linux_dsm_epyc7002/drivers/media/platform/vsp1/vsp1_rpf.c
Laurent Pinchart b36c6049ed media: vsp1: Add vsp1_dl_list argument to .configure_stream() operation
The WPF needs access to the current display list to configure writeback.
Add a display list pointer to the VSP1 entity .configure_stream()
operation.

Only display pipelines can make use of the display list there as
mem-to-mem pipelines don't have access to a display list at stream
configuration time. This is not an issue as writeback is only used for
display pipelines.

Signed-off-by: Laurent Pinchart <laurent.pinchart+renesas@ideasonboard.com>
Reviewed-by: Kieran Bingham <kieran.bingham+renesas@ideasonboard.com>
Reviewed-by: Mauro Carvalho Chehab <mchehab+samsung@kernel.org>
2019-03-18 17:23:56 +02:00

383 lines
11 KiB
C

// SPDX-License-Identifier: GPL-2.0+
/*
* vsp1_rpf.c -- R-Car VSP1 Read Pixel Formatter
*
* Copyright (C) 2013-2014 Renesas Electronics Corporation
*
* Contact: Laurent Pinchart (laurent.pinchart@ideasonboard.com)
*/
#include <linux/device.h>
#include <media/v4l2-subdev.h>
#include "vsp1.h"
#include "vsp1_dl.h"
#include "vsp1_pipe.h"
#include "vsp1_rwpf.h"
#include "vsp1_video.h"
#define RPF_MAX_WIDTH 8190
#define RPF_MAX_HEIGHT 8190
/* Pre extended display list command data structure. */
struct vsp1_extcmd_auto_fld_body {
u32 top_y0;
u32 bottom_y0;
u32 top_c0;
u32 bottom_c0;
u32 top_c1;
u32 bottom_c1;
u32 reserved0;
u32 reserved1;
} __packed;
/* -----------------------------------------------------------------------------
* Device Access
*/
static inline void vsp1_rpf_write(struct vsp1_rwpf *rpf,
struct vsp1_dl_body *dlb, u32 reg, u32 data)
{
vsp1_dl_body_write(dlb, reg + rpf->entity.index * VI6_RPF_OFFSET,
data);
}
/* -----------------------------------------------------------------------------
* V4L2 Subdevice Operations
*/
static const struct v4l2_subdev_ops rpf_ops = {
.pad = &vsp1_rwpf_pad_ops,
};
/* -----------------------------------------------------------------------------
* VSP1 Entity Operations
*/
static void rpf_configure_stream(struct vsp1_entity *entity,
struct vsp1_pipeline *pipe,
struct vsp1_dl_list *dl,
struct vsp1_dl_body *dlb)
{
struct vsp1_rwpf *rpf = to_rwpf(&entity->subdev);
const struct vsp1_format_info *fmtinfo = rpf->fmtinfo;
const struct v4l2_pix_format_mplane *format = &rpf->format;
const struct v4l2_mbus_framefmt *source_format;
const struct v4l2_mbus_framefmt *sink_format;
unsigned int left = 0;
unsigned int top = 0;
u32 pstride;
u32 infmt;
/* Stride */
pstride = format->plane_fmt[0].bytesperline
<< VI6_RPF_SRCM_PSTRIDE_Y_SHIFT;
if (format->num_planes > 1)
pstride |= format->plane_fmt[1].bytesperline
<< VI6_RPF_SRCM_PSTRIDE_C_SHIFT;
/*
* pstride has both STRIDE_Y and STRIDE_C, but multiplying the whole
* of pstride by 2 is conveniently OK here as we are multiplying both
* values.
*/
if (pipe->interlaced)
pstride *= 2;
vsp1_rpf_write(rpf, dlb, VI6_RPF_SRCM_PSTRIDE, pstride);
/* Format */
sink_format = vsp1_entity_get_pad_format(&rpf->entity,
rpf->entity.config,
RWPF_PAD_SINK);
source_format = vsp1_entity_get_pad_format(&rpf->entity,
rpf->entity.config,
RWPF_PAD_SOURCE);
infmt = VI6_RPF_INFMT_CIPM
| (fmtinfo->hwfmt << VI6_RPF_INFMT_RDFMT_SHIFT);
if (fmtinfo->swap_yc)
infmt |= VI6_RPF_INFMT_SPYCS;
if (fmtinfo->swap_uv)
infmt |= VI6_RPF_INFMT_SPUVS;
if (sink_format->code != source_format->code)
infmt |= VI6_RPF_INFMT_CSC;
vsp1_rpf_write(rpf, dlb, VI6_RPF_INFMT, infmt);
vsp1_rpf_write(rpf, dlb, VI6_RPF_DSWAP, fmtinfo->swap);
/* Output location. */
if (pipe->brx) {
const struct v4l2_rect *compose;
compose = vsp1_entity_get_pad_selection(pipe->brx,
pipe->brx->config,
rpf->brx_input,
V4L2_SEL_TGT_COMPOSE);
left = compose->left;
top = compose->top;
}
if (pipe->interlaced)
top /= 2;
vsp1_rpf_write(rpf, dlb, VI6_RPF_LOC,
(left << VI6_RPF_LOC_HCOORD_SHIFT) |
(top << VI6_RPF_LOC_VCOORD_SHIFT));
/*
* On Gen2 use the alpha channel (extended to 8 bits) when available or
* a fixed alpha value set through the V4L2_CID_ALPHA_COMPONENT control
* otherwise.
