linux_dsm_epyc7002/drivers/crypto/caam/caamalg.c
Kim Phillips a2ecb155a3 crypto: caam - fix polarity of "propagate error" logic
the polarity of the definition for error propagation was reverse
in the initial desc.h.  Fix desc.h and its users.

Signed-off-by: Kim Phillips <kim.phillips@freescale.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2011-12-20 15:20:04 +08:00

2304 lines
66 KiB
C

/*
* caam - Freescale FSL CAAM support for crypto API
*
* Copyright 2008-2011 Freescale Semiconductor, Inc.
*
* Based on talitos crypto API driver.
*
* relationship of job descriptors to shared descriptors (SteveC Dec 10 2008):
*
* --------------- ---------------
* | JobDesc #1 |-------------------->| ShareDesc |
* | *(packet 1) | | (PDB) |
* --------------- |------------->| (hashKey) |
* . | | (cipherKey) |
* . | |-------->| (operation) |
* --------------- | | ---------------
* | JobDesc #2 |------| |
* | *(packet 2) | |
* --------------- |
* . |
* . |
* --------------- |
* | JobDesc #3 |------------
* | *(packet 3) |
* ---------------
*
* The SharedDesc never changes for a connection unless rekeyed, but
* each packet will likely be in a different place. So all we need
* to know to process the packet is where the input is, where the
* output goes, and what context we want to process with. Context is
* in the SharedDesc, packet references in the JobDesc.
*
* So, a job desc looks like:
*
* ---------------------
* | Header |
* | ShareDesc Pointer |
* | SEQ_OUT_PTR |
* | (output buffer) |
* | SEQ_IN_PTR |
* | (input buffer) |
* | LOAD (to DECO) |
* ---------------------
*/
#include "compat.h"
#include "regs.h"
#include "intern.h"
#include "desc_constr.h"
#include "jr.h"
#include "error.h"
/*
* crypto alg
*/
#define CAAM_CRA_PRIORITY 3000
/* max key is sum of AES_MAX_KEY_SIZE, max split key size */
#define CAAM_MAX_KEY_SIZE (AES_MAX_KEY_SIZE + \
SHA512_DIGEST_SIZE * 2)
/* max IV is max of AES_BLOCK_SIZE, DES3_EDE_BLOCK_SIZE */
#define CAAM_MAX_IV_LENGTH 16
/* length of descriptors text */
#define DESC_JOB_IO_LEN (CAAM_CMD_SZ * 3 + CAAM_PTR_SZ * 3)
#define DESC_AEAD_BASE (4 * CAAM_CMD_SZ)
#define DESC_AEAD_ENC_LEN (DESC_AEAD_BASE + 16 * CAAM_CMD_SZ)
#define DESC_AEAD_DEC_LEN (DESC_AEAD_BASE + 21 * CAAM_CMD_SZ)
#define DESC_AEAD_GIVENC_LEN (DESC_AEAD_ENC_LEN + 7 * CAAM_CMD_SZ)
#define DESC_ABLKCIPHER_BASE (3 * CAAM_CMD_SZ)
#define DESC_ABLKCIPHER_ENC_LEN (DESC_ABLKCIPHER_BASE + \
20 * CAAM_CMD_SZ)
#define DESC_ABLKCIPHER_DEC_LEN (DESC_ABLKCIPHER_BASE + \
15 * CAAM_CMD_SZ)
#define DESC_MAX_USED_BYTES (DESC_AEAD_GIVENC_LEN + \
CAAM_MAX_KEY_SIZE)
#define DESC_MAX_USED_LEN (DESC_MAX_USED_BYTES / CAAM_CMD_SZ)
#ifdef DEBUG
/* for print_hex_dumps with line references */
#define xstr(s) str(s)
#define str(s) #s
#define debug(format, arg...) printk(format, arg)
#else
#define debug(format, arg...)
#endif
/* Set DK bit in class 1 operation if shared */
static inline void append_dec_op1(u32 *desc, u32 type)
{
u32 *jump_cmd, *uncond_jump_cmd;
jump_cmd = append_jump(desc, JUMP_TEST_ALL | JUMP_COND_SHRD);
append_operation(desc, type | OP_ALG_AS_INITFINAL |
OP_ALG_DECRYPT);
uncond_jump_cmd = append_jump(desc, JUMP_TEST_ALL);
set_jump_tgt_here(desc, jump_cmd);
append_operation(desc, type | OP_ALG_AS_INITFINAL |
OP_ALG_DECRYPT | OP_ALG_AAI_DK);
set_jump_tgt_here(desc, uncond_jump_cmd);
}
/*
* Wait for completion of class 1 key loading before allowing
* error propagation
*/
static inline void append_dec_shr_done(u32 *desc)
{
u32 *jump_cmd;
jump_cmd = append_jump(desc, JUMP_CLASS_CLASS1 | JUMP_TEST_ALL);
set_jump_tgt_here(desc, jump_cmd);
append_cmd(desc, SET_OK_NO_PROP_ERRORS | CMD_LOAD);
}
/*
* For aead functions, read payload and write payload,
* both of which are specified in req->src and req->dst
*/
static inline void aead_append_src_dst(u32 *desc, u32 msg_type)
{
append_seq_fifo_load(desc, 0, FIFOLD_CLASS_BOTH |
KEY_VLF | msg_type | FIFOLD_TYPE_LASTBOTH);
append_seq_fifo_store(desc, 0, FIFOST_TYPE_MESSAGE_DATA | KEY_VLF);
}
/*
* For aead encrypt and decrypt, read iv for both classes
*/
static inline void aead_append_ld_iv(u32 *desc, int ivsize)
{
append_cmd(desc, CMD_SEQ_LOAD | LDST_SRCDST_BYTE_CONTEXT |
LDST_CLASS_1_CCB | ivsize);
append_move(desc, MOVE_SRC_CLASS1CTX | MOVE_DEST_CLASS2INFIFO | ivsize);
}
/*
* For ablkcipher encrypt and decrypt, read from req->src and
* write to req->dst
*/
static inline void ablkcipher_append_src_dst(u32 *desc)
{
append_math_add(desc, VARSEQOUTLEN, SEQINLEN, REG0, CAAM_CMD_SZ); \
append_math_add(desc, VARSEQINLEN, SEQINLEN, REG0, CAAM_CMD_SZ); \
append_seq_fifo_load(desc, 0, FIFOLD_CLASS_CLASS1 | \
KEY_VLF | FIFOLD_TYPE_MSG | FIFOLD_TYPE_LAST1); \
append_seq_fifo_store(desc, 0, FIFOST_TYPE_MESSAGE_DATA | KEY_VLF); \
}
/*
* If all data, including src (with assoc and iv) or dst (with iv only) are
* contiguous
*/
#define GIV_SRC_CONTIG 1
#define GIV_DST_CONTIG (1 << 1)
/*
* per-session context
*/
struct caam_ctx {
struct device *jrdev;
u32 sh_desc_enc[DESC_MAX_USED_LEN];
u32 sh_desc_dec[DESC_MAX_USED_LEN];
u32 sh_desc_givenc[DESC_MAX_USED_LEN];
dma_addr_t sh_desc_enc_dma;
dma_addr_t sh_desc_dec_dma;
dma_addr_t sh_desc_givenc_dma;
u32 class1_alg_type;
u32 class2_alg_type;
u32 alg_op;
u8 key[CAAM_MAX_KEY_SIZE];
dma_addr_t key_dma;
unsigned int enckeylen;
unsigned int split_key_len;
unsigned int split_key_pad_len;
unsigned int authsize;
};
static void append_key_aead(u32 *desc, struct caam_ctx *ctx,
int keys_fit_inline)
{
if (keys_fit_inline) {
append_key_as_imm(desc, ctx->key, ctx->split_key_pad_len,
ctx->split_key_len, CLASS_2 |
KEY_DEST_MDHA_SPLIT | KEY_ENC);
append_key_as_imm(desc, (void *)ctx->key +
ctx->split_key_pad_len, ctx->enckeylen,
ctx->enckeylen, CLASS_1 | KEY_DEST_CLASS_REG);
} else {
append_key(desc, ctx->key_dma, ctx->split_key_len, CLASS_2 |
KEY_DEST_MDHA_SPLIT | KEY_ENC);
append_key(desc, ctx->key_dma + ctx->split_key_pad_len,
ctx->enckeylen, CLASS_1 | KEY_DEST_CLASS_REG);
}
}
static void init_sh_desc_key_aead(u32 *desc, struct caam_ctx *ctx,
int keys_fit_inline)
{
u32 *key_jump_cmd;
init_sh_desc(desc, HDR_SHARE_WAIT);
/* Skip if already shared */
key_jump_cmd = append_jump(desc, JUMP_JSL | JUMP_TEST_ALL |
JUMP_COND_SHRD);
append_key_aead(desc, ctx, keys_fit_inline);
set_jump_tgt_here(desc, key_jump_cmd);
/* Propagate errors from shared to job descriptor */
append_cmd(desc, SET_OK_NO_PROP_ERRORS | CMD_LOAD);
}
static int aead_set_sh_desc(struct crypto_aead *aead)
{
struct aead_tfm *tfm = &aead->base.crt_aead;
struct caam_ctx *ctx = crypto_aead_ctx(aead);
struct device *jrdev = ctx->jrdev;
bool keys_fit_inline = 0;
u32 *key_jump_cmd, *jump_cmd;
u32 geniv, moveiv;
u32 *desc;
if (!ctx->enckeylen || !ctx->authsize)
return 0;
/*
* Job Descriptor and Shared Descriptors
* must all fit into the 64-word Descriptor h/w Buffer
*/
if (DESC_AEAD_ENC_LEN + DESC_JOB_IO_LEN +
ctx->split_key_pad_len + ctx->enckeylen <=
CAAM_DESC_BYTES_MAX)
keys_fit_inline = 1;
/* aead_encrypt shared descriptor */
desc = ctx->sh_desc_enc;
init_sh_desc_key_aead(desc, ctx, keys_fit_inline);
/* Class 2 operation */
append_operation(desc, ctx->class2_alg_type |
OP_ALG_AS_INITFINAL | OP_ALG_ENCRYPT);
/* cryptlen = seqoutlen - authsize */
append_math_sub_imm_u32(desc, REG3, SEQOUTLEN, IMM, ctx->authsize);
/* assoclen + cryptlen = seqinlen - ivsize */
append_math_sub_imm_u32(desc, REG2, SEQINLEN, IMM, tfm->ivsize);
/* assoclen + cryptlen = (assoclen + cryptlen) - cryptlen */
append_math_sub(desc, VARSEQINLEN, REG2, REG3, CAAM_CMD_SZ);
/* read assoc before reading payload */
append_seq_fifo_load(desc, 0, FIFOLD_CLASS_CLASS2 | FIFOLD_TYPE_MSG |
KEY_VLF);
aead_append_ld_iv(desc, tfm->ivsize);
