mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2024-11-24 10:20:49 +07:00
df561f6688
Replace the existing /* fall through */ comments and its variants with the new pseudo-keyword macro fallthrough[1]. Also, remove unnecessary fall-through markings when it is the case. [1] https://www.kernel.org/doc/html/v5.7/process/deprecated.html?highlight=fallthrough#implicit-switch-case-fall-through Signed-off-by: Gustavo A. R. Silva <gustavoars@kernel.org>
4435 lines
112 KiB
C
4435 lines
112 KiB
C
/*
|
|
* This file is part of the Chelsio FCoE driver for Linux.
|
|
*
|
|
* Copyright (c) 2008-2012 Chelsio Communications, Inc. All rights reserved.
|
|
*
|
|
* This software is available to you under a choice of one of two
|
|
* licenses. You may choose to be licensed under the terms of the GNU
|
|
* General Public License (GPL) Version 2, available from the file
|
|
* COPYING in the main directory of this source tree, or the
|
|
* OpenIB.org BSD license below:
|
|
*
|
|
* Redistribution and use in source and binary forms, with or
|
|
* without modification, are permitted provided that the following
|
|
* conditions are met:
|
|
*
|
|
* - Redistributions of source code must retain the above
|
|
* copyright notice, this list of conditions and the following
|
|
* disclaimer.
|
|
*
|
|
* - Redistributions in binary form must reproduce the above
|
|
* copyright notice, this list of conditions and the following
|
|
* disclaimer in the documentation and/or other materials
|
|
* provided with the distribution.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
|
|
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
|
|
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
|
|
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
|
|
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
|
|
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
|
|
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
|
* SOFTWARE.
|
|
*/
|
|
|
|
#include <linux/pci.h>
|
|
#include <linux/pci_regs.h>
|
|
#include <linux/firmware.h>
|
|
#include <linux/stddef.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/string.h>
|
|
#include <linux/compiler.h>
|
|
#include <linux/jiffies.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/log2.h>
|
|
|
|
#include "csio_hw.h"
|
|
#include "csio_lnode.h"
|
|
#include "csio_rnode.h"
|
|
|
|
int csio_dbg_level = 0xFEFF;
|
|
unsigned int csio_port_mask = 0xf;
|
|
|
|
/* Default FW event queue entries. */
|
|
static uint32_t csio_evtq_sz = CSIO_EVTQ_SIZE;
|
|
|
|
/* Default MSI param level */
|
|
int csio_msi = 2;
|
|
|
|
/* FCoE function instances */
|
|
static int dev_num;
|
|
|
|
/* FCoE Adapter types & its description */
|
|
static const struct csio_adap_desc csio_t5_fcoe_adapters[] = {
|
|
{"T580-Dbg 10G", "Chelsio T580-Dbg 10G [FCoE]"},
|
|
{"T520-CR 10G", "Chelsio T520-CR 10G [FCoE]"},
|
|
{"T522-CR 10G/1G", "Chelsio T522-CR 10G/1G [FCoE]"},
|
|
{"T540-CR 10G", "Chelsio T540-CR 10G [FCoE]"},
|
|
{"T520-BCH 10G", "Chelsio T520-BCH 10G [FCoE]"},
|
|
{"T540-BCH 10G", "Chelsio T540-BCH 10G [FCoE]"},
|
|
{"T540-CH 10G", "Chelsio T540-CH 10G [FCoE]"},
|
|
{"T520-SO 10G", "Chelsio T520-SO 10G [FCoE]"},
|
|
{"T520-CX4 10G", "Chelsio T520-CX4 10G [FCoE]"},
|
|
{"T520-BT 10G", "Chelsio T520-BT 10G [FCoE]"},
|
|
{"T504-BT 1G", "Chelsio T504-BT 1G [FCoE]"},
|
|
{"B520-SR 10G", "Chelsio B520-SR 10G [FCoE]"},
|
|
{"B504-BT 1G", "Chelsio B504-BT 1G [FCoE]"},
|
|
{"T580-CR 10G", "Chelsio T580-CR 10G [FCoE]"},
|
|
{"T540-LP-CR 10G", "Chelsio T540-LP-CR 10G [FCoE]"},
|
|
{"AMSTERDAM 10G", "Chelsio AMSTERDAM 10G [FCoE]"},
|
|
{"T580-LP-CR 40G", "Chelsio T580-LP-CR 40G [FCoE]"},
|
|
{"T520-LL-CR 10G", "Chelsio T520-LL-CR 10G [FCoE]"},
|
|
{"T560-CR 40G", "Chelsio T560-CR 40G [FCoE]"},
|
|
{"T580-CR 40G", "Chelsio T580-CR 40G [FCoE]"},
|
|
{"T580-SO 40G", "Chelsio T580-SO 40G [FCoE]"},
|
|
{"T502-BT 1G", "Chelsio T502-BT 1G [FCoE]"}
|
|
};
|
|
|
|
static void csio_mgmtm_cleanup(struct csio_mgmtm *);
|
|
static void csio_hw_mbm_cleanup(struct csio_hw *);
|
|
|
|
/* State machine forward declarations */
|
|
static void csio_hws_uninit(struct csio_hw *, enum csio_hw_ev);
|
|
static void csio_hws_configuring(struct csio_hw *, enum csio_hw_ev);
|
|
static void csio_hws_initializing(struct csio_hw *, enum csio_hw_ev);
|
|
static void csio_hws_ready(struct csio_hw *, enum csio_hw_ev);
|
|
static void csio_hws_quiescing(struct csio_hw *, enum csio_hw_ev);
|
|
static void csio_hws_quiesced(struct csio_hw *, enum csio_hw_ev);
|
|
static void csio_hws_resetting(struct csio_hw *, enum csio_hw_ev);
|
|
static void csio_hws_removing(struct csio_hw *, enum csio_hw_ev);
|
|
static void csio_hws_pcierr(struct csio_hw *, enum csio_hw_ev);
|
|
|
|
static void csio_hw_initialize(struct csio_hw *hw);
|
|
static void csio_evtq_stop(struct csio_hw *hw);
|
|
static void csio_evtq_start(struct csio_hw *hw);
|
|
|
|
int csio_is_hw_ready(struct csio_hw *hw)
|
|
{
|
|
return csio_match_state(hw, csio_hws_ready);
|
|
}
|
|
|
|
int csio_is_hw_removing(struct csio_hw *hw)
|
|
{
|
|
return csio_match_state(hw, csio_hws_removing);
|
|
}
|
|
|
|
|
|
/*
|
|
* csio_hw_wait_op_done_val - wait until an operation is completed
|
|
* @hw: the HW module
|
|
* @reg: the register to check for completion
|
|
* @mask: a single-bit field within @reg that indicates completion
|
|
* @polarity: the value of the field when the operation is completed
|
|
* @attempts: number of check iterations
|
|
* @delay: delay in usecs between iterations
|
|
* @valp: where to store the value of the register at completion time
|
|
*
|
|
* Wait until an operation is completed by checking a bit in a register
|
|
* up to @attempts times. If @valp is not NULL the value of the register
|
|
* at the time it indicated completion is stored there. Returns 0 if the
|
|
* operation completes and -EAGAIN otherwise.
|
|
*/
|
|
int
|
|
csio_hw_wait_op_done_val(struct csio_hw *hw, int reg, uint32_t mask,
|
|
int polarity, int attempts, int delay, uint32_t *valp)
|
|
{
|
|
uint32_t val;
|
|
while (1) {
|
|
val = csio_rd_reg32(hw, reg);
|
|
|
|
if (!!(val & mask) == polarity) {
|
|
if (valp)
|
|
*valp = val;
|
|
return 0;
|
|
}
|
|
|
|
if (--attempts == 0)
|
|
return -EAGAIN;
|
|
if (delay)
|
|
udelay(delay);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* csio_hw_tp_wr_bits_indirect - set/clear bits in an indirect TP register
|
|
* @hw: the adapter
|
|
* @addr: the indirect TP register address
|
|
* @mask: specifies the field within the register to modify
|
|
* @val: new value for the field
|
|
*
|
|
* Sets a field of an indirect TP register to the given value.
|
|
*/
|
|
void
|
|
csio_hw_tp_wr_bits_indirect(struct csio_hw *hw, unsigned int addr,
|
|
unsigned int mask, unsigned int val)
|
|
{
|
|
csio_wr_reg32(hw, addr, TP_PIO_ADDR_A);
|
|
val |= csio_rd_reg32(hw, TP_PIO_DATA_A) & ~mask;
|
|
csio_wr_reg32(hw, val, TP_PIO_DATA_A);
|
|
}
|
|
|
|
void
|
|
csio_set_reg_field(struct csio_hw *hw, uint32_t reg, uint32_t mask,
|
|
uint32_t value)
|
|
{
|
|
uint32_t val = csio_rd_reg32(hw, reg) & ~mask;
|
|
|
|
csio_wr_reg32(hw, val | value, reg);
|
|
/* Flush */
|
|
csio_rd_reg32(hw, reg);
|
|
|
|
}
|
|
|
|
static int
|
|
csio_memory_write(struct csio_hw *hw, int mtype, u32 addr, u32 len, u32 *buf)
|
|
{
|
|
return hw->chip_ops->chip_memory_rw(hw, MEMWIN_CSIOSTOR, mtype,
|
|
addr, len, buf, 0);
|
|
}
|
|
|
|
/*
|
|
* EEPROM reads take a few tens of us while writes can take a bit over 5 ms.
|
|
*/
|
|
#define EEPROM_MAX_RD_POLL 40
|
|
#define EEPROM_MAX_WR_POLL 6
|
|
#define EEPROM_STAT_ADDR 0x7bfc
|
|
#define VPD_BASE 0x400
|
|
#define VPD_BASE_OLD 0
|
|
#define VPD_LEN 1024
|
|
#define VPD_INFO_FLD_HDR_SIZE 3
|
|
|
|
/*
|
|
* csio_hw_seeprom_read - read a serial EEPROM location
|
|
* @hw: hw to read
|
|
* @addr: EEPROM virtual address
|
|
* @data: where to store the read data
|
|
*
|
|
* Read a 32-bit word from a location in serial EEPROM using the card's PCI
|
|
* VPD capability. Note that this function must be called with a virtual
|
|
* address.
|
|
*/
|
|
static int
|
|
csio_hw_seeprom_read(struct csio_hw *hw, uint32_t addr, uint32_t *data)
|
|
{
|
|
uint16_t val = 0;
|
|
int attempts = EEPROM_MAX_RD_POLL;
|
|
uint32_t base = hw->params.pci.vpd_cap_addr;
|
|
|
|
if (addr >= EEPROMVSIZE || (addr & 3))
|
|
return -EINVAL;
|
|
|
|
pci_write_config_word(hw->pdev, base + PCI_VPD_ADDR, (uint16_t)addr);
|
|
|
|
do {
|
|
udelay(10);
|
|
pci_read_config_word(hw->pdev, base + PCI_VPD_ADDR, &val);
|
|
} while (!(val & PCI_VPD_ADDR_F) && --attempts);
|
|
|
|
if (!(val & PCI_VPD_ADDR_F)) {
|
|
csio_err(hw, "reading EEPROM address 0x%x failed\n", addr);
|
|
return -EINVAL;
|
|
}
|
|
|
|
pci_read_config_dword(hw->pdev, base + PCI_VPD_DATA, data);
|
|
*data = le32_to_cpu(*(__le32 *)data);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Partial EEPROM Vital Product Data structure. Includes only the ID and
|
|
* VPD-R sections.
|
|
*/
|
|
struct t4_vpd_hdr {
|
|
u8 id_tag;
|
|
u8 id_len[2];
|
|
u8 id_data[ID_LEN];
|
|
u8 vpdr_tag;
|
|
u8 vpdr_len[2];
|
|
};
|
|
|
|
/*
|
|
* csio_hw_get_vpd_keyword_val - Locates an information field keyword in
|
|
* the VPD
|
|
* @v: Pointer to buffered vpd data structure
|
|
* @kw: The keyword to search for
|
|
*
|
|
* Returns the value of the information field keyword or
|
|
* -EINVAL otherwise.
|
|
*/
|
|
static int
|
|
csio_hw_get_vpd_keyword_val(const struct t4_vpd_hdr *v, const char *kw)
|
|
{
|
|
int32_t i;
|
|
int32_t offset , len;
|
|
const uint8_t *buf = &v->id_tag;
|
|
const uint8_t *vpdr_len = &v->vpdr_tag;
|
|
offset = sizeof(struct t4_vpd_hdr);
|
|
len = (uint16_t)vpdr_len[1] + ((uint16_t)vpdr_len[2] << 8);
|
|
|
|
if (len + sizeof(struct t4_vpd_hdr) > VPD_LEN)
|
|
return -EINVAL;
|
|
|
|
for (i = offset; (i + VPD_INFO_FLD_HDR_SIZE) <= (offset + len);) {
|
|
if (memcmp(buf + i , kw, 2) == 0) {
|
|
i += VPD_INFO_FLD_HDR_SIZE;
|
|
return i;
|
|
}
|
|
|
|
i += VPD_INFO_FLD_HDR_SIZE + buf[i+2];
|
|
}
|
|
|
|
return -EINVAL;
|
|
}
|
|
|
|
static int
|
|
csio_pci_capability(struct pci_dev *pdev, int cap, int *pos)
|
|
{
|
|
*pos = pci_find_capability(pdev, cap);
|
|
if (*pos)
|
|
return 0;
|
|
|
|
return -1;
|
|
}
|
|
|
|
/*
|
|
* csio_hw_get_vpd_params - read VPD parameters from VPD EEPROM
|
|
* @hw: HW module
|
|
* @p: where to store the parameters
|
|
*
|
|
* Reads card parameters stored in VPD EEPROM.
|
|
*/
|
|
static int
|
|
csio_hw_get_vpd_params(struct csio_hw *hw, struct csio_vpd *p)
|
|
{
|
|
int i, ret, ec, sn, addr;
|
|
uint8_t *vpd, csum;
|
|
const struct t4_vpd_hdr *v;
|
|
/* To get around compilation warning from strstrip */
|
|
char __always_unused *s;
|
|
|
|
if (csio_is_valid_vpd(hw))
|
|
return 0;
|
|
|
|
ret = csio_pci_capability(hw->pdev, PCI_CAP_ID_VPD,
|
|
&hw->params.pci.vpd_cap_addr);
|
|
if (ret)
|
|
return -EINVAL;
|
|
|
|
vpd = kzalloc(VPD_LEN, GFP_ATOMIC);
|
|
if (vpd == NULL)
|
|
return -ENOMEM;
|
|
|
|
/*
|
|
* Card information normally starts at VPD_BASE but early cards had
|
|
* it at 0.
|
|
*/
|
|
ret = csio_hw_seeprom_read(hw, VPD_BASE, (uint32_t *)(vpd));
|
|
addr = *vpd == 0x82 ? VPD_BASE : VPD_BASE_OLD;
|
|
|
|
for (i = 0; i < VPD_LEN; i += 4) {
|
|
ret = csio_hw_seeprom_read(hw, addr + i, (uint32_t *)(vpd + i));
|
|
if (ret) {
|
|
kfree(vpd);
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
/* Reset the VPD flag! */
|
|
hw->flags &= (~CSIO_HWF_VPD_VALID);
|
|
|
|
v = (const struct t4_vpd_hdr *)vpd;
|
|
|
|
#define FIND_VPD_KW(var, name) do { \
|
|
var = csio_hw_get_vpd_keyword_val(v, name); \
|
|
if (var < 0) { \
|
|
csio_err(hw, "missing VPD keyword " name "\n"); \
|
|
kfree(vpd); \
|
|
return -EINVAL; \
|
|
} \
|
|
} while (0)
|
|
|
|
FIND_VPD_KW(i, "RV");
|
|
for (csum = 0; i >= 0; i--)
|
|
csum += vpd[i];
|
|
|
|
if (csum) {
|
|
csio_err(hw, "corrupted VPD EEPROM, actual csum %u\n", csum);
|
|
kfree(vpd);
|
|
return -EINVAL;
|
|
}
|
|
FIND_VPD_KW(ec, "EC");
|
|
FIND_VPD_KW(sn, "SN");
|
|
#undef FIND_VPD_KW
|
|
|
|
memcpy(p->id, v->id_data, ID_LEN);
|
|
s = strstrip(p->id);
|
|
memcpy(p->ec, vpd + ec, EC_LEN);
|
|
s = strstrip(p->ec);
|
|
i = vpd[sn - VPD_INFO_FLD_HDR_SIZE + 2];
|
|
memcpy(p->sn, vpd + sn, min(i, SERNUM_LEN));
|
|
s = strstrip(p->sn);
|
|
|
|
csio_valid_vpd_copied(hw);
|
|
|
|
kfree(vpd);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* csio_hw_sf1_read - read data from the serial flash
|
|
* @hw: the HW module
|
|
* @byte_cnt: number of bytes to read
|
|
* @cont: whether another operation will be chained
|
|
* @lock: whether to lock SF for PL access only
|
|
* @valp: where to store the read data
|
|
*
|
|
* Reads up to 4 bytes of data from the serial flash. The location of
|
|
* the read needs to be specified prior to calling this by issuing the
|
|
* appropriate commands to the serial flash.
|
|
*/
|
|
static int
|
|
csio_hw_sf1_read(struct csio_hw *hw, uint32_t byte_cnt, int32_t cont,
|
|
int32_t lock, uint32_t *valp)
|
|
{
|
|
int ret;
|
|
|
|
if (!byte_cnt || byte_cnt > 4)
|
|
return -EINVAL;
|
|
if (csio_rd_reg32(hw, SF_OP_A) & SF_BUSY_F)
|
|
return -EBUSY;
|
|
|
|
csio_wr_reg32(hw, SF_LOCK_V(lock) | SF_CONT_V(cont) |
|
|
BYTECNT_V(byte_cnt - 1), SF_OP_A);
|
|
ret = csio_hw_wait_op_done_val(hw, SF_OP_A, SF_BUSY_F, 0, SF_ATTEMPTS,
|
|
10, NULL);
|
|
if (!ret)
|
|
*valp = csio_rd_reg32(hw, SF_DATA_A);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* csio_hw_sf1_write - write data to the serial flash
|
|
* @hw: the HW module
|
|
* @byte_cnt: number of bytes to write
|
|
* @cont: whether another operation will be chained
|
|
* @lock: whether to lock SF for PL access only
|
|
* @val: value to write
|
|
*
|
|
* Writes up to 4 bytes of data to the serial flash. The location of
|
|
* the write needs to be specified prior to calling this by issuing the
|
|
* appropriate commands to the serial flash.