*
* The Gen3 RPF has extended alpha capability and can both multiply the
* alpha channel by a fixed global alpha value, and multiply the pixel
* components to convert the input to premultiplied alpha.
*
* As alpha premultiplication is available in the BRx for both Gen2 and
* Gen3 we handle it there and use the Gen3 alpha multiplier for global
* alpha multiplication only. This however prevents conversion to
* premultiplied alpha if no BRx is present in the pipeline. If that use
* case turns out to be useful we will revisit the implementation (for
* Gen3 only).
*
* We enable alpha multiplication on Gen3 using the fixed alpha value
* set through the V4L2_CID_ALPHA_COMPONENT control when the input
* contains an alpha channel. On Gen2 the global alpha is ignored in
* that case.
*
* In all cases, disable color keying.
*/
vsp1_rpf_write(rpf, dlb, VI6_RPF_ALPH_SEL, VI6_RPF_ALPH_SEL_AEXT_EXT |
(fmtinfo->alpha ? VI6_RPF_ALPH_SEL_ASEL_PACKED
: VI6_RPF_ALPH_SEL_ASEL_FIXED));
if (entity->vsp1->info->gen == 3) {
u32 mult;
if (fmtinfo->alpha) {
/*
* When the input contains an alpha channel enable the
* alpha multiplier. If the input is premultiplied we
* need to multiply both the alpha channel and the pixel
* components by the global alpha value to keep them
* premultiplied. Otherwise multiply the alpha channel
* only.
*/
bool premultiplied = format->flags
& V4L2_PIX_FMT_FLAG_PREMUL_ALPHA;
mult = VI6_RPF_MULT_ALPHA_A_MMD_RATIO
| (premultiplied ?
VI6_RPF_MULT_ALPHA_P_MMD_RATIO :
VI6_RPF_MULT_ALPHA_P_MMD_NONE);
} else {
/*
* When the input doesn't contain an alpha channel the
* global alpha value is applied in the unpacking unit,
* the alpha multiplier isn't needed and must be
* disabled.
*/
mult = VI6_RPF_MULT_ALPHA_A_MMD_NONE
| VI6_RPF_MULT_ALPHA_P_MMD_NONE;
}
rpf->mult_alpha = mult;
}
vsp1_rpf_write(rpf, dlb, VI6_RPF_MSK_CTRL, 0);
vsp1_rpf_write(rpf, dlb, VI6_RPF_CKEY_CTRL, 0);
}
static void vsp1_rpf_configure_autofld(struct vsp1_rwpf *rpf,
struct vsp1_dl_list *dl)
{
const struct v4l2_pix_format_mplane *format = &rpf->format;
struct vsp1_dl_ext_cmd *cmd;
struct vsp1_extcmd_auto_fld_body *auto_fld;
u32 offset_y, offset_c;
cmd = vsp1_dl_get_pre_cmd(dl);
if (WARN_ONCE(!cmd, "Failed to obtain an autofld cmd"))
return;
/* Re-index our auto_fld to match the current RPF. */
auto_fld = cmd->data;
auto_fld = &auto_fld[rpf->entity.index];
auto_fld->top_y0 = rpf->mem.addr[0];
auto_fld->top_c0 = rpf->mem.addr[1];
auto_fld->top_c1 = rpf->mem.addr[2];
offset_y = format->plane_fmt[0].bytesperline;
offset_c = format->plane_fmt[1].bytesperline;
auto_fld->bottom_y0 = rpf->mem.addr[0] + offset_y;
auto_fld->bottom_c0 = rpf->mem.addr[1] + offset_c;
auto_fld->bottom_c1 = rpf->mem.addr[2] + offset_c;
cmd->flags |= VI6_DL_EXT_AUTOFLD_INT | BIT(16 + rpf->entity.index);
}
static void rpf_configure_frame(struct vsp1_entity *entity,
struct vsp1_pipeline *pipe,
struct vsp1_dl_list *dl,
struct vsp1_dl_body *dlb)
{
struct vsp1_rwpf *rpf = to_rwpf(&entity->subdev);
vsp1_rpf_write(rpf, dlb, VI6_RPF_VRTCOL_SET,
rpf->alpha << VI6_RPF_VRTCOL_SET_LAYA_SHIFT);
vsp1_rpf_write(rpf, dlb, VI6_RPF_MULT_ALPHA, rpf->mult_alpha |
(rpf->alpha << VI6_RPF_MULT_ALPHA_RATIO_SHIFT));
vsp1_pipeline_propagate_alpha(pipe, dlb, rpf->alpha);
}
static void rpf_configure_partition(struct vsp1_entity *entity,
struct vsp1_pipeline *pipe,
struct vsp1_dl_list *dl,
struct vsp1_dl_body *dlb)
{
struct vsp1_rwpf *rpf = to_rwpf(&entity->subdev);
struct vsp1_rwpf_memory mem = rpf->mem;
struct vsp1_device *vsp1 = rpf->entity.vsp1;
const struct vsp1_format_info *fmtinfo = rpf->fmtinfo;
const struct v4l2_pix_format_mplane *format = &rpf->format;
struct v4l2_rect crop;
/*
* Source size and crop offsets.
