
|
break;
|
|
case 0x40:
|
|
entry->mem.nwin = 1;
|
|
entry->mem.win[0].len = get_unaligned_le16(p) << 8;
|
|
entry->mem.win[0].card_addr = get_unaligned_le16(p + 2) << 8;
|
|
entry->mem.win[0].host_addr = 0;
|
|
p += 4;
|
|
if (p > q)
|
|
return -EINVAL;
|
|
break;
|
|
case 0x60:
|
|
p = parse_mem(p, q, &entry->mem);
|
|
if (p == NULL)
|
|
return -EINVAL;
|
|
break;
|
|
}
|
|
|
|
/* Misc features */
|
|
if (features & 0x80) {
|
|
if (p == q)
|
|
return -EINVAL;
|
|
entry->flags |= (*p << 8);
|
|
while (*p & 0x80)
|
|
if (++p == q)
|
|
return -EINVAL;
|
|
p++;
|
|
}
|
|
|
|
entry->subtuples = q-p;
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
static int parse_device_geo(tuple_t *tuple, cistpl_device_geo_t *geo)
|
|
{
|
|
u_char *p, *q;
|
|
int n;
|
|
|
|
p = (u_char *)tuple->TupleData;
|
|
q = p + tuple->TupleDataLen;
|
|
|
|
for (n = 0; n < CISTPL_MAX_DEVICES; n++) {
|
|
if (p > q-6)
|
|
break;
|
|
geo->geo[n].buswidth = p[0];
|
|
geo->geo[n].erase_block = 1 << (p[1]-1);
|
|
geo->geo[n].read_block = 1 << (p[2]-1);
|
|
geo->geo[n].write_block = 1 << (p[3]-1);
|
|
geo->geo[n].partition = 1 << (p[4]-1);
|
|
geo->geo[n].interleave = 1 << (p[5]-1);
|
|
p += 6;
|
|
}
|
|
geo->ngeo = n;
|
|
return 0;
|
|
}
|
|
|
|
|
|
static int parse_vers_2(tuple_t *tuple, cistpl_vers_2_t *v2)
|
|
{
|
|
u_char *p, *q;
|
|
|
|
if (tuple->TupleDataLen < 10)
|
|
return -EINVAL;
|
|
|
|
p = tuple->TupleData;
|
|
q = p + tuple->TupleDataLen;
|
|
|
|
v2->vers = p[0];
|
|
v2->comply = p[1];
|
|
v2->dindex = get_unaligned_le16(p + 2);
|
|
v2->vspec8 = p[6];
|
|
v2->vspec9 = p[7];
|
|
v2->nhdr = p[8];
|
|
p += 9;
|
|
return parse_strings(p, q, 2, v2->str, &v2->vendor, NULL);
|
|
}
|
|
|
|
|
|
static int parse_org(tuple_t *tuple, cistpl_org_t *org)
|
|
{
|
|
u_char *p, *q;
|
|
int i;
|
|
|
|
p = tuple->TupleData;
|
|
q = p + tuple->TupleDataLen;
|
|
if (p == q)
|
|
return -EINVAL;
|
|
org->data_org = *p;
|
|
if (++p == q)
|
|
return -EINVAL;
|
|
for (i = 0; i < 30; i++) {
|
|
org->desc[i] = *p;
|
|
if (*p == '\0')
|
|
break;
|
|
if (++p == q)
|
|
return -EINVAL;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
|
|
static int parse_format(tuple_t *tuple, cistpl_format_t *fmt)
|
|
{
|
|
u_char *p;
|
|
|
|
if (tuple->TupleDataLen < 10)
|
|
return -EINVAL;
|
|
|
|
p = tuple->TupleData;
|
|
|
|
fmt->type = p[0];
|
|
fmt->edc = p[1];
|
|
fmt->offset = get_unaligned_le32(p + 2);
|
|
fmt->length = get_unaligned_le32(p + 6);
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