/* Class 1 operation */
append_operation(desc, ctx->class1_alg_type |
OP_ALG_AS_INITFINAL | OP_ALG_ENCRYPT);
/* Read and write cryptlen bytes */
append_math_add(desc, VARSEQINLEN, ZERO, REG3, CAAM_CMD_SZ);
append_math_add(desc, VARSEQOUTLEN, ZERO, REG3, CAAM_CMD_SZ);
aead_append_src_dst(desc, FIFOLD_TYPE_MSG1OUT2);
/* Write ICV */
append_seq_store(desc, ctx->authsize, LDST_CLASS_2_CCB |
LDST_SRCDST_BYTE_CONTEXT);
ctx->sh_desc_enc_dma = dma_map_single(jrdev, desc,
desc_bytes(desc),
DMA_TO_DEVICE);
if (dma_mapping_error(jrdev, ctx->sh_desc_enc_dma)) {
dev_err(jrdev, "unable to map shared descriptor\n");
return -ENOMEM;
}
#ifdef DEBUG
print_hex_dump(KERN_ERR, "aead enc shdesc@"xstr(__LINE__)": ",
DUMP_PREFIX_ADDRESS, 16, 4, desc,
desc_bytes(desc), 1);
#endif
/*
* Job Descriptor and Shared Descriptors
* must all fit into the 64-word Descriptor h/w Buffer
*/
if (DESC_AEAD_DEC_LEN + DESC_JOB_IO_LEN +
ctx->split_key_pad_len + ctx->enckeylen <=
CAAM_DESC_BYTES_MAX)
keys_fit_inline = 1;
desc = ctx->sh_desc_dec;
/* aead_decrypt shared descriptor */
init_sh_desc(desc, HDR_SHARE_WAIT);
/* Skip if already shared */
key_jump_cmd = append_jump(desc, JUMP_JSL | JUMP_TEST_ALL |
JUMP_COND_SHRD);
append_key_aead(desc, ctx, keys_fit_inline);
/* Only propagate error immediately if shared */
jump_cmd = append_jump(desc, JUMP_TEST_ALL);
set_jump_tgt_here(desc, key_jump_cmd);
append_cmd(desc, SET_OK_NO_PROP_ERRORS | CMD_LOAD);
set_jump_tgt_here(desc, jump_cmd);
/* Class 2 operation */
append_operation(desc, ctx->class2_alg_type |
OP_ALG_AS_INITFINAL | OP_ALG_DECRYPT | OP_ALG_ICV_ON);
/* assoclen + cryptlen = seqinlen - ivsize */
append_math_sub_imm_u32(desc, REG3, SEQINLEN, IMM,
ctx->authsize + tfm->ivsize)
/* assoclen = (assoclen + cryptlen) - cryptlen */
append_math_sub(desc, REG2, SEQOUTLEN, REG0, CAAM_CMD_SZ);
append_math_sub(desc, VARSEQINLEN, REG3, REG2, CAAM_CMD_SZ);
/* read assoc before reading payload */
append_seq_fifo_load(desc, 0, FIFOLD_CLASS_CLASS2 | FIFOLD_TYPE_MSG |
KEY_VLF);
aead_append_ld_iv(desc, tfm->ivsize);
append_dec_op1(desc, ctx->class1_alg_type);
/* Read and write cryptlen bytes */
append_math_add(desc, VARSEQINLEN, ZERO, REG2, CAAM_CMD_SZ);
append_math_add(desc, VARSEQOUTLEN, ZERO, REG2, CAAM_CMD_SZ);
aead_append_src_dst(desc, FIFOLD_TYPE_MSG);
/* Load ICV */
append_seq_fifo_load(desc, ctx->authsize, FIFOLD_CLASS_CLASS2 |
FIFOLD_TYPE_LAST2 | FIFOLD_TYPE_ICV);
append_dec_shr_done(desc);
ctx->sh_desc_dec_dma = dma_map_single(jrdev, desc,
desc_bytes(desc),
DMA_TO_DEVICE);
if (dma_mapping_error(jrdev, ctx->sh_desc_dec_dma)) {
dev_err(jrdev, "unable to map shared descriptor\n");
return -ENOMEM;
}
#ifdef DEBUG
print_hex_dump(KERN_ERR, "aead dec shdesc@"xstr(__LINE__)": ",
DUMP_PREFIX_ADDRESS, 16, 4, desc,
desc_bytes(desc), 1);
#endif
/*
* Job Descriptor and Shared Descriptors
* must all fit into the 64-word Descriptor h/w Buffer
*/
if (DESC_AEAD_GIVENC_LEN + DESC_JOB_IO_LEN +
ctx->split_key_pad_len + ctx->enckeylen <=
CAAM_DESC_BYTES_MAX)
keys_fit_inline = 1;
/* aead_givencrypt shared descriptor */
desc = ctx->sh_desc_givenc;
init_sh_desc_key_aead(desc, ctx, keys_fit_inline);
/* Generate IV */
geniv = NFIFOENTRY_STYPE_PAD | NFIFOENTRY_DEST_DECO |
NFIFOENTRY_DTYPE_MSG | NFIFOENTRY_LC1 |
NFIFOENTRY_PTYPE_RND | (tfm->ivsize << NFIFOENTRY_DLEN_SHIFT);
append_load_imm_u32(desc, geniv, LDST_CLASS_IND_CCB |
LDST_SRCDST_WORD_INFO_FIFO | LDST_IMM);
append_cmd(desc, CMD_LOAD | DISABLE_AUTO_INFO_FIFO);
append_move(desc, MOVE_SRC_INFIFO |
MOVE_DEST_CLASS1CTX | (tfm->ivsize << MOVE_LEN_SHIFT));
append_cmd(desc, CMD_LOAD | ENABLE_AUTO_INFO_FIFO);
/* Copy IV to class 1 context */
append_move(desc, MOVE_SRC_CLASS1CTX |
MOVE_DEST_OUTFIFO | (tfm->ivsize << MOVE_LEN_SHIFT));
/* Return to encryption */
append_operation(desc, ctx->class2_alg_type |
OP_ALG_AS_INITFINAL | OP_ALG_ENCRYPT);
/* ivsize + cryptlen = seqoutlen - authsize */
append_math_sub_imm_u32(desc, REG3, SEQOUTLEN, IMM, ctx->authsize);
/* assoclen = seqinlen - (ivsize + cryptlen) */
append_math_sub(desc, VARSEQINLEN, SEQINLEN, REG3, CAAM_CMD_SZ);
/* read assoc before reading payload */
append_seq_fifo_load(desc, 0, FIFOLD_CLASS_CLASS2 | FIFOLD_TYPE_MSG |
KEY_VLF);
/* Copy iv from class 1 ctx to class 2 fifo*/
moveiv = NFIFOENTRY_STYPE_OFIFO | NFIFOENTRY_DEST_CLASS2 |
NFIFOENTRY_DTYPE_MSG | (tfm->ivsize << NFIFOENTRY_DLEN_SHIFT);
append_load_imm_u32(desc, moveiv, LDST_CLASS_IND_CCB |
LDST_SRCDST_WORD_INFO_FIFO | LDST_IMM);
append_load_imm_u32(desc, tfm->ivsize, LDST_CLASS_2_CCB |
LDST_SRCDST_WORD_DATASZ_REG | LDST_IMM);
/* Class 1 operation */
append_operation(desc, ctx->class1_alg_type |
OP_ALG_AS_INITFINAL | OP_ALG_ENCRYPT);
/* Will write ivsize + cryptlen */
append_math_add(desc, VARSEQOUTLEN, SEQINLEN, REG0, CAAM_CMD_SZ);
/* Not need to reload iv */
append_seq_fifo_load(desc, tfm->ivsize,
FIFOLD_CLASS_SKIP);
/* Will read cryptlen */
append_math_add(desc, VARSEQINLEN, SEQINLEN, REG0, CAAM_CMD_SZ);
aead_append_src_dst(desc, FIFOLD_TYPE_MSG1OUT2);
/* Write ICV */
append_seq_store(desc, ctx->authsize, LDST_CLASS_2_CCB |
LDST_SRCDST_BYTE_CONTEXT);
ctx->sh_desc_givenc_dma = dma_map_single(jrdev, desc,
desc_bytes(desc),
DMA_TO_DEVICE);
if (dma_mapping_error(jrdev, ctx->sh_desc_givenc_dma)) {
dev_err(jrdev, "unable to map shared descriptor\n");
return -ENOMEM;
}
#ifdef DEBUG
print_hex_dump(KERN_ERR, "aead givenc shdesc@"xstr(__LINE__)": ",
DUMP_PREFIX_ADDRESS, 16, 4, desc,
desc_bytes(desc), 1);
#endif
return 0;
}
static int aead_setauthsize(struct crypto_aead *authenc,
unsigned int authsize)
{
struct caam_ctx *ctx = crypto_aead_ctx(authenc);
ctx->authsize = authsize;
aead_set_sh_desc(authenc);
return 0;
}
struct split_key_result {
struct completion completion;
int err;
};
static void split_key_done(struct device *dev, u32 *desc, u32 err,
void *context)
{
struct split_key_result *res = context;
#ifdef DEBUG
dev_err(dev, "%s %d: err 0x%x\n", __func__, __LINE__, err);
#endif
if (err) {
char tmp[CAAM_ERROR_STR_MAX];
dev_err(dev, "%08x: %s\n", err, caam_jr_strstatus(tmp, err));
}
res->err = err;
complete(&res->completion);
}
/*
get a split ipad/opad key
Split key generation-----------------------------------------------
[00] 0xb0810008 jobdesc: stidx=1 share=never len=8
[01] 0x04000014 key: class2->keyreg len=20
@0xffe01000
[03] 0x84410014 operation: cls2-op sha1 hmac init dec
[04] 0x24940000 fifold: class2 msgdata-last2 len=0 imm
[05] 0xa4000001 jump: class2 local all ->1 [06]
[06] 0x64260028 fifostr: class2 mdsplit-jdk len=40
@0xffe04000
*/
static u32 gen_split_key(struct caam_ctx *ctx, const u8 *key_in, u32 authkeylen)
{
struct device *jrdev = ctx->jrdev;
u32 *desc;
struct split_key_result result;
dma_addr_t dma_addr_in, dma_addr_out;
int ret = 0;
desc = kmalloc(CAAM_CMD_SZ * 6 + CAAM_PTR_SZ * 2, GFP_KERNEL | GFP_DMA);
init_job_desc(desc, 0);
dma_addr_in = dma_map_single(jrdev, (void *)key_in, authkeylen,
DMA_TO_DEVICE);
if (dma_mapping_error(jrdev, dma_addr_in)) {
dev_err(jrdev, "unable to map key input memory\n");
kfree(desc);
return -ENOMEM;
}
append_key(desc, dma_addr_in, authkeylen, CLASS_2 |
KEY_DEST_CLASS_REG);
/* Sets MDHA up into an HMAC-INIT */
append_operation(desc, ctx->alg_op | OP_ALG_DECRYPT |
OP_ALG_AS_INIT);
/*
* do a FIFO_LOAD of zero, this will trigger the internal key expansion
into both pads inside MDHA
*/
append_fifo_load_as_imm(desc, NULL, 0, LDST_CLASS_2_CCB |
FIFOLD_TYPE_MSG | FIFOLD_TYPE_LAST2);
/*
* FIFO_STORE with the explicit split-key content store
* (0x26 output type)
*/
dma_addr_out = dma_map_single(jrdev, ctx->key, ctx->split_key_pad_len,
DMA_FROM_DEVICE);
if (dma_mapping_error(jrdev, dma_addr_out)) {
