mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2024-12-28 11:18:45 +07:00
2fb9d20636
For far, all SPU triggered interrupts always end up on the first SMT thread, which is a bad solution. This patch implements setting the affinity to the CPU that was running last when entering execution on an SPU. This should result in a significant reduction in IPI calls and better cache locality for SPE thread specific data. Signed-off-by: Arnd Bergmann <arndb@de.ibm.com> Signed-off-by: Paul Mackerras <paulus@samba.org>
462 lines
11 KiB
C
462 lines
11 KiB
C
/* sched.c - SPU scheduler.
|
|
*
|
|
* Copyright (C) IBM 2005
|
|
* Author: Mark Nutter <mnutter@us.ibm.com>
|
|
*
|
|
* SPU scheduler, based on Linux thread priority. For now use
|
|
* a simple "cooperative" yield model with no preemption. SPU
|
|
* scheduling will eventually be preemptive: When a thread with
|
|
* a higher static priority gets ready to run, then an active SPU
|
|
* context will be preempted and returned to the waitq.
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; either version 2, or (at your option)
|
|
* any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software
|
|
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
|
|
*/
|
|
|
|
#undef DEBUG
|
|
|
|
#include <linux/config.h>
|
|
#include <linux/module.h>
|
|
#include <linux/errno.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/completion.h>
|
|
#include <linux/vmalloc.h>
|
|
#include <linux/smp.h>
|
|
#include <linux/smp_lock.h>
|
|
#include <linux/stddef.h>
|
|
#include <linux/unistd.h>
|
|
|
|
#include <asm/io.h>
|
|
#include <asm/mmu_context.h>
|
|
#include <asm/spu.h>
|
|
#include <asm/spu_csa.h>
|
|
#include "spufs.h"
|
|
|
|
#define SPU_MIN_TIMESLICE (100 * HZ / 1000)
|
|
|
|
#define SPU_BITMAP_SIZE (((MAX_PRIO+BITS_PER_LONG)/BITS_PER_LONG)+1)
|
|
struct spu_prio_array {
|
|
atomic_t nr_blocked;
|
|
unsigned long bitmap[SPU_BITMAP_SIZE];
|
|
wait_queue_head_t waitq[MAX_PRIO];
|
|
};
|
|
|
|
/* spu_runqueue - This is the main runqueue data structure for SPUs. */
|
|
struct spu_runqueue {
|
|
struct semaphore sem;
|
|
unsigned long nr_active;
|
|
unsigned long nr_idle;
|
|
unsigned long nr_switches;
|
|
struct list_head active_list;
|
|
struct list_head idle_list;
|
|
struct spu_prio_array prio;
|
|
};
|
|
|
|
static struct spu_runqueue *spu_runqueues = NULL;
|
|
|
|
static inline struct spu_runqueue *spu_rq(void)
|
|
{
|
|
/* Future: make this a per-NODE array,
|
|
* and use cpu_to_node(smp_processor_id())
|
|
*/
|
|
return spu_runqueues;
|
|
}
|
|
|
|
static inline struct spu *del_idle(struct spu_runqueue *rq)
|
|
{
|
|
struct spu *spu;
|
|
|
|
BUG_ON(rq->nr_idle <= 0);
|
|
BUG_ON(list_empty(&rq->idle_list));
|
|
/* Future: Move SPU out of low-power SRI state. */
|
|
spu = list_entry(rq->idle_list.next, struct spu, sched_list);
|
|
list_del_init(&spu->sched_list);
|
|
rq->nr_idle--;
|
|
return spu;
|
|
}
|
|
|
|
static inline void del_active(struct spu_runqueue *rq, struct spu *spu)
|
|
{
|
|
BUG_ON(rq->nr_active <= 0);
|
|
BUG_ON(list_empty(&rq->active_list));
|
|
list_del_init(&spu->sched_list);
|
|
rq->nr_active--;
|
|
}
|
|
|
|