int pcmcia_parse_tuple(tuple_t *tuple, cisparse_t *parse)
|
|
{
|
|
int ret = 0;
|
|
|
|
if (tuple->TupleDataLen > tuple->TupleDataMax)
|
|
return -EINVAL;
|
|
switch (tuple->TupleCode) {
|
|
case CISTPL_DEVICE:
|
|
case CISTPL_DEVICE_A:
|
|
ret = parse_device(tuple, &parse->device);
|
|
break;
|
|
case CISTPL_CHECKSUM:
|
|
ret = parse_checksum(tuple, &parse->checksum);
|
|
break;
|
|
case CISTPL_LONGLINK_A:
|
|
case CISTPL_LONGLINK_C:
|
|
ret = parse_longlink(tuple, &parse->longlink);
|
|
break;
|
|
case CISTPL_LONGLINK_MFC:
|
|
ret = parse_longlink_mfc(tuple, &parse->longlink_mfc);
|
|
break;
|
|
case CISTPL_VERS_1:
|
|
ret = parse_vers_1(tuple, &parse->version_1);
|
|
break;
|
|
case CISTPL_ALTSTR:
|
|
ret = parse_altstr(tuple, &parse->altstr);
|
|
break;
|
|
case CISTPL_JEDEC_A:
|
|
case CISTPL_JEDEC_C:
|
|
ret = parse_jedec(tuple, &parse->jedec);
|
|
break;
|
|
case CISTPL_MANFID:
|
|
ret = parse_manfid(tuple, &parse->manfid);
|
|
break;
|
|
case CISTPL_FUNCID:
|
|
ret = parse_funcid(tuple, &parse->funcid);
|
|
break;
|
|
case CISTPL_FUNCE:
|
|
ret = parse_funce(tuple, &parse->funce);
|
|
break;
|
|
case CISTPL_CONFIG:
|
|
ret = parse_config(tuple, &parse->config);
|
|
break;
|
|
case CISTPL_CFTABLE_ENTRY:
|
|
ret = parse_cftable_entry(tuple, &parse->cftable_entry);
|
|
break;
|
|
case CISTPL_DEVICE_GEO:
|
|
case CISTPL_DEVICE_GEO_A:
|
|
ret = parse_device_geo(tuple, &parse->device_geo);
|
|
break;
|
|
case CISTPL_VERS_2:
|
|
ret = parse_vers_2(tuple, &parse->vers_2);
|
|
break;
|
|
case CISTPL_ORG:
|
|
ret = parse_org(tuple, &parse->org);
|
|
break;
|
|
case CISTPL_FORMAT:
|
|
case CISTPL_FORMAT_A:
|
|
ret = parse_format(tuple, &parse->format);
|
|
break;
|
|
case CISTPL_NO_LINK:
|
|
case CISTPL_LINKTARGET:
|
|
ret = 0;
|
|
break;
|
|
default:
|
|
ret = -EINVAL;
|
|
break;
|
|
}
|
|
if (ret)
|
|
pr_debug("parse_tuple failed %d\n", ret);
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL(pcmcia_parse_tuple);
|
|
|
|
|
|
/**
|
|
* pccard_validate_cis() - check whether card has a sensible CIS
|
|
* @s: the struct pcmcia_socket we are to check
|
|
* @info: returns the number of tuples in the (valid) CIS, or 0
|
|
*
|
|
* This tries to determine if a card has a sensible CIS. In @info, it
|
|
* returns the number of tuples in the CIS, or 0 if the CIS looks bad. The
|
|
* checks include making sure several critical tuples are present and
|
|
* valid; seeing if the total number of tuples is reasonable; and
|
|
* looking for tuples that use reserved codes.
|
|
*
|
|
* The function returns 0 on success.