dev_err(jrdev, "unable to map key output memory\n");
kfree(desc);
return -ENOMEM;
}
append_fifo_store(desc, dma_addr_out, ctx->split_key_len,
LDST_CLASS_2_CCB | FIFOST_TYPE_SPLIT_KEK);
#ifdef DEBUG
print_hex_dump(KERN_ERR, "ctx.key@"xstr(__LINE__)": ",
DUMP_PREFIX_ADDRESS, 16, 4, key_in, authkeylen, 1);
print_hex_dump(KERN_ERR, "jobdesc@"xstr(__LINE__)": ",
DUMP_PREFIX_ADDRESS, 16, 4, desc, desc_bytes(desc), 1);
#endif
result.err = 0;
init_completion(&result.completion);
ret = caam_jr_enqueue(jrdev, desc, split_key_done, &result);
if (!ret) {
/* in progress */
wait_for_completion_interruptible(&result.completion);
ret = result.err;
#ifdef DEBUG
print_hex_dump(KERN_ERR, "ctx.key@"xstr(__LINE__)": ",
DUMP_PREFIX_ADDRESS, 16, 4, ctx->key,
ctx->split_key_pad_len, 1);
#endif
}
dma_unmap_single(jrdev, dma_addr_out, ctx->split_key_pad_len,
DMA_FROM_DEVICE);
dma_unmap_single(jrdev, dma_addr_in, authkeylen, DMA_TO_DEVICE);
kfree(desc);
return ret;
}
static int aead_setkey(struct crypto_aead *aead,
const u8 *key, unsigned int keylen)
{
/* Sizes for MDHA pads (*not* keys): MD5, SHA1, 224, 256, 384, 512 */
static const u8 mdpadlen[] = { 16, 20, 32, 32, 64, 64 };
struct caam_ctx *ctx = crypto_aead_ctx(aead);
struct device *jrdev = ctx->jrdev;
struct rtattr *rta = (void *)key;
struct crypto_authenc_key_param *param;
unsigned int authkeylen;
unsigned int enckeylen;
int ret = 0;
param = RTA_DATA(rta);
enckeylen = be32_to_cpu(param->enckeylen);
key += RTA_ALIGN(rta->rta_len);
keylen -= RTA_ALIGN(rta->rta_len);
if (keylen < enckeylen)
goto badkey;
authkeylen = keylen - enckeylen;
if (keylen > CAAM_MAX_KEY_SIZE)
goto badkey;
/* Pick class 2 key length from algorithm submask */
ctx->split_key_len = mdpadlen[(ctx->alg_op & OP_ALG_ALGSEL_SUBMASK) >>
OP_ALG_ALGSEL_SHIFT] * 2;
ctx->split_key_pad_len = ALIGN(ctx->split_key_len, 16);
#ifdef DEBUG
printk(KERN_ERR "keylen %d enckeylen %d authkeylen %d\n",
keylen, enckeylen, authkeylen);
printk(KERN_ERR "split_key_len %d split_key_pad_len %d\n",
ctx->split_key_len, ctx->split_key_pad_len);
print_hex_dump(KERN_ERR, "key in @"xstr(__LINE__)": ",
DUMP_PREFIX_ADDRESS, 16, 4, key, keylen, 1);
#endif
ret = gen_split_key(ctx, key, authkeylen);
if (ret) {
goto badkey;
}
/* postpend encryption key to auth split key */
memcpy(ctx->key + ctx->split_key_pad_len, key + authkeylen, enckeylen);
ctx->key_dma = dma_map_single(jrdev, ctx->key, ctx->split_key_pad_len +
enckeylen, DMA_TO_DEVICE);
if (dma_mapping_error(jrdev, ctx->key_dma)) {
dev_err(jrdev, "unable to map key i/o memory\n");
return -ENOMEM;
}
#ifdef DEBUG
print_hex_dump(KERN_ERR, "ctx.key@"xstr(__LINE__)": ",
DUMP_PREFIX_ADDRESS, 16, 4, ctx->key,
ctx->split_key_pad_len + enckeylen, 1);
#endif
ctx->enckeylen = enckeylen;
ret = aead_set_sh_desc(aead);
if (ret) {
dma_unmap_single(jrdev, ctx->key_dma, ctx->split_key_pad_len +
enckeylen, DMA_TO_DEVICE);
}
return ret;
badkey:
crypto_aead_set_flags(aead, CRYPTO_TFM_RES_BAD_KEY_LEN);
return -EINVAL;
}
static int ablkcipher_setkey(struct crypto_ablkcipher *ablkcipher,
const u8 *key, unsigned int keylen)
{
struct caam_ctx *ctx = crypto_ablkcipher_ctx(ablkcipher);
struct ablkcipher_tfm *tfm = &ablkcipher->base.crt_ablkcipher;
struct device *jrdev = ctx->jrdev;
int ret = 0;
u32 *key_jump_cmd, *jump_cmd;
u32 *desc;
#ifdef DEBUG
print_hex_dump(KERN_ERR, "key in @"xstr(__LINE__)": ",
DUMP_PREFIX_ADDRESS, 16, 4, key, keylen, 1);
#endif
memcpy(ctx->key, key, keylen);
ctx->key_dma = dma_map_single(jrdev, ctx->key, keylen,
DMA_TO_DEVICE);
if (dma_mapping_error(jrdev, ctx->key_dma)) {
dev_err(jrdev, "unable to map key i/o memory\n");
return -ENOMEM;
}
ctx->enckeylen = keylen;
/* ablkcipher_encrypt shared descriptor */
desc = ctx->sh_desc_enc;
init_sh_desc(desc, HDR_SHARE_WAIT);
/* Skip if already shared */
key_jump_cmd = append_jump(desc, JUMP_JSL | JUMP_TEST_ALL |
JUMP_COND_SHRD);
/* Load class1 key only */
append_key_as_imm(desc, (void *)ctx->key, ctx->enckeylen,
ctx->enckeylen, CLASS_1 |
KEY_DEST_CLASS_REG);
set_jump_tgt_here(desc, key_jump_cmd);
/* Propagate errors from shared to job descriptor */
append_cmd(desc, SET_OK_NO_PROP_ERRORS | CMD_LOAD);
/* Load iv */
append_cmd(desc, CMD_SEQ_LOAD | LDST_SRCDST_BYTE_CONTEXT |
LDST_CLASS_1_CCB | tfm->ivsize);
/* Load operation */
append_operation(desc, ctx->class1_alg_type |
OP_ALG_AS_INITFINAL | OP_ALG_ENCRYPT);
/* Perform operation */
ablkcipher_append_src_dst(desc);
ctx->sh_desc_enc_dma = dma_map_single(jrdev, desc,
desc_bytes(desc),
DMA_TO_DEVICE);
if (dma_mapping_error(jrdev, ctx->sh_desc_enc_dma)) {
dev_err(jrdev, "unable to map shared descriptor\n");
return -ENOMEM;
}
#ifdef DEBUG
print_hex_dump(KERN_ERR, "ablkcipher enc shdesc@"xstr(__LINE__)": ",
DUMP_PREFIX_ADDRESS, 16, 4, desc,
desc_bytes(desc), 1);
#endif
/* ablkcipher_decrypt shared descriptor */
desc = ctx->sh_desc_dec;
init_sh_desc(desc, HDR_SHARE_WAIT);
/* Skip if already shared */
key_jump_cmd = append_jump(desc, JUMP_JSL | JUMP_TEST_ALL |
JUMP_COND_SHRD);
/* Load class1 key only */
append_key_as_imm(desc, (void *)ctx->key, ctx->enckeylen,
ctx->enckeylen, CLASS_1 |
KEY_DEST_CLASS_REG);
/* For aead, only propagate error immediately if shared */
jump_cmd = append_jump(desc, JUMP_TEST_ALL);
set_jump_tgt_here(desc, key_jump_cmd);
append_cmd(desc, SET_OK_NO_PROP_ERRORS | CMD_LOAD);
set_jump_tgt_here(desc, jump_cmd);
/* load IV */
append_cmd(desc, CMD_SEQ_LOAD | LDST_SRCDST_BYTE_CONTEXT |
LDST_CLASS_1_CCB | tfm->ivsize);
/* Choose operation */
append_dec_op1(desc, ctx->class1_alg_type);
/* Perform operation */
ablkcipher_append_src_dst(desc);
/* Wait for key to load before allowing propagating error */
append_dec_shr_done(desc);
ctx->sh_desc_dec_dma = dma_map_single(jrdev, desc,
desc_bytes(desc),
DMA_TO_DEVICE);
if (dma_mapping_error(jrdev, ctx->sh_desc_enc_dma)) {
dev_err(jrdev, "unable to map shared descriptor\n");
return -ENOMEM;
}
#ifdef DEBUG
print_hex_dump(KERN_ERR, "ablkcipher dec shdesc@"xstr(__LINE__)": ",
DUMP_PREFIX_ADDRESS, 16, 4, desc,
desc_bytes(desc), 1);
#endif
return ret;
}
struct link_tbl_entry {
u64 ptr;
u32 len;
u8 reserved;
u8 buf_pool_id;
u16 offset;
};
/*
* aead_edesc - s/w-extended aead descriptor
* @assoc_nents: number of segments in associated data (SPI+Seq) scatterlist
* @src_nents: number of segments in input scatterlist
* @dst_nents: number of segments in output scatterlist
* @iv_dma: dma address of iv for checking continuity and link table
* @desc: h/w descriptor (variable length; must not exceed MAX_CAAM_DESCSIZE)
* @link_tbl_bytes: length of dma mapped link_tbl space
* @link_tbl_dma: bus physical mapped address of h/w link table
* @hw_desc: the h/w job descriptor followed by any referenced link tables
*/
struct aead_edesc {
int assoc_nents;
int src_nents;
int dst_nents;
dma_addr_t iv_dma;
int link_tbl_bytes;
dma_addr_t link_tbl_dma;
struct link_tbl_entry *link_tbl;
u32 hw_desc[0];
};
/*
* ablkcipher_edesc - s/w-extended ablkcipher descriptor
* @src_nents: number of segments in input scatterlist
* @dst_nents: number of segments in output scatterlist
* @iv_dma: dma address of iv for checking continuity and link table
* @desc: h/w descriptor (variable length; must not exceed MAX_CAAM_DESCSIZE)
* @link_tbl_bytes: length of dma mapped link_tbl space
* @link_tbl_dma: bus physical mapped address of h/w link table
* @hw_desc: the h/w job descriptor followed by any referenced link tables
*/
struct ablkcipher_edesc {
int src_nents;
int dst_nents;
dma_addr_t iv_dma;
int link_tbl_bytes;
dma_addr_t link_tbl_dma;
struct link_tbl_entry *link_tbl;
u32 hw_desc[0];
};
static void caam_unmap(struct device *dev, struct scatterlist *src,
struct scatterlist *dst, int src_nents, int dst_nents,