|
|
*/
|
|
static int
|
|
csio_hw_sf1_write(struct csio_hw *hw, uint32_t byte_cnt, uint32_t cont,
|
|
int32_t lock, uint32_t val)
|
|
{
|
|
if (!byte_cnt || byte_cnt > 4)
|
|
return -EINVAL;
|
|
if (csio_rd_reg32(hw, SF_OP_A) & SF_BUSY_F)
|
|
return -EBUSY;
|
|
|
|
csio_wr_reg32(hw, val, SF_DATA_A);
|
|
csio_wr_reg32(hw, SF_CONT_V(cont) | BYTECNT_V(byte_cnt - 1) |
|
|
OP_V(1) | SF_LOCK_V(lock), SF_OP_A);
|
|
|
|
return csio_hw_wait_op_done_val(hw, SF_OP_A, SF_BUSY_F, 0, SF_ATTEMPTS,
|
|
10, NULL);
|
|
}
|
|
|
|
/*
|
|
* csio_hw_flash_wait_op - wait for a flash operation to complete
|
|
* @hw: the HW module
|
|
* @attempts: max number of polls of the status register
|
|
* @delay: delay between polls in ms
|
|
*
|
|
* Wait for a flash operation to complete by polling the status register.
|
|
*/
|
|
static int
|
|
csio_hw_flash_wait_op(struct csio_hw *hw, int32_t attempts, int32_t delay)
|
|
{
|
|
int ret;
|
|
uint32_t status;
|
|
|
|
while (1) {
|
|
ret = csio_hw_sf1_write(hw, 1, 1, 1, SF_RD_STATUS);
|
|
if (ret != 0)
|
|
return ret;
|
|
|
|
ret = csio_hw_sf1_read(hw, 1, 0, 1, &status);
|
|
if (ret != 0)
|
|
return ret;
|
|
|
|
if (!(status & 1))
|
|
return 0;
|
|
if (--attempts == 0)
|
|
return -EAGAIN;
|
|
if (delay)
|
|
msleep(delay);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* csio_hw_read_flash - read words from serial flash
|
|
* @hw: the HW module
|
|
* @addr: the start address for the read
|
|
* @nwords: how many 32-bit words to read
|
|
* @data: where to store the read data
|
|
* @byte_oriented: whether to store data as bytes or as words
|
|
*
|
|
* Read the specified number of 32-bit words from the serial flash.
|
|
* If @byte_oriented is set the read data is stored as a byte array
|
|
* (i.e., big-endian), otherwise as 32-bit words in the platform's
|
|
* natural endianess.
|
|
*/
|
|
static int
|
|
csio_hw_read_flash(struct csio_hw *hw, uint32_t addr, uint32_t nwords,
|
|
uint32_t *data, int32_t byte_oriented)
|
|
{
|
|
int ret;
|
|
|
|
if (addr + nwords * sizeof(uint32_t) > hw->params.sf_size || (addr & 3))
|
|
return -EINVAL;
|
|
|
|
addr = swab32(addr) | SF_RD_DATA_FAST;
|
|
|
|
ret = csio_hw_sf1_write(hw, 4, 1, 0, addr);
|
|
if (ret != 0)
|
|
return ret;
|
|
|
|
ret = csio_hw_sf1_read(hw, 1, 1, 0, data);
|
|
if (ret != 0)
|
|
return ret;
|
|
|
|
for ( ; nwords; nwords--, data++) {
|
|
ret = csio_hw_sf1_read(hw, 4, nwords > 1, nwords == 1, data);
|
|
if (nwords == 1)
|
|
csio_wr_reg32(hw, 0, SF_OP_A); /* unlock SF */
|
|
if (ret)
|
|
return ret;
|
|
if (byte_oriented)
|
|
*data = (__force __u32) htonl(*data);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* csio_hw_write_flash - write up to a page of data to the serial flash
|
|
* @hw: the hw
|
|
* @addr: the start address to write
|
|
* @n: length of data to write in bytes
|
|
* @data: the data to write
|
|
*
|
|
* Writes up to a page of data (256 bytes) to the serial flash starting
|
|
* at the given address. All the data must be written to the same page.
|
|
*/
|
|
static int
|
|
csio_hw_write_flash(struct csio_hw *hw, uint32_t addr,
|
|
uint32_t n, const uint8_t *data)
|
|
{
|
|
int ret = -EINVAL;
|
|
uint32_t buf[64];
|
|
uint32_t i, c, left, val, offset = addr & 0xff;
|
|
|
|
if (addr >= hw->params.sf_size || offset + n > SF_PAGE_SIZE)
|
|
return -EINVAL;
|
|
|
|
val = swab32(addr) | SF_PROG_PAGE;
|
|
|
|
ret = csio_hw_sf1_write(hw, 1, 0, 1, SF_WR_ENABLE);
|
|
if (ret != 0)
|
|
goto unlock;
|
|
|
|
ret = csio_hw_sf1_write(hw, 4, 1, 1, val);
|
|
if (ret != 0)
|
|
goto unlock;
|
|
|
|
for (left = n; left; left -= c) {
|
|
c = min(left, 4U);
|
|
for (val = 0, i = 0; i < c; ++i)
|
|
val = (val << 8) + *data++;
|
|
|
|
ret = csio_hw_sf1_write(hw, c, c != left, 1, val);
|
|
if (ret)
|
|
goto unlock;
|
|
}
|
|
ret = csio_hw_flash_wait_op(hw, 8, 1);
|
|
if (ret)
|
|
goto unlock;
|
|
|
|
csio_wr_reg32(hw, 0, SF_OP_A); /* unlock SF */
|
|
|
|
/* Read the page to verify the write succeeded */
|
|
ret = csio_hw_read_flash(hw, addr & ~0xff, ARRAY_SIZE(buf), buf, 1);
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (memcmp(data - n, (uint8_t *)buf + offset, n)) {
|
|
csio_err(hw,
|
|
"failed to correctly write the flash page at %#x\n",
|
|
addr);
|
|
return -EINVAL;
|
|
}
|
|
|
|
return 0;
|
|
|
|
unlock:
|
|
csio_wr_reg32(hw, 0, SF_OP_A); /* unlock SF */
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* csio_hw_flash_erase_sectors - erase a range of flash sectors
|
|
* @hw: the HW module
|
|
* @start: the first sector to erase
|
|
* @end: the last sector to erase
|
|
*
|
|
* Erases the sectors in the given inclusive range.
|
|
*/
|
|
static int
|
|
csio_hw_flash_erase_sectors(struct csio_hw *hw, int32_t start, int32_t end)
|
|
{
|
|
int ret = 0;
|
|
|
|
while (start <= end) {
|
|
|
|
ret = csio_hw_sf1_write(hw, 1, 0, 1, SF_WR_ENABLE);
|
|
if (ret != 0)
|
|
goto out;
|
|
|
|
ret = csio_hw_sf1_write(hw, 4, 0, 1,
|
|
SF_ERASE_SECTOR | (start << 8));
|
|
if (ret != 0)
|
|
goto out;
|
|
|
|
ret = csio_hw_flash_wait_op(hw, 14, 500);
|
|
if (ret != 0)
|
|
goto out;
|
|
|
|
start++;
|
|
}
|
|
out:
|
|
if (ret)
|
|
csio_err(hw, "erase of flash sector %d failed, error %d\n",
|
|
start, ret);
|
|
csio_wr_reg32(hw, 0, SF_OP_A); /* unlock SF */
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
csio_hw_print_fw_version(struct csio_hw *hw, char *str)
|
|
{
|
|
csio_info(hw, "%s: %u.%u.%u.%u\n", str,
|
|
FW_HDR_FW_VER_MAJOR_G(hw->fwrev),
|
|
FW_HDR_FW_VER_MINOR_G(hw->fwrev),
|
|
FW_HDR_FW_VER_MICRO_G(hw->fwrev),
|
|
FW_HDR_FW_VER_BUILD_G(hw->fwrev));
|
|
}
|
|
|
|
/*
|
|
* csio_hw_get_fw_version - read the firmware version
|
|
* @hw: HW module
|
|
* @vers: where to place the version
|
|
*
|
|
* Reads the FW version from flash.
|
|
*/
|
|
static int
|
|
csio_hw_get_fw_version(struct csio_hw *hw, uint32_t *vers)
|
|
{
|
|
return csio_hw_read_flash(hw, FLASH_FW_START +
|
|
offsetof(struct fw_hdr, fw_ver), 1,
|
|
vers, 0);
|
|
}
|
|
|
|
/*
|
|
* csio_hw_get_tp_version - read the TP microcode version
|
|
* @hw: HW module
|
|
* @vers: where to place the version
|
|
*
|
|
* Reads the TP microcode version from flash.
|
|
*/
|
|
static int
|
|
csio_hw_get_tp_version(struct csio_hw *hw, u32 *vers)
|
|
{
|
|
return csio_hw_read_flash(hw, FLASH_FW_START +
|
|
offsetof(struct fw_hdr, tp_microcode_ver), 1,
|
|
vers, 0);
|
|
}
|
|
|
|
/*
|
|
* csio_hw_fw_dload - download firmware.
|
|
* @hw: HW module
|
|
* @fw_data: firmware image to write.
|
|
* @size: image size
|
|
*
|
|
* Write the supplied firmware image to the card's serial flash.
|
|
*/
|
|
static int
|
|
csio_hw_fw_dload(struct csio_hw *hw, uint8_t *fw_data, uint32_t size)
|
|
{
|
|
uint32_t csum;
|
|
int32_t addr;
|
|
int ret;
|
|
uint32_t i;
|
|
uint8_t first_page[SF_PAGE_SIZE];
|
|
const __be32 *p = (const __be32 *)fw_data;
|
|
struct fw_hdr *hdr = (struct fw_hdr *)fw_data;
|
|
uint32_t sf_sec_size;
|
|
|
|
if ((!hw->params.sf_size) || (!hw->params.sf_nsec)) {
|
|
csio_err(hw, "Serial Flash data invalid\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (!size) {
|
|
csio_err(hw, "FW image has no data\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (size & 511) {
|
|
csio_err(hw, "FW image size not multiple of 512 bytes\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (ntohs(hdr->len512) * 512 != size) {
|
|
csio_err(hw, "FW image size differs from size in FW header\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (size > FLASH_FW_MAX_SIZE) {
|
|
csio_err(hw, "FW image too large, max is %u bytes\n",
|
|
FLASH_FW_MAX_SIZE);
|
|
return -EINVAL;
|
|
}
|
|
|
|
for (csum = 0, i = 0; i < size / sizeof(csum); i++)
|
|
csum += ntohl(p[i]);
|
|
|
|
if (csum != 0xffffffff) {
|
|
csio_err(hw, "corrupted firmware image, checksum %#x\n", csum);
|
|
return -EINVAL;
|
|
}
|
|
|
|
sf_sec_size = hw->params.sf_size / hw->params.sf_nsec;
|
|
i = DIV_ROUND_UP(size, sf_sec_size); /* # of sectors spanned */
|
|
|
|
csio_dbg(hw, "Erasing sectors... start:%d end:%d\n",
|
|
FLASH_FW_START_SEC, FLASH_FW_START_SEC + i - 1);
|
|
|
|
ret = csio_hw_flash_erase_sectors(hw, FLASH_FW_START_SEC,
|
|
FLASH_FW_START_SEC + i - 1);
|
|
if (ret) {
|
|
csio_err(hw, "Flash Erase failed\n");
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* We write the correct version at the end so the driver can see a bad
|
|
* version if the FW write fails. Start by writing a copy of the
|
|
* first page with a bad version.
|
|
*/
|
|
memcpy(first_page, fw_data, SF_PAGE_SIZE);
|
|
((struct fw_hdr *)first_page)->fw_ver = htonl(0xffffffff);
|
|
ret = csio_hw_write_flash(hw, FLASH_FW_START, SF_PAGE_SIZE, first_page);
|
|
if (ret)
|
|
goto out;
|
|
|
|
csio_dbg(hw, "Writing Flash .. start:%d end:%d\n",
|
|
FW_IMG_START, FW_IMG_START + size);
|
|
|
|
addr = FLASH_FW_START;
|
|
for (size -= SF_PAGE_SIZE; size; size -= SF_PAGE_SIZE) {
|
|
addr += SF_PAGE_SIZE;
|
|
fw_data += SF_PAGE_SIZE;
|
|
ret = csio_hw_write_flash(hw, addr, SF_PAGE_SIZE, fw_data);
|
|
if (ret)
|
|
goto out;
|
|
}
|
|
|
|
ret = csio_hw_write_flash(hw,
|
|
FLASH_FW_START +
|
|
offsetof(struct fw_hdr, fw_ver),
|
|
sizeof(hdr->fw_ver),
|
|
(const uint8_t *)&hdr->fw_ver);
|
|
|
|
out:
|
|
if (ret)
|
|
csio_err(hw, "firmware download failed, error %d\n", ret);
|
|
return ret;
|
|
}
|
|
|
|
static int
|
|
csio_hw_get_flash_params(struct csio_hw *hw)
|
|
{
|
|
/* Table for non-Numonix supported flash parts. Numonix parts are left
|
|
* to the preexisting code. All flash parts have 64KB sectors.
|
|
*/
|
|
static struct flash_desc {
|
|
u32 vendor_and_model_id;
|
|
u32 size_mb;
|
|
} supported_flash[] = {
|
|
{ 0x150201, 4 << 20 }, /* Spansion 4MB S25FL032P */
|
|
};
|
|
|
|
u32 part, manufacturer;
|
|
u32 density, size = 0;
|
|
u32 flashid = 0;
|
|
int ret;
|
|
|
|
ret = csio_hw_sf1_write(hw, 1, 1, 0, SF_RD_ID);
|
|
if (!ret)
|
|
ret = csio_hw_sf1_read(hw, 3, 0, 1, &flashid);
|
|
csio_wr_reg32(hw, 0, SF_OP_A); /* unlock SF */
|
|
if (ret)
|
|
return ret;
|
|
|
|
/* Check to see if it's one of our non-standard supported Flash parts.
|
|
*/
|
|
for (part = 0; part < ARRAY_SIZE(supported_flash); part++)
|
|
if (supported_flash[part].vendor_and_model_id == flashid) {
|
|
hw->params.sf_size = supported_flash[part].size_mb;
|
|
hw->params.sf_nsec =
|
|
hw->params.sf_size / SF_SEC_SIZE;
|
|
goto found;
|
|
}
|
|
|
|
/* Decode Flash part size. The code below looks repetitive with
|
|
* common encodings, but that's not guaranteed in the JEDEC
|
|
* specification for the Read JEDEC ID command. The only thing that
|
|
* we're guaranteed by the JEDEC specification is where the
|
|
* Manufacturer ID is in the returned result. After that each
|
|
* Manufacturer ~could~ encode things completely differently.
|
|
* Note, all Flash parts must have 64KB sectors.
|
|
*/
|
|
manufacturer = flashid & 0xff;
|
|
switch (manufacturer) {
|
|
case 0x20: { /* Micron/Numonix */
|
|
/* This Density -> Size decoding table is taken from Micron
|
|
* Data Sheets.
|
|
*/
|
|
density = (flashid >> 16) & 0xff;
|
|
switch (density) {
|
|
case 0x14 ... 0x19: /* 1MB - 32MB */
|
|
size = 1 << density;
|
|
break;
|
|
case 0x20: /* 64MB */
|
|
size = 1 << 26;
|
|
break;
|
|
case 0x21: /* 128MB */
|
|
size = 1 << 27;
|
|
break;
|
|
case 0x22: /* 256MB */
|
|
size = 1 << 28;
|
|
}
|
|
break;
|
|
}
|
|
case 0x9d: { /* ISSI -- Integrated Silicon Solution, Inc. */
|
|
/* This Density -> Size decoding table is taken from ISSI
|
|
* Data Sheets.
|
|
*/
|
|
density = (flashid >> 16) & 0xff;
|
|
switch (density) {
|
|
case 0x16: /* 32 MB */
|
|
size = 1 << 25;
|
|
break;
|
|
case 0x17: /* 64MB */
|
|
size = 1 << 26;
|
|
}
|
|
break;
|
|
}
|
|
case 0xc2: /* Macronix */
|
|
case 0xef: /* Winbond */ {
|
|
/* This Density -> Size decoding table is taken from
|
|
* Macronix and Winbond Data Sheets.
|
|
*/
|
|
density = (flashid >> 16) & 0xff;
|
|
switch (density) {
|
|
case 0x17: /* 8MB */
|
|
case 0x18: /* 16MB */
|
|
size = 1 << density;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* If we didn't recognize the FLASH part, that's no real issue: the
|
|
* Hardware/Software contract says that Hardware will _*ALWAYS*_
|
|
* use a FLASH part which is at least 4MB in size and has 64KB
|
|
* sectors. The unrecognized FLASH part is likely to be much larger
|
|
* than 4MB, but that's all we really need.
|
|
*/
|
|
if (size == 0) {
|
|
csio_warn(hw, "Unknown Flash Part, ID = %#x, assuming 4MB\n",
|
|
flashid);
|
|
size = 1 << 22;
|
|
}
|
|
|
|
/* Store decoded Flash size */
|
|
hw->params.sf_size = size;
|
|
hw->params.sf_nsec = size / SF_SEC_SIZE;
|
|
|
|
found:
|
|
if (hw->params.sf_size < FLASH_MIN_SIZE)
|
|
csio_warn(hw, "WARNING: Flash Part ID %#x, size %#x < %#x\n",
|
|
flashid, hw->params.sf_size, FLASH_MIN_SIZE);
|
|
return 0;
|
|
}
|
|
|
|
/*****************************************************************************/
|
|
/* HW State machine assists */
|
|
/*****************************************************************************/
|
|
|
|
static int
|
|
csio_hw_dev_ready(struct csio_hw *hw)
|
|
{
|
|
uint32_t reg;
|
|
int cnt = 6;
|
|
int src_pf;
|
|
|
|
while (((reg = csio_rd_reg32(hw, PL_WHOAMI_A)) == 0xFFFFFFFF) &&
|
|
(--cnt != 0))
|
|
mdelay(100);
|
|
|
|
if (csio_is_t5(hw->pdev->device & CSIO_HW_CHIP_MASK))
|
|
src_pf = SOURCEPF_G(reg);
|
|
else
|
|
src_pf = T6_SOURCEPF_G(reg);
|
|
|
|
if ((cnt == 0) && (((int32_t)(src_pf) < 0) ||
|
|
(src_pf >= CSIO_MAX_PFN))) {
|
|
csio_err(hw, "PL_WHOAMI returned 0x%x, cnt:%d\n", reg, cnt);
|
|
return -EIO;
|
|
}
|
|
|
|
hw->pfn = src_pf;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* csio_do_hello - Perform the HELLO FW Mailbox command and process response.
