mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2024-12-27 07:35:12 +07:00
b24413180f
Many source files in the tree are missing licensing information, which makes it harder for compliance tools to determine the correct license. By default all files without license information are under the default license of the kernel, which is GPL version 2. Update the files which contain no license information with the 'GPL-2.0' SPDX license identifier. The SPDX identifier is a legally binding shorthand, which can be used instead of the full boiler plate text. This patch is based on work done by Thomas Gleixner and Kate Stewart and Philippe Ombredanne. How this work was done: Patches were generated and checked against linux-4.14-rc6 for a subset of the use cases: - file had no licensing information it it. - file was a */uapi/* one with no licensing information in it, - file was a */uapi/* one with existing licensing information, Further patches will be generated in subsequent months to fix up cases where non-standard license headers were used, and references to license had to be inferred by heuristics based on keywords. The analysis to determine which SPDX License Identifier to be applied to a file was done in a spreadsheet of side by side results from of the output of two independent scanners (ScanCode & Windriver) producing SPDX tag:value files created by Philippe Ombredanne. Philippe prepared the base worksheet, and did an initial spot review of a few 1000 files. The 4.13 kernel was the starting point of the analysis with 60,537 files assessed. Kate Stewart did a file by file comparison of the scanner results in the spreadsheet to determine which SPDX license identifier(s) to be applied to the file. She confirmed any determination that was not immediately clear with lawyers working with the Linux Foundation. Criteria used to select files for SPDX license identifier tagging was: - Files considered eligible had to be source code files. - Make and config files were included as candidates if they contained >5 lines of source - File already had some variant of a license header in it (even if <5 lines). All documentation files were explicitly excluded. The following heuristics were used to determine which SPDX license identifiers to apply. - when both scanners couldn't find any license traces, file was considered to have no license information in it, and the top level COPYING file license applied. For non */uapi/* files that summary was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 11139 and resulted in the first patch in this series. If that file was a */uapi/* path one, it was "GPL-2.0 WITH Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 WITH Linux-syscall-note 930 and resulted in the second patch in this series. - if a file had some form of licensing information in it, and was one of the */uapi/* ones, it was denoted with the Linux-syscall-note if any GPL family license was found in the file or had no licensing in it (per prior point). Results summary: SPDX license identifier # files ---------------------------------------------------|------ GPL-2.0 WITH Linux-syscall-note 270 GPL-2.0+ WITH Linux-syscall-note 169 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17 LGPL-2.1+ WITH Linux-syscall-note 15 GPL-1.0+ WITH Linux-syscall-note 14 ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5 LGPL-2.0+ WITH Linux-syscall-note 4 LGPL-2.1 WITH Linux-syscall-note 3 ((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3 ((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1 and that resulted in the third patch in this series. - when the two scanners agreed on the detected license(s), that became the concluded license(s). - when there was disagreement between the two scanners (one detected a license but the other didn't, or they both detected different licenses) a manual inspection of the file occurred. - In most cases a manual inspection of the information in the file resulted in a clear resolution of the license that should apply (and which scanner probably needed to revisit its heuristics). - When it was not immediately clear, the license identifier was confirmed with lawyers working with the Linux Foundation. - If there was any question as to the appropriate license identifier, the file was flagged for further research and to be revisited later in time. In total, over 70 hours of logged manual review was done on the spreadsheet to determine the SPDX license identifiers to apply to the source files by Kate, Philippe, Thomas and, in some cases, confirmation by lawyers working with the Linux Foundation. Kate also obtained a third independent scan of the 4.13 code base from FOSSology, and compared selected files where the other two scanners disagreed against that SPDX file, to see if there was new insights. The Windriver scanner is based on an older version of FOSSology in part, so they are related. Thomas did random spot checks in about 500 files from the spreadsheets for the uapi headers and agreed with SPDX license identifier in the files he inspected. For the non-uapi files Thomas did random spot checks in about 15000 files. In initial set of patches against 4.14-rc6, 3 files were found to have copy/paste license identifier errors, and have been fixed to reflect the correct identifier. Additionally Philippe spent 10 hours this week doing a detailed manual inspection and review of the 12,461 patched files from the initial patch version early this week with: - a full scancode scan run, collecting the matched texts, detected license ids and scores - reviewing anything where there was a license detected (about 500+ files) to ensure that the applied SPDX license was correct - reviewing anything where there was no detection but the patch license was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied SPDX license was correct This produced a worksheet with 20 files needing minor correction. This worksheet was then exported into 3 different .csv files for the different types of files to be modified. These .csv files were then reviewed by Greg. Thomas wrote a script to parse the csv files and add the proper SPDX tag to the file, in the format that the file expected. This script was further refined by Greg based on the output to detect more types of files automatically and to distinguish between header and source .c files (which need different comment types.) Finally Greg ran the script using the .csv files to generate the patches. Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org> Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
682 lines
18 KiB
C
682 lines
18 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* Initialize MMU support.