dma_addr_t iv_dma, int ivsize, dma_addr_t link_tbl_dma,
int link_tbl_bytes)
{
if (unlikely(dst != src)) {
dma_unmap_sg(dev, src, src_nents, DMA_TO_DEVICE);
dma_unmap_sg(dev, dst, dst_nents, DMA_FROM_DEVICE);
} else {
dma_unmap_sg(dev, src, src_nents, DMA_BIDIRECTIONAL);
}
if (iv_dma)
dma_unmap_single(dev, iv_dma, ivsize, DMA_TO_DEVICE);
if (link_tbl_bytes)
dma_unmap_single(dev, link_tbl_dma, link_tbl_bytes,
DMA_TO_DEVICE);
}
static void aead_unmap(struct device *dev,
struct aead_edesc *edesc,
struct aead_request *req)
{
struct crypto_aead *aead = crypto_aead_reqtfm(req);
int ivsize = crypto_aead_ivsize(aead);
dma_unmap_sg(dev, req->assoc, edesc->assoc_nents, DMA_TO_DEVICE);
caam_unmap(dev, req->src, req->dst,
edesc->src_nents, edesc->dst_nents,
edesc->iv_dma, ivsize, edesc->link_tbl_dma,
edesc->link_tbl_bytes);
}
static void ablkcipher_unmap(struct device *dev,
struct ablkcipher_edesc *edesc,
struct ablkcipher_request *req)
{
struct crypto_ablkcipher *ablkcipher = crypto_ablkcipher_reqtfm(req);
int ivsize = crypto_ablkcipher_ivsize(ablkcipher);
caam_unmap(dev, req->src, req->dst,
edesc->src_nents, edesc->dst_nents,
edesc->iv_dma, ivsize, edesc->link_tbl_dma,
edesc->link_tbl_bytes);
}
static void aead_encrypt_done(struct device *jrdev, u32 *desc, u32 err,
void *context)
{
struct aead_request *req = context;
struct aead_edesc *edesc;
#ifdef DEBUG
struct crypto_aead *aead = crypto_aead_reqtfm(req);
struct caam_ctx *ctx = crypto_aead_ctx(aead);
int ivsize = crypto_aead_ivsize(aead);
dev_err(jrdev, "%s %d: err 0x%x\n", __func__, __LINE__, err);
#endif
edesc = (struct aead_edesc *)((char *)desc -
offsetof(struct aead_edesc, hw_desc));
if (err) {
char tmp[CAAM_ERROR_STR_MAX];
dev_err(jrdev, "%08x: %s\n", err, caam_jr_strstatus(tmp, err));
}
aead_unmap(jrdev, edesc, req);
#ifdef DEBUG
print_hex_dump(KERN_ERR, "assoc @"xstr(__LINE__)": ",
DUMP_PREFIX_ADDRESS, 16, 4, sg_virt(req->assoc),
req->assoclen , 1);
print_hex_dump(KERN_ERR, "dstiv @"xstr(__LINE__)": ",
DUMP_PREFIX_ADDRESS, 16, 4, sg_virt(req->src) - ivsize,
edesc->src_nents ? 100 : ivsize, 1);
print_hex_dump(KERN_ERR, "dst @"xstr(__LINE__)": ",
DUMP_PREFIX_ADDRESS, 16, 4, sg_virt(req->src),
edesc->src_nents ? 100 : req->cryptlen +
ctx->authsize + 4, 1);
#endif
kfree(edesc);
aead_request_complete(req, err);
}
static void aead_decrypt_done(struct device *jrdev, u32 *desc, u32 err,
void *context)
{
struct aead_request *req = context;
struct aead_edesc *edesc;
#ifdef DEBUG
struct crypto_aead *aead = crypto_aead_reqtfm(req);
struct caam_ctx *ctx = crypto_aead_ctx(aead);
int ivsize = crypto_aead_ivsize(aead);
dev_err(jrdev, "%s %d: err 0x%x\n", __func__, __LINE__, err);
#endif
edesc = (struct aead_edesc *)((char *)desc -
offsetof(struct aead_edesc, hw_desc));
#ifdef DEBUG
print_hex_dump(KERN_ERR, "dstiv @"xstr(__LINE__)": ",
DUMP_PREFIX_ADDRESS, 16, 4, req->iv,
ivsize, 1);
print_hex_dump(KERN_ERR, "dst @"xstr(__LINE__)": ",
DUMP_PREFIX_ADDRESS, 16, 4, sg_virt(req->dst),
req->cryptlen, 1);
#endif
if (err) {
char tmp[CAAM_ERROR_STR_MAX];
dev_err(jrdev, "%08x: %s\n", err, caam_jr_strstatus(tmp, err));
}
aead_unmap(jrdev, edesc, req);
/*
* verify hw auth check passed else return -EBADMSG
*/
if ((err & JRSTA_CCBERR_ERRID_MASK) == JRSTA_CCBERR_ERRID_ICVCHK)
err = -EBADMSG;
#ifdef DEBUG
print_hex_dump(KERN_ERR, "iphdrout@"xstr(__LINE__)": ",
DUMP_PREFIX_ADDRESS, 16, 4,
((char *)sg_virt(req->assoc) - sizeof(struct iphdr)),
sizeof(struct iphdr) + req->assoclen +
((req->cryptlen > 1500) ? 1500 : req->cryptlen) +
ctx->authsize + 36, 1);
if (!err && edesc->link_tbl_bytes) {
struct scatterlist *sg = sg_last(req->src, edesc->src_nents);
print_hex_dump(KERN_ERR, "sglastout@"xstr(__LINE__)": ",
DUMP_PREFIX_ADDRESS, 16, 4, sg_virt(sg),
sg->length + ctx->authsize + 16, 1);
}
#endif
kfree(edesc);
aead_request_complete(req, err);
}
static void ablkcipher_encrypt_done(struct device *jrdev, u32 *desc, u32 err,
void *context)
{
struct ablkcipher_request *req = context;
struct ablkcipher_edesc *edesc;
#ifdef DEBUG
struct crypto_ablkcipher *ablkcipher = crypto_ablkcipher_reqtfm(req);
int ivsize = crypto_ablkcipher_ivsize(ablkcipher);
dev_err(jrdev, "%s %d: err 0x%x\n", __func__, __LINE__, err);
#endif
edesc = (struct ablkcipher_edesc *)((char *)desc -
offsetof(struct ablkcipher_edesc, hw_desc));
if (err) {
char tmp[CAAM_ERROR_STR_MAX];
dev_err(jrdev, "%08x: %s\n", err, caam_jr_strstatus(tmp, err));
}
#ifdef DEBUG
print_hex_dump(KERN_ERR, "dstiv @"xstr(__LINE__)": ",
DUMP_PREFIX_ADDRESS, 16, 4, req->info,
edesc->src_nents > 1 ? 100 : ivsize, 1);
print_hex_dump(KERN_ERR, "dst @"xstr(__LINE__)": ",
DUMP_PREFIX_ADDRESS, 16, 4, sg_virt(req->src),
edesc->dst_nents > 1 ? 100 : req->nbytes, 1);
#endif
ablkcipher_unmap(jrdev, edesc, req);
kfree(edesc);
ablkcipher_request_complete(req, err);
}
static void ablkcipher_decrypt_done(struct device *jrdev, u32 *desc, u32 err,
void *context)
{
struct ablkcipher_request *req = context;
struct ablkcipher_edesc *edesc;
#ifdef DEBUG
struct crypto_ablkcipher *ablkcipher = crypto_ablkcipher_reqtfm(req);
int ivsize = crypto_ablkcipher_ivsize(ablkcipher);
dev_err(jrdev, "%s %d: err 0x%x\n", __func__, __LINE__, err);
#endif
edesc = (struct ablkcipher_edesc *)((char *)desc -
offsetof(struct ablkcipher_edesc, hw_desc));
if (err) {
char tmp[CAAM_ERROR_STR_MAX];
dev_err(jrdev, "%08x: %s\n", err, caam_jr_strstatus(tmp, err));
}
#ifdef DEBUG
print_hex_dump(KERN_ERR, "dstiv @"xstr(__LINE__)": ",
DUMP_PREFIX_ADDRESS, 16, 4, req->info,
ivsize, 1);
print_hex_dump(KERN_ERR, "dst @"xstr(__LINE__)": ",
DUMP_PREFIX_ADDRESS, 16, 4, sg_virt(req->src),
edesc->dst_nents > 1 ? 100 : req->nbytes, 1);
#endif
ablkcipher_unmap(jrdev, edesc, req);
kfree(edesc);
ablkcipher_request_complete(req, err);
}
static void sg_to_link_tbl_one(struct link_tbl_entry *link_tbl_ptr,
dma_addr_t dma, u32 len, u32 offset)
{
link_tbl_ptr->ptr = dma;
link_tbl_ptr->len = len;
link_tbl_ptr->reserved = 0;
link_tbl_ptr->buf_pool_id = 0;
link_tbl_ptr->offset = offset;
#ifdef DEBUG
print_hex_dump(KERN_ERR, "link_tbl_ptr@"xstr(__LINE__)": ",
DUMP_PREFIX_ADDRESS, 16, 4, link_tbl_ptr,
sizeof(struct link_tbl_entry), 1);
#endif
}
/*
* convert scatterlist to h/w link table format
* but does not have final bit; instead, returns last entry
*/
static struct link_tbl_entry *sg_to_link_tbl(struct scatterlist *sg,
int sg_count, struct link_tbl_entry
*link_tbl_ptr, u32 offset)
{
while (sg_count) {
sg_to_link_tbl_one(link_tbl_ptr, sg_dma_address(sg),
sg_dma_len(sg), offset);
link_tbl_ptr++;
sg = sg_next(sg);
sg_count--;
}
return link_tbl_ptr - 1;
}
/*
* convert scatterlist to h/w link table format
* scatterlist must have been previously dma mapped
*/
static void sg_to_link_tbl_last(struct scatterlist *sg, int sg_count,
struct link_tbl_entry *link_tbl_ptr, u32 offset)
{
link_tbl_ptr = sg_to_link_tbl(sg, sg_count, link_tbl_ptr, offset);
link_tbl_ptr->len |= 0x40000000;
}
/*
* Fill in aead job descriptor
*/
static void init_aead_job(u32 *sh_desc, dma_addr_t ptr,
struct aead_edesc *edesc,
struct aead_request *req,
bool all_contig, bool encrypt)
{
struct crypto_aead *aead = crypto_aead_reqtfm(req);
struct caam_ctx *ctx = crypto_aead_ctx(aead);
int ivsize = crypto_aead_ivsize(aead);
int authsize = ctx->authsize;
u32 *desc = edesc->hw_desc;
u32 out_options = 0, in_options;
dma_addr_t dst_dma, src_dma;
int len, link_tbl_index = 0;
#ifdef DEBUG
debug("assoclen %d cryptlen %d authsize %d\n",
req->assoclen, req->cryptlen, authsize);
print_hex_dump(KERN_ERR, "assoc @"xstr(__LINE__)": ",
DUMP_PREFIX_ADDRESS, 16, 4, sg_virt(req->assoc),
req->assoclen , 1);
print_hex_dump(KERN_ERR, "presciv@"xstr(__LINE__)": ",