|
|
* @hw: HW module
|
|
* @state: Device state
|
|
*
|
|
* FW_HELLO_CMD has to be polled for completion.
|
|
*/
|
|
static int
|
|
csio_do_hello(struct csio_hw *hw, enum csio_dev_state *state)
|
|
{
|
|
struct csio_mb *mbp;
|
|
int rv = 0;
|
|
enum fw_retval retval;
|
|
uint8_t mpfn;
|
|
char state_str[16];
|
|
int retries = FW_CMD_HELLO_RETRIES;
|
|
|
|
memset(state_str, 0, sizeof(state_str));
|
|
|
|
mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC);
|
|
if (!mbp) {
|
|
rv = -ENOMEM;
|
|
CSIO_INC_STATS(hw, n_err_nomem);
|
|
goto out;
|
|
}
|
|
|
|
retry:
|
|
csio_mb_hello(hw, mbp, CSIO_MB_DEFAULT_TMO, hw->pfn,
|
|
hw->pfn, CSIO_MASTER_MAY, NULL);
|
|
|
|
rv = csio_mb_issue(hw, mbp);
|
|
if (rv) {
|
|
csio_err(hw, "failed to issue HELLO cmd. ret:%d.\n", rv);
|
|
goto out_free_mb;
|
|
}
|
|
|
|
csio_mb_process_hello_rsp(hw, mbp, &retval, state, &mpfn);
|
|
if (retval != FW_SUCCESS) {
|
|
csio_err(hw, "HELLO cmd failed with ret: %d\n", retval);
|
|
rv = -EINVAL;
|
|
goto out_free_mb;
|
|
}
|
|
|
|
/* Firmware has designated us to be master */
|
|
if (hw->pfn == mpfn) {
|
|
hw->flags |= CSIO_HWF_MASTER;
|
|
} else if (*state == CSIO_DEV_STATE_UNINIT) {
|
|
/*
|
|
* If we're not the Master PF then we need to wait around for
|
|
* the Master PF Driver to finish setting up the adapter.
|
|
*
|
|
* Note that we also do this wait if we're a non-Master-capable
|
|
* PF and there is no current Master PF; a Master PF may show up
|
|
* momentarily and we wouldn't want to fail pointlessly. (This
|
|
* can happen when an OS loads lots of different drivers rapidly
|
|
* at the same time). In this case, the Master PF returned by
|
|
* the firmware will be PCIE_FW_MASTER_MASK so the test below
|
|
* will work ...
|
|
*/
|
|
|
|
int waiting = FW_CMD_HELLO_TIMEOUT;
|
|
|
|
/*
|
|
* Wait for the firmware to either indicate an error or
|
|
* initialized state. If we see either of these we bail out
|
|
* and report the issue to the caller. If we exhaust the
|
|
* "hello timeout" and we haven't exhausted our retries, try
|
|
* again. Otherwise bail with a timeout error.
|
|
*/
|
|
for (;;) {
|
|
uint32_t pcie_fw;
|
|
|
|
spin_unlock_irq(&hw->lock);
|
|
msleep(50);
|
|
spin_lock_irq(&hw->lock);
|
|
waiting -= 50;
|
|
|
|
/*
|
|
* If neither Error nor Initialized are indicated
|
|
* by the firmware keep waiting till we exhaust our
|
|
* timeout ... and then retry if we haven't exhausted
|
|
* our retries ...
|
|
*/
|
|
pcie_fw = csio_rd_reg32(hw, PCIE_FW_A);
|
|
if (!(pcie_fw & (PCIE_FW_ERR_F|PCIE_FW_INIT_F))) {
|
|
if (waiting <= 0) {
|
|
if (retries-- > 0)
|
|
goto retry;
|
|
|
|
rv = -ETIMEDOUT;
|
|
break;
|
|
}
|
|
continue;
|
|
}
|
|
|
|
/*
|
|
* We either have an Error or Initialized condition
|
|
* report errors preferentially.
|
|
*/
|
|
if (state) {
|
|
if (pcie_fw & PCIE_FW_ERR_F) {
|
|
*state = CSIO_DEV_STATE_ERR;
|
|
rv = -ETIMEDOUT;
|
|
} else if (pcie_fw & PCIE_FW_INIT_F)
|
|
*state = CSIO_DEV_STATE_INIT;
|
|
}
|
|
|
|
/*
|
|
* If we arrived before a Master PF was selected and
|
|
* there's not a valid Master PF, grab its identity
|
|
* for our caller.
|
|
*/
|
|
if (mpfn == PCIE_FW_MASTER_M &&
|
|
(pcie_fw & PCIE_FW_MASTER_VLD_F))
|
|
mpfn = PCIE_FW_MASTER_G(pcie_fw);
|
|
break;
|
|
}
|
|
hw->flags &= ~CSIO_HWF_MASTER;
|
|
}
|
|
|
|
switch (*state) {
|
|
case CSIO_DEV_STATE_UNINIT:
|
|
strcpy(state_str, "Initializing");
|
|
break;
|
|
case CSIO_DEV_STATE_INIT:
|
|
strcpy(state_str, "Initialized");
|
|
break;
|
|
case CSIO_DEV_STATE_ERR:
|
|
strcpy(state_str, "Error");
|
|
break;
|
|
default:
|
|
strcpy(state_str, "Unknown");
|
|
break;
|
|
}
|
|
|
|
if (hw->pfn == mpfn)
|
|
csio_info(hw, "PF: %d, Coming up as MASTER, HW state: %s\n",
|
|
hw->pfn, state_str);
|
|
else
|
|
csio_info(hw,
|
|
"PF: %d, Coming up as SLAVE, Master PF: %d, HW state: %s\n",
|
|
hw->pfn, mpfn, state_str);
|
|
|
|
out_free_mb:
|
|
mempool_free(mbp, hw->mb_mempool);
|
|
out:
|
|
return rv;
|
|
}
|
|
|
|
/*
|
|
* csio_do_bye - Perform the BYE FW Mailbox command and process response.
|
|
* @hw: HW module
|
|
*
|
|
*/
|
|
static int
|
|
csio_do_bye(struct csio_hw *hw)
|
|
{
|
|
struct csio_mb *mbp;
|
|
enum fw_retval retval;
|
|
|
|
mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC);
|
|
if (!mbp) {
|
|
CSIO_INC_STATS(hw, n_err_nomem);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
csio_mb_bye(hw, mbp, CSIO_MB_DEFAULT_TMO, NULL);
|
|
|
|
if (csio_mb_issue(hw, mbp)) {
|
|
csio_err(hw, "Issue of BYE command failed\n");
|
|
mempool_free(mbp, hw->mb_mempool);
|
|
return -EINVAL;
|
|
}
|
|
|
|
retval = csio_mb_fw_retval(mbp);
|
|
if (retval != FW_SUCCESS) {
|
|
mempool_free(mbp, hw->mb_mempool);
|
|
return -EINVAL;
|
|
}
|
|
|
|
mempool_free(mbp, hw->mb_mempool);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* csio_do_reset- Perform the device reset.
|
|
* @hw: HW module
|
|
* @fw_rst: FW reset
|
|
*
|
|
* If fw_rst is set, issues FW reset mbox cmd otherwise
|
|
* does PIO reset.
|
|
* Performs reset of the function.
|
|
*/
|
|
static int
|
|
csio_do_reset(struct csio_hw *hw, bool fw_rst)
|
|
{
|
|
struct csio_mb *mbp;
|
|
enum fw_retval retval;
|
|
|
|
if (!fw_rst) {
|
|
/* PIO reset */
|
|
csio_wr_reg32(hw, PIORSTMODE_F | PIORST_F, PL_RST_A);
|
|
mdelay(2000);
|
|
return 0;
|
|
}
|
|
|
|
mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC);
|
|
if (!mbp) {
|
|
CSIO_INC_STATS(hw, n_err_nomem);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
csio_mb_reset(hw, mbp, CSIO_MB_DEFAULT_TMO,
|
|
PIORSTMODE_F | PIORST_F, 0, NULL);
|
|
|
|
if (csio_mb_issue(hw, mbp)) {
|
|
csio_err(hw, "Issue of RESET command failed.n");
|
|
mempool_free(mbp, hw->mb_mempool);
|
|
return -EINVAL;
|
|
}
|
|
|
|
retval = csio_mb_fw_retval(mbp);
|
|
if (retval != FW_SUCCESS) {
|
|
csio_err(hw, "RESET cmd failed with ret:0x%x.\n", retval);
|
|
mempool_free(mbp, hw->mb_mempool);
|
|
return -EINVAL;
|
|
}
|
|
|
|
mempool_free(mbp, hw->mb_mempool);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
csio_hw_validate_caps(struct csio_hw *hw, struct csio_mb *mbp)
|
|
{
|
|
struct fw_caps_config_cmd *rsp = (struct fw_caps_config_cmd *)mbp->mb;
|
|
uint16_t caps;
|
|
|
|
caps = ntohs(rsp->fcoecaps);
|
|
|
|
if (!(caps & FW_CAPS_CONFIG_FCOE_INITIATOR)) {
|
|
csio_err(hw, "No FCoE Initiator capability in the firmware.\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (!(caps & FW_CAPS_CONFIG_FCOE_CTRL_OFLD)) {
|
|
csio_err(hw, "No FCoE Control Offload capability\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* csio_hw_fw_halt - issue a reset/halt to FW and put uP into RESET
|
|
* @hw: the HW module
|
|
* @mbox: mailbox to use for the FW RESET command (if desired)
|
|
* @force: force uP into RESET even if FW RESET command fails
|
|
*
|
|
* Issues a RESET command to firmware (if desired) with a HALT indication
|
|
* and then puts the microprocessor into RESET state. The RESET command
|
|
* will only be issued if a legitimate mailbox is provided (mbox <=
|
|
* PCIE_FW_MASTER_MASK).
|
|
*
|
|
* This is generally used in order for the host to safely manipulate the
|
|
* adapter without fear of conflicting with whatever the firmware might
|
|
* be doing. The only way out of this state is to RESTART the firmware
|
|
* ...
|
|
*/
|
|
static int
|
|
csio_hw_fw_halt(struct csio_hw *hw, uint32_t mbox, int32_t force)
|
|
{
|
|
enum fw_retval retval = 0;
|
|
|
|
/*
|
|
* If a legitimate mailbox is provided, issue a RESET command
|
|
* with a HALT indication.
|
|
*/
|
|
if (mbox <= PCIE_FW_MASTER_M) {
|
|
struct csio_mb *mbp;
|
|
|
|
mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC);
|
|
if (!mbp) {
|
|
CSIO_INC_STATS(hw, n_err_nomem);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
csio_mb_reset(hw, mbp, CSIO_MB_DEFAULT_TMO,
|
|
PIORSTMODE_F | PIORST_F, FW_RESET_CMD_HALT_F,
|
|
NULL);
|
|
|
|
if (csio_mb_issue(hw, mbp)) {
|
|
csio_err(hw, "Issue of RESET command failed!\n");
|
|
mempool_free(mbp, hw->mb_mempool);
|
|
return -EINVAL;
|
|
}
|
|
|
|
retval = csio_mb_fw_retval(mbp);
|
|
mempool_free(mbp, hw->mb_mempool);
|
|
}
|
|
|
|
/*
|
|
* Normally we won't complete the operation if the firmware RESET
|
|
* command fails but if our caller insists we'll go ahead and put the
|
|
* uP into RESET. This can be useful if the firmware is hung or even
|
|
* missing ... We'll have to take the risk of putting the uP into
|
|
* RESET without the cooperation of firmware in that case.
|
|
*
|
|
* We also force the firmware's HALT flag to be on in case we bypassed
|
|
* the firmware RESET command above or we're dealing with old firmware
|
|
* which doesn't have the HALT capability. This will serve as a flag
|
|
* for the incoming firmware to know that it's coming out of a HALT
|
|
* rather than a RESET ... if it's new enough to understand that ...
|
|
*/
|
|
if (retval == 0 || force) {
|
|
csio_set_reg_field(hw, CIM_BOOT_CFG_A, UPCRST_F, UPCRST_F);
|
|
csio_set_reg_field(hw, PCIE_FW_A, PCIE_FW_HALT_F,
|
|
PCIE_FW_HALT_F);
|
|
}
|
|
|
|
/*
|
|
* And we always return the result of the firmware RESET command
|
|
* even when we force the uP into RESET ...
|
|
*/
|
|
return retval ? -EINVAL : 0;
|
|
}
|
|
|
|
/*
|
|
* csio_hw_fw_restart - restart the firmware by taking the uP out of RESET
|
|
* @hw: the HW module
|
|
* @reset: if we want to do a RESET to restart things
|
|
*
|
|
* Restart firmware previously halted by csio_hw_fw_halt(). On successful
|
|
* return the previous PF Master remains as the new PF Master and there
|
|
* is no need to issue a new HELLO command, etc.
|
|
*
|
|
* We do this in two ways:
|
|
*
|
|
* 1. If we're dealing with newer firmware we'll simply want to take
|
|
* the chip's microprocessor out of RESET. This will cause the
|
|
* firmware to start up from its start vector. And then we'll loop
|
|
* until the firmware indicates it's started again (PCIE_FW.HALT
|
|
* reset to 0) or we timeout.
|
|
*
|
|
* 2. If we're dealing with older firmware then we'll need to RESET
|
|
* the chip since older firmware won't recognize the PCIE_FW.HALT
|
|
* flag and automatically RESET itself on startup.
|
|
*/
|
|
static int
|
|
csio_hw_fw_restart(struct csio_hw *hw, uint32_t mbox, int32_t reset)
|
|
{
|
|
if (reset) {
|
|
/*
|
|
* Since we're directing the RESET instead of the firmware
|
|
* doing it automatically, we need to clear the PCIE_FW.HALT
|
|
* bit.
|
|
*/
|
|
csio_set_reg_field(hw, PCIE_FW_A, PCIE_FW_HALT_F, 0);
|
|
|
|
/*
|
|
* If we've been given a valid mailbox, first try to get the
|
|
* firmware to do the RESET. If that works, great and we can
|
|
* return success. Otherwise, if we haven't been given a
|
|
* valid mailbox or the RESET command failed, fall back to
|
|
* hitting the chip with a hammer.
|
|
*/
|
|
if (mbox <= PCIE_FW_MASTER_M) {
|
|
csio_set_reg_field(hw, CIM_BOOT_CFG_A, UPCRST_F, 0);
|
|
msleep(100);
|
|
if (csio_do_reset(hw, true) == 0)
|
|
return 0;
|
|
}
|
|
|
|
csio_wr_reg32(hw, PIORSTMODE_F | PIORST_F, PL_RST_A);
|
|
msleep(2000);
|
|
} else {
|
|
int ms;
|
|
|
|
csio_set_reg_field(hw, CIM_BOOT_CFG_A, UPCRST_F, 0);
|
|
for (ms = 0; ms < FW_CMD_MAX_TIMEOUT; ) {
|
|
if (!(csio_rd_reg32(hw, PCIE_FW_A) & PCIE_FW_HALT_F))
|
|
return 0;
|
|
msleep(100);
|
|
ms += 100;
|
|
}
|
|
return -ETIMEDOUT;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* csio_hw_fw_upgrade - perform all of the steps necessary to upgrade FW
|
|
* @hw: the HW module
|
|
* @mbox: mailbox to use for the FW RESET command (if desired)
|
|
* @fw_data: the firmware image to write
|
|
* @size: image size
|
|
* @force: force upgrade even if firmware doesn't cooperate
|
|
*
|
|
* Perform all of the steps necessary for upgrading an adapter's
|
|
* firmware image. Normally this requires the cooperation of the
|
|
* existing firmware in order to halt all existing activities
|
|
* but if an invalid mailbox token is passed in we skip that step
|
|
* (though we'll still put the adapter microprocessor into RESET in
|
|
* that case).
|
|
*
|
|
* On successful return the new firmware will have been loaded and
|
|
* the adapter will have been fully RESET losing all previous setup
|
|
* state. On unsuccessful return the adapter may be completely hosed ...
|
|
* positive errno indicates that the adapter is ~probably~ intact, a
|
|
* negative errno indicates that things are looking bad ...
|
|
*/
|
|
static int
|
|
csio_hw_fw_upgrade(struct csio_hw *hw, uint32_t mbox,
|
|
const u8 *fw_data, uint32_t size, int32_t force)
|
|
{
|
|
const struct fw_hdr *fw_hdr = (const struct fw_hdr *)fw_data;
|
|
int reset, ret;
|
|
|
|
ret = csio_hw_fw_halt(hw, mbox, force);
|
|
if (ret != 0 && !force)
|
|
return ret;
|
|
|
|
ret = csio_hw_fw_dload(hw, (uint8_t *) fw_data, size);
|
|
if (ret != 0)
|
|
return ret;
|
|
|
|
/*
|
|
* Older versions of the firmware don't understand the new
|
|
* PCIE_FW.HALT flag and so won't know to perform a RESET when they
|
|
* restart. So for newly loaded older firmware we'll have to do the
|
|
* RESET for it so it starts up on a clean slate. We can tell if
|
|
* the newly loaded firmware will handle this right by checking
|
|
* its header flags to see if it advertises the capability.
|
|
*/
|
|
reset = ((ntohl(fw_hdr->flags) & FW_HDR_FLAGS_RESET_HALT) == 0);
|
|
return csio_hw_fw_restart(hw, mbox, reset);
|
|
}
|
|
|
|
/*
|
|
* csio_get_device_params - Get device parameters.