|
|
*
|
|
* Copyright (C) 1998-2003 Hewlett-Packard Co
|
|
* David Mosberger-Tang <davidm@hpl.hp.com>
|
|
*/
|
|
#include <linux/kernel.h>
|
|
#include <linux/init.h>
|
|
|
|
#include <linux/bootmem.h>
|
|
#include <linux/efi.h>
|
|
#include <linux/elf.h>
|
|
#include <linux/memblock.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/sched/signal.h>
|
|
#include <linux/mmzone.h>
|
|
#include <linux/module.h>
|
|
#include <linux/personality.h>
|
|
#include <linux/reboot.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/swap.h>
|
|
#include <linux/proc_fs.h>
|
|
#include <linux/bitops.h>
|
|
#include <linux/kexec.h>
|
|
|
|
#include <asm/dma.h>
|
|
#include <asm/io.h>
|
|
#include <asm/machvec.h>
|
|
#include <asm/numa.h>
|
|
#include <asm/patch.h>
|
|
#include <asm/pgalloc.h>
|
|
#include <asm/sal.h>
|
|
#include <asm/sections.h>
|
|
#include <asm/tlb.h>
|
|
#include <linux/uaccess.h>
|
|
#include <asm/unistd.h>
|
|
#include <asm/mca.h>
|
|
|
|
extern void ia64_tlb_init (void);
|
|
|
|
unsigned long MAX_DMA_ADDRESS = PAGE_OFFSET + 0x100000000UL;
|
|
|
|
#ifdef CONFIG_VIRTUAL_MEM_MAP
|
|
unsigned long VMALLOC_END = VMALLOC_END_INIT;
|
|
EXPORT_SYMBOL(VMALLOC_END);
|
|
struct page *vmem_map;
|
|
EXPORT_SYMBOL(vmem_map);
|
|
#endif
|
|
|
|
struct page *zero_page_memmap_ptr; /* map entry for zero page */
|
|
EXPORT_SYMBOL(zero_page_memmap_ptr);
|
|
|
|
void
|
|
__ia64_sync_icache_dcache (pte_t pte)
|
|
{
|
|
unsigned long addr;
|
|
struct page *page;
|
|
|
|
page = pte_page(pte);
|
|
addr = (unsigned long) page_address(page);
|
|
|
|
if (test_bit(PG_arch_1, &page->flags))
|
|
return; /* i-cache is already coherent with d-cache */
|
|
|
|
flush_icache_range(addr, addr + (PAGE_SIZE << compound_order(page)));
|
|
set_bit(PG_arch_1, &page->flags); /* mark page as clean */
|
|
}
|
|
|
|
/*
|
|
* Since DMA is i-cache coherent, any (complete) pages that were written via
|
|
* DMA can be marked as "clean" so that lazy_mmu_prot_update() doesn't have to
|
|
* flush them when they get mapped into an executable vm-area.
|
|
*/
|
|
void
|
|
dma_mark_clean(void *addr, size_t size)
|
|
{
|
|
unsigned long pg_addr, end;
|
|
|
|
pg_addr = PAGE_ALIGN((unsigned long) addr);
|
|
end = (unsigned long) addr + size;
|
|
while (pg_addr + PAGE_SIZE <= end) {
|
|
struct page *page = virt_to_page(pg_addr);
|
|
set_bit(PG_arch_1, &page->flags);
|
|
pg_addr += PAGE_SIZE;
|
|
}
|
|
}
|
|
|
|
inline void
|
|
ia64_set_rbs_bot (void)
|
|
{
|
|
unsigned long stack_size = rlimit_max(RLIMIT_STACK) & -16;
|
|
|
|
if (stack_size > MAX_USER_STACK_SIZE)
|
|
stack_size = MAX_USER_STACK_SIZE;
|
|
current->thread.rbs_bot = PAGE_ALIGN(current->mm->start_stack - stack_size);
|
|
}
|
|
|
|
/*
|
|
* This performs some platform-dependent address space initialization.