DUMP_PREFIX_ADDRESS, 16, 4, req->iv,
edesc->src_nents ? 100 : ivsize, 1);
print_hex_dump(KERN_ERR, "src @"xstr(__LINE__)": ",
DUMP_PREFIX_ADDRESS, 16, 4, sg_virt(req->src),
edesc->src_nents ? 100 : req->cryptlen, 1);
print_hex_dump(KERN_ERR, "shrdesc@"xstr(__LINE__)": ",
DUMP_PREFIX_ADDRESS, 16, 4, sh_desc,
desc_bytes(sh_desc), 1);
#endif
len = desc_len(sh_desc);
init_job_desc_shared(desc, ptr, len, HDR_SHARE_DEFER | HDR_REVERSE);
if (all_contig) {
src_dma = sg_dma_address(req->assoc);
in_options = 0;
} else {
src_dma = edesc->link_tbl_dma;
link_tbl_index += (edesc->assoc_nents ? : 1) + 1 +
(edesc->src_nents ? : 1);
in_options = LDST_SGF;
}
if (encrypt)
append_seq_in_ptr(desc, src_dma, req->assoclen + ivsize +
req->cryptlen - authsize, in_options);
else
append_seq_in_ptr(desc, src_dma, req->assoclen + ivsize +
req->cryptlen, in_options);
if (likely(req->src == req->dst)) {
if (all_contig) {
dst_dma = sg_dma_address(req->src);
} else {
dst_dma = src_dma + sizeof(struct link_tbl_entry) *
((edesc->assoc_nents ? : 1) + 1);
out_options = LDST_SGF;
}
} else {
if (!edesc->dst_nents) {
dst_dma = sg_dma_address(req->dst);
} else {
dst_dma = edesc->link_tbl_dma +
link_tbl_index *
sizeof(struct link_tbl_entry);
out_options = LDST_SGF;
}
}
if (encrypt)
append_seq_out_ptr(desc, dst_dma, req->cryptlen, out_options);
else
append_seq_out_ptr(desc, dst_dma, req->cryptlen - authsize,
out_options);
}
/*
* Fill in aead givencrypt job descriptor
*/
static void init_aead_giv_job(u32 *sh_desc, dma_addr_t ptr,
struct aead_edesc *edesc,
struct aead_request *req,
int contig)
{
struct crypto_aead *aead = crypto_aead_reqtfm(req);
struct caam_ctx *ctx = crypto_aead_ctx(aead);
int ivsize = crypto_aead_ivsize(aead);
int authsize = ctx->authsize;
u32 *desc = edesc->hw_desc;
u32 out_options = 0, in_options;
dma_addr_t dst_dma, src_dma;
int len, link_tbl_index = 0;
#ifdef DEBUG
debug("assoclen %d cryptlen %d authsize %d\n",
req->assoclen, req->cryptlen, authsize);
print_hex_dump(KERN_ERR, "assoc @"xstr(__LINE__)": ",
DUMP_PREFIX_ADDRESS, 16, 4, sg_virt(req->assoc),
req->assoclen , 1);
print_hex_dump(KERN_ERR, "presciv@"xstr(__LINE__)": ",
DUMP_PREFIX_ADDRESS, 16, 4, req->iv, ivsize, 1);
print_hex_dump(KERN_ERR, "src @"xstr(__LINE__)": ",
DUMP_PREFIX_ADDRESS, 16, 4, sg_virt(req->src),
edesc->src_nents > 1 ? 100 : req->cryptlen, 1);
print_hex_dump(KERN_ERR, "shrdesc@"xstr(__LINE__)": ",
DUMP_PREFIX_ADDRESS, 16, 4, sh_desc,
desc_bytes(sh_desc), 1);
#endif
len = desc_len(sh_desc);
init_job_desc_shared(desc, ptr, len, HDR_SHARE_DEFER | HDR_REVERSE);
if (contig & GIV_SRC_CONTIG) {
src_dma = sg_dma_address(req->assoc);
in_options = 0;
} else {
src_dma = edesc->link_tbl_dma;
link_tbl_index += edesc->assoc_nents + 1 + edesc->src_nents;
in_options = LDST_SGF;
}
append_seq_in_ptr(desc, src_dma, req->assoclen + ivsize +
req->cryptlen - authsize, in_options);
if (contig & GIV_DST_CONTIG) {
dst_dma = edesc->iv_dma;
} else {
if (likely(req->src == req->dst)) {
dst_dma = src_dma + sizeof(struct link_tbl_entry) *
edesc->assoc_nents;
out_options = LDST_SGF;
} else {
dst_dma = edesc->link_tbl_dma +
link_tbl_index *
sizeof(struct link_tbl_entry);
out_options = LDST_SGF;
}
}
append_seq_out_ptr(desc, dst_dma, ivsize + req->cryptlen, out_options);
}
/*
* Fill in ablkcipher job descriptor
*/
static void init_ablkcipher_job(u32 *sh_desc, dma_addr_t ptr,
struct ablkcipher_edesc *edesc,
struct ablkcipher_request *req,
bool iv_contig)
{
struct crypto_ablkcipher *ablkcipher = crypto_ablkcipher_reqtfm(req);
int ivsize = crypto_ablkcipher_ivsize(ablkcipher);
u32 *desc = edesc->hw_desc;
u32 out_options = 0, in_options;
dma_addr_t dst_dma, src_dma;
int len, link_tbl_index = 0;
#ifdef DEBUG
print_hex_dump(KERN_ERR, "presciv@"xstr(__LINE__)": ",
DUMP_PREFIX_ADDRESS, 16, 4, req->info,
ivsize, 1);
print_hex_dump(KERN_ERR, "src @"xstr(__LINE__)": ",
DUMP_PREFIX_ADDRESS, 16, 4, sg_virt(req->src),
edesc->src_nents ? 100 : req->nbytes, 1);
#endif
len = desc_len(sh_desc);
init_job_desc_shared(desc, ptr, len, HDR_SHARE_DEFER | HDR_REVERSE);
if (iv_contig) {
src_dma = edesc->iv_dma;
in_options = 0;
} else {
src_dma = edesc->link_tbl_dma;
link_tbl_index += (iv_contig ? 0 : 1) + edesc->src_nents;
in_options = LDST_SGF;
}
append_seq_in_ptr(desc, src_dma, req->nbytes + ivsize, in_options);
if (likely(req->src == req->dst)) {
if (!edesc->src_nents && iv_contig) {
dst_dma = sg_dma_address(req->src);
} else {
dst_dma = edesc->link_tbl_dma +
sizeof(struct link_tbl_entry);
out_options = LDST_SGF;
}
} else {
if (!edesc->dst_nents) {
dst_dma = sg_dma_address(req->dst);
} else {
dst_dma = edesc->link_tbl_dma +
link_tbl_index * sizeof(struct link_tbl_entry);
out_options = LDST_SGF;
}
}
append_seq_out_ptr(desc, dst_dma, req->nbytes, out_options);
}
/*
* derive number of elements in scatterlist
*/
static int sg_count(struct scatterlist *sg_list, int nbytes)
{
struct scatterlist *sg = sg_list;
int sg_nents = 0;
while (nbytes > 0) {
sg_nents++;
nbytes -= sg->length;
if (!sg_is_last(sg) && (sg + 1)->length == 0)
BUG(); /* Not support chaining */
sg = scatterwalk_sg_next(sg);
}
if (likely(sg_nents == 1))
return 0;
return sg_nents;
}
/*
* allocate and map the aead extended descriptor
*/
static struct aead_edesc *aead_edesc_alloc(struct aead_request *req,
int desc_bytes, bool *all_contig_ptr)
{
struct crypto_aead *aead = crypto_aead_reqtfm(req);
struct caam_ctx *ctx = crypto_aead_ctx(aead);
struct device *jrdev = ctx->jrdev;
gfp_t flags = (req->base.flags & (CRYPTO_TFM_REQ_MAY_BACKLOG |
CRYPTO_TFM_REQ_MAY_SLEEP)) ? GFP_KERNEL : GFP_ATOMIC;
int assoc_nents, src_nents, dst_nents = 0;
struct aead_edesc *edesc;
dma_addr_t iv_dma = 0;
int sgc;
bool all_contig = true;
int ivsize = crypto_aead_ivsize(aead);
int link_tbl_index, link_tbl_len = 0, link_tbl_bytes;
assoc_nents = sg_count(req->assoc, req->assoclen);
src_nents = sg_count(req->src, req->cryptlen);
if (unlikely(req->dst != req->src))
dst_nents = sg_count(req->dst, req->cryptlen);
sgc = dma_map_sg(jrdev, req->assoc, assoc_nents ? : 1,
DMA_BIDIRECTIONAL);
if (likely(req->src == req->dst)) {
sgc = dma_map_sg(jrdev, req->src, src_nents ? : 1,
DMA_BIDIRECTIONAL);
} else {
sgc = dma_map_sg(jrdev, req->src, src_nents ? : 1,
DMA_TO_DEVICE);
sgc = dma_map_sg(jrdev, req->dst, dst_nents ? : 1,
DMA_FROM_DEVICE);
}
/* Check if data are contiguous */
iv_dma = dma_map_single(jrdev, req->iv, ivsize, DMA_TO_DEVICE);
if (assoc_nents || sg_dma_address(req->assoc) + req->assoclen !=
iv_dma || src_nents || iv_dma + ivsize !=
sg_dma_address(req->src)) {
all_contig = false;
assoc_nents = assoc_nents ? : 1;
src_nents = src_nents ? : 1;
link_tbl_len = assoc_nents + 1 + src_nents;
}
link_tbl_len += dst_nents;
link_tbl_bytes = link_tbl_len * sizeof(struct link_tbl_entry);
/* allocate space for base edesc and hw desc commands, link tables */
edesc = kmalloc(sizeof(struct aead_edesc) + desc_bytes +
link_tbl_bytes, GFP_DMA | flags);
if (!edesc) {
dev_err(jrdev, "could not allocate extended descriptor\n");
return ERR_PTR(-ENOMEM);
}
edesc->assoc_nents = assoc_nents;
edesc->src_nents = src_nents;
edesc->dst_nents = dst_nents;
edesc->iv_dma = iv_dma;
edesc->link_tbl_bytes = link_tbl_bytes;
edesc->link_tbl = (void *)edesc + sizeof(struct aead_edesc) +
desc_bytes;
edesc->link_tbl_dma = dma_map_single(jrdev, edesc->link_tbl,
link_tbl_bytes, DMA_TO_DEVICE);
*all_contig_ptr = all_contig;
link_tbl_index = 0;
if (!all_contig) {
sg_to_link_tbl(req->assoc,
(assoc_nents ? : 1),
edesc->link_tbl +
link_tbl_index, 0);
link_tbl_index += assoc_nents ? : 1;
sg_to_link_tbl_one(edesc->link_tbl + link_tbl_index,
iv_dma, ivsize, 0);
link_tbl_index += 1;