|
|
* @hw: HW module
|
|
*
|
|
*/
|
|
static int
|
|
csio_get_device_params(struct csio_hw *hw)
|
|
{
|
|
struct csio_wrm *wrm = csio_hw_to_wrm(hw);
|
|
struct csio_mb *mbp;
|
|
enum fw_retval retval;
|
|
u32 param[6];
|
|
int i, j = 0;
|
|
|
|
/* Initialize portids to -1 */
|
|
for (i = 0; i < CSIO_MAX_PPORTS; i++)
|
|
hw->pport[i].portid = -1;
|
|
|
|
mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC);
|
|
if (!mbp) {
|
|
CSIO_INC_STATS(hw, n_err_nomem);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
/* Get port vec information. */
|
|
param[0] = FW_PARAM_DEV(PORTVEC);
|
|
|
|
/* Get Core clock. */
|
|
param[1] = FW_PARAM_DEV(CCLK);
|
|
|
|
/* Get EQ id start and end. */
|
|
param[2] = FW_PARAM_PFVF(EQ_START);
|
|
param[3] = FW_PARAM_PFVF(EQ_END);
|
|
|
|
/* Get IQ id start and end. */
|
|
param[4] = FW_PARAM_PFVF(IQFLINT_START);
|
|
param[5] = FW_PARAM_PFVF(IQFLINT_END);
|
|
|
|
csio_mb_params(hw, mbp, CSIO_MB_DEFAULT_TMO, hw->pfn, 0,
|
|
ARRAY_SIZE(param), param, NULL, false, NULL);
|
|
if (csio_mb_issue(hw, mbp)) {
|
|
csio_err(hw, "Issue of FW_PARAMS_CMD(read) failed!\n");
|
|
mempool_free(mbp, hw->mb_mempool);
|
|
return -EINVAL;
|
|
}
|
|
|
|
csio_mb_process_read_params_rsp(hw, mbp, &retval,
|
|
ARRAY_SIZE(param), param);
|
|
if (retval != FW_SUCCESS) {
|
|
csio_err(hw, "FW_PARAMS_CMD(read) failed with ret:0x%x!\n",
|
|
retval);
|
|
mempool_free(mbp, hw->mb_mempool);
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* cache the information. */
|
|
hw->port_vec = param[0];
|
|
hw->vpd.cclk = param[1];
|
|
wrm->fw_eq_start = param[2];
|
|
wrm->fw_iq_start = param[4];
|
|
|
|
/* Using FW configured max iqs & eqs */
|
|
if ((hw->flags & CSIO_HWF_USING_SOFT_PARAMS) ||
|
|
!csio_is_hw_master(hw)) {
|
|
hw->cfg_niq = param[5] - param[4] + 1;
|
|
hw->cfg_neq = param[3] - param[2] + 1;
|
|
csio_dbg(hw, "Using fwconfig max niqs %d neqs %d\n",
|
|
hw->cfg_niq, hw->cfg_neq);
|
|
}
|
|
|
|
hw->port_vec &= csio_port_mask;
|
|
|
|
hw->num_pports = hweight32(hw->port_vec);
|
|
|
|
csio_dbg(hw, "Port vector: 0x%x, #ports: %d\n",
|
|
hw->port_vec, hw->num_pports);
|
|
|
|
for (i = 0; i < hw->num_pports; i++) {
|
|
while ((hw->port_vec & (1 << j)) == 0)
|
|
j++;
|
|
hw->pport[i].portid = j++;
|
|
csio_dbg(hw, "Found Port:%d\n", hw->pport[i].portid);
|
|
}
|
|
mempool_free(mbp, hw->mb_mempool);
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
/*
|
|
* csio_config_device_caps - Get and set device capabilities.
|
|
* @hw: HW module
|
|
*
|
|
*/
|
|
static int
|
|
csio_config_device_caps(struct csio_hw *hw)
|
|
{
|
|
struct csio_mb *mbp;
|
|
enum fw_retval retval;
|
|
int rv = -EINVAL;
|
|
|
|
mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC);
|
|
if (!mbp) {
|
|
CSIO_INC_STATS(hw, n_err_nomem);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
/* Get device capabilities */
|
|
csio_mb_caps_config(hw, mbp, CSIO_MB_DEFAULT_TMO, 0, 0, 0, 0, NULL);
|
|
|
|
if (csio_mb_issue(hw, mbp)) {
|
|
csio_err(hw, "Issue of FW_CAPS_CONFIG_CMD(r) failed!\n");
|
|
goto out;
|
|
}
|
|
|
|
retval = csio_mb_fw_retval(mbp);
|
|
if (retval != FW_SUCCESS) {
|
|
csio_err(hw, "FW_CAPS_CONFIG_CMD(r) returned %d!\n", retval);
|
|
goto out;
|
|
}
|
|
|
|
/* Validate device capabilities */
|
|
rv = csio_hw_validate_caps(hw, mbp);
|
|
if (rv != 0)
|
|
goto out;
|
|
|
|
/* Don't config device capabilities if already configured */
|
|
if (hw->fw_state == CSIO_DEV_STATE_INIT) {
|
|
rv = 0;
|
|
goto out;
|
|
}
|
|
|
|
/* Write back desired device capabilities */
|
|
csio_mb_caps_config(hw, mbp, CSIO_MB_DEFAULT_TMO, true, true,
|
|
false, true, NULL);
|
|
|
|
if (csio_mb_issue(hw, mbp)) {
|
|
csio_err(hw, "Issue of FW_CAPS_CONFIG_CMD(w) failed!\n");
|
|
goto out;
|
|
}
|
|
|
|
retval = csio_mb_fw_retval(mbp);
|
|
if (retval != FW_SUCCESS) {
|
|
csio_err(hw, "FW_CAPS_CONFIG_CMD(w) returned %d!\n", retval);
|
|
goto out;
|
|
}
|
|
|
|
rv = 0;
|
|
out:
|
|
mempool_free(mbp, hw->mb_mempool);
|
|
return rv;
|
|
}
|
|
|
|
static inline enum cc_fec fwcap_to_cc_fec(fw_port_cap32_t fw_fec)
|
|
{
|
|
enum cc_fec cc_fec = 0;
|
|
|
|
if (fw_fec & FW_PORT_CAP32_FEC_RS)
|
|
cc_fec |= FEC_RS;
|
|
if (fw_fec & FW_PORT_CAP32_FEC_BASER_RS)
|
|
cc_fec |= FEC_BASER_RS;
|
|
|
|
return cc_fec;
|
|
}
|
|
|
|
static inline fw_port_cap32_t cc_to_fwcap_pause(enum cc_pause cc_pause)
|
|
{
|
|
fw_port_cap32_t fw_pause = 0;
|
|
|
|
if (cc_pause & PAUSE_RX)
|
|
fw_pause |= FW_PORT_CAP32_FC_RX;
|
|
if (cc_pause & PAUSE_TX)
|
|
fw_pause |= FW_PORT_CAP32_FC_TX;
|
|
|
|
return fw_pause;
|
|
}
|
|
|
|
static inline fw_port_cap32_t cc_to_fwcap_fec(enum cc_fec cc_fec)
|
|
{
|
|
fw_port_cap32_t fw_fec = 0;
|
|
|
|
if (cc_fec & FEC_RS)
|
|
fw_fec |= FW_PORT_CAP32_FEC_RS;
|
|
if (cc_fec & FEC_BASER_RS)
|
|
fw_fec |= FW_PORT_CAP32_FEC_BASER_RS;
|
|
|
|
return fw_fec;
|
|
}
|
|
|
|
/**
|
|
* fwcap_to_fwspeed - return highest speed in Port Capabilities
|
|
* @acaps: advertised Port Capabilities
|
|
*
|
|
* Get the highest speed for the port from the advertised Port
|
|
* Capabilities.
|
|
*/
|
|
fw_port_cap32_t fwcap_to_fwspeed(fw_port_cap32_t acaps)
|
|
{
|
|
#define TEST_SPEED_RETURN(__caps_speed) \
|
|
do { \
|
|
if (acaps & FW_PORT_CAP32_SPEED_##__caps_speed) \
|
|
return FW_PORT_CAP32_SPEED_##__caps_speed; \
|
|
} while (0)
|
|
|
|
TEST_SPEED_RETURN(400G);
|
|
TEST_SPEED_RETURN(200G);
|
|
TEST_SPEED_RETURN(100G);
|
|
TEST_SPEED_RETURN(50G);
|
|
TEST_SPEED_RETURN(40G);
|
|
TEST_SPEED_RETURN(25G);
|
|
TEST_SPEED_RETURN(10G);
|
|
TEST_SPEED_RETURN(1G);
|
|
TEST_SPEED_RETURN(100M);
|
|
|
|
#undef TEST_SPEED_RETURN
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* fwcaps16_to_caps32 - convert 16-bit Port Capabilities to 32-bits
|
|
* @caps16: a 16-bit Port Capabilities value
|
|
*
|
|
* Returns the equivalent 32-bit Port Capabilities value.
|
|
*/
|
|
fw_port_cap32_t fwcaps16_to_caps32(fw_port_cap16_t caps16)
|
|
{
|
|
fw_port_cap32_t caps32 = 0;
|
|
|
|
#define CAP16_TO_CAP32(__cap) \
|
|
do { \
|
|
if (caps16 & FW_PORT_CAP_##__cap) \
|
|
caps32 |= FW_PORT_CAP32_##__cap; \
|
|
} while (0)
|
|
|
|
CAP16_TO_CAP32(SPEED_100M);
|
|
CAP16_TO_CAP32(SPEED_1G);
|
|
CAP16_TO_CAP32(SPEED_25G);
|
|
CAP16_TO_CAP32(SPEED_10G);
|
|
CAP16_TO_CAP32(SPEED_40G);
|
|
CAP16_TO_CAP32(SPEED_100G);
|
|
CAP16_TO_CAP32(FC_RX);
|
|
CAP16_TO_CAP32(FC_TX);
|
|
CAP16_TO_CAP32(ANEG);
|
|
CAP16_TO_CAP32(MDIAUTO);
|
|
CAP16_TO_CAP32(MDISTRAIGHT);
|
|
CAP16_TO_CAP32(FEC_RS);
|
|
CAP16_TO_CAP32(FEC_BASER_RS);
|
|
CAP16_TO_CAP32(802_3_PAUSE);
|
|
CAP16_TO_CAP32(802_3_ASM_DIR);
|
|
|
|
#undef CAP16_TO_CAP32
|
|
|
|
return caps32;
|
|
}
|
|
|
|
/**
|
|
* fwcaps32_to_caps16 - convert 32-bit Port Capabilities to 16-bits
|
|
* @caps32: a 32-bit Port Capabilities value
|
|
*
|
|
* Returns the equivalent 16-bit Port Capabilities value. Note that
|
|
* not all 32-bit Port Capabilities can be represented in the 16-bit
|
|
* Port Capabilities and some fields/values may not make it.
|
|
*/
|
|
fw_port_cap16_t fwcaps32_to_caps16(fw_port_cap32_t caps32)
|
|
{
|
|
fw_port_cap16_t caps16 = 0;
|
|
|
|
#define CAP32_TO_CAP16(__cap) \
|
|
do { \
|
|
if (caps32 & FW_PORT_CAP32_##__cap) \
|
|
caps16 |= FW_PORT_CAP_##__cap; \
|
|
} while (0)
|
|
|
|
CAP32_TO_CAP16(SPEED_100M);
|
|
CAP32_TO_CAP16(SPEED_1G);
|
|
CAP32_TO_CAP16(SPEED_10G);
|
|
CAP32_TO_CAP16(SPEED_25G);
|
|
CAP32_TO_CAP16(SPEED_40G);
|
|
CAP32_TO_CAP16(SPEED_100G);
|
|
CAP32_TO_CAP16(FC_RX);
|
|
CAP32_TO_CAP16(FC_TX);
|
|
CAP32_TO_CAP16(802_3_PAUSE);
|
|
CAP32_TO_CAP16(802_3_ASM_DIR);
|
|
CAP32_TO_CAP16(ANEG);
|
|
CAP32_TO_CAP16(FORCE_PAUSE);
|
|
CAP32_TO_CAP16(MDIAUTO);
|
|
CAP32_TO_CAP16(MDISTRAIGHT);
|
|
CAP32_TO_CAP16(FEC_RS);
|
|
CAP32_TO_CAP16(FEC_BASER_RS);
|
|
|
|
#undef CAP32_TO_CAP16
|
|
|
|
return caps16;
|
|
}
|
|
|
|
/**
|
|
* lstatus_to_fwcap - translate old lstatus to 32-bit Port Capabilities
|
|
* @lstatus: old FW_PORT_ACTION_GET_PORT_INFO lstatus value
|
|
*
|
|
* Translates old FW_PORT_ACTION_GET_PORT_INFO lstatus field into new
|
|
* 32-bit Port Capabilities value.
|
|
*/
|
|
fw_port_cap32_t lstatus_to_fwcap(u32 lstatus)
|
|
{
|
|
fw_port_cap32_t linkattr = 0;
|
|
|
|
/* The format of the Link Status in the old
|
|
* 16-bit Port Information message isn't the same as the
|
|
* 16-bit Port Capabilities bitfield used everywhere else.
|
|
*/
|
|
if (lstatus & FW_PORT_CMD_RXPAUSE_F)
|
|
linkattr |= FW_PORT_CAP32_FC_RX;
|
|
if (lstatus & FW_PORT_CMD_TXPAUSE_F)
|
|
linkattr |= FW_PORT_CAP32_FC_TX;
|
|
if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_100M))
|
|
linkattr |= FW_PORT_CAP32_SPEED_100M;
|
|
if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_1G))
|
|
linkattr |= FW_PORT_CAP32_SPEED_1G;
|
|
if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_10G))
|
|
linkattr |= FW_PORT_CAP32_SPEED_10G;
|
|
if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_25G))
|
|
linkattr |= FW_PORT_CAP32_SPEED_25G;
|
|
if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_40G))
|
|
linkattr |= FW_PORT_CAP32_SPEED_40G;
|
|
if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_100G))
|
|
linkattr |= FW_PORT_CAP32_SPEED_100G;
|
|
|
|
return linkattr;
|
|
}
|
|
|
|
/**
|
|
* csio_init_link_config - initialize a link's SW state
|
|
* @lc: pointer to structure holding the link state
|
|
* @pcaps: link Port Capabilities
|
|
* @acaps: link current Advertised Port Capabilities
|
|
*
|
|
* Initializes the SW state maintained for each link, including the link's
|
|
* capabilities and default speed/flow-control/autonegotiation settings.
|
|
*/
|
|
static void csio_init_link_config(struct link_config *lc, fw_port_cap32_t pcaps,
|
|
fw_port_cap32_t acaps)
|
|
{
|
|
lc->pcaps = pcaps;
|
|
lc->def_acaps = acaps;
|
|
lc->lpacaps = 0;
|
|
lc->speed_caps = 0;
|
|
lc->speed = 0;
|
|
lc->requested_fc = PAUSE_RX | PAUSE_TX;
|
|
lc->fc = lc->requested_fc;
|
|
|
|
/*
|
|
* For Forward Error Control, we default to whatever the Firmware
|
|
* tells us the Link is currently advertising.
|
|
*/
|
|
lc->requested_fec = FEC_AUTO;
|
|
lc->fec = fwcap_to_cc_fec(lc->def_acaps);
|
|
|
|
/* If the Port is capable of Auto-Negtotiation, initialize it as
|
|
* "enabled" and copy over all of the Physical Port Capabilities
|
|
* to the Advertised Port Capabilities. Otherwise mark it as
|
|
* Auto-Negotiate disabled and select the highest supported speed
|
|
* for the link. Note parallel structure in t4_link_l1cfg_core()
|
|
* and t4_handle_get_port_info().
|
|
*/
|
|
if (lc->pcaps & FW_PORT_CAP32_ANEG) {
|
|
lc->acaps = lc->pcaps & ADVERT_MASK;
|
|
lc->autoneg = AUTONEG_ENABLE;
|
|
lc->requested_fc |= PAUSE_AUTONEG;
|
|
} else {
|
|
lc->acaps = 0;
|
|
lc->autoneg = AUTONEG_DISABLE;
|
|
}
|
|
}
|
|
|
|
static void csio_link_l1cfg(struct link_config *lc, uint16_t fw_caps,
|
|
uint32_t *rcaps)
|
|
{
|
|
unsigned int fw_mdi = FW_PORT_CAP32_MDI_V(FW_PORT_CAP32_MDI_AUTO);
|
|
fw_port_cap32_t fw_fc, cc_fec, fw_fec, lrcap;
|
|
|
|
lc->link_ok = 0;
|
|
|
|
/*
|
|
* Convert driver coding of Pause Frame Flow Control settings into the
|
|
* Firmware's API.
|
|
*/
|
|
fw_fc = cc_to_fwcap_pause(lc->requested_fc);
|
|
|
|
/*
|
|
* Convert Common Code Forward Error Control settings into the
|
|
* Firmware's API. If the current Requested FEC has "Automatic"
|
|
* (IEEE 802.3) specified, then we use whatever the Firmware
|
|
* sent us as part of it's IEEE 802.3-based interpretation of
|
|
* the Transceiver Module EPROM FEC parameters. Otherwise we
|
|
* use whatever is in the current Requested FEC settings.
|
|
*/
|
|
if (lc->requested_fec & FEC_AUTO)
|
|
cc_fec = fwcap_to_cc_fec(lc->def_acaps);
|
|
else
|
|
cc_fec = lc->requested_fec;
|
|
fw_fec = cc_to_fwcap_fec(cc_fec);
|
|
|
|
/* Figure out what our Requested Port Capabilities are going to be.
|
|
* Note parallel structure in t4_handle_get_port_info() and
|
|
* init_link_config().