static inline void add_idle(struct spu_runqueue *rq, struct spu *spu)
|
|
{
|
|
/* Future: Put SPU into low-power SRI state. */
|
|
list_add_tail(&spu->sched_list, &rq->idle_list);
|
|
rq->nr_idle++;
|
|
}
|
|
|
|
static inline void add_active(struct spu_runqueue *rq, struct spu *spu)
|
|
{
|
|
rq->nr_active++;
|
|
rq->nr_switches++;
|
|
list_add_tail(&spu->sched_list, &rq->active_list);
|
|
}
|
|
|
|
static void prio_wakeup(struct spu_runqueue *rq)
|
|
{
|
|
if (atomic_read(&rq->prio.nr_blocked) && rq->nr_idle) {
|
|
int best = sched_find_first_bit(rq->prio.bitmap);
|
|
if (best < MAX_PRIO) {
|
|
wait_queue_head_t *wq = &rq->prio.waitq[best];
|
|
wake_up_interruptible_nr(wq, 1);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void prio_wait(struct spu_runqueue *rq, struct spu_context *ctx,
|
|
u64 flags)
|
|
{
|
|
int prio = current->prio;
|
|
wait_queue_head_t *wq = &rq->prio.waitq[prio];
|
|
DEFINE_WAIT(wait);
|
|
|
|
__set_bit(prio, rq->prio.bitmap);
|
|
atomic_inc(&rq->prio.nr_blocked);
|
|
prepare_to_wait_exclusive(wq, &wait, TASK_INTERRUPTIBLE);
|
|
if (!signal_pending(current)) {
|
|
up(&rq->sem);
|
|
up_write(&ctx->state_sema);
|
|
pr_debug("%s: pid=%d prio=%d\n", __FUNCTION__,
|
|
current->pid, current->prio);
|
|
schedule();
|
|
down_write(&ctx->state_sema);
|
|
down(&rq->sem);
|
|
}
|
|
finish_wait(wq, &wait);
|
|
atomic_dec(&rq->prio.nr_blocked);
|
|
if (!waitqueue_active(wq))
|
|
__clear_bit(prio, rq->prio.bitmap);
|
|
}
|
|
|
|
static inline int is_best_prio(struct spu_runqueue *rq)
|
|
{
|
|
int best_prio;
|
|
|
|
best_prio = sched_find_first_bit(rq->prio.bitmap);
|
|
return (current->prio < best_prio) ? 1 : 0;
|
|
}
|
|
|
|
static inline void mm_needs_global_tlbie(struct mm_struct *mm)
|
|
{
|
|
/* Global TLBIE broadcast required with SPEs. */
|
|
#if (NR_CPUS > 1)
|
|
__cpus_setall(&mm->cpu_vm_mask, NR_CPUS);
|
|
#else
|
|
__cpus_setall(&mm->cpu_vm_mask, NR_CPUS+1); /* is this ok? */
|
|
#endif
|
|
}
|
|
|
|
static inline void bind_context(struct spu *spu, struct spu_context *ctx)
|
|
{
|
|
pr_debug("%s: pid=%d SPU=%d\n", __FUNCTION__, current->pid,
|
|
spu->number);
|
|
spu->ctx = ctx;
|
|
spu->flags = 0;
|
|
ctx->flags = 0;
|
|
ctx->spu = spu;
|
|
ctx->ops = &spu_hw_ops;
|
|
spu->pid = current->pid;
|
|
spu->prio = current->prio;
|
|
spu->mm = ctx->owner;
|
|
mm_needs_global_tlbie(spu->mm);
|
|
spu->ibox_callback = spufs_ibox_callback;
|
|
spu->wbox_callback = spufs_wbox_callback;
|
|
spu->stop_callback = spufs_stop_callback;
|
|
mb();
|
|
spu_unmap_mappings(ctx);
|
|
spu_restore(&ctx->csa, spu);
|
|
spu->timestamp = jiffies;
|
|
}
|
|
|
|
static inline void unbind_context(struct spu *spu, struct spu_context *ctx)
|
|
{
|
|
pr_debug("%s: unbind pid=%d SPU=%d\n", __FUNCTION__,
|
|
spu->pid, spu->number);
|
|
spu_unmap_mappings(ctx);
|
|
spu_save(&ctx->csa, spu);
|
|
spu->timestamp = jiffies;
|
|
ctx->state = SPU_STATE_SAVED;
|
|
spu->ibox_callback = NULL;
|
|
spu->wbox_callback = NULL;
|
|
spu->stop_callback = NULL;
|
|
spu->mm = NULL;
|
|
spu->pid = 0;
|
|
spu->prio = MAX_PRIO;
|
|
ctx->ops = &spu_backing_ops;
|
|
ctx->spu = NULL;
|
|
ctx->flags = 0;
|
|
spu->flags = 0;
|
|
spu->ctx = NULL;