sg_to_link_tbl_last(req->src,
(src_nents ? : 1),
edesc->link_tbl +
link_tbl_index, 0);
link_tbl_index += src_nents ? : 1;
}
if (dst_nents) {
sg_to_link_tbl_last(req->dst, dst_nents,
edesc->link_tbl + link_tbl_index, 0);
}
return edesc;
}
static int aead_encrypt(struct aead_request *req)
{
struct aead_edesc *edesc;
struct crypto_aead *aead = crypto_aead_reqtfm(req);
struct caam_ctx *ctx = crypto_aead_ctx(aead);
struct device *jrdev = ctx->jrdev;
bool all_contig;
u32 *desc;
int ret = 0;
req->cryptlen += ctx->authsize;
/* allocate extended descriptor */
edesc = aead_edesc_alloc(req, DESC_JOB_IO_LEN *
CAAM_CMD_SZ, &all_contig);
if (IS_ERR(edesc))
return PTR_ERR(edesc);
/* Create and submit job descriptor */
init_aead_job(ctx->sh_desc_enc, ctx->sh_desc_enc_dma, edesc, req,
all_contig, true);
#ifdef DEBUG
print_hex_dump(KERN_ERR, "aead jobdesc@"xstr(__LINE__)": ",
DUMP_PREFIX_ADDRESS, 16, 4, edesc->hw_desc,
desc_bytes(edesc->hw_desc), 1);
#endif
desc = edesc->hw_desc;
ret = caam_jr_enqueue(jrdev, desc, aead_encrypt_done, req);
if (!ret) {
ret = -EINPROGRESS;
} else {
aead_unmap(jrdev, edesc, req);
kfree(edesc);
}
return ret;
}
static int aead_decrypt(struct aead_request *req)
{
struct aead_edesc *edesc;
struct crypto_aead *aead = crypto_aead_reqtfm(req);
struct caam_ctx *ctx = crypto_aead_ctx(aead);
struct device *jrdev = ctx->jrdev;
bool all_contig;
u32 *desc;
int ret = 0;
/* allocate extended descriptor */
edesc = aead_edesc_alloc(req, DESC_JOB_IO_LEN *
CAAM_CMD_SZ, &all_contig);
if (IS_ERR(edesc))
return PTR_ERR(edesc);
#ifdef DEBUG
print_hex_dump(KERN_ERR, "dec src@"xstr(__LINE__)": ",
DUMP_PREFIX_ADDRESS, 16, 4, sg_virt(req->src),
req->cryptlen, 1);
#endif
/* Create and submit job descriptor*/
init_aead_job(ctx->sh_desc_dec,
ctx->sh_desc_dec_dma, edesc, req, all_contig, false);
#ifdef DEBUG
print_hex_dump(KERN_ERR, "aead jobdesc@"xstr(__LINE__)": ",
DUMP_PREFIX_ADDRESS, 16, 4, edesc->hw_desc,
desc_bytes(edesc->hw_desc), 1);
#endif
desc = edesc->hw_desc;
ret = caam_jr_enqueue(jrdev, desc, aead_decrypt_done, req);
if (!ret) {
ret = -EINPROGRESS;
} else {
aead_unmap(jrdev, edesc, req);
kfree(edesc);
}
return ret;
}
/*
* allocate and map the aead extended descriptor for aead givencrypt
*/
static struct aead_edesc *aead_giv_edesc_alloc(struct aead_givcrypt_request
*greq, int desc_bytes,
u32 *contig_ptr)
{
struct aead_request *req = &greq->areq;
struct crypto_aead *aead = crypto_aead_reqtfm(req);
struct caam_ctx *ctx = crypto_aead_ctx(aead);
struct device *jrdev = ctx->jrdev;
gfp_t flags = (req->base.flags & (CRYPTO_TFM_REQ_MAY_BACKLOG |
CRYPTO_TFM_REQ_MAY_SLEEP)) ? GFP_KERNEL : GFP_ATOMIC;
int assoc_nents, src_nents, dst_nents = 0;
struct aead_edesc *edesc;
dma_addr_t iv_dma = 0;
int sgc;
u32 contig = GIV_SRC_CONTIG | GIV_DST_CONTIG;
int ivsize = crypto_aead_ivsize(aead);
int link_tbl_index, link_tbl_len = 0, link_tbl_bytes;
assoc_nents = sg_count(req->assoc, req->assoclen);
src_nents = sg_count(req->src, req->cryptlen);
if (unlikely(req->dst != req->src))
dst_nents = sg_count(req->dst, req->cryptlen);
sgc = dma_map_sg(jrdev, req->assoc, assoc_nents ? : 1,
DMA_BIDIRECTIONAL);
if (likely(req->src == req->dst)) {
sgc = dma_map_sg(jrdev, req->src, src_nents ? : 1,
DMA_BIDIRECTIONAL);
} else {
sgc = dma_map_sg(jrdev, req->src, src_nents ? : 1,
DMA_TO_DEVICE);
sgc = dma_map_sg(jrdev, req->dst, dst_nents ? : 1,
DMA_FROM_DEVICE);
}
/* Check if data are contiguous */
iv_dma = dma_map_single(jrdev, greq->giv, ivsize, DMA_TO_DEVICE);
if (assoc_nents || sg_dma_address(req->assoc) + req->assoclen !=
iv_dma || src_nents || iv_dma + ivsize != sg_dma_address(req->src))
contig &= ~GIV_SRC_CONTIG;
if (dst_nents || iv_dma + ivsize != sg_dma_address(req->dst))
contig &= ~GIV_DST_CONTIG;
if (unlikely(req->src != req->dst)) {
dst_nents = dst_nents ? : 1;
link_tbl_len += 1;
}
if (!(contig & GIV_SRC_CONTIG)) {
assoc_nents = assoc_nents ? : 1;
src_nents = src_nents ? : 1;
link_tbl_len += assoc_nents + 1 + src_nents;
if (likely(req->src == req->dst))
contig &= ~GIV_DST_CONTIG;
}
link_tbl_len += dst_nents;
link_tbl_bytes = link_tbl_len * sizeof(struct link_tbl_entry);
/* allocate space for base edesc and hw desc commands, link tables */
edesc = kmalloc(sizeof(struct aead_edesc) + desc_bytes +
link_tbl_bytes, GFP_DMA | flags);
if (!edesc) {
dev_err(jrdev, "could not allocate extended descriptor\n");
return ERR_PTR(-ENOMEM);
}
edesc->assoc_nents = assoc_nents;
edesc->src_nents = src_nents;
edesc->dst_nents = dst_nents;
edesc->iv_dma = iv_dma;
edesc->link_tbl_bytes = link_tbl_bytes;
edesc->link_tbl = (void *)edesc + sizeof(struct aead_edesc) +
desc_bytes;
edesc->link_tbl_dma = dma_map_single(jrdev, edesc->link_tbl,
link_tbl_bytes, DMA_TO_DEVICE);
*contig_ptr = contig;
link_tbl_index = 0;
if (!(contig & GIV_SRC_CONTIG)) {
sg_to_link_tbl(req->assoc, assoc_nents,
edesc->link_tbl +
link_tbl_index, 0);
link_tbl_index += assoc_nents;
sg_to_link_tbl_one(edesc->link_tbl + link_tbl_index,
iv_dma, ivsize, 0);
link_tbl_index += 1;
sg_to_link_tbl_last(req->src, src_nents,
edesc->link_tbl +
link_tbl_index, 0);
link_tbl_index += src_nents;
}
if (unlikely(req->src != req->dst && !(contig & GIV_DST_CONTIG))) {
sg_to_link_tbl_one(edesc->link_tbl + link_tbl_index,
iv_dma, ivsize, 0);
link_tbl_index += 1;
sg_to_link_tbl_last(req->dst, dst_nents,
edesc->link_tbl + link_tbl_index, 0);
}
return edesc;
}
static int aead_givencrypt(struct aead_givcrypt_request *areq)
{
struct aead_request *req = &areq->areq;
struct aead_edesc *edesc;
struct crypto_aead *aead = crypto_aead_reqtfm(req);
struct caam_ctx *ctx = crypto_aead_ctx(aead);
struct device *jrdev = ctx->jrdev;
u32 contig;
u32 *desc;
int ret = 0;
req->cryptlen += ctx->authsize;
/* allocate extended descriptor */
edesc = aead_giv_edesc_alloc(areq, DESC_JOB_IO_LEN *
CAAM_CMD_SZ, &contig);
if (IS_ERR(edesc))
return PTR_ERR(edesc);
#ifdef DEBUG
print_hex_dump(KERN_ERR, "giv src@"xstr(__LINE__)": ",
DUMP_PREFIX_ADDRESS, 16, 4, sg_virt(req->src),
req->cryptlen, 1);
#endif
/* Create and submit job descriptor*/
init_aead_giv_job(ctx->sh_desc_givenc,
ctx->sh_desc_givenc_dma, edesc, req, contig);
#ifdef DEBUG
print_hex_dump(KERN_ERR, "aead jobdesc@"xstr(__LINE__)": ",
DUMP_PREFIX_ADDRESS, 16, 4, edesc->hw_desc,
desc_bytes(edesc->hw_desc), 1);
#endif
desc = edesc->hw_desc;
ret = caam_jr_enqueue(jrdev, desc, aead_encrypt_done, req);
if (!ret) {
ret = -EINPROGRESS;
} else {
aead_unmap(jrdev, edesc, req);
kfree(edesc);
}
return ret;
}
/*
* allocate and map the ablkcipher extended descriptor for ablkcipher
*/
static struct ablkcipher_edesc *ablkcipher_edesc_alloc(struct ablkcipher_request
*req, int desc_bytes,
bool *iv_contig_out)
{
struct crypto_ablkcipher *ablkcipher = crypto_ablkcipher_reqtfm(req);
struct caam_ctx *ctx = crypto_ablkcipher_ctx(ablkcipher);
struct device *jrdev = ctx->jrdev;
gfp_t flags = (req->base.flags & (CRYPTO_TFM_REQ_MAY_BACKLOG |
CRYPTO_TFM_REQ_MAY_SLEEP)) ?
GFP_KERNEL : GFP_ATOMIC;
int src_nents, dst_nents = 0, link_tbl_bytes;
struct ablkcipher_edesc *edesc;
dma_addr_t iv_dma = 0;
bool iv_contig = false;
int sgc;
int ivsize = crypto_ablkcipher_ivsize(ablkcipher);
int link_tbl_index;
src_nents = sg_count(req->src, req->nbytes);
if (unlikely(req->dst != req->src))
dst_nents = sg_count(req->dst, req->nbytes);
if (likely(req->src == req->dst)) {
sgc = dma_map_sg(jrdev, req->src, src_nents ? : 1,
DMA_BIDIRECTIONAL);
} else {
sgc = dma_map_sg(jrdev, req->src, src_nents ? : 1,
DMA_TO_DEVICE);
sgc = dma_map_sg(jrdev, req->dst, dst_nents ? : 1,
DMA_FROM_DEVICE);
}
/*
* Check if iv can be contiguous with source and destination.
* If so, include it. If not, create scatterlist.