|
|
*/
|
|
if (!(lc->pcaps & FW_PORT_CAP32_ANEG)) {
|
|
lrcap = (lc->pcaps & ADVERT_MASK) | fw_fc | fw_fec;
|
|
lc->fc = lc->requested_fc & ~PAUSE_AUTONEG;
|
|
lc->fec = cc_fec;
|
|
} else if (lc->autoneg == AUTONEG_DISABLE) {
|
|
lrcap = lc->speed_caps | fw_fc | fw_fec | fw_mdi;
|
|
lc->fc = lc->requested_fc & ~PAUSE_AUTONEG;
|
|
lc->fec = cc_fec;
|
|
} else {
|
|
lrcap = lc->acaps | fw_fc | fw_fec | fw_mdi;
|
|
}
|
|
|
|
*rcaps = lrcap;
|
|
}
|
|
|
|
/*
|
|
* csio_enable_ports - Bring up all available ports.
|
|
* @hw: HW module.
|
|
*
|
|
*/
|
|
static int
|
|
csio_enable_ports(struct csio_hw *hw)
|
|
{
|
|
struct csio_mb *mbp;
|
|
u16 fw_caps = FW_CAPS_UNKNOWN;
|
|
enum fw_retval retval;
|
|
uint8_t portid;
|
|
fw_port_cap32_t pcaps, acaps, rcaps;
|
|
int i;
|
|
|
|
mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC);
|
|
if (!mbp) {
|
|
CSIO_INC_STATS(hw, n_err_nomem);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
for (i = 0; i < hw->num_pports; i++) {
|
|
portid = hw->pport[i].portid;
|
|
|
|
if (fw_caps == FW_CAPS_UNKNOWN) {
|
|
u32 param, val;
|
|
|
|
param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) |
|
|
FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_PORT_CAPS32));
|
|
val = 1;
|
|
|
|
csio_mb_params(hw, mbp, CSIO_MB_DEFAULT_TMO,
|
|
hw->pfn, 0, 1, ¶m, &val, true,
|
|
NULL);
|
|
|
|
if (csio_mb_issue(hw, mbp)) {
|
|
csio_err(hw, "failed to issue FW_PARAMS_CMD(r) port:%d\n",
|
|
portid);
|
|
mempool_free(mbp, hw->mb_mempool);
|
|
return -EINVAL;
|
|
}
|
|
|
|
csio_mb_process_read_params_rsp(hw, mbp, &retval,
|
|
0, NULL);
|
|
fw_caps = retval ? FW_CAPS16 : FW_CAPS32;
|
|
}
|
|
|
|
/* Read PORT information */
|
|
csio_mb_port(hw, mbp, CSIO_MB_DEFAULT_TMO, portid,
|
|
false, 0, fw_caps, NULL);
|
|
|
|
if (csio_mb_issue(hw, mbp)) {
|
|
csio_err(hw, "failed to issue FW_PORT_CMD(r) port:%d\n",
|
|
portid);
|
|
mempool_free(mbp, hw->mb_mempool);
|
|
return -EINVAL;
|
|
}
|
|
|
|
csio_mb_process_read_port_rsp(hw, mbp, &retval, fw_caps,
|
|
&pcaps, &acaps);
|
|
if (retval != FW_SUCCESS) {
|
|
csio_err(hw, "FW_PORT_CMD(r) port:%d failed: 0x%x\n",
|
|
portid, retval);
|
|
mempool_free(mbp, hw->mb_mempool);
|
|
return -EINVAL;
|
|
}
|
|
|
|
csio_init_link_config(&hw->pport[i].link_cfg, pcaps, acaps);
|
|
|
|
csio_link_l1cfg(&hw->pport[i].link_cfg, fw_caps, &rcaps);
|
|
|
|
/* Write back PORT information */
|
|
csio_mb_port(hw, mbp, CSIO_MB_DEFAULT_TMO, portid,
|
|
true, rcaps, fw_caps, NULL);
|
|
|
|
if (csio_mb_issue(hw, mbp)) {
|
|
csio_err(hw, "failed to issue FW_PORT_CMD(w) port:%d\n",
|
|
portid);
|
|
mempool_free(mbp, hw->mb_mempool);
|
|
return -EINVAL;
|
|
}
|
|
|
|
retval = csio_mb_fw_retval(mbp);
|
|
if (retval != FW_SUCCESS) {
|
|
csio_err(hw, "FW_PORT_CMD(w) port:%d failed :0x%x\n",
|
|
portid, retval);
|
|
mempool_free(mbp, hw->mb_mempool);
|
|
return -EINVAL;
|
|
}
|
|
|
|
} /* For all ports */
|
|
|
|
mempool_free(mbp, hw->mb_mempool);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* csio_get_fcoe_resinfo - Read fcoe fw resource info.
|
|
* @hw: HW module
|
|
* Issued with lock held.
|
|
*/
|
|
static int
|
|
csio_get_fcoe_resinfo(struct csio_hw *hw)
|
|
{
|
|
struct csio_fcoe_res_info *res_info = &hw->fres_info;
|
|
struct fw_fcoe_res_info_cmd *rsp;
|
|
struct csio_mb *mbp;
|
|
enum fw_retval retval;
|
|
|
|
mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC);
|
|
if (!mbp) {
|
|
CSIO_INC_STATS(hw, n_err_nomem);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
/* Get FCoE FW resource information */
|
|
csio_fcoe_read_res_info_init_mb(hw, mbp, CSIO_MB_DEFAULT_TMO, NULL);
|
|
|
|
if (csio_mb_issue(hw, mbp)) {
|
|
csio_err(hw, "failed to issue FW_FCOE_RES_INFO_CMD\n");
|
|
mempool_free(mbp, hw->mb_mempool);
|
|
return -EINVAL;
|
|
}
|
|
|
|
rsp = (struct fw_fcoe_res_info_cmd *)(mbp->mb);
|
|
retval = FW_CMD_RETVAL_G(ntohl(rsp->retval_len16));
|
|
if (retval != FW_SUCCESS) {
|
|
csio_err(hw, "FW_FCOE_RES_INFO_CMD failed with ret x%x\n",
|
|
retval);
|
|
mempool_free(mbp, hw->mb_mempool);
|
|
return -EINVAL;
|
|
}
|
|
|
|
res_info->e_d_tov = ntohs(rsp->e_d_tov);
|
|
res_info->r_a_tov_seq = ntohs(rsp->r_a_tov_seq);
|
|
res_info->r_a_tov_els = ntohs(rsp->r_a_tov_els);
|
|
res_info->r_r_tov = ntohs(rsp->r_r_tov);
|
|
res_info->max_xchgs = ntohl(rsp->max_xchgs);
|
|
res_info->max_ssns = ntohl(rsp->max_ssns);
|
|
res_info->used_xchgs = ntohl(rsp->used_xchgs);
|
|
res_info->used_ssns = ntohl(rsp->used_ssns);
|
|
res_info->max_fcfs = ntohl(rsp->max_fcfs);
|
|
res_info->max_vnps = ntohl(rsp->max_vnps);
|
|
res_info->used_fcfs = ntohl(rsp->used_fcfs);
|
|
res_info->used_vnps = ntohl(rsp->used_vnps);
|
|
|
|
csio_dbg(hw, "max ssns:%d max xchgs:%d\n", res_info->max_ssns,
|
|
res_info->max_xchgs);
|
|
mempool_free(mbp, hw->mb_mempool);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
csio_hw_check_fwconfig(struct csio_hw *hw, u32 *param)
|
|
{
|
|
struct csio_mb *mbp;
|
|
enum fw_retval retval;
|
|
u32 _param[1];
|
|
|
|
mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC);
|
|
if (!mbp) {
|
|
CSIO_INC_STATS(hw, n_err_nomem);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
/*
|
|
* Find out whether we're dealing with a version of
|
|
* the firmware which has configuration file support.
|
|
*/
|
|
_param[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
|
|
FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CF));
|
|
|
|
csio_mb_params(hw, mbp, CSIO_MB_DEFAULT_TMO, hw->pfn, 0,
|
|
ARRAY_SIZE(_param), _param, NULL, false, NULL);
|
|
if (csio_mb_issue(hw, mbp)) {
|
|
csio_err(hw, "Issue of FW_PARAMS_CMD(read) failed!\n");
|
|
mempool_free(mbp, hw->mb_mempool);
|
|
return -EINVAL;
|
|
}
|
|
|
|
csio_mb_process_read_params_rsp(hw, mbp, &retval,
|
|
ARRAY_SIZE(_param), _param);
|
|
if (retval != FW_SUCCESS) {
|
|
csio_err(hw, "FW_PARAMS_CMD(read) failed with ret:0x%x!\n",
|
|
retval);
|
|
mempool_free(mbp, hw->mb_mempool);
|
|
return -EINVAL;
|
|
}
|
|
|
|
mempool_free(mbp, hw->mb_mempool);
|
|
*param = _param[0];
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
csio_hw_flash_config(struct csio_hw *hw, u32 *fw_cfg_param, char *path)
|
|
{
|
|
int ret = 0;
|
|
const struct firmware *cf;
|
|
struct pci_dev *pci_dev = hw->pdev;
|
|
struct device *dev = &pci_dev->dev;
|
|
unsigned int mtype = 0, maddr = 0;
|
|
uint32_t *cfg_data;
|
|
int value_to_add = 0;
|
|
const char *fw_cfg_file;
|
|
|
|
if (csio_is_t5(pci_dev->device & CSIO_HW_CHIP_MASK))
|
|
fw_cfg_file = FW_CFG_NAME_T5;
|
|
else
|
|
fw_cfg_file = FW_CFG_NAME_T6;
|
|
|
|
if (request_firmware(&cf, fw_cfg_file, dev) < 0) {
|
|
csio_err(hw, "could not find config file %s, err: %d\n",
|
|
fw_cfg_file, ret);
|
|
return -ENOENT;
|
|
}
|
|
|
|
if (cf->size%4 != 0)
|
|
value_to_add = 4 - (cf->size % 4);
|
|
|
|
cfg_data = kzalloc(cf->size+value_to_add, GFP_KERNEL);
|
|
if (cfg_data == NULL) {
|
|
ret = -ENOMEM;
|
|
goto leave;
|
|
}
|
|
|
|
memcpy((void *)cfg_data, (const void *)cf->data, cf->size);
|
|
if (csio_hw_check_fwconfig(hw, fw_cfg_param) != 0) {
|
|
ret = -EINVAL;
|
|
goto leave;
|
|
}
|
|
|
|
mtype = FW_PARAMS_PARAM_Y_G(*fw_cfg_param);
|
|
maddr = FW_PARAMS_PARAM_Z_G(*fw_cfg_param) << 16;
|
|
|
|
ret = csio_memory_write(hw, mtype, maddr,
|
|
cf->size + value_to_add, cfg_data);
|
|
|
|
if ((ret == 0) && (value_to_add != 0)) {
|
|
union {
|
|
u32 word;
|
|
char buf[4];
|
|
} last;
|
|
size_t size = cf->size & ~0x3;
|
|
int i;
|
|
|
|
last.word = cfg_data[size >> 2];
|
|
for (i = value_to_add; i < 4; i++)
|
|
last.buf[i] = 0;
|
|
ret = csio_memory_write(hw, mtype, maddr + size, 4, &last.word);
|
|
}
|
|
if (ret == 0) {
|
|
csio_info(hw, "config file upgraded to %s\n", fw_cfg_file);
|
|
snprintf(path, 64, "%s%s", "/lib/firmware/", fw_cfg_file);
|
|
}
|
|
|
|
leave:
|
|
kfree(cfg_data);
|
|
release_firmware(cf);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* HW initialization: contact FW, obtain config, perform basic init.
|
|
*
|
|
* If the firmware we're dealing with has Configuration File support, then
|
|
* we use that to perform all configuration -- either using the configuration
|
|
* file stored in flash on the adapter or using a filesystem-local file
|
|
* if available.
|
|
*
|
|
* If we don't have configuration file support in the firmware, then we'll
|
|
* have to set things up the old fashioned way with hard-coded register
|
|
* writes and firmware commands ...
|
|
*/
|
|
|
|
/*
|
|
* Attempt to initialize the HW via a Firmware Configuration File.
|
|
*/
|
|
static int
|
|
csio_hw_use_fwconfig(struct csio_hw *hw, int reset, u32 *fw_cfg_param)
|
|
{
|
|
struct csio_mb *mbp = NULL;
|
|
struct fw_caps_config_cmd *caps_cmd;
|
|
unsigned int mtype, maddr;
|
|
int rv = -EINVAL;
|
|
uint32_t finiver = 0, finicsum = 0, cfcsum = 0;
|
|
char path[64];
|
|
char *config_name = NULL;
|
|
|
|
/*
|
|
* Reset device if necessary
|
|
*/
|
|
if (reset) {
|
|
rv = csio_do_reset(hw, true);
|
|
if (rv != 0)
|
|
goto bye;
|
|
}
|
|
|
|
/*
|
|
* If we have a configuration file in host ,
|
|
* then use that. Otherwise, use the configuration file stored
|
|
* in the HW flash ...
|
|
*/
|
|
spin_unlock_irq(&hw->lock);
|
|
rv = csio_hw_flash_config(hw, fw_cfg_param, path);
|
|
spin_lock_irq(&hw->lock);
|
|
if (rv != 0) {
|
|
/*
|
|
* config file was not found. Use default
|
|
* config file from flash.
|
|
*/
|
|
config_name = "On FLASH";
|
|
mtype = FW_MEMTYPE_CF_FLASH;
|
|
maddr = hw->chip_ops->chip_flash_cfg_addr(hw);
|
|
} else {
|
|
config_name = path;
|
|
mtype = FW_PARAMS_PARAM_Y_G(*fw_cfg_param);
|
|
maddr = FW_PARAMS_PARAM_Z_G(*fw_cfg_param) << 16;
|
|
}
|
|
|
|
mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC);
|
|
if (!mbp) {
|
|
CSIO_INC_STATS(hw, n_err_nomem);
|
|
return -ENOMEM;
|
|
}
|
|
/*
|
|
* Tell the firmware to process the indicated Configuration File.
|
|
* If there are no errors and the caller has provided return value
|
|
* pointers for the [fini] section version, checksum and computed
|
|
* checksum, pass those back to the caller.
|
|
*/
|
|
caps_cmd = (struct fw_caps_config_cmd *)(mbp->mb);
|
|
CSIO_INIT_MBP(mbp, caps_cmd, CSIO_MB_DEFAULT_TMO, hw, NULL, 1);
|
|
caps_cmd->op_to_write =
|
|
htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
|
|
FW_CMD_REQUEST_F |
|
|
FW_CMD_READ_F);
|
|
caps_cmd->cfvalid_to_len16 =
|
|
htonl(FW_CAPS_CONFIG_CMD_CFVALID_F |
|
|
FW_CAPS_CONFIG_CMD_MEMTYPE_CF_V(mtype) |
|
|
FW_CAPS_CONFIG_CMD_MEMADDR64K_CF_V(maddr >> 16) |
|
|
FW_LEN16(*caps_cmd));
|
|
|
|
if (csio_mb_issue(hw, mbp)) {
|
|
rv = -EINVAL;
|
|
goto bye;
|
|
}
|
|
|
|
rv = csio_mb_fw_retval(mbp);
|
|
/* If the CAPS_CONFIG failed with an ENOENT (for a Firmware
|
|
* Configuration File in FLASH), our last gasp effort is to use the
|
|
* Firmware Configuration File which is embedded in the
|
|
* firmware. A very few early versions of the firmware didn't
|
|
* have one embedded but we can ignore those.
|
|
*/
|
|
if (rv == ENOENT) {
|
|
CSIO_INIT_MBP(mbp, caps_cmd, CSIO_MB_DEFAULT_TMO, hw, NULL, 1);
|
|
caps_cmd->op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
|
|
FW_CMD_REQUEST_F |
|
|
FW_CMD_READ_F);
|
|
caps_cmd->cfvalid_to_len16 = htonl(FW_LEN16(*caps_cmd));
|
|
|
|
if (csio_mb_issue(hw, mbp)) {
|
|
rv = -EINVAL;
|
|
goto bye;
|
|
}
|
|
|
|
rv = csio_mb_fw_retval(mbp);
|
|
config_name = "Firmware Default";
|
|
}
|
|
if (rv != FW_SUCCESS)
|
|
goto bye;
|
|
|
|
finiver = ntohl(caps_cmd->finiver);
|
|
finicsum = ntohl(caps_cmd->finicsum);
|
|
cfcsum = ntohl(caps_cmd->cfcsum);
|
|
|
|
/*
|
|
* And now tell the firmware to use the configuration we just loaded.
|
|
*/
|
|
caps_cmd->op_to_write =
|
|
htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
|
|
FW_CMD_REQUEST_F |
|
|
FW_CMD_WRITE_F);
|
|
caps_cmd->cfvalid_to_len16 = htonl(FW_LEN16(*caps_cmd));
|
|
|
|
if (csio_mb_issue(hw, mbp)) {
|
|
rv = -EINVAL;
|
|
goto bye;
|
|
}
|
|
|
|
rv = csio_mb_fw_retval(mbp);
|
|
if (rv != FW_SUCCESS) {
|
|
csio_dbg(hw, "FW_CAPS_CONFIG_CMD returned %d!\n", rv);
|
|
goto bye;
|
|
}
|
|
|
|
if (finicsum != cfcsum) {
|
|
csio_warn(hw,
|
|
"Config File checksum mismatch: csum=%#x, computed=%#x\n",
|
|
finicsum, cfcsum);
|
|
}
|
|
|
|
/* Validate device capabilities */
|
|
rv = csio_hw_validate_caps(hw, mbp);
|
|
if (rv != 0)
|
|
goto bye;
|
|
|
|
mempool_free(mbp, hw->mb_mempool);
|
|
mbp = NULL;
|
|
|
|
/*
|
|
* Note that we're operating with parameters
|
|
* not supplied by the driver, rather than from hard-wired
|
|
* initialization constants buried in the driver.
|
|
*/
|
|
hw->flags |= CSIO_HWF_USING_SOFT_PARAMS;
|
|
|
|
/* device parameters */
|
|
rv = csio_get_device_params(hw);
|
|
if (rv != 0)
|
|
goto bye;
|
|
|
|
/* Configure SGE */
|
|
csio_wr_sge_init(hw);
|
|
|
|
/*
|
|
* And finally tell the firmware to initialize itself using the
|
|
* parameters from the Configuration File.