|
|
* On IA-64, we want to setup the VM area for the register backing
|
|
* store (which grows upwards) and install the gateway page which is
|
|
* used for signal trampolines, etc.
|
|
*/
|
|
void
|
|
ia64_init_addr_space (void)
|
|
{
|
|
struct vm_area_struct *vma;
|
|
|
|
ia64_set_rbs_bot();
|
|
|
|
/*
|
|
* If we're out of memory and kmem_cache_alloc() returns NULL, we simply ignore
|
|
* the problem. When the process attempts to write to the register backing store
|
|
* for the first time, it will get a SEGFAULT in this case.
|
|
*/
|
|
vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
|
|
if (vma) {
|
|
INIT_LIST_HEAD(&vma->anon_vma_chain);
|
|
vma->vm_mm = current->mm;
|
|
vma->vm_start = current->thread.rbs_bot & PAGE_MASK;
|
|
vma->vm_end = vma->vm_start + PAGE_SIZE;
|
|
vma->vm_flags = VM_DATA_DEFAULT_FLAGS|VM_GROWSUP|VM_ACCOUNT;
|
|
vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
|
|
down_write(¤t->mm->mmap_sem);
|
|
if (insert_vm_struct(current->mm, vma)) {
|
|
up_write(¤t->mm->mmap_sem);
|
|
kmem_cache_free(vm_area_cachep, vma);
|
|
return;
|
|
}
|
|
up_write(¤t->mm->mmap_sem);
|
|
}
|
|
|
|
/* map NaT-page at address zero to speed up speculative dereferencing of NULL: */
|
|
if (!(current->personality & MMAP_PAGE_ZERO)) {
|
|
vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
|
|
if (vma) {
|
|
INIT_LIST_HEAD(&vma->anon_vma_chain);
|
|
vma->vm_mm = current->mm;
|
|
vma->vm_end = PAGE_SIZE;
|
|
vma->vm_page_prot = __pgprot(pgprot_val(PAGE_READONLY) | _PAGE_MA_NAT);
|
|
vma->vm_flags = VM_READ | VM_MAYREAD | VM_IO |
|
|
VM_DONTEXPAND | VM_DONTDUMP;
|
|
down_write(¤t->mm->mmap_sem);
|
|
if (insert_vm_struct(current->mm, vma)) {
|
|
up_write(¤t->mm->mmap_sem);
|
|
kmem_cache_free(vm_area_cachep, vma);
|
|
return;
|
|
}
|
|
up_write(¤t->mm->mmap_sem);
|
|
}
|
|
}
|
|
}
|
|
|
|
void
|
|
free_initmem (void)
|
|
{
|
|
free_reserved_area(ia64_imva(__init_begin), ia64_imva(__init_end),
|
|
-1, "unused kernel");
|
|
}
|
|
|
|
void __init
|
|
free_initrd_mem (unsigned long start, unsigned long end)
|
|
{
|
|
/*
|
|
* EFI uses 4KB pages while the kernel can use 4KB or bigger.
|
|
* Thus EFI and the kernel may have different page sizes. It is
|
|
* therefore possible to have the initrd share the same page as
|
|
* the end of the kernel (given current setup).
|
|
*
|
|
* To avoid freeing/using the wrong page (kernel sized) we:
|
|
* - align up the beginning of initrd
|
|
* - align down the end of initrd
|
|
*
|
|
* | |
|
|
* |=============| a000
|
|
* | |
|
|
* | |
|
|
* | | 9000
|
|
* |/////////////|
|
|
* |/////////////|
|
|
* |=============| 8000
|
|
* |///INITRD////|
|
|
* |/////////////|
|
|
* |/////////////| 7000
|
|
* | |
|
|
* |KKKKKKKKKKKKK|
|
|
* |=============| 6000
|
|
* |KKKKKKKKKKKKK|
|
|
* |KKKKKKKKKKKKK|
|
|
* K=kernel using 8KB pages
|
|
*
|
|
* In this example, we must free page 8000 ONLY. So we must align up
|
|
* initrd_start and keep initrd_end as is.