*/
iv_dma = dma_map_single(jrdev, req->info, ivsize, DMA_TO_DEVICE);
if (!src_nents && iv_dma + ivsize == sg_dma_address(req->src))
iv_contig = true;
else
src_nents = src_nents ? : 1;
link_tbl_bytes = ((iv_contig ? 0 : 1) + src_nents + dst_nents) *
sizeof(struct link_tbl_entry);
/* allocate space for base edesc and hw desc commands, link tables */
edesc = kmalloc(sizeof(struct ablkcipher_edesc) + desc_bytes +
link_tbl_bytes, GFP_DMA | flags);
if (!edesc) {
dev_err(jrdev, "could not allocate extended descriptor\n");
return ERR_PTR(-ENOMEM);
}
edesc->src_nents = src_nents;
edesc->dst_nents = dst_nents;
edesc->link_tbl_bytes = link_tbl_bytes;
edesc->link_tbl = (void *)edesc + sizeof(struct ablkcipher_edesc) +
desc_bytes;
link_tbl_index = 0;
if (!iv_contig) {
sg_to_link_tbl_one(edesc->link_tbl, iv_dma, ivsize, 0);
sg_to_link_tbl_last(req->src, src_nents,
edesc->link_tbl + 1, 0);
link_tbl_index += 1 + src_nents;
}
if (unlikely(dst_nents)) {
sg_to_link_tbl_last(req->dst, dst_nents,
edesc->link_tbl + link_tbl_index, 0);
}
edesc->link_tbl_dma = dma_map_single(jrdev, edesc->link_tbl,
link_tbl_bytes, DMA_TO_DEVICE);
edesc->iv_dma = iv_dma;
#ifdef DEBUG
print_hex_dump(KERN_ERR, "ablkcipher link_tbl@"xstr(__LINE__)": ",
DUMP_PREFIX_ADDRESS, 16, 4, edesc->link_tbl,
link_tbl_bytes, 1);
#endif
*iv_contig_out = iv_contig;
return edesc;
}
static int ablkcipher_encrypt(struct ablkcipher_request *req)
{
struct ablkcipher_edesc *edesc;
struct crypto_ablkcipher *ablkcipher = crypto_ablkcipher_reqtfm(req);
struct caam_ctx *ctx = crypto_ablkcipher_ctx(ablkcipher);
struct device *jrdev = ctx->jrdev;
bool iv_contig;
u32 *desc;
int ret = 0;
/* allocate extended descriptor */
edesc = ablkcipher_edesc_alloc(req, DESC_JOB_IO_LEN *
CAAM_CMD_SZ, &iv_contig);
if (IS_ERR(edesc))
return PTR_ERR(edesc);
/* Create and submit job descriptor*/
init_ablkcipher_job(ctx->sh_desc_enc,
ctx->sh_desc_enc_dma, edesc, req, iv_contig);
#ifdef DEBUG
print_hex_dump(KERN_ERR, "ablkcipher jobdesc@"xstr(__LINE__)": ",
DUMP_PREFIX_ADDRESS, 16, 4, edesc->hw_desc,
desc_bytes(edesc->hw_desc), 1);
#endif
desc = edesc->hw_desc;
ret = caam_jr_enqueue(jrdev, desc, ablkcipher_encrypt_done, req);
if (!ret) {
ret = -EINPROGRESS;
} else {
ablkcipher_unmap(jrdev, edesc, req);
kfree(edesc);
}
return ret;
}
static int ablkcipher_decrypt(struct ablkcipher_request *req)
{
struct ablkcipher_edesc *edesc;
struct crypto_ablkcipher *ablkcipher = crypto_ablkcipher_reqtfm(req);
struct caam_ctx *ctx = crypto_ablkcipher_ctx(ablkcipher);
struct device *jrdev = ctx->jrdev;
bool iv_contig;
u32 *desc;
int ret = 0;
/* allocate extended descriptor */
edesc = ablkcipher_edesc_alloc(req, DESC_JOB_IO_LEN *
CAAM_CMD_SZ, &iv_contig);
if (IS_ERR(edesc))
return PTR_ERR(edesc);
/* Create and submit job descriptor*/
init_ablkcipher_job(ctx->sh_desc_dec,
ctx->sh_desc_dec_dma, edesc, req, iv_contig);
desc = edesc->hw_desc;
#ifdef DEBUG
print_hex_dump(KERN_ERR, "ablkcipher jobdesc@"xstr(__LINE__)": ",
DUMP_PREFIX_ADDRESS, 16, 4, edesc->hw_desc,
desc_bytes(edesc->hw_desc), 1);
#endif
ret = caam_jr_enqueue(jrdev, desc, ablkcipher_decrypt_done, req);
if (!ret) {
ret = -EINPROGRESS;
} else {
ablkcipher_unmap(jrdev, edesc, req);
kfree(edesc);
}
return ret;
}
#define template_aead template_u.aead
#define template_ablkcipher template_u.ablkcipher
struct caam_alg_template {
char name[CRYPTO_MAX_ALG_NAME];
char driver_name[CRYPTO_MAX_ALG_NAME];
unsigned int blocksize;
u32 type;
union {
struct ablkcipher_alg ablkcipher;
struct aead_alg aead;
struct blkcipher_alg blkcipher;
struct cipher_alg cipher;
struct compress_alg compress;
struct rng_alg rng;
} template_u;
u32 class1_alg_type;
u32 class2_alg_type;
u32 alg_op;
};
static struct caam_alg_template driver_algs[] = {
/* single-pass ipsec_esp descriptor */
{
.name = "authenc(hmac(md5),cbc(aes))",
.driver_name = "authenc-hmac-md5-cbc-aes-caam",
.blocksize = AES_BLOCK_SIZE,
.type = CRYPTO_ALG_TYPE_AEAD,
.template_aead = {
.setkey = aead_setkey,
.setauthsize = aead_setauthsize,
.encrypt = aead_encrypt,
.decrypt = aead_decrypt,
.givencrypt = aead_givencrypt,
.geniv = "<built-in>",
.ivsize = AES_BLOCK_SIZE,
.maxauthsize = MD5_DIGEST_SIZE,
},
.class1_alg_type = OP_ALG_ALGSEL_AES | OP_ALG_AAI_CBC,
.class2_alg_type = OP_ALG_ALGSEL_MD5 | OP_ALG_AAI_HMAC_PRECOMP,
.alg_op = OP_ALG_ALGSEL_MD5 | OP_ALG_AAI_HMAC,
},
{
.name = "authenc(hmac(sha1),cbc(aes))",
.driver_name = "authenc-hmac-sha1-cbc-aes-caam",
.blocksize = AES_BLOCK_SIZE,
.type = CRYPTO_ALG_TYPE_AEAD,
.template_aead = {
.setkey = aead_setkey,
.setauthsize = aead_setauthsize,
.encrypt = aead_encrypt,
.decrypt = aead_decrypt,
.givencrypt = aead_givencrypt,
.geniv = "<built-in>",
.ivsize = AES_BLOCK_SIZE,
.maxauthsize = SHA1_DIGEST_SIZE,
},
.class1_alg_type = OP_ALG_ALGSEL_AES | OP_ALG_AAI_CBC,
.class2_alg_type = OP_ALG_ALGSEL_SHA1 | OP_ALG_AAI_HMAC_PRECOMP,
.alg_op = OP_ALG_ALGSEL_SHA1 | OP_ALG_AAI_HMAC,
},
{
.name = "authenc(hmac(sha256),cbc(aes))",
.driver_name = "authenc-hmac-sha256-cbc-aes-caam",
.blocksize = AES_BLOCK_SIZE,
.type = CRYPTO_ALG_TYPE_AEAD,
.template_aead = {
.setkey = aead_setkey,
.setauthsize = aead_setauthsize,
.encrypt = aead_encrypt,
.decrypt = aead_decrypt,
.givencrypt = aead_givencrypt,
.geniv = "<built-in>",
.ivsize = AES_BLOCK_SIZE,
.maxauthsize = SHA256_DIGEST_SIZE,
},
.class1_alg_type = OP_ALG_ALGSEL_AES | OP_ALG_AAI_CBC,
.class2_alg_type = OP_ALG_ALGSEL_SHA256 |
OP_ALG_AAI_HMAC_PRECOMP,
.alg_op = OP_ALG_ALGSEL_SHA256 | OP_ALG_AAI_HMAC,
},
{
.name = "authenc(hmac(sha512),cbc(aes))",
.driver_name = "authenc-hmac-sha512-cbc-aes-caam",
.blocksize = AES_BLOCK_SIZE,
.type = CRYPTO_ALG_TYPE_AEAD,
.template_aead = {
.setkey = aead_setkey,
.setauthsize = aead_setauthsize,
.encrypt = aead_encrypt,
.decrypt = aead_decrypt,
.givencrypt = aead_givencrypt,
.geniv = "<built-in>",
.ivsize = AES_BLOCK_SIZE,
.maxauthsize = SHA512_DIGEST_SIZE,
},
.class1_alg_type = OP_ALG_ALGSEL_AES | OP_ALG_AAI_CBC,
.class2_alg_type = OP_ALG_ALGSEL_SHA512 |
OP_ALG_AAI_HMAC_PRECOMP,
.alg_op = OP_ALG_ALGSEL_SHA512 | OP_ALG_AAI_HMAC,
},
{
.name = "authenc(hmac(md5),cbc(des3_ede))",
.driver_name = "authenc-hmac-md5-cbc-des3_ede-caam",
.blocksize = DES3_EDE_BLOCK_SIZE,
.type = CRYPTO_ALG_TYPE_AEAD,
.template_aead = {
.setkey = aead_setkey,
.setauthsize = aead_setauthsize,
.encrypt = aead_encrypt,
.decrypt = aead_decrypt,
.givencrypt = aead_givencrypt,
.geniv = "<built-in>",
.ivsize = DES3_EDE_BLOCK_SIZE,
.maxauthsize = MD5_DIGEST_SIZE,
},
.class1_alg_type = OP_ALG_ALGSEL_3DES | OP_ALG_AAI_CBC,
.class2_alg_type = OP_ALG_ALGSEL_MD5 | OP_ALG_AAI_HMAC_PRECOMP,
.alg_op = OP_ALG_ALGSEL_MD5 | OP_ALG_AAI_HMAC,
},
{
.name = "authenc(hmac(sha1),cbc(des3_ede))",
.driver_name = "authenc-hmac-sha1-cbc-des3_ede-caam",
.blocksize = DES3_EDE_BLOCK_SIZE,
.type = CRYPTO_ALG_TYPE_AEAD,
.template_aead = {
.setkey = aead_setkey,
.setauthsize = aead_setauthsize,
.encrypt = aead_encrypt,
.decrypt = aead_decrypt,
.givencrypt = aead_givencrypt,
.geniv = "<built-in>",
.ivsize = DES3_EDE_BLOCK_SIZE,
.maxauthsize = SHA1_DIGEST_SIZE,
},
.class1_alg_type = OP_ALG_ALGSEL_3DES | OP_ALG_AAI_CBC,
.class2_alg_type = OP_ALG_ALGSEL_SHA1 | OP_ALG_AAI_HMAC_PRECOMP,
.alg_op = OP_ALG_ALGSEL_SHA1 | OP_ALG_AAI_HMAC,
},
{
.name = "authenc(hmac(sha256),cbc(des3_ede))",
.driver_name = "authenc-hmac-sha256-cbc-des3_ede-caam",
.blocksize = DES3_EDE_BLOCK_SIZE,
.type = CRYPTO_ALG_TYPE_AEAD,
.template_aead = {
.setkey = aead_setkey,
.setauthsize = aead_setauthsize,
.encrypt = aead_encrypt,
.decrypt = aead_decrypt,
.givencrypt = aead_givencrypt,
.geniv = "<built-in>",
.ivsize = DES3_EDE_BLOCK_SIZE,
.maxauthsize = SHA256_DIGEST_SIZE,
},
.class1_alg_type = OP_ALG_ALGSEL_3DES | OP_ALG_AAI_CBC,
.class2_alg_type = OP_ALG_ALGSEL_SHA256 |
OP_ALG_AAI_HMAC_PRECOMP,
.alg_op = OP_ALG_ALGSEL_SHA256 | OP_ALG_AAI_HMAC,
},
{
.name = "authenc(hmac(sha512),cbc(des3_ede))",
.driver_name = "authenc-hmac-sha512-cbc-des3_ede-caam",
.blocksize = DES3_EDE_BLOCK_SIZE,
.type = CRYPTO_ALG_TYPE_AEAD,
.template_aead = {
.setkey = aead_setkey,
.setauthsize = aead_setauthsize,
.encrypt = aead_encrypt,
.decrypt = aead_decrypt,
.givencrypt = aead_givencrypt,
.geniv = "<built-in>",
.ivsize = DES3_EDE_BLOCK_SIZE,
.maxauthsize = SHA512_DIGEST_SIZE,
},
.class1_alg_type = OP_ALG_ALGSEL_3DES | OP_ALG_AAI_CBC,
.class2_alg_type = OP_ALG_ALGSEL_SHA512 |
OP_ALG_AAI_HMAC_PRECOMP,
.alg_op = OP_ALG_ALGSEL_SHA512 | OP_ALG_AAI_HMAC,
},
{
.name = "authenc(hmac(md5),cbc(des))",
.driver_name = "authenc-hmac-md5-cbc-des-caam",
.blocksize = DES_BLOCK_SIZE,
.type = CRYPTO_ALG_TYPE_AEAD,
.template_aead = {
.setkey = aead_setkey,
.setauthsize = aead_setauthsize,