|
|
*/
|
|
/* Post event to notify completion of configuration */
|
|
csio_post_event(&hw->sm, CSIO_HWE_INIT);
|
|
|
|
csio_info(hw, "Successfully configure using Firmware "
|
|
"Configuration File %s, version %#x, computed checksum %#x\n",
|
|
config_name, finiver, cfcsum);
|
|
return 0;
|
|
|
|
/*
|
|
* Something bad happened. Return the error ...
|
|
*/
|
|
bye:
|
|
if (mbp)
|
|
mempool_free(mbp, hw->mb_mempool);
|
|
hw->flags &= ~CSIO_HWF_USING_SOFT_PARAMS;
|
|
csio_warn(hw, "Configuration file error %d\n", rv);
|
|
return rv;
|
|
}
|
|
|
|
/* Is the given firmware API compatible with the one the driver was compiled
|
|
* with?
|
|
*/
|
|
static int fw_compatible(const struct fw_hdr *hdr1, const struct fw_hdr *hdr2)
|
|
{
|
|
|
|
/* short circuit if it's the exact same firmware version */
|
|
if (hdr1->chip == hdr2->chip && hdr1->fw_ver == hdr2->fw_ver)
|
|
return 1;
|
|
|
|
#define SAME_INTF(x) (hdr1->intfver_##x == hdr2->intfver_##x)
|
|
if (hdr1->chip == hdr2->chip && SAME_INTF(nic) && SAME_INTF(vnic) &&
|
|
SAME_INTF(ri) && SAME_INTF(iscsi) && SAME_INTF(fcoe))
|
|
return 1;
|
|
#undef SAME_INTF
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* The firmware in the filesystem is usable, but should it be installed?
|
|
* This routine explains itself in detail if it indicates the filesystem
|
|
* firmware should be installed.
|
|
*/
|
|
static int csio_should_install_fs_fw(struct csio_hw *hw, int card_fw_usable,
|
|
int k, int c)
|
|
{
|
|
const char *reason;
|
|
|
|
if (!card_fw_usable) {
|
|
reason = "incompatible or unusable";
|
|
goto install;
|
|
}
|
|
|
|
if (k > c) {
|
|
reason = "older than the version supported with this driver";
|
|
goto install;
|
|
}
|
|
|
|
return 0;
|
|
|
|
install:
|
|
csio_err(hw, "firmware on card (%u.%u.%u.%u) is %s, "
|
|
"installing firmware %u.%u.%u.%u on card.\n",
|
|
FW_HDR_FW_VER_MAJOR_G(c), FW_HDR_FW_VER_MINOR_G(c),
|
|
FW_HDR_FW_VER_MICRO_G(c), FW_HDR_FW_VER_BUILD_G(c), reason,
|
|
FW_HDR_FW_VER_MAJOR_G(k), FW_HDR_FW_VER_MINOR_G(k),
|
|
FW_HDR_FW_VER_MICRO_G(k), FW_HDR_FW_VER_BUILD_G(k));
|
|
|
|
return 1;
|
|
}
|
|
|
|
static struct fw_info fw_info_array[] = {
|
|
{
|
|
.chip = CHELSIO_T5,
|
|
.fs_name = FW_CFG_NAME_T5,
|
|
.fw_mod_name = FW_FNAME_T5,
|
|
.fw_hdr = {
|
|
.chip = FW_HDR_CHIP_T5,
|
|
.fw_ver = __cpu_to_be32(FW_VERSION(T5)),
|
|
.intfver_nic = FW_INTFVER(T5, NIC),
|
|
.intfver_vnic = FW_INTFVER(T5, VNIC),
|
|
.intfver_ri = FW_INTFVER(T5, RI),
|
|
.intfver_iscsi = FW_INTFVER(T5, ISCSI),
|
|
.intfver_fcoe = FW_INTFVER(T5, FCOE),
|
|
},
|
|
}, {
|
|
.chip = CHELSIO_T6,
|
|
.fs_name = FW_CFG_NAME_T6,
|
|
.fw_mod_name = FW_FNAME_T6,
|
|
.fw_hdr = {
|
|
.chip = FW_HDR_CHIP_T6,
|
|
.fw_ver = __cpu_to_be32(FW_VERSION(T6)),
|
|
.intfver_nic = FW_INTFVER(T6, NIC),
|
|
.intfver_vnic = FW_INTFVER(T6, VNIC),
|
|
.intfver_ri = FW_INTFVER(T6, RI),
|
|
.intfver_iscsi = FW_INTFVER(T6, ISCSI),
|
|
.intfver_fcoe = FW_INTFVER(T6, FCOE),
|
|
},
|
|
}
|
|
};
|
|
|
|
static struct fw_info *find_fw_info(int chip)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < ARRAY_SIZE(fw_info_array); i++) {
|
|
if (fw_info_array[i].chip == chip)
|
|
return &fw_info_array[i];
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
static int csio_hw_prep_fw(struct csio_hw *hw, struct fw_info *fw_info,
|
|
const u8 *fw_data, unsigned int fw_size,
|
|
struct fw_hdr *card_fw, enum csio_dev_state state,
|
|
int *reset)
|
|
{
|
|
int ret, card_fw_usable, fs_fw_usable;
|
|
const struct fw_hdr *fs_fw;
|
|
const struct fw_hdr *drv_fw;
|
|
|
|
drv_fw = &fw_info->fw_hdr;
|
|
|
|
/* Read the header of the firmware on the card */
|
|
ret = csio_hw_read_flash(hw, FLASH_FW_START,
|
|
sizeof(*card_fw) / sizeof(uint32_t),
|
|
(uint32_t *)card_fw, 1);
|
|
if (ret == 0) {
|
|
card_fw_usable = fw_compatible(drv_fw, (const void *)card_fw);
|
|
} else {
|
|
csio_err(hw,
|
|
"Unable to read card's firmware header: %d\n", ret);
|
|
card_fw_usable = 0;
|
|
}
|
|
|
|
if (fw_data != NULL) {
|
|
fs_fw = (const void *)fw_data;
|
|
fs_fw_usable = fw_compatible(drv_fw, fs_fw);
|
|
} else {
|
|
fs_fw = NULL;
|
|
fs_fw_usable = 0;
|
|
}
|
|
|
|
if (card_fw_usable && card_fw->fw_ver == drv_fw->fw_ver &&
|
|
(!fs_fw_usable || fs_fw->fw_ver == drv_fw->fw_ver)) {
|
|
/* Common case: the firmware on the card is an exact match and
|
|
* the filesystem one is an exact match too, or the filesystem
|
|
* one is absent/incompatible.
|
|
*/
|
|
} else if (fs_fw_usable && state == CSIO_DEV_STATE_UNINIT &&
|
|
csio_should_install_fs_fw(hw, card_fw_usable,
|
|
be32_to_cpu(fs_fw->fw_ver),
|
|
be32_to_cpu(card_fw->fw_ver))) {
|
|
ret = csio_hw_fw_upgrade(hw, hw->pfn, fw_data,
|
|
fw_size, 0);
|
|
if (ret != 0) {
|
|
csio_err(hw,
|
|
"failed to install firmware: %d\n", ret);
|
|
goto bye;
|
|
}
|
|
|
|
/* Installed successfully, update the cached header too. */
|
|
memcpy(card_fw, fs_fw, sizeof(*card_fw));
|
|
card_fw_usable = 1;
|
|
*reset = 0; /* already reset as part of load_fw */
|
|
}
|
|
|
|
if (!card_fw_usable) {
|
|
uint32_t d, c, k;
|
|
|
|
d = be32_to_cpu(drv_fw->fw_ver);
|
|
c = be32_to_cpu(card_fw->fw_ver);
|
|
k = fs_fw ? be32_to_cpu(fs_fw->fw_ver) : 0;
|
|
|
|
csio_err(hw, "Cannot find a usable firmware: "
|
|
"chip state %d, "
|
|
"driver compiled with %d.%d.%d.%d, "
|
|
"card has %d.%d.%d.%d, filesystem has %d.%d.%d.%d\n",
|
|
state,
|
|
FW_HDR_FW_VER_MAJOR_G(d), FW_HDR_FW_VER_MINOR_G(d),
|
|
FW_HDR_FW_VER_MICRO_G(d), FW_HDR_FW_VER_BUILD_G(d),
|
|
FW_HDR_FW_VER_MAJOR_G(c), FW_HDR_FW_VER_MINOR_G(c),
|
|
FW_HDR_FW_VER_MICRO_G(c), FW_HDR_FW_VER_BUILD_G(c),
|
|
FW_HDR_FW_VER_MAJOR_G(k), FW_HDR_FW_VER_MINOR_G(k),
|
|
FW_HDR_FW_VER_MICRO_G(k), FW_HDR_FW_VER_BUILD_G(k));
|
|
ret = EINVAL;
|
|
goto bye;
|
|
}
|
|
|
|
/* We're using whatever's on the card and it's known to be good. */
|
|
hw->fwrev = be32_to_cpu(card_fw->fw_ver);
|
|
hw->tp_vers = be32_to_cpu(card_fw->tp_microcode_ver);
|
|
|
|
bye:
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Returns -EINVAL if attempts to flash the firmware failed,
|
|
* -ENOMEM if memory allocation failed else returns 0,
|
|
* if flashing was not attempted because the card had the
|
|
* latest firmware ECANCELED is returned
|
|
*/
|
|
static int
|
|
csio_hw_flash_fw(struct csio_hw *hw, int *reset)
|
|
{
|
|
int ret = -ECANCELED;
|
|
const struct firmware *fw;
|
|
struct fw_info *fw_info;
|
|
struct fw_hdr *card_fw;
|
|
struct pci_dev *pci_dev = hw->pdev;
|
|
struct device *dev = &pci_dev->dev ;
|
|
const u8 *fw_data = NULL;
|
|
unsigned int fw_size = 0;
|
|
const char *fw_bin_file;
|
|
|
|
/* This is the firmware whose headers the driver was compiled
|
|
* against
|
|
*/
|
|
fw_info = find_fw_info(CHELSIO_CHIP_VERSION(hw->chip_id));
|
|
if (fw_info == NULL) {
|
|
csio_err(hw,
|
|
"unable to get firmware info for chip %d.\n",
|
|
CHELSIO_CHIP_VERSION(hw->chip_id));
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* allocate memory to read the header of the firmware on the
|
|
* card
|
|
*/
|
|
card_fw = kmalloc(sizeof(*card_fw), GFP_KERNEL);
|
|
if (!card_fw)
|
|
return -ENOMEM;
|
|
|
|
if (csio_is_t5(pci_dev->device & CSIO_HW_CHIP_MASK))
|
|
fw_bin_file = FW_FNAME_T5;
|
|
else
|
|
fw_bin_file = FW_FNAME_T6;
|
|
|
|
if (request_firmware(&fw, fw_bin_file, dev) < 0) {
|
|
csio_err(hw, "could not find firmware image %s, err: %d\n",
|
|
fw_bin_file, ret);
|
|
} else {
|
|
fw_data = fw->data;
|
|
fw_size = fw->size;
|
|
}
|
|
|
|
/* upgrade FW logic */
|
|
ret = csio_hw_prep_fw(hw, fw_info, fw_data, fw_size, card_fw,
|
|
hw->fw_state, reset);
|
|
|
|
/* Cleaning up */
|
|
if (fw != NULL)
|
|
release_firmware(fw);
|
|
kfree(card_fw);
|
|
return ret;
|
|
}
|
|
|
|
static int csio_hw_check_fwver(struct csio_hw *hw)
|
|
{
|
|
if (csio_is_t6(hw->pdev->device & CSIO_HW_CHIP_MASK) &&
|
|
(hw->fwrev < CSIO_MIN_T6_FW)) {
|
|
csio_hw_print_fw_version(hw, "T6 unsupported fw");
|
|
return -1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* csio_hw_configure - Configure HW
|
|
* @hw - HW module
|
|
*
|
|
*/
|
|
static void
|
|
csio_hw_configure(struct csio_hw *hw)
|
|
{
|
|
int reset = 1;
|
|
int rv;
|
|
u32 param[1];
|
|
|
|
rv = csio_hw_dev_ready(hw);
|
|
if (rv != 0) {
|
|
CSIO_INC_STATS(hw, n_err_fatal);
|
|
csio_post_event(&hw->sm, CSIO_HWE_FATAL);
|
|
goto out;
|
|
}
|
|
|
|
/* HW version */
|
|
hw->chip_ver = (char)csio_rd_reg32(hw, PL_REV_A);
|
|
|
|
/* Needed for FW download */
|
|
rv = csio_hw_get_flash_params(hw);
|
|
if (rv != 0) {
|
|
csio_err(hw, "Failed to get serial flash params rv:%d\n", rv);
|
|
csio_post_event(&hw->sm, CSIO_HWE_FATAL);
|
|
goto out;
|
|
}
|
|
|
|
/* Set PCIe completion timeout to 4 seconds */
|
|
if (pci_is_pcie(hw->pdev))
|
|
pcie_capability_clear_and_set_word(hw->pdev, PCI_EXP_DEVCTL2,
|
|
PCI_EXP_DEVCTL2_COMP_TIMEOUT, 0xd);
|
|
|
|
hw->chip_ops->chip_set_mem_win(hw, MEMWIN_CSIOSTOR);
|
|
|
|
rv = csio_hw_get_fw_version(hw, &hw->fwrev);
|
|
if (rv != 0)
|
|
goto out;
|
|
|
|
csio_hw_print_fw_version(hw, "Firmware revision");
|
|
|
|
rv = csio_do_hello(hw, &hw->fw_state);
|
|
if (rv != 0) {
|
|
CSIO_INC_STATS(hw, n_err_fatal);
|
|
csio_post_event(&hw->sm, CSIO_HWE_FATAL);
|
|
goto out;
|
|
}
|
|
|
|
/* Read vpd */
|
|
rv = csio_hw_get_vpd_params(hw, &hw->vpd);
|
|
if (rv != 0)
|
|
goto out;
|
|
|
|
csio_hw_get_fw_version(hw, &hw->fwrev);
|
|
csio_hw_get_tp_version(hw, &hw->tp_vers);
|
|
if (csio_is_hw_master(hw) && hw->fw_state != CSIO_DEV_STATE_INIT) {
|
|
|
|
/* Do firmware update */
|
|
spin_unlock_irq(&hw->lock);
|
|
rv = csio_hw_flash_fw(hw, &reset);
|
|
spin_lock_irq(&hw->lock);
|
|
|
|
if (rv != 0)
|
|
goto out;
|
|
|
|
rv = csio_hw_check_fwver(hw);
|
|
if (rv < 0)
|
|
goto out;
|
|
|
|
/* If the firmware doesn't support Configuration Files,
|
|
* return an error.
|
|
*/
|
|
rv = csio_hw_check_fwconfig(hw, param);
|
|
if (rv != 0) {
|
|
csio_info(hw, "Firmware doesn't support "
|
|
"Firmware Configuration files\n");
|
|
goto out;
|
|
}
|
|
|
|
/* The firmware provides us with a memory buffer where we can
|
|
* load a Configuration File from the host if we want to
|
|
* override the Configuration File in flash.
|
|
*/
|
|
rv = csio_hw_use_fwconfig(hw, reset, param);
|
|
if (rv == -ENOENT) {
|
|
csio_info(hw, "Could not initialize "
|
|
"adapter, error%d\n", rv);
|
|
goto out;
|
|
}
|
|
if (rv != 0) {
|
|
csio_info(hw, "Could not initialize "
|
|
"adapter, error%d\n", rv);
|
|
goto out;
|
|
}
|
|
|
|
} else {
|
|
rv = csio_hw_check_fwver(hw);
|
|
if (rv < 0)
|
|
goto out;
|
|
|
|
if (hw->fw_state == CSIO_DEV_STATE_INIT) {
|
|
|
|
hw->flags |= CSIO_HWF_USING_SOFT_PARAMS;
|
|
|
|
/* device parameters */
|
|
rv = csio_get_device_params(hw);
|
|
if (rv != 0)
|
|
goto out;
|
|
|
|
/* Get device capabilities */
|
|
rv = csio_config_device_caps(hw);
|
|
if (rv != 0)
|
|
goto out;
|
|
|
|
/* Configure SGE */
|
|
csio_wr_sge_init(hw);
|
|
|
|
/* Post event to notify completion of configuration */
|
|
csio_post_event(&hw->sm, CSIO_HWE_INIT);
|
|
goto out;
|
|
}
|
|
} /* if not master */
|
|
|
|
out:
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* csio_hw_initialize - Initialize HW
|
|
* @hw - HW module
|
|
*
|
|
*/
|
|
static void
|
|
csio_hw_initialize(struct csio_hw *hw)
|
|
{
|
|
struct csio_mb *mbp;
|
|
enum fw_retval retval;
|
|
int rv;
|
|
int i;
|
|
|
|
if (csio_is_hw_master(hw) && hw->fw_state != CSIO_DEV_STATE_INIT) {
|
|
mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC);
|
|
if (!mbp)
|
|
goto out;
|
|
|
|
csio_mb_initialize(hw, mbp, CSIO_MB_DEFAULT_TMO, NULL);
|
|
|
|
if (csio_mb_issue(hw, mbp)) {
|
|
csio_err(hw, "Issue of FW_INITIALIZE_CMD failed!\n");
|
|
goto free_and_out;
|
|
}
|
|
|
|
retval = csio_mb_fw_retval(mbp);
|
|
if (retval != FW_SUCCESS) {
|
|
csio_err(hw, "FW_INITIALIZE_CMD returned 0x%x!\n",
|
|
retval);
|
|
goto free_and_out;
|
|
}
|
|
|
|
mempool_free(mbp, hw->mb_mempool);
|
|
}
|
|
|
|
rv = csio_get_fcoe_resinfo(hw);
|
|
if (rv != 0) {
|
|
csio_err(hw, "Failed to read fcoe resource info: %d\n", rv);
|
|
goto out;
|
|
}
|
|
|
|
spin_unlock_irq(&hw->lock);
|
|
rv = csio_config_queues(hw);
|
|
spin_lock_irq(&hw->lock);
|
|
|
|
if (rv != 0) {
|
|
csio_err(hw, "Config of queues failed!: %d\n", rv);
|
|
goto out;
|
|
}
|
|
|
|
for (i = 0; i < hw->num_pports; i++)
|
|
hw->pport[i].mod_type = FW_PORT_MOD_TYPE_NA;
|
|
|
|
if (csio_is_hw_master(hw) && hw->fw_state != CSIO_DEV_STATE_INIT) {
|
|
rv = csio_enable_ports(hw);
|
|
if (rv != 0) {
|
|
csio_err(hw, "Failed to enable ports: %d\n", rv);
|
|
goto out;
|
|
}
|
|
}
|
|
|
|
csio_post_event(&hw->sm, CSIO_HWE_INIT_DONE);
|
|
return;
|
|
|
|
free_and_out:
|
|
mempool_free(mbp, hw->mb_mempool);
|
|
out:
|
|
return;
|
|
}
|
|
|
|
#define PF_INTR_MASK (PFSW_F | PFCIM_F)
|
|
|
|
/*
|
|
* csio_hw_intr_enable - Enable HW interrupts
|
|
* @hw: Pointer to HW module.