|
|
*/
|
|
start = PAGE_ALIGN(start);
|
|
end = end & PAGE_MASK;
|
|
|
|
if (start < end)
|
|
printk(KERN_INFO "Freeing initrd memory: %ldkB freed\n", (end - start) >> 10);
|
|
|
|
for (; start < end; start += PAGE_SIZE) {
|
|
if (!virt_addr_valid(start))
|
|
continue;
|
|
free_reserved_page(virt_to_page(start));
|
|
}
|
|
}
|
|
|
|
/*
|
|
* This installs a clean page in the kernel's page table.
|
|
*/
|
|
static struct page * __init
|
|
put_kernel_page (struct page *page, unsigned long address, pgprot_t pgprot)
|
|
{
|
|
pgd_t *pgd;
|
|
pud_t *pud;
|
|
pmd_t *pmd;
|
|
pte_t *pte;
|
|
|
|
pgd = pgd_offset_k(address); /* note: this is NOT pgd_offset()! */
|
|
|
|
{
|
|
pud = pud_alloc(&init_mm, pgd, address);
|
|
if (!pud)
|
|
goto out;
|
|
pmd = pmd_alloc(&init_mm, pud, address);
|
|
if (!pmd)
|
|
goto out;
|
|
pte = pte_alloc_kernel(pmd, address);
|
|
if (!pte)
|
|
goto out;
|
|
if (!pte_none(*pte))
|
|
goto out;
|
|
set_pte(pte, mk_pte(page, pgprot));
|
|
}
|
|
out:
|
|
/* no need for flush_tlb */
|
|
return page;
|
|
}
|
|
|
|
static void __init
|
|
setup_gate (void)
|
|
{
|
|
struct page *page;
|
|
|
|
/*
|
|
* Map the gate page twice: once read-only to export the ELF
|
|
* headers etc. and once execute-only page to enable
|
|
* privilege-promotion via "epc":
|
|
*/
|
|
page = virt_to_page(ia64_imva(__start_gate_section));
|
|
put_kernel_page(page, GATE_ADDR, PAGE_READONLY);
|
|
#ifdef HAVE_BUGGY_SEGREL
|
|
page = virt_to_page(ia64_imva(__start_gate_section + PAGE_SIZE));
|
|
put_kernel_page(page, GATE_ADDR + PAGE_SIZE, PAGE_GATE);
|
|
#else
|
|
put_kernel_page(page, GATE_ADDR + PERCPU_PAGE_SIZE, PAGE_GATE);
|
|
/* Fill in the holes (if any) with read-only zero pages: */
|
|
{
|
|
unsigned long addr;
|
|
|
|
for (addr = GATE_ADDR + PAGE_SIZE;
|
|
addr < GATE_ADDR + PERCPU_PAGE_SIZE;
|
|
addr += PAGE_SIZE)
|
|
{
|
|
put_kernel_page(ZERO_PAGE(0), addr,
|
|
PAGE_READONLY);
|
|
put_kernel_page(ZERO_PAGE(0), addr + PERCPU_PAGE_SIZE,
|
|
PAGE_READONLY);
|
|
}
|
|
}
|
|
#endif
|
|
ia64_patch_gate();
|
|
}
|
|
|
|
static struct vm_area_struct gate_vma;
|
|
|
|
static int __init gate_vma_init(void)
|
|
{
|
|
gate_vma.vm_mm = NULL;
|
|
gate_vma.vm_start = FIXADDR_USER_START;
|
|
gate_vma.vm_end = FIXADDR_USER_END;
|
|
gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC;
|
|
gate_vma.vm_page_prot = __P101;
|
|
|
|
return 0;
|
|
}
|
|
__initcall(gate_vma_init);
|
|
|
|
struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
|
|
{
|
|
return &gate_vma;
|
|
}
|
|
|
|
int in_gate_area_no_mm(unsigned long addr)
|
|
{
|
|
if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
|
|
return 1;
|
|
return 0;
|
|
}
|
|
|
|
int in_gate_area(struct mm_struct *mm, unsigned long addr)