|
|
}
|
|
|
|
static void spu_reaper(void *data)
|
|
{
|
|
struct spu_context *ctx = data;
|
|
struct spu *spu;
|
|
|
|
down_write(&ctx->state_sema);
|
|
spu = ctx->spu;
|
|
if (spu && test_bit(SPU_CONTEXT_PREEMPT, &ctx->flags)) {
|
|
if (atomic_read(&spu->rq->prio.nr_blocked)) {
|
|
pr_debug("%s: spu=%d\n", __func__, spu->number);
|
|
ctx->ops->runcntl_stop(ctx);
|
|
spu_deactivate(ctx);
|
|
wake_up_all(&ctx->stop_wq);
|
|
} else {
|
|
clear_bit(SPU_CONTEXT_PREEMPT, &ctx->flags);
|
|
}
|
|
}
|
|
up_write(&ctx->state_sema);
|
|
put_spu_context(ctx);
|
|
}
|
|
|
|
static void schedule_spu_reaper(struct spu_runqueue *rq, struct spu *spu)
|
|
{
|
|
struct spu_context *ctx = get_spu_context(spu->ctx);
|
|
unsigned long now = jiffies;
|
|
unsigned long expire = spu->timestamp + SPU_MIN_TIMESLICE;
|
|
|
|
set_bit(SPU_CONTEXT_PREEMPT, &ctx->flags);
|
|
INIT_WORK(&ctx->reap_work, spu_reaper, ctx);
|
|
if (time_after(now, expire))
|
|
schedule_work(&ctx->reap_work);
|
|
else
|
|
schedule_delayed_work(&ctx->reap_work, expire - now);
|
|
}
|
|
|
|
static void check_preempt_active(struct spu_runqueue *rq)
|
|
{
|
|
struct list_head *p;
|
|
struct spu *worst = NULL;
|
|
|
|
list_for_each(p, &rq->active_list) {
|
|
struct spu *spu = list_entry(p, struct spu, sched_list);
|
|
struct spu_context *ctx = spu->ctx;
|
|
if (!test_bit(SPU_CONTEXT_PREEMPT, &ctx->flags)) {
|
|
if (!worst || (spu->prio > worst->prio)) {
|
|
worst = spu;
|
|
}
|
|
}
|
|
}
|
|
if (worst && (current->prio < worst->prio))
|
|
schedule_spu_reaper(rq, worst);
|
|
}
|
|
|
|
static struct spu *get_idle_spu(struct spu_context *ctx, u64 flags)
|
|
{
|
|
struct spu_runqueue *rq;
|
|
struct spu *spu = NULL;
|
|
|
|
rq = spu_rq();
|
|
down(&rq->sem);
|
|
for (;;) {
|
|
if (rq->nr_idle > 0) {
|
|
if (is_best_prio(rq)) {
|
|
/* Fall through. */
|
|
spu = del_idle(rq);
|
|
break;
|
|
} else {
|
|
prio_wakeup(rq);
|
|
up(&rq->sem);
|
|
yield();
|
|
if (signal_pending(current)) {
|
|
return NULL;
|
|
}
|
|
rq = spu_rq();
|
|
down(&rq->sem);
|
|
continue;
|
|
}
|
|
} else {
|
|
check_preempt_active(rq);
|
|
prio_wait(rq, ctx, flags);
|
|
if (signal_pending(current)) {
|
|
prio_wakeup(rq);
|
|
spu = NULL;
|
|
break;
|
|
}
|
|
continue;
|
|
}
|
|
}
|
|
up(&rq->sem);
|
|
return spu;
|
|
}
|
|
|
|
static void put_idle_spu(struct spu *spu)
|
|
{
|
|
struct spu_runqueue *rq = spu->rq;
|
|
|
|
down(&rq->sem);
|
|
add_idle(rq, spu);
|
|
prio_wakeup(rq);
|
|
up(&rq->sem);
|
|
}
|
|
|
|
static int get_active_spu(struct spu *spu)
|
|
{
|
|
struct spu_runqueue *rq = spu->rq;
|
|
struct list_head *p;
|
|
struct spu *tmp;
|
|
int rc = 0;
|
|
|
|
down(&rq->sem);
|
|
list_for_each(p, &rq->active_list) {
|
|
tmp = list_entry(p, struct spu, sched_list);
|
|
if (tmp == spu) {
|
|
del_active(rq, spu);
|
|
rc = 1;
|
|
break;
|
|
}
|
|
}
|
|
up(&rq->sem);
|
|
return rc;
|
|
}
|
|
|
|
static void put_active_spu(struct spu *spu)
|
|
{
|
|
struct spu_runqueue *rq = spu->rq;
|
|
|
|
down(&rq->sem);
|
|
add_active(rq, spu);
|
|
up(&rq->sem);
|
|
}
|
|
|
|
/* Lock order:
|
|
* spu_activate() & spu_deactivate() require the
|
|
* caller to have down_write(&ctx->state_sema).