|
|
*
|
|
* Enable interrupts in HW registers.
|
|
*/
|
|
static void
|
|
csio_hw_intr_enable(struct csio_hw *hw)
|
|
{
|
|
uint16_t vec = (uint16_t)csio_get_mb_intr_idx(csio_hw_to_mbm(hw));
|
|
u32 pf = 0;
|
|
uint32_t pl = csio_rd_reg32(hw, PL_INT_ENABLE_A);
|
|
|
|
if (csio_is_t5(hw->pdev->device & CSIO_HW_CHIP_MASK))
|
|
pf = SOURCEPF_G(csio_rd_reg32(hw, PL_WHOAMI_A));
|
|
else
|
|
pf = T6_SOURCEPF_G(csio_rd_reg32(hw, PL_WHOAMI_A));
|
|
|
|
/*
|
|
* Set aivec for MSI/MSIX. PCIE_PF_CFG.INTXType is set up
|
|
* by FW, so do nothing for INTX.
|
|
*/
|
|
if (hw->intr_mode == CSIO_IM_MSIX)
|
|
csio_set_reg_field(hw, MYPF_REG(PCIE_PF_CFG_A),
|
|
AIVEC_V(AIVEC_M), vec);
|
|
else if (hw->intr_mode == CSIO_IM_MSI)
|
|
csio_set_reg_field(hw, MYPF_REG(PCIE_PF_CFG_A),
|
|
AIVEC_V(AIVEC_M), 0);
|
|
|
|
csio_wr_reg32(hw, PF_INTR_MASK, MYPF_REG(PL_PF_INT_ENABLE_A));
|
|
|
|
/* Turn on MB interrupts - this will internally flush PIO as well */
|
|
csio_mb_intr_enable(hw);
|
|
|
|
/* These are common registers - only a master can modify them */
|
|
if (csio_is_hw_master(hw)) {
|
|
/*
|
|
* Disable the Serial FLASH interrupt, if enabled!
|
|
*/
|
|
pl &= (~SF_F);
|
|
csio_wr_reg32(hw, pl, PL_INT_ENABLE_A);
|
|
|
|
csio_wr_reg32(hw, ERR_CPL_EXCEED_IQE_SIZE_F |
|
|
EGRESS_SIZE_ERR_F | ERR_INVALID_CIDX_INC_F |
|
|
ERR_CPL_OPCODE_0_F | ERR_DROPPED_DB_F |
|
|
ERR_DATA_CPL_ON_HIGH_QID1_F |
|
|
ERR_DATA_CPL_ON_HIGH_QID0_F | ERR_BAD_DB_PIDX3_F |
|
|
ERR_BAD_DB_PIDX2_F | ERR_BAD_DB_PIDX1_F |
|
|
ERR_BAD_DB_PIDX0_F | ERR_ING_CTXT_PRIO_F |
|
|
ERR_EGR_CTXT_PRIO_F | INGRESS_SIZE_ERR_F,
|
|
SGE_INT_ENABLE3_A);
|
|
csio_set_reg_field(hw, PL_INT_MAP0_A, 0, 1 << pf);
|
|
}
|
|
|
|
hw->flags |= CSIO_HWF_HW_INTR_ENABLED;
|
|
|
|
}
|
|
|
|
/*
|
|
* csio_hw_intr_disable - Disable HW interrupts
|
|
* @hw: Pointer to HW module.
|
|
*
|
|
* Turn off Mailbox and PCI_PF_CFG interrupts.
|
|
*/
|
|
void
|
|
csio_hw_intr_disable(struct csio_hw *hw)
|
|
{
|
|
u32 pf = 0;
|
|
|
|
if (csio_is_t5(hw->pdev->device & CSIO_HW_CHIP_MASK))
|
|
pf = SOURCEPF_G(csio_rd_reg32(hw, PL_WHOAMI_A));
|
|
else
|
|
pf = T6_SOURCEPF_G(csio_rd_reg32(hw, PL_WHOAMI_A));
|
|
|
|
if (!(hw->flags & CSIO_HWF_HW_INTR_ENABLED))
|
|
return;
|
|
|
|
hw->flags &= ~CSIO_HWF_HW_INTR_ENABLED;
|
|
|
|
csio_wr_reg32(hw, 0, MYPF_REG(PL_PF_INT_ENABLE_A));
|
|
if (csio_is_hw_master(hw))
|
|
csio_set_reg_field(hw, PL_INT_MAP0_A, 1 << pf, 0);
|
|
|
|
/* Turn off MB interrupts */
|
|
csio_mb_intr_disable(hw);
|
|
|
|
}
|
|
|
|
void
|
|
csio_hw_fatal_err(struct csio_hw *hw)
|
|
{
|
|
csio_set_reg_field(hw, SGE_CONTROL_A, GLOBALENABLE_F, 0);
|
|
csio_hw_intr_disable(hw);
|
|
|
|
/* Do not reset HW, we may need FW state for debugging */
|
|
csio_fatal(hw, "HW Fatal error encountered!\n");
|
|
}
|
|
|
|
/*****************************************************************************/
|
|
/* START: HW SM */
|
|
/*****************************************************************************/
|
|
/*
|
|
* csio_hws_uninit - Uninit state
|
|
* @hw - HW module
|
|
* @evt - Event
|
|
*
|
|
*/
|
|
static void
|
|
csio_hws_uninit(struct csio_hw *hw, enum csio_hw_ev evt)
|
|
{
|
|
hw->prev_evt = hw->cur_evt;
|
|
hw->cur_evt = evt;
|
|
CSIO_INC_STATS(hw, n_evt_sm[evt]);
|
|
|
|
switch (evt) {
|
|
case CSIO_HWE_CFG:
|
|
csio_set_state(&hw->sm, csio_hws_configuring);
|
|
csio_hw_configure(hw);
|
|
break;
|
|
|
|
default:
|
|
CSIO_INC_STATS(hw, n_evt_unexp);
|
|
break;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* csio_hws_configuring - Configuring state
|
|
* @hw - HW module
|
|
* @evt - Event
|
|
*
|
|
*/
|
|
static void
|
|
csio_hws_configuring(struct csio_hw *hw, enum csio_hw_ev evt)
|
|
{
|
|
hw->prev_evt = hw->cur_evt;
|
|
hw->cur_evt = evt;
|
|
CSIO_INC_STATS(hw, n_evt_sm[evt]);
|
|
|
|
switch (evt) {
|
|
case CSIO_HWE_INIT:
|
|
csio_set_state(&hw->sm, csio_hws_initializing);
|
|
csio_hw_initialize(hw);
|
|
break;
|
|
|
|
case CSIO_HWE_INIT_DONE:
|
|
csio_set_state(&hw->sm, csio_hws_ready);
|
|
/* Fan out event to all lnode SMs */
|
|
csio_notify_lnodes(hw, CSIO_LN_NOTIFY_HWREADY);
|
|
break;
|
|
|
|
case CSIO_HWE_FATAL:
|
|
csio_set_state(&hw->sm, csio_hws_uninit);
|
|
break;
|
|
|
|
case CSIO_HWE_PCI_REMOVE:
|
|
csio_do_bye(hw);
|
|
break;
|
|
default:
|
|
CSIO_INC_STATS(hw, n_evt_unexp);
|
|
break;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* csio_hws_initializing - Initializing state
|
|
* @hw - HW module
|
|
* @evt - Event
|
|
*
|
|
*/
|
|
static void
|
|
csio_hws_initializing(struct csio_hw *hw, enum csio_hw_ev evt)
|
|
{
|
|
hw->prev_evt = hw->cur_evt;
|
|
hw->cur_evt = evt;
|
|
CSIO_INC_STATS(hw, n_evt_sm[evt]);
|
|
|
|
switch (evt) {
|
|
case CSIO_HWE_INIT_DONE:
|
|
csio_set_state(&hw->sm, csio_hws_ready);
|
|
|
|
/* Fan out event to all lnode SMs */
|
|
csio_notify_lnodes(hw, CSIO_LN_NOTIFY_HWREADY);
|
|
|
|
/* Enable interrupts */
|
|
csio_hw_intr_enable(hw);
|
|
break;
|
|
|
|
case CSIO_HWE_FATAL:
|
|
csio_set_state(&hw->sm, csio_hws_uninit);
|
|
break;
|
|
|
|
case CSIO_HWE_PCI_REMOVE:
|
|
csio_do_bye(hw);
|
|
break;
|
|
|
|
default:
|
|
CSIO_INC_STATS(hw, n_evt_unexp);
|
|
break;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* csio_hws_ready - Ready state
|
|
* @hw - HW module
|
|
* @evt - Event
|
|
*
|
|
*/
|
|
static void
|
|
csio_hws_ready(struct csio_hw *hw, enum csio_hw_ev evt)
|
|
{
|
|
/* Remember the event */
|
|
hw->evtflag = evt;
|
|
|
|
hw->prev_evt = hw->cur_evt;
|
|
hw->cur_evt = evt;
|
|
CSIO_INC_STATS(hw, n_evt_sm[evt]);
|
|
|
|
switch (evt) {
|
|
case CSIO_HWE_HBA_RESET:
|
|
case CSIO_HWE_FW_DLOAD:
|
|
case CSIO_HWE_SUSPEND:
|
|
case CSIO_HWE_PCI_REMOVE:
|
|
case CSIO_HWE_PCIERR_DETECTED:
|
|
csio_set_state(&hw->sm, csio_hws_quiescing);
|
|
/* cleanup all outstanding cmds */
|
|
if (evt == CSIO_HWE_HBA_RESET ||
|
|
evt == CSIO_HWE_PCIERR_DETECTED)
|
|
csio_scsim_cleanup_io(csio_hw_to_scsim(hw), false);
|
|
else
|
|
csio_scsim_cleanup_io(csio_hw_to_scsim(hw), true);
|
|
|
|
csio_hw_intr_disable(hw);
|
|
csio_hw_mbm_cleanup(hw);
|
|
csio_evtq_stop(hw);
|
|
csio_notify_lnodes(hw, CSIO_LN_NOTIFY_HWSTOP);
|
|
csio_evtq_flush(hw);
|
|
csio_mgmtm_cleanup(csio_hw_to_mgmtm(hw));
|
|
csio_post_event(&hw->sm, CSIO_HWE_QUIESCED);
|
|
break;
|
|
|
|
case CSIO_HWE_FATAL:
|
|
csio_set_state(&hw->sm, csio_hws_uninit);
|
|
break;
|
|
|
|
default:
|
|
CSIO_INC_STATS(hw, n_evt_unexp);
|
|
break;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* csio_hws_quiescing - Quiescing state
|
|
* @hw - HW module
|
|
* @evt - Event
|
|
*
|
|
*/
|
|
static void
|
|
csio_hws_quiescing(struct csio_hw *hw, enum csio_hw_ev evt)
|
|
{
|
|
hw->prev_evt = hw->cur_evt;
|
|
hw->cur_evt = evt;
|
|
CSIO_INC_STATS(hw, n_evt_sm[evt]);
|
|
|
|
switch (evt) {
|
|
case CSIO_HWE_QUIESCED:
|
|
switch (hw->evtflag) {
|
|
case CSIO_HWE_FW_DLOAD:
|
|
csio_set_state(&hw->sm, csio_hws_resetting);
|
|
/* Download firmware */
|
|
fallthrough;
|
|
|
|
case CSIO_HWE_HBA_RESET:
|
|
csio_set_state(&hw->sm, csio_hws_resetting);
|
|
/* Start reset of the HBA */
|
|
csio_notify_lnodes(hw, CSIO_LN_NOTIFY_HWRESET);
|
|
csio_wr_destroy_queues(hw, false);
|
|
csio_do_reset(hw, false);
|
|
csio_post_event(&hw->sm, CSIO_HWE_HBA_RESET_DONE);
|
|
break;
|
|
|
|
case CSIO_HWE_PCI_REMOVE:
|
|
csio_set_state(&hw->sm, csio_hws_removing);
|
|
csio_notify_lnodes(hw, CSIO_LN_NOTIFY_HWREMOVE);
|
|
csio_wr_destroy_queues(hw, true);
|
|
/* Now send the bye command */
|
|
csio_do_bye(hw);
|
|
break;
|
|
|
|
case CSIO_HWE_SUSPEND:
|
|
csio_set_state(&hw->sm, csio_hws_quiesced);
|
|
break;
|
|
|
|
case CSIO_HWE_PCIERR_DETECTED:
|
|
csio_set_state(&hw->sm, csio_hws_pcierr);
|
|
csio_wr_destroy_queues(hw, false);
|
|
break;
|
|
|
|
default:
|
|
CSIO_INC_STATS(hw, n_evt_unexp);
|
|
break;
|
|
|
|
}
|
|
break;
|
|
|
|
default:
|
|
CSIO_INC_STATS(hw, n_evt_unexp);
|
|
break;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* csio_hws_quiesced - Quiesced state
|
|
* @hw - HW module
|
|
* @evt - Event
|
|
*
|
|
*/
|
|
static void
|
|
csio_hws_quiesced(struct csio_hw *hw, enum csio_hw_ev evt)
|
|
{
|
|
hw->prev_evt = hw->cur_evt;
|
|
hw->cur_evt = evt;
|
|
CSIO_INC_STATS(hw, n_evt_sm[evt]);
|
|
|
|
switch (evt) {
|
|
case CSIO_HWE_RESUME:
|
|
csio_set_state(&hw->sm, csio_hws_configuring);
|
|
csio_hw_configure(hw);
|
|
break;
|
|
|
|
default:
|
|
CSIO_INC_STATS(hw, n_evt_unexp);
|
|
break;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* csio_hws_resetting - HW Resetting state
|
|
* @hw - HW module
|
|
* @evt - Event
|
|
*
|
|
*/
|
|
static void
|
|
csio_hws_resetting(struct csio_hw *hw, enum csio_hw_ev evt)
|
|
{
|
|
hw->prev_evt = hw->cur_evt;
|
|
hw->cur_evt = evt;
|
|
CSIO_INC_STATS(hw, n_evt_sm[evt]);
|
|
|
|
switch (evt) {
|
|
case CSIO_HWE_HBA_RESET_DONE:
|
|
csio_evtq_start(hw);
|
|
csio_set_state(&hw->sm, csio_hws_configuring);
|
|
csio_hw_configure(hw);
|
|
break;
|
|
|
|
default:
|
|
CSIO_INC_STATS(hw, n_evt_unexp);
|
|
break;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* csio_hws_removing - PCI Hotplug removing state
|
|
* @hw - HW module
|
|
* @evt - Event
|
|
*
|
|
*/
|
|
static void
|
|
csio_hws_removing(struct csio_hw *hw, enum csio_hw_ev evt)
|
|
{
|
|
hw->prev_evt = hw->cur_evt;
|
|
hw->cur_evt = evt;
|
|
CSIO_INC_STATS(hw, n_evt_sm[evt]);
|
|
|
|
switch (evt) {
|
|
case CSIO_HWE_HBA_RESET:
|
|
if (!csio_is_hw_master(hw))
|
|
break;
|
|
/*
|
|
* The BYE should have already been issued, so we can't
|
|
* use the mailbox interface. Hence we use the PL_RST
|
|
* register directly.
|
|
*/
|
|
csio_err(hw, "Resetting HW and waiting 2 seconds...\n");
|
|
csio_wr_reg32(hw, PIORSTMODE_F | PIORST_F, PL_RST_A);
|
|
mdelay(2000);
|
|
break;
|
|
|
|
/* Should never receive any new events */
|
|
default:
|
|
CSIO_INC_STATS(hw, n_evt_unexp);
|
|
break;
|
|
|
|
}
|
|
}
|
|
|
|
/*
|
|
* csio_hws_pcierr - PCI Error state
|
|
* @hw - HW module
|
|
* @evt - Event
|
|
*
|
|
*/
|
|
static void
|
|
csio_hws_pcierr(struct csio_hw *hw, enum csio_hw_ev evt)
|
|
{
|
|
hw->prev_evt = hw->cur_evt;
|
|
hw->cur_evt = evt;
|
|
CSIO_INC_STATS(hw, n_evt_sm[evt]);
|
|
|
|
switch (evt) {
|
|
case CSIO_HWE_PCIERR_SLOT_RESET:
|
|
csio_evtq_start(hw);
|
|
csio_set_state(&hw->sm, csio_hws_configuring);
|
|
csio_hw_configure(hw);
|
|
break;
|
|
|
|
default:
|
|
CSIO_INC_STATS(hw, n_evt_unexp);
|
|
break;
|
|
}
|
|
}
|
|
|
|
/*****************************************************************************/
|
|
/* END: HW SM */
|
|
/*****************************************************************************/
|
|
|
|
/*
|
|
* csio_handle_intr_status - table driven interrupt handler
|
|
* @hw: HW instance
|
|
* @reg: the interrupt status register to process
|
|
* @acts: table of interrupt actions
|
|
*
|
|
* A table driven interrupt handler that applies a set of masks to an
|
|
* interrupt status word and performs the corresponding actions if the
|
|
* interrupts described by the mask have occurred. The actions include
|
|
* optionally emitting a warning or alert message. The table is terminated
|
|
* by an entry specifying mask 0. Returns the number of fatal interrupt
|
|
* conditions.