|
|
{
|
|
return in_gate_area_no_mm(addr);
|
|
}
|
|
|
|
void ia64_mmu_init(void *my_cpu_data)
|
|
{
|
|
unsigned long pta, impl_va_bits;
|
|
extern void tlb_init(void);
|
|
|
|
#ifdef CONFIG_DISABLE_VHPT
|
|
# define VHPT_ENABLE_BIT 0
|
|
#else
|
|
# define VHPT_ENABLE_BIT 1
|
|
#endif
|
|
|
|
/*
|
|
* Check if the virtually mapped linear page table (VMLPT) overlaps with a mapped
|
|
* address space. The IA-64 architecture guarantees that at least 50 bits of
|
|
* virtual address space are implemented but if we pick a large enough page size
|
|
* (e.g., 64KB), the mapped address space is big enough that it will overlap with
|
|
* VMLPT. I assume that once we run on machines big enough to warrant 64KB pages,
|
|
* IMPL_VA_MSB will be significantly bigger, so this is unlikely to become a
|
|
* problem in practice. Alternatively, we could truncate the top of the mapped
|
|
* address space to not permit mappings that would overlap with the VMLPT.
|
|
* --davidm 00/12/06
|
|
*/
|
|
# define pte_bits 3
|
|
# define mapped_space_bits (3*(PAGE_SHIFT - pte_bits) + PAGE_SHIFT)
|
|
/*
|
|
* The virtual page table has to cover the entire implemented address space within
|
|
* a region even though not all of this space may be mappable. The reason for
|
|
* this is that the Access bit and Dirty bit fault handlers perform
|
|
* non-speculative accesses to the virtual page table, so the address range of the
|
|
* virtual page table itself needs to be covered by virtual page table.
|
|
*/
|
|
# define vmlpt_bits (impl_va_bits - PAGE_SHIFT + pte_bits)
|
|
# define POW2(n) (1ULL << (n))
|
|
|
|
impl_va_bits = ffz(~(local_cpu_data->unimpl_va_mask | (7UL << 61)));
|
|
|
|
if (impl_va_bits < 51 || impl_va_bits > 61)
|
|
panic("CPU has bogus IMPL_VA_MSB value of %lu!\n", impl_va_bits - 1);
|
|
/*
|
|
* mapped_space_bits - PAGE_SHIFT is the total number of ptes we need,
|
|
* which must fit into "vmlpt_bits - pte_bits" slots. Second half of
|
|
* the test makes sure that our mapped space doesn't overlap the
|
|
* unimplemented hole in the middle of the region.
|
|
*/
|
|
if ((mapped_space_bits - PAGE_SHIFT > vmlpt_bits - pte_bits) ||
|
|
(mapped_space_bits > impl_va_bits - 1))
|
|
panic("Cannot build a big enough virtual-linear page table"
|
|
" to cover mapped address space.\n"
|
|
" Try using a smaller page size.\n");
|
|
|
|
|
|
/* place the VMLPT at the end of each page-table mapped region: */
|
|
pta = POW2(61) - POW2(vmlpt_bits);
|
|
|
|
/*
|
|
* Set the (virtually mapped linear) page table address. Bit
|
|
* 8 selects between the short and long format, bits 2-7 the
|
|
* size of the table, and bit 0 whether the VHPT walker is
|
|
* enabled.