|
|
*/
|
|
int pccard_validate_cis(struct pcmcia_socket *s, unsigned int *info)
|
|
{
|
|
tuple_t *tuple;
|
|
cisparse_t *p;
|
|
unsigned int count = 0;
|
|
int ret, reserved, dev_ok = 0, ident_ok = 0;
|
|
|
|
if (!s)
|
|
return -EINVAL;
|
|
|
|
if (s->functions || !(s->state & SOCKET_PRESENT)) {
|
|
WARN_ON(1);
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* We do not want to validate the CIS cache... */
|
|
mutex_lock(&s->ops_mutex);
|
|
destroy_cis_cache(s);
|
|
mutex_unlock(&s->ops_mutex);
|
|
|
|
tuple = kmalloc(sizeof(*tuple), GFP_KERNEL);
|
|
if (tuple == NULL) {
|
|
dev_warn(&s->dev, "no memory to validate CIS\n");
|
|
return -ENOMEM;
|
|
}
|
|
p = kmalloc(sizeof(*p), GFP_KERNEL);
|
|
if (p == NULL) {
|
|
kfree(tuple);
|
|
dev_warn(&s->dev, "no memory to validate CIS\n");
|
|
return -ENOMEM;
|
|
}
|
|
|
|
count = reserved = 0;
|
|
tuple->DesiredTuple = RETURN_FIRST_TUPLE;
|
|
tuple->Attributes = TUPLE_RETURN_COMMON;
|
|
ret = pccard_get_first_tuple(s, BIND_FN_ALL, tuple);
|
|
if (ret != 0)
|
|
goto done;
|
|
|
|
/* First tuple should be DEVICE; we should really have either that
|
|
or a CFTABLE_ENTRY of some sort */
|
|
if ((tuple->TupleCode == CISTPL_DEVICE) ||
|
|
(!pccard_read_tuple(s, BIND_FN_ALL, CISTPL_CFTABLE_ENTRY, p)) ||
|
|
(!pccard_read_tuple(s, BIND_FN_ALL, CISTPL_CFTABLE_ENTRY_CB, p)))
|
|
dev_ok++;
|
|
|
|
/* All cards should have a MANFID tuple, and/or a VERS_1 or VERS_2
|
|
tuple, for card identification. Certain old D-Link and Linksys
|
|
cards have only a broken VERS_2 tuple; hence the bogus test. */
|
|
if ((pccard_read_tuple(s, BIND_FN_ALL, CISTPL_MANFID, p) == 0) ||
|
|
(pccard_read_tuple(s, BIND_FN_ALL, CISTPL_VERS_1, p) == 0) ||
|
|
(pccard_read_tuple(s, BIND_FN_ALL, CISTPL_VERS_2, p) != -ENOSPC))
|
|
ident_ok++;
|
|
|
|
if (!dev_ok && !ident_ok)
|
|
goto done;
|
|
|
|
for (count = 1; count < MAX_TUPLES; count++) {
|
|
ret = pccard_get_next_tuple(s, BIND_FN_ALL, tuple);
|
|
if (ret != 0)
|
|
break;
|
|
if (((tuple->TupleCode > 0x23) && (tuple->TupleCode < 0x40)) ||
|
|
((tuple->TupleCode > 0x47) && (tuple->TupleCode < 0x80)) ||
|
|
((tuple->TupleCode > 0x90) && (tuple->TupleCode < 0xff)))
|
|
reserved++;
|
|
}
|
|
if ((count == MAX_TUPLES) || (reserved > 5) ||
|
|
((!dev_ok || !ident_ok) && (count > 10)))
|
|
count = 0;
|
|
|
|
ret = 0;
|
|
|
|
done:
|
|
/* invalidate CIS cache on failure */
|
|
if (!dev_ok || !ident_ok || !count) {
|
|
mutex_lock(&s->ops_mutex);
|
|
destroy_cis_cache(s);
|
|
mutex_unlock(&s->ops_mutex);
|
|
/* We differentiate between dev_ok, ident_ok and count
|
|
failures to allow for an override for anonymous cards
|
|
in ds.c */
|
|
if (!dev_ok || !ident_ok)
|
|
ret = -EIO;
|
|
else
|
|
ret = -EFAULT;
|
|
}
|
|
|
|
if (info)
|
|
*info = count;
|
|
kfree(tuple);
|
|
kfree(p);
|
|
return ret;
|
|
}
|
|
|
|
|
|
#define to_socket(_dev) container_of(_dev, struct pcmcia_socket, dev)
|
|
|
|
static ssize_t pccard_extract_cis(struct pcmcia_socket *s, char *buf,
|
|
loff_t off, size_t count)
|
|
{
|
|
tuple_t tuple;
|
|
int status, i;