|
|
*
|
|
* The rq->sem is breifly held (inside or outside a
|
|
* given ctx lock) for list management, but is never
|
|
* held during save/restore.
|
|
*/
|
|
|
|
int spu_activate(struct spu_context *ctx, u64 flags)
|
|
{
|
|
struct spu *spu;
|
|
|
|
if (ctx->spu)
|
|
return 0;
|
|
spu = get_idle_spu(ctx, flags);
|
|
if (!spu)
|
|
return (signal_pending(current)) ? -ERESTARTSYS : -EAGAIN;
|
|
bind_context(spu, ctx);
|
|
/*
|
|
* We're likely to wait for interrupts on the same
|
|
* CPU that we are now on, so send them here.
|
|
*/
|
|
spu_irq_setaffinity(spu, raw_smp_processor_id());
|
|
put_active_spu(spu);
|
|
return 0;
|
|
}
|
|
|
|
void spu_deactivate(struct spu_context *ctx)
|
|
{
|
|
struct spu *spu;
|
|
int needs_idle;
|
|
|
|
spu = ctx->spu;
|
|
if (!spu)
|
|
return;
|
|
needs_idle = get_active_spu(spu);
|
|
unbind_context(spu, ctx);
|
|
if (needs_idle)
|
|
put_idle_spu(spu);
|
|
}
|
|
|
|
void spu_yield(struct spu_context *ctx)
|
|
{
|
|
struct spu *spu;
|
|
int need_yield = 0;
|
|
|
|
down_write(&ctx->state_sema);
|
|
spu = ctx->spu;
|
|
if (spu && (sched_find_first_bit(spu->rq->prio.bitmap) < MAX_PRIO)) {
|
|
pr_debug("%s: yielding SPU %d\n", __FUNCTION__, spu->number);
|
|
spu_deactivate(ctx);
|
|
ctx->state = SPU_STATE_SAVED;
|
|
need_yield = 1;
|
|
} else if (spu) {
|
|
spu->prio = MAX_PRIO;
|
|
}
|
|
up_write(&ctx->state_sema);
|
|
if (unlikely(need_yield))
|
|
yield();
|
|
}
|
|
|
|
int __init spu_sched_init(void)
|
|
{
|
|
struct spu_runqueue *rq;
|
|
struct spu *spu;
|
|
int i;
|
|
|
|
rq = spu_runqueues = kmalloc(sizeof(struct spu_runqueue), GFP_KERNEL);
|
|
if (!rq) {
|
|
printk(KERN_WARNING "%s: Unable to allocate runqueues.\n",
|
|
__FUNCTION__);
|
|
return 1;
|
|
}
|
|
memset(rq, 0, sizeof(struct spu_runqueue));
|
|
init_MUTEX(&rq->sem);
|
|
INIT_LIST_HEAD(&rq->active_list);
|
|
INIT_LIST_HEAD(&rq->idle_list);
|
|
rq->nr_active = 0;
|
|
rq->nr_idle = 0;
|
|
rq->nr_switches = 0;
|
|
atomic_set(&rq->prio.nr_blocked, 0);
|
|
for (i = 0; i < MAX_PRIO; i++) {
|
|
init_waitqueue_head(&rq->prio.waitq[i]);
|
|
__clear_bit(i, rq->prio.bitmap);
|
|
}
|
|
__set_bit(MAX_PRIO, rq->prio.bitmap);
|
|
for (;;) {
|
|
spu = spu_alloc();
|
|
if (!spu)
|
|
break;
|
|
pr_debug("%s: adding SPU[%d]\n", __FUNCTION__, spu->number);
|
|
add_idle(rq, spu);
|
|
spu->rq = rq;
|
|
spu->timestamp = jiffies;
|
|
}
|
|
if (!rq->nr_idle) {
|
|
printk(KERN_WARNING "%s: No available SPUs.\n", __FUNCTION__);
|
|
kfree(rq);
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
void __exit spu_sched_exit(void)
|
|
{
|
|
struct spu_runqueue *rq = spu_rq();
|
|
struct spu *spu;
|
|
|
|
if (!rq) {
|
|
printk(KERN_WARNING "%s: no runqueues!\n", __FUNCTION__);
|
|
return;
|
|
}
|
|
while (rq->nr_idle > 0) {
|
|
spu = del_idle(rq);
|
|
if (!spu)
|
|
break;
|
|
spu_free(spu);
|
|
}
|
|
kfree(rq);
|
|
}
|