|
|
*/
|
|
ia64_set_pta(pta | (0 << 8) | (vmlpt_bits << 2) | VHPT_ENABLE_BIT);
|
|
|
|
ia64_tlb_init();
|
|
|
|
#ifdef CONFIG_HUGETLB_PAGE
|
|
ia64_set_rr(HPAGE_REGION_BASE, HPAGE_SHIFT << 2);
|
|
ia64_srlz_d();
|
|
#endif
|
|
}
|
|
|
|
#ifdef CONFIG_VIRTUAL_MEM_MAP
|
|
int vmemmap_find_next_valid_pfn(int node, int i)
|
|
{
|
|
unsigned long end_address, hole_next_pfn;
|
|
unsigned long stop_address;
|
|
pg_data_t *pgdat = NODE_DATA(node);
|
|
|
|
end_address = (unsigned long) &vmem_map[pgdat->node_start_pfn + i];
|
|
end_address = PAGE_ALIGN(end_address);
|
|
stop_address = (unsigned long) &vmem_map[pgdat_end_pfn(pgdat)];
|
|
|
|
do {
|
|
pgd_t *pgd;
|
|
pud_t *pud;
|
|
pmd_t *pmd;
|
|
pte_t *pte;
|
|
|
|
pgd = pgd_offset_k(end_address);
|
|
if (pgd_none(*pgd)) {
|
|
end_address += PGDIR_SIZE;
|
|
continue;
|
|
}
|
|
|
|
pud = pud_offset(pgd, end_address);
|
|
if (pud_none(*pud)) {
|
|
end_address += PUD_SIZE;
|
|
continue;
|
|
}
|
|
|
|
pmd = pmd_offset(pud, end_address);
|
|
if (pmd_none(*pmd)) {
|
|
end_address += PMD_SIZE;
|
|
continue;
|
|
}
|
|
|
|
pte = pte_offset_kernel(pmd, end_address);
|
|
retry_pte:
|
|
if (pte_none(*pte)) {
|
|
end_address += PAGE_SIZE;
|
|
pte++;
|
|
if ((end_address < stop_address) &&
|
|
(end_address != ALIGN(end_address, 1UL << PMD_SHIFT)))
|
|
goto retry_pte;
|
|
continue;
|
|
}
|
|
/* Found next valid vmem_map page */
|
|
break;
|
|
} while (end_address < stop_address);
|
|
|
|
end_address = min(end_address, stop_address);
|
|
end_address = end_address - (unsigned long) vmem_map + sizeof(struct page) - 1;
|
|
hole_next_pfn = end_address / sizeof(struct page);
|
|
return hole_next_pfn - pgdat->node_start_pfn;
|
|
}
|
|
|
|
int __init create_mem_map_page_table(u64 start, u64 end, void *arg)
|
|
{
|
|
unsigned long address, start_page, end_page;
|
|
struct page *map_start, *map_end;
|
|
int node;
|
|
pgd_t *pgd;
|
|
pud_t *pud;
|
|
pmd_t *pmd;
|
|
pte_t *pte;
|
|
|
|
map_start = vmem_map + (__pa(start) >> PAGE_SHIFT);
|
|
map_end = vmem_map + (__pa(end) >> PAGE_SHIFT);
|
|
|
|
start_page = (unsigned long) map_start & PAGE_MASK;
|
|
end_page = PAGE_ALIGN((unsigned long) map_end);
|
|
node = paddr_to_nid(__pa(start));
|
|
|
|
for (address = start_page; address < end_page; address += PAGE_SIZE) {
|
|
pgd = pgd_offset_k(address);
|
|
if (pgd_none(*pgd))
|
|
pgd_populate(&init_mm, pgd, alloc_bootmem_pages_node(NODE_DATA(node), PAGE_SIZE));
|
|
pud = pud_offset(pgd, address);
|
|
|
|
if (pud_none(*pud))
|
|
pud_populate(&init_mm, pud, alloc_bootmem_pages_node(NODE_DATA(node), PAGE_SIZE));
|
|
pmd = pmd_offset(pud, address);
|
|
|
|
if (pmd_none(*pmd))
|
|
pmd_populate_kernel(&init_mm, pmd, alloc_bootmem_pages_node(NODE_DATA(node), PAGE_SIZE));
|
|
pte = pte_offset_kernel(pmd, address);
|
|
|
|
if (pte_none(*pte))
|
|
set_pte(pte, pfn_pte(__pa(alloc_bootmem_pages_node(NODE_DATA(node), PAGE_SIZE)) >> PAGE_SHIFT,
|
|
PAGE_KERNEL));
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
struct memmap_init_callback_data {
|
|
struct page *start;
|
|
struct page *end;
|
|
int nid;
|
|
unsigned long zone;
|
|
};
|
|
|
|
static int __meminit
|
|
virtual_memmap_init(u64 start, u64 end, void *arg)
|
|
{
|
|
struct memmap_init_callback_data *args;
|
|
struct page *map_start, *map_end;
|
|
|
|
args = (struct memmap_init_callback_data *) arg;
|
|
map_start = vmem_map + (__pa(start) >> PAGE_SHIFT);
|
|
map_end = vmem_map + (__pa(end) >> PAGE_SHIFT);
|
|
|
|
if (map_start < args->start)
|
|
map_start = args->start;
|
|
if (map_end > args->end)
|
|
map_end = args->end;
|
|
|
|
/*
|
|
* We have to initialize "out of bounds" struct page elements that fit completely
|
|
* on the same pages that were allocated for the "in bounds" elements because they
|
|
* may be referenced later (and found to be "reserved").