|
|
loff_t pointer = 0;
|
|
ssize_t ret = 0;
|
|
u_char *tuplebuffer;
|
|
u_char *tempbuffer;
|
|
|
|
tuplebuffer = kmalloc_array(256, sizeof(u_char), GFP_KERNEL);
|
|
if (!tuplebuffer)
|
|
return -ENOMEM;
|
|
|
|
tempbuffer = kmalloc_array(258, sizeof(u_char), GFP_KERNEL);
|
|
if (!tempbuffer) {
|
|
ret = -ENOMEM;
|
|
goto free_tuple;
|
|
}
|
|
|
|
memset(&tuple, 0, sizeof(tuple_t));
|
|
|
|
tuple.Attributes = TUPLE_RETURN_LINK | TUPLE_RETURN_COMMON;
|
|
tuple.DesiredTuple = RETURN_FIRST_TUPLE;
|
|
tuple.TupleOffset = 0;
|
|
|
|
status = pccard_get_first_tuple(s, BIND_FN_ALL, &tuple);
|
|
while (!status) {
|
|
tuple.TupleData = tuplebuffer;
|
|
tuple.TupleDataMax = 255;
|
|
memset(tuplebuffer, 0, sizeof(u_char) * 255);
|
|
|
|
status = pccard_get_tuple_data(s, &tuple);
|
|
if (status)
|
|
break;
|
|
|
|
if (off < (pointer + 2 + tuple.TupleDataLen)) {
|
|
tempbuffer[0] = tuple.TupleCode & 0xff;
|
|
tempbuffer[1] = tuple.TupleLink & 0xff;
|
|
for (i = 0; i < tuple.TupleDataLen; i++)
|
|
tempbuffer[i + 2] = tuplebuffer[i] & 0xff;
|
|
|
|
for (i = 0; i < (2 + tuple.TupleDataLen); i++) {
|
|
if (((i + pointer) >= off) &&
|
|
(i + pointer) < (off + count)) {
|
|
buf[ret] = tempbuffer[i];
|
|
ret++;
|
|
}
|
|
}
|
|
}
|
|
|
|
pointer += 2 + tuple.TupleDataLen;
|
|
|
|
if (pointer >= (off + count))
|
|
break;
|
|
|
|
if (tuple.TupleCode == CISTPL_END)
|
|
break;
|
|
status = pccard_get_next_tuple(s, BIND_FN_ALL, &tuple);
|
|
}
|
|
|
|
kfree(tempbuffer);
|
|
free_tuple:
|
|
kfree(tuplebuffer);
|
|
|
|
return ret;
|
|
}
|
|
|
|
|
|
static ssize_t pccard_show_cis(struct file *filp, struct kobject *kobj,
|
|
struct bin_attribute *bin_attr,
|
|
char *buf, loff_t off, size_t count)
|
|
{
|
|
unsigned int size = 0x200;
|
|
|
|
if (off >= size)
|
|
count = 0;
|
|
else {
|
|
struct pcmcia_socket *s;
|
|
unsigned int chains = 1;
|
|
|
|
if (off + count > size)
|
|
count = size - off;
|
|
|
|
s = to_socket(container_of(kobj, struct device, kobj));
|
|
|
|
if (!(s->state & SOCKET_PRESENT))
|
|
return -ENODEV;
|
|
if (!s->functions && pccard_validate_cis(s, &chains))
|
|
return -EIO;
|
|
if (!chains)
|
|
return -ENODATA;
|
|
|
|
count = pccard_extract_cis(s, buf, off, count);
|
|
}
|
|
|
|
return count;
|
|
}
|
|
|
|
|
|
static ssize_t pccard_store_cis(struct file *filp, struct kobject *kobj,
|
|
struct bin_attribute *bin_attr,
|
|
char *buf, loff_t off, size_t count)
|
|
{
|
|
struct pcmcia_socket *s;
|
|
int error;
|
|
|
|
s = to_socket(container_of(kobj, struct device, kobj));
|
|
|
|
if (off)
|
|
return -EINVAL;
|
|
|
|
if (count >= CISTPL_MAX_CIS_SIZE)
|
|
return -EINVAL;
|
|
|
|
if (!(s->state & SOCKET_PRESENT))
|
|
return -ENODEV;
|
|
|
|
error = pcmcia_replace_cis(s, buf, count);
|
|
if (error)
|
|
return -EIO;
|
|
|
|
pcmcia_parse_uevents(s, PCMCIA_UEVENT_REQUERY);
|
|
|
|
return count;
|
|
}
|
|
|
|
|
|
const struct bin_attribute pccard_cis_attr = {
|
|
.attr = { .name = "cis", .mode = S_IRUGO | S_IWUSR },
|
|
.size = 0x200,
|
|
.read = pccard_show_cis,
|
|
.write = pccard_store_cis,
|
|
};
|