.encrypt = aead_encrypt,
.decrypt = aead_decrypt,
.givencrypt = aead_givencrypt,
.geniv = "<built-in>",
.ivsize = DES_BLOCK_SIZE,
.maxauthsize = MD5_DIGEST_SIZE,
},
.class1_alg_type = OP_ALG_ALGSEL_DES | OP_ALG_AAI_CBC,
.class2_alg_type = OP_ALG_ALGSEL_MD5 | OP_ALG_AAI_HMAC_PRECOMP,
.alg_op = OP_ALG_ALGSEL_MD5 | OP_ALG_AAI_HMAC,
},
{
.name = "authenc(hmac(sha1),cbc(des))",
.driver_name = "authenc-hmac-sha1-cbc-des-caam",
.blocksize = DES_BLOCK_SIZE,
.type = CRYPTO_ALG_TYPE_AEAD,
.template_aead = {
.setkey = aead_setkey,
.setauthsize = aead_setauthsize,
.encrypt = aead_encrypt,
.decrypt = aead_decrypt,
.givencrypt = aead_givencrypt,
.geniv = "<built-in>",
.ivsize = DES_BLOCK_SIZE,
.maxauthsize = SHA1_DIGEST_SIZE,
},
.class1_alg_type = OP_ALG_ALGSEL_DES | OP_ALG_AAI_CBC,
.class2_alg_type = OP_ALG_ALGSEL_SHA1 | OP_ALG_AAI_HMAC_PRECOMP,
.alg_op = OP_ALG_ALGSEL_SHA1 | OP_ALG_AAI_HMAC,
},
{
.name = "authenc(hmac(sha256),cbc(des))",
.driver_name = "authenc-hmac-sha256-cbc-des-caam",
.blocksize = DES_BLOCK_SIZE,
.type = CRYPTO_ALG_TYPE_AEAD,
.template_aead = {
.setkey = aead_setkey,
.setauthsize = aead_setauthsize,
.encrypt = aead_encrypt,
.decrypt = aead_decrypt,
.givencrypt = aead_givencrypt,
.geniv = "<built-in>",
.ivsize = DES_BLOCK_SIZE,
.maxauthsize = SHA256_DIGEST_SIZE,
},
.class1_alg_type = OP_ALG_ALGSEL_DES | OP_ALG_AAI_CBC,
.class2_alg_type = OP_ALG_ALGSEL_SHA256 |
OP_ALG_AAI_HMAC_PRECOMP,
.alg_op = OP_ALG_ALGSEL_SHA256 | OP_ALG_AAI_HMAC,
},
{
.name = "authenc(hmac(sha512),cbc(des))",
.driver_name = "authenc-hmac-sha512-cbc-des-caam",
.blocksize = DES_BLOCK_SIZE,
.type = CRYPTO_ALG_TYPE_AEAD,
.template_aead = {
.setkey = aead_setkey,
.setauthsize = aead_setauthsize,
.encrypt = aead_encrypt,
.decrypt = aead_decrypt,
.givencrypt = aead_givencrypt,
.geniv = "<built-in>",
.ivsize = DES_BLOCK_SIZE,
.maxauthsize = SHA512_DIGEST_SIZE,
},
.class1_alg_type = OP_ALG_ALGSEL_DES | OP_ALG_AAI_CBC,
.class2_alg_type = OP_ALG_ALGSEL_SHA512 |
OP_ALG_AAI_HMAC_PRECOMP,
.alg_op = OP_ALG_ALGSEL_SHA512 | OP_ALG_AAI_HMAC,
},
/* ablkcipher descriptor */
{
.name = "cbc(aes)",
.driver_name = "cbc-aes-caam",
.blocksize = AES_BLOCK_SIZE,
.type = CRYPTO_ALG_TYPE_ABLKCIPHER,
.template_ablkcipher = {
.setkey = ablkcipher_setkey,
.encrypt = ablkcipher_encrypt,
.decrypt = ablkcipher_decrypt,
.geniv = "eseqiv",
.min_keysize = AES_MIN_KEY_SIZE,
.max_keysize = AES_MAX_KEY_SIZE,
.ivsize = AES_BLOCK_SIZE,
},
.class1_alg_type = OP_ALG_ALGSEL_AES | OP_ALG_AAI_CBC,
},
{
.name = "cbc(des3_ede)",
.driver_name = "cbc-3des-caam",
.blocksize = DES3_EDE_BLOCK_SIZE,
.type = CRYPTO_ALG_TYPE_ABLKCIPHER,
.template_ablkcipher = {
.setkey = ablkcipher_setkey,
.encrypt = ablkcipher_encrypt,
.decrypt = ablkcipher_decrypt,
.geniv = "eseqiv",
.min_keysize = DES3_EDE_KEY_SIZE,
.max_keysize = DES3_EDE_KEY_SIZE,
.ivsize = DES3_EDE_BLOCK_SIZE,
},
.class1_alg_type = OP_ALG_ALGSEL_3DES | OP_ALG_AAI_CBC,
},
{
.name = "cbc(des)",
.driver_name = "cbc-des-caam",
.blocksize = DES_BLOCK_SIZE,
.type = CRYPTO_ALG_TYPE_ABLKCIPHER,
.template_ablkcipher = {
.setkey = ablkcipher_setkey,
.encrypt = ablkcipher_encrypt,
.decrypt = ablkcipher_decrypt,
.geniv = "eseqiv",
.min_keysize = DES_KEY_SIZE,
.max_keysize = DES_KEY_SIZE,
.ivsize = DES_BLOCK_SIZE,
},
.class1_alg_type = OP_ALG_ALGSEL_DES | OP_ALG_AAI_CBC,
}
};
struct caam_crypto_alg {
struct list_head entry;
struct device *ctrldev;
int class1_alg_type;
int class2_alg_type;
int alg_op;
struct crypto_alg crypto_alg;
};
static int caam_cra_init(struct crypto_tfm *tfm)
{
struct crypto_alg *alg = tfm->__crt_alg;
struct caam_crypto_alg *caam_alg =
container_of(alg, struct caam_crypto_alg, crypto_alg);
struct caam_ctx *ctx = crypto_tfm_ctx(tfm);
struct caam_drv_private *priv = dev_get_drvdata(caam_alg->ctrldev);
int tgt_jr = atomic_inc_return(&priv->tfm_count);
/*
* distribute tfms across job rings to ensure in-order
* crypto request processing per tfm
*/
ctx->jrdev = priv->algapi_jr[(tgt_jr / 2) % priv->num_jrs_for_algapi];
/* copy descriptor header template value */
ctx->class1_alg_type = OP_TYPE_CLASS1_ALG | caam_alg->class1_alg_type;
ctx->class2_alg_type = OP_TYPE_CLASS2_ALG | caam_alg->class2_alg_type;
ctx->alg_op = OP_TYPE_CLASS2_ALG | caam_alg->alg_op;
return 0;
}
static void caam_cra_exit(struct crypto_tfm *tfm)
{
struct caam_ctx *ctx = crypto_tfm_ctx(tfm);
if (ctx->sh_desc_enc_dma &&
!dma_mapping_error(ctx->jrdev, ctx->sh_desc_enc_dma))
dma_unmap_single(ctx->jrdev, ctx->sh_desc_enc_dma,
desc_bytes(ctx->sh_desc_enc), DMA_TO_DEVICE);
if (ctx->sh_desc_dec_dma &&
!dma_mapping_error(ctx->jrdev, ctx->sh_desc_dec_dma))
dma_unmap_single(ctx->jrdev, ctx->sh_desc_dec_dma,
desc_bytes(ctx->sh_desc_dec), DMA_TO_DEVICE);
if (ctx->sh_desc_givenc_dma &&
!dma_mapping_error(ctx->jrdev, ctx->sh_desc_givenc_dma))
dma_unmap_single(ctx->jrdev, ctx->sh_desc_givenc_dma,
desc_bytes(ctx->sh_desc_givenc),
DMA_TO_DEVICE);
}
static void __exit caam_algapi_exit(void)
{
struct device_node *dev_node;
struct platform_device *pdev;
struct device *ctrldev;
struct caam_drv_private *priv;
struct caam_crypto_alg *t_alg, *n;
int i, err;
dev_node = of_find_compatible_node(NULL, NULL, "fsl,sec-v4.0");
if (!dev_node)
return;
pdev = of_find_device_by_node(dev_node);
if (!pdev)
return;
ctrldev = &pdev->dev;
of_node_put(dev_node);
priv = dev_get_drvdata(ctrldev);
if (!priv->alg_list.next)
return;
list_for_each_entry_safe(t_alg, n, &priv->alg_list, entry) {
crypto_unregister_alg(&t_alg->crypto_alg);
list_del(&t_alg->entry);
kfree(t_alg);
}
for (i = 0; i < priv->total_jobrs; i++) {
err = caam_jr_deregister(priv->algapi_jr[i]);
if (err < 0)
break;
}
kfree(priv->algapi_jr);
}
static struct caam_crypto_alg *caam_alg_alloc(struct device *ctrldev,
struct caam_alg_template
*template)
{
struct caam_crypto_alg *t_alg;
struct crypto_alg *alg;
t_alg = kzalloc(sizeof(struct caam_crypto_alg), GFP_KERNEL);
if (!t_alg) {
dev_err(ctrldev, "failed to allocate t_alg\n");
return ERR_PTR(-ENOMEM);
}
alg = &t_alg->crypto_alg;
snprintf(alg->cra_name, CRYPTO_MAX_ALG_NAME, "%s", template->name);
snprintf(alg->cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s",
template->driver_name);
alg->cra_module = THIS_MODULE;
alg->cra_init = caam_cra_init;
alg->cra_exit = caam_cra_exit;
alg->cra_priority = CAAM_CRA_PRIORITY;
alg->cra_blocksize = template->blocksize;
alg->cra_alignmask = 0;
alg->cra_ctxsize = sizeof(struct caam_ctx);
alg->cra_flags = CRYPTO_ALG_ASYNC | template->type;
switch (template->type) {
case CRYPTO_ALG_TYPE_ABLKCIPHER:
alg->cra_type = &crypto_ablkcipher_type;
alg->cra_ablkcipher = template->template_ablkcipher;
break;
case CRYPTO_ALG_TYPE_AEAD:
alg->cra_type = &crypto_aead_type;
alg->cra_aead = template->template_aead;
break;
}
t_alg->class1_alg_type = template->class1_alg_type;
t_alg->class2_alg_type = template->class2_alg_type;
t_alg->alg_op = template->alg_op;
t_alg->ctrldev = ctrldev;
return t_alg;
}
static int __init caam_algapi_init(void)
{
struct device_node *dev_node;
struct platform_device *pdev;
struct device *ctrldev, **jrdev;
struct caam_drv_private *priv;
int i = 0, err = 0;
dev_node = of_find_compatible_node(NULL, NULL, "fsl,sec-v4.0");
if (!dev_node)
return -ENODEV;
pdev = of_find_device_by_node(dev_node);
if (!pdev)
return -ENODEV;
ctrldev = &pdev->dev;
priv = dev_get_drvdata(ctrldev);
of_node_put(dev_node);
INIT_LIST_HEAD(&priv->alg_list);
jrdev = kmalloc(sizeof(*jrdev) * priv->total_jobrs, GFP_KERNEL);
if (!jrdev)
return -ENOMEM;
for (i = 0; i < priv->total_jobrs; i++) {
err = caam_jr_register(ctrldev, &jrdev[i]);
if (err < 0)
break;
}
if (err < 0 && i == 0) {
dev_err(ctrldev, "algapi error in job ring registration: %d\n",
err);
kfree(jrdev);
return err;
}
priv->num_jrs_for_algapi = i;
priv->algapi_jr = jrdev;
atomic_set(&priv->tfm_count, -1);
/* register crypto algorithms the device supports */
for (i = 0; i < ARRAY_SIZE(driver_algs); i++) {
/* TODO: check if h/w supports alg */
struct caam_crypto_alg *t_alg;
t_alg = caam_alg_alloc(ctrldev, &driver_algs[i]);
if (IS_ERR(t_alg)) {
err = PTR_ERR(t_alg);
dev_warn(ctrldev, "%s alg allocation failed\n",
driver_algs[i].driver_name);
continue;
}
err = crypto_register_alg(&t_alg->crypto_alg);
if (err) {
dev_warn(ctrldev, "%s alg registration failed\n",
t_alg->crypto_alg.cra_driver_name);
kfree(t_alg);
} else {
list_add_tail(&t_alg->entry, &priv->alg_list);
dev_info(ctrldev, "%s\n",
t_alg->crypto_alg.cra_driver_name);
}
}
return err;
}
module_init(caam_algapi_init);
module_exit(caam_algapi_exit);
MODULE_LICENSE("GPL");
MODULE_DESCRIPTION("FSL CAAM support for crypto API");
MODULE_AUTHOR("Freescale Semiconductor - NMG/STC");