|
|
*/
|
|
map_start -= ((unsigned long) map_start & (PAGE_SIZE - 1)) / sizeof(struct page);
|
|
map_end += ((PAGE_ALIGN((unsigned long) map_end) - (unsigned long) map_end)
|
|
/ sizeof(struct page));
|
|
|
|
if (map_start < map_end)
|
|
memmap_init_zone((unsigned long)(map_end - map_start),
|
|
args->nid, args->zone, page_to_pfn(map_start),
|
|
MEMMAP_EARLY);
|
|
return 0;
|
|
}
|
|
|
|
void __meminit
|
|
memmap_init (unsigned long size, int nid, unsigned long zone,
|
|
unsigned long start_pfn)
|
|
{
|
|
if (!vmem_map)
|
|
memmap_init_zone(size, nid, zone, start_pfn, MEMMAP_EARLY);
|
|
else {
|
|
struct page *start;
|
|
struct memmap_init_callback_data args;
|
|
|
|
start = pfn_to_page(start_pfn);
|
|
args.start = start;
|
|
args.end = start + size;
|
|
args.nid = nid;
|
|
args.zone = zone;
|
|
|
|
efi_memmap_walk(virtual_memmap_init, &args);
|
|
}
|
|
}
|
|
|
|
int
|
|
ia64_pfn_valid (unsigned long pfn)
|
|
{
|
|
char byte;
|
|
struct page *pg = pfn_to_page(pfn);
|
|
|
|
return (__get_user(byte, (char __user *) pg) == 0)
|
|
&& ((((u64)pg & PAGE_MASK) == (((u64)(pg + 1) - 1) & PAGE_MASK))
|
|
|| (__get_user(byte, (char __user *) (pg + 1) - 1) == 0));
|
|
}
|
|
EXPORT_SYMBOL(ia64_pfn_valid);
|
|
|
|
int __init find_largest_hole(u64 start, u64 end, void *arg)
|
|
{
|
|
u64 *max_gap = arg;
|
|
|
|
static u64 last_end = PAGE_OFFSET;
|
|
|
|
/* NOTE: this algorithm assumes efi memmap table is ordered */
|
|
|
|
if (*max_gap < (start - last_end))
|
|
*max_gap = start - last_end;
|
|
last_end = end;
|
|
return 0;
|
|
}
|
|
|
|
#endif /* CONFIG_VIRTUAL_MEM_MAP */
|
|
|
|
int __init register_active_ranges(u64 start, u64 len, int nid)
|
|
{
|
|
u64 end = start + len;
|
|
|
|
#ifdef CONFIG_KEXEC
|
|
if (start > crashk_res.start && start < crashk_res.end)
|
|
start = crashk_res.end;
|
|
if (end > crashk_res.start && end < crashk_res.end)
|
|
end = crashk_res.start;
|
|
#endif
|
|
|
|
if (start < end)
|
|
memblock_add_node(__pa(start), end - start, nid);
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
find_max_min_low_pfn (u64 start, u64 end, void *arg)
|
|
{
|
|
unsigned long pfn_start, pfn_end;
|
|
#ifdef CONFIG_FLATMEM
|
|
pfn_start = (PAGE_ALIGN(__pa(start))) >> PAGE_SHIFT;
|
|
pfn_end = (PAGE_ALIGN(__pa(end - 1))) >> PAGE_SHIFT;
|
|
#else
|
|
pfn_start = GRANULEROUNDDOWN(__pa(start)) >> PAGE_SHIFT;
|
|
pfn_end = GRANULEROUNDUP(__pa(end - 1)) >> PAGE_SHIFT;
|
|
#endif
|
|
min_low_pfn = min(min_low_pfn, pfn_start);
|
|
max_low_pfn = max(max_low_pfn, pfn_end);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Boot command-line option "nolwsys" can be used to disable the use of any light-weight
|
|
* system call handler. When this option is in effect, all fsyscalls will end up bubbling
|
|
* down into the kernel and calling the normal (heavy-weight) syscall handler. This is
|
|
* useful for performance testing, but conceivably could also come in handy for debugging
|
|
* purposes.