*
* The crop offsets correspond to the location of the crop
* rectangle top left corner in the plane buffer. Only two
* offsets are needed, as planes 2 and 3 always have identical
* strides.
*/
crop = *vsp1_rwpf_get_crop(rpf, rpf->entity.config);
/*
* Partition Algorithm Control
*
* The partition algorithm can split this frame into multiple
* slices. We must scale our partition window based on the pipe
* configuration to match the destination partition window.
* To achieve this, we adjust our crop to provide a 'sub-crop'
* matching the expected partition window. Only 'left' and
* 'width' need to be adjusted.
*/
if (pipe->partitions > 1) {
crop.width = pipe->partition->rpf.width;
crop.left += pipe->partition->rpf.left;
}
if (pipe->interlaced) {
crop.height = round_down(crop.height / 2, fmtinfo->vsub);
crop.top = round_down(crop.top / 2, fmtinfo->vsub);
}
vsp1_rpf_write(rpf, dlb, VI6_RPF_SRC_BSIZE,
(crop.width << VI6_RPF_SRC_BSIZE_BHSIZE_SHIFT) |
(crop.height << VI6_RPF_SRC_BSIZE_BVSIZE_SHIFT));
vsp1_rpf_write(rpf, dlb, VI6_RPF_SRC_ESIZE,
(crop.width << VI6_RPF_SRC_ESIZE_EHSIZE_SHIFT) |
(crop.height << VI6_RPF_SRC_ESIZE_EVSIZE_SHIFT));
mem.addr[0] += crop.top * format->plane_fmt[0].bytesperline
+ crop.left * fmtinfo->bpp[0] / 8;
if (format->num_planes > 1) {
unsigned int offset;
offset = crop.top * format->plane_fmt[1].bytesperline
+ crop.left / fmtinfo->hsub
* fmtinfo->bpp[1] / 8;
mem.addr[1] += offset;
mem.addr[2] += offset;
}
/*
* On Gen3 hardware the SPUVS bit has no effect on 3-planar
* formats. Swap the U and V planes manually in that case.
*/
if (vsp1->info->gen == 3 && format->num_planes == 3 &&
fmtinfo->swap_uv)
swap(mem.addr[1], mem.addr[2]);
/*
* Interlaced pipelines will use the extended pre-cmd to process
* SRCM_ADDR_{Y,C0,C1}.
*/
if (pipe->interlaced) {
vsp1_rpf_configure_autofld(rpf, dl);
} else {
vsp1_rpf_write(rpf, dlb, VI6_RPF_SRCM_ADDR_Y, mem.addr[0]);
vsp1_rpf_write(rpf, dlb, VI6_RPF_SRCM_ADDR_C0, mem.addr[1]);
vsp1_rpf_write(rpf, dlb, VI6_RPF_SRCM_ADDR_C1, mem.addr[2]);
}
}
static void rpf_partition(struct vsp1_entity *entity,
struct vsp1_pipeline *pipe,
struct vsp1_partition *partition,
unsigned int partition_idx,
struct vsp1_partition_window *window)
{
partition->rpf = *window;
}
static const struct vsp1_entity_operations rpf_entity_ops = {
.configure_stream = rpf_configure_stream,
.configure_frame = rpf_configure_frame,
.configure_partition = rpf_configure_partition,
.partition = rpf_partition,
};
/* -----------------------------------------------------------------------------
* Initialization and Cleanup
*/
struct vsp1_rwpf *vsp1_rpf_create(struct vsp1_device *vsp1, unsigned int index)
{
struct vsp1_rwpf *rpf;
char name[6];
int ret;
rpf = devm_kzalloc(vsp1->dev, sizeof(*rpf), GFP_KERNEL);
if (rpf == NULL)
return ERR_PTR(-ENOMEM);
rpf->max_width = RPF_MAX_WIDTH;
rpf->max_height = RPF_MAX_HEIGHT;
rpf->entity.ops = &rpf_entity_ops;
rpf->entity.type = VSP1_ENTITY_RPF;
rpf->entity.index = index;
sprintf(name, "rpf.%u", index);
ret = vsp1_entity_init(vsp1, &rpf->entity, name, 2, &rpf_ops,
MEDIA_ENT_F_PROC_VIDEO_PIXEL_FORMATTER);
if (ret < 0)
return ERR_PTR(ret);
/* Initialize the control handler. */
ret = vsp1_rwpf_init_ctrls(rpf, 0);
if (ret < 0) {
dev_err(vsp1->dev, "rpf%u: failed to initialize controls\n",
index);
goto error;
}
v4l2_ctrl_handler_setup(&rpf->ctrls);
return rpf;
error:
vsp1_entity_destroy(&rpf->entity);
return ERR_PTR(ret);
}