|
|
*/
|
|
|
|
static int nolwsys __initdata;
|
|
|
|
static int __init
|
|
nolwsys_setup (char *s)
|
|
{
|
|
nolwsys = 1;
|
|
return 1;
|
|
}
|
|
|
|
__setup("nolwsys", nolwsys_setup);
|
|
|
|
void __init
|
|
mem_init (void)
|
|
{
|
|
int i;
|
|
|
|
BUG_ON(PTRS_PER_PGD * sizeof(pgd_t) != PAGE_SIZE);
|
|
BUG_ON(PTRS_PER_PMD * sizeof(pmd_t) != PAGE_SIZE);
|
|
BUG_ON(PTRS_PER_PTE * sizeof(pte_t) != PAGE_SIZE);
|
|
|
|
#ifdef CONFIG_PCI
|
|
/*
|
|
* This needs to be called _after_ the command line has been parsed but _before_
|
|
* any drivers that may need the PCI DMA interface are initialized or bootmem has
|
|
* been freed.
|
|
*/
|
|
platform_dma_init();
|
|
#endif
|
|
|
|
#ifdef CONFIG_FLATMEM
|
|
BUG_ON(!mem_map);
|
|
#endif
|
|
|
|
set_max_mapnr(max_low_pfn);
|
|
high_memory = __va(max_low_pfn * PAGE_SIZE);
|
|
free_all_bootmem();
|
|
mem_init_print_info(NULL);
|
|
|
|
/*
|
|
* For fsyscall entrpoints with no light-weight handler, use the ordinary
|
|
* (heavy-weight) handler, but mark it by setting bit 0, so the fsyscall entry
|
|
* code can tell them apart.
|
|
*/
|
|
for (i = 0; i < NR_syscalls; ++i) {
|
|
extern unsigned long fsyscall_table[NR_syscalls];
|
|
extern unsigned long sys_call_table[NR_syscalls];
|
|
|
|
if (!fsyscall_table[i] || nolwsys)
|
|
fsyscall_table[i] = sys_call_table[i] | 1;
|
|
}
|
|
setup_gate();
|
|
}
|
|
|
|
#ifdef CONFIG_MEMORY_HOTPLUG
|
|
int arch_add_memory(int nid, u64 start, u64 size, bool want_memblock)
|
|
{
|
|
unsigned long start_pfn = start >> PAGE_SHIFT;
|
|
unsigned long nr_pages = size >> PAGE_SHIFT;
|
|
int ret;
|
|
|
|
ret = __add_pages(nid, start_pfn, nr_pages, want_memblock);
|
|
if (ret)
|
|
printk("%s: Problem encountered in __add_pages() as ret=%d\n",
|
|
__func__, ret);
|
|
|
|
return ret;
|
|
}
|
|
|
|
#ifdef CONFIG_MEMORY_HOTREMOVE
|
|
int arch_remove_memory(u64 start, u64 size)
|
|
{
|
|
unsigned long start_pfn = start >> PAGE_SHIFT;
|
|
unsigned long nr_pages = size >> PAGE_SHIFT;
|
|
struct zone *zone;
|
|
int ret;
|
|
|
|
zone = page_zone(pfn_to_page(start_pfn));
|
|
ret = __remove_pages(zone, start_pfn, nr_pages);
|
|
if (ret)
|
|
pr_warn("%s: Problem encountered in __remove_pages() as"
|
|
" ret=%d\n", __func__, ret);
|
|
|
|
return ret;
|
|
}
|
|
#endif
|
|
#endif
|