|
|
*/
|
|
int
|
|
csio_handle_intr_status(struct csio_hw *hw, unsigned int reg,
|
|
const struct intr_info *acts)
|
|
{
|
|
int fatal = 0;
|
|
unsigned int mask = 0;
|
|
unsigned int status = csio_rd_reg32(hw, reg);
|
|
|
|
for ( ; acts->mask; ++acts) {
|
|
if (!(status & acts->mask))
|
|
continue;
|
|
if (acts->fatal) {
|
|
fatal++;
|
|
csio_fatal(hw, "Fatal %s (0x%x)\n",
|
|
acts->msg, status & acts->mask);
|
|
} else if (acts->msg)
|
|
csio_info(hw, "%s (0x%x)\n",
|
|
acts->msg, status & acts->mask);
|
|
mask |= acts->mask;
|
|
}
|
|
status &= mask;
|
|
if (status) /* clear processed interrupts */
|
|
csio_wr_reg32(hw, status, reg);
|
|
return fatal;
|
|
}
|
|
|
|
/*
|
|
* TP interrupt handler.
|
|
*/
|
|
static void csio_tp_intr_handler(struct csio_hw *hw)
|
|
{
|
|
static struct intr_info tp_intr_info[] = {
|
|
{ 0x3fffffff, "TP parity error", -1, 1 },
|
|
{ FLMTXFLSTEMPTY_F, "TP out of Tx pages", -1, 1 },
|
|
{ 0, NULL, 0, 0 }
|
|
};
|
|
|
|
if (csio_handle_intr_status(hw, TP_INT_CAUSE_A, tp_intr_info))
|
|
csio_hw_fatal_err(hw);
|
|
}
|
|
|
|
/*
|
|
* SGE interrupt handler.
|
|
*/
|
|
static void csio_sge_intr_handler(struct csio_hw *hw)
|
|
{
|
|
uint64_t v;
|
|
|
|
static struct intr_info sge_intr_info[] = {
|
|
{ ERR_CPL_EXCEED_IQE_SIZE_F,
|
|
"SGE received CPL exceeding IQE size", -1, 1 },
|
|
{ ERR_INVALID_CIDX_INC_F,
|
|
"SGE GTS CIDX increment too large", -1, 0 },
|
|
{ ERR_CPL_OPCODE_0_F, "SGE received 0-length CPL", -1, 0 },
|
|
{ ERR_DROPPED_DB_F, "SGE doorbell dropped", -1, 0 },
|
|
{ ERR_DATA_CPL_ON_HIGH_QID1_F | ERR_DATA_CPL_ON_HIGH_QID0_F,
|
|
"SGE IQID > 1023 received CPL for FL", -1, 0 },
|
|
{ ERR_BAD_DB_PIDX3_F, "SGE DBP 3 pidx increment too large", -1,
|
|
0 },
|
|
{ ERR_BAD_DB_PIDX2_F, "SGE DBP 2 pidx increment too large", -1,
|
|
0 },
|
|
{ ERR_BAD_DB_PIDX1_F, "SGE DBP 1 pidx increment too large", -1,
|
|
0 },
|
|
{ ERR_BAD_DB_PIDX0_F, "SGE DBP 0 pidx increment too large", -1,
|
|
0 },
|
|
{ ERR_ING_CTXT_PRIO_F,
|
|
"SGE too many priority ingress contexts", -1, 0 },
|
|
{ ERR_EGR_CTXT_PRIO_F,
|
|
"SGE too many priority egress contexts", -1, 0 },
|
|
{ INGRESS_SIZE_ERR_F, "SGE illegal ingress QID", -1, 0 },
|
|
{ EGRESS_SIZE_ERR_F, "SGE illegal egress QID", -1, 0 },
|
|
{ 0, NULL, 0, 0 }
|
|
};
|
|
|
|
v = (uint64_t)csio_rd_reg32(hw, SGE_INT_CAUSE1_A) |
|
|
((uint64_t)csio_rd_reg32(hw, SGE_INT_CAUSE2_A) << 32);
|
|
if (v) {
|
|
csio_fatal(hw, "SGE parity error (%#llx)\n",
|
|
(unsigned long long)v);
|
|
csio_wr_reg32(hw, (uint32_t)(v & 0xFFFFFFFF),
|
|
SGE_INT_CAUSE1_A);
|
|
csio_wr_reg32(hw, (uint32_t)(v >> 32), SGE_INT_CAUSE2_A);
|
|
}
|
|
|
|
v |= csio_handle_intr_status(hw, SGE_INT_CAUSE3_A, sge_intr_info);
|
|
|
|
if (csio_handle_intr_status(hw, SGE_INT_CAUSE3_A, sge_intr_info) ||
|
|
v != 0)
|
|
csio_hw_fatal_err(hw);
|
|
}
|
|
|
|
#define CIM_OBQ_INTR (OBQULP0PARERR_F | OBQULP1PARERR_F | OBQULP2PARERR_F |\
|
|
OBQULP3PARERR_F | OBQSGEPARERR_F | OBQNCSIPARERR_F)
|
|
#define CIM_IBQ_INTR (IBQTP0PARERR_F | IBQTP1PARERR_F | IBQULPPARERR_F |\
|
|
IBQSGEHIPARERR_F | IBQSGELOPARERR_F | IBQNCSIPARERR_F)
|
|
|
|
/*
|
|
* CIM interrupt handler.
|
|
*/
|
|
static void csio_cim_intr_handler(struct csio_hw *hw)
|
|
{
|
|
static struct intr_info cim_intr_info[] = {
|
|
{ PREFDROPINT_F, "CIM control register prefetch drop", -1, 1 },
|
|
{ CIM_OBQ_INTR, "CIM OBQ parity error", -1, 1 },
|
|
{ CIM_IBQ_INTR, "CIM IBQ parity error", -1, 1 },
|
|
{ MBUPPARERR_F, "CIM mailbox uP parity error", -1, 1 },
|
|
{ MBHOSTPARERR_F, "CIM mailbox host parity error", -1, 1 },
|
|
{ TIEQINPARERRINT_F, "CIM TIEQ outgoing parity error", -1, 1 },
|
|
{ TIEQOUTPARERRINT_F, "CIM TIEQ incoming parity error", -1, 1 },
|
|
{ 0, NULL, 0, 0 }
|
|
};
|
|
static struct intr_info cim_upintr_info[] = {
|
|
{ RSVDSPACEINT_F, "CIM reserved space access", -1, 1 },
|
|
{ ILLTRANSINT_F, "CIM illegal transaction", -1, 1 },
|
|
{ ILLWRINT_F, "CIM illegal write", -1, 1 },
|
|
{ ILLRDINT_F, "CIM illegal read", -1, 1 },
|
|
{ ILLRDBEINT_F, "CIM illegal read BE", -1, 1 },
|
|
{ ILLWRBEINT_F, "CIM illegal write BE", -1, 1 },
|
|
{ SGLRDBOOTINT_F, "CIM single read from boot space", -1, 1 },
|
|
{ SGLWRBOOTINT_F, "CIM single write to boot space", -1, 1 },
|
|
{ BLKWRBOOTINT_F, "CIM block write to boot space", -1, 1 },
|
|
{ SGLRDFLASHINT_F, "CIM single read from flash space", -1, 1 },
|
|
{ SGLWRFLASHINT_F, "CIM single write to flash space", -1, 1 },
|
|
{ BLKWRFLASHINT_F, "CIM block write to flash space", -1, 1 },
|
|
{ SGLRDEEPROMINT_F, "CIM single EEPROM read", -1, 1 },
|
|
{ SGLWREEPROMINT_F, "CIM single EEPROM write", -1, 1 },
|
|
{ BLKRDEEPROMINT_F, "CIM block EEPROM read", -1, 1 },
|
|
{ BLKWREEPROMINT_F, "CIM block EEPROM write", -1, 1 },
|
|
{ SGLRDCTLINT_F, "CIM single read from CTL space", -1, 1 },
|
|
{ SGLWRCTLINT_F, "CIM single write to CTL space", -1, 1 },
|
|
{ BLKRDCTLINT_F, "CIM block read from CTL space", -1, 1 },
|
|
{ BLKWRCTLINT_F, "CIM block write to CTL space", -1, 1 },
|
|
{ SGLRDPLINT_F, "CIM single read from PL space", -1, 1 },
|
|
{ SGLWRPLINT_F, "CIM single write to PL space", -1, 1 },
|
|
{ BLKRDPLINT_F, "CIM block read from PL space", -1, 1 },
|
|
{ BLKWRPLINT_F, "CIM block write to PL space", -1, 1 },
|
|
{ REQOVRLOOKUPINT_F, "CIM request FIFO overwrite", -1, 1 },
|
|
{ RSPOVRLOOKUPINT_F, "CIM response FIFO overwrite", -1, 1 },
|
|
{ TIMEOUTINT_F, "CIM PIF timeout", -1, 1 },
|
|
{ TIMEOUTMAINT_F, "CIM PIF MA timeout", -1, 1 },
|
|
{ 0, NULL, 0, 0 }
|
|
};
|
|
|
|
int fat;
|
|
|
|
fat = csio_handle_intr_status(hw, CIM_HOST_INT_CAUSE_A,
|
|
cim_intr_info) +
|
|
csio_handle_intr_status(hw, CIM_HOST_UPACC_INT_CAUSE_A,
|
|
cim_upintr_info);
|
|
if (fat)
|
|
csio_hw_fatal_err(hw);
|
|
}
|
|
|
|
/*
|
|
* ULP RX interrupt handler.
|
|
*/
|
|
static void csio_ulprx_intr_handler(struct csio_hw *hw)
|
|
{
|
|
static struct intr_info ulprx_intr_info[] = {
|
|
{ 0x1800000, "ULPRX context error", -1, 1 },
|
|
{ 0x7fffff, "ULPRX parity error", -1, 1 },
|
|
{ 0, NULL, 0, 0 }
|
|
};
|
|
|
|
if (csio_handle_intr_status(hw, ULP_RX_INT_CAUSE_A, ulprx_intr_info))
|
|
csio_hw_fatal_err(hw);
|
|
}
|
|
|
|
/*
|
|
* ULP TX interrupt handler.
|
|
*/
|
|
static void csio_ulptx_intr_handler(struct csio_hw *hw)
|
|
{
|
|
static struct intr_info ulptx_intr_info[] = {
|
|
{ PBL_BOUND_ERR_CH3_F, "ULPTX channel 3 PBL out of bounds", -1,
|
|
0 },
|
|
{ PBL_BOUND_ERR_CH2_F, "ULPTX channel 2 PBL out of bounds", -1,
|
|
0 },
|
|
{ PBL_BOUND_ERR_CH1_F, "ULPTX channel 1 PBL out of bounds", -1,
|
|
0 },
|
|
{ PBL_BOUND_ERR_CH0_F, "ULPTX channel 0 PBL out of bounds", -1,
|
|
0 },
|
|
{ 0xfffffff, "ULPTX parity error", -1, 1 },
|
|
{ 0, NULL, 0, 0 }
|
|
};
|
|
|
|
if (csio_handle_intr_status(hw, ULP_TX_INT_CAUSE_A, ulptx_intr_info))
|
|
csio_hw_fatal_err(hw);
|
|
}
|
|
|
|
/*
|
|
* PM TX interrupt handler.
|
|
*/
|
|
static void csio_pmtx_intr_handler(struct csio_hw *hw)
|
|
{
|
|
static struct intr_info pmtx_intr_info[] = {
|
|
{ PCMD_LEN_OVFL0_F, "PMTX channel 0 pcmd too large", -1, 1 },
|
|
{ PCMD_LEN_OVFL1_F, "PMTX channel 1 pcmd too large", -1, 1 },
|
|
{ PCMD_LEN_OVFL2_F, "PMTX channel 2 pcmd too large", -1, 1 },
|
|
{ ZERO_C_CMD_ERROR_F, "PMTX 0-length pcmd", -1, 1 },
|
|
{ 0xffffff0, "PMTX framing error", -1, 1 },
|
|
{ OESPI_PAR_ERROR_F, "PMTX oespi parity error", -1, 1 },
|
|
{ DB_OPTIONS_PAR_ERROR_F, "PMTX db_options parity error", -1,
|
|
1 },
|
|
{ ICSPI_PAR_ERROR_F, "PMTX icspi parity error", -1, 1 },
|
|
{ PMTX_C_PCMD_PAR_ERROR_F, "PMTX c_pcmd parity error", -1, 1},
|
|
{ 0, NULL, 0, 0 }
|
|
};
|
|
|
|
if (csio_handle_intr_status(hw, PM_TX_INT_CAUSE_A, pmtx_intr_info))
|
|
csio_hw_fatal_err(hw);
|
|
}
|
|
|
|
/*
|
|
* PM RX interrupt handler.
|
|
*/
|
|
static void csio_pmrx_intr_handler(struct csio_hw *hw)
|
|
{
|
|
static struct intr_info pmrx_intr_info[] = {
|
|
{ ZERO_E_CMD_ERROR_F, "PMRX 0-length pcmd", -1, 1 },
|
|
{ 0x3ffff0, "PMRX framing error", -1, 1 },
|
|
{ OCSPI_PAR_ERROR_F, "PMRX ocspi parity error", -1, 1 },
|
|
{ DB_OPTIONS_PAR_ERROR_F, "PMRX db_options parity error", -1,
|
|
1 },
|
|
{ IESPI_PAR_ERROR_F, "PMRX iespi parity error", -1, 1 },
|
|
{ PMRX_E_PCMD_PAR_ERROR_F, "PMRX e_pcmd parity error", -1, 1},
|
|
{ 0, NULL, 0, 0 }
|
|
};
|
|
|
|
if (csio_handle_intr_status(hw, PM_RX_INT_CAUSE_A, pmrx_intr_info))
|
|
csio_hw_fatal_err(hw);
|
|
}
|
|
|
|
/*
|
|
* CPL switch interrupt handler.
|
|
*/
|
|
static void csio_cplsw_intr_handler(struct csio_hw *hw)
|
|
{
|
|
static struct intr_info cplsw_intr_info[] = {
|
|
{ CIM_OP_MAP_PERR_F, "CPLSW CIM op_map parity error", -1, 1 },
|
|
{ CIM_OVFL_ERROR_F, "CPLSW CIM overflow", -1, 1 },
|
|
{ TP_FRAMING_ERROR_F, "CPLSW TP framing error", -1, 1 },
|
|
{ SGE_FRAMING_ERROR_F, "CPLSW SGE framing error", -1, 1 },
|
|
{ CIM_FRAMING_ERROR_F, "CPLSW CIM framing error", -1, 1 },
|
|
{ ZERO_SWITCH_ERROR_F, "CPLSW no-switch error", -1, 1 },
|
|
{ 0, NULL, 0, 0 }
|
|
};
|
|
|
|
if (csio_handle_intr_status(hw, CPL_INTR_CAUSE_A, cplsw_intr_info))
|
|
csio_hw_fatal_err(hw);
|
|
}
|
|
|
|
/*
|
|
* LE interrupt handler.
|
|
*/
|
|
static void csio_le_intr_handler(struct csio_hw *hw)
|
|
{
|
|
enum chip_type chip = CHELSIO_CHIP_VERSION(hw->chip_id);
|
|
|
|
static struct intr_info le_intr_info[] = {
|
|
{ LIPMISS_F, "LE LIP miss", -1, 0 },
|
|
{ LIP0_F, "LE 0 LIP error", -1, 0 },
|
|
{ PARITYERR_F, "LE parity error", -1, 1 },
|
|
{ UNKNOWNCMD_F, "LE unknown command", -1, 1 },
|
|
{ REQQPARERR_F, "LE request queue parity error", -1, 1 },
|
|
{ 0, NULL, 0, 0 }
|
|
};
|
|
|
|
static struct intr_info t6_le_intr_info[] = {
|
|
{ T6_LIPMISS_F, "LE LIP miss", -1, 0 },
|
|
{ T6_LIP0_F, "LE 0 LIP error", -1, 0 },
|
|
{ TCAMINTPERR_F, "LE parity error", -1, 1 },
|
|
{ T6_UNKNOWNCMD_F, "LE unknown command", -1, 1 },
|
|
{ SSRAMINTPERR_F, "LE request queue parity error", -1, 1 },
|
|
{ 0, NULL, 0, 0 }
|
|
};
|
|
|
|
if (csio_handle_intr_status(hw, LE_DB_INT_CAUSE_A,
|
|
(chip == CHELSIO_T5) ?
|
|
le_intr_info : t6_le_intr_info))
|
|
csio_hw_fatal_err(hw);
|
|
}
|
|
|
|
/*
|
|
* MPS interrupt handler.
|
|
*/
|
|
static void csio_mps_intr_handler(struct csio_hw *hw)
|
|
{
|
|
static struct intr_info mps_rx_intr_info[] = {
|
|
{ 0xffffff, "MPS Rx parity error", -1, 1 },
|
|
{ 0, NULL, 0, 0 }
|
|
};
|
|
static struct intr_info mps_tx_intr_info[] = {
|
|
{ TPFIFO_V(TPFIFO_M), "MPS Tx TP FIFO parity error", -1, 1 },
|
|
{ NCSIFIFO_F, "MPS Tx NC-SI FIFO parity error", -1, 1 },
|
|
{ TXDATAFIFO_V(TXDATAFIFO_M), "MPS Tx data FIFO parity error",
|
|
-1, 1 },
|
|
{ TXDESCFIFO_V(TXDESCFIFO_M), "MPS Tx desc FIFO parity error",
|
|
-1, 1 },
|
|
{ BUBBLE_F, "MPS Tx underflow", -1, 1 },
|
|
{ SECNTERR_F, "MPS Tx SOP/EOP error", -1, 1 },
|
|
{ FRMERR_F, "MPS Tx framing error", -1, 1 },
|
|
{ 0, NULL, 0, 0 }
|
|
};
|
|
static struct intr_info mps_trc_intr_info[] = {
|
|
{ FILTMEM_V(FILTMEM_M), "MPS TRC filter parity error", -1, 1 },
|
|
{ PKTFIFO_V(PKTFIFO_M), "MPS TRC packet FIFO parity error",
|
|
-1, 1 },
|
|
{ MISCPERR_F, "MPS TRC misc parity error", -1, 1 },
|
|
{ 0, NULL, 0, 0 }
|
|
};
|
|
static struct intr_info mps_stat_sram_intr_info[] = {
|
|
{ 0x1fffff, "MPS statistics SRAM parity error", -1, 1 },
|
|
{ 0, NULL, 0, 0 }
|
|
};
|
|
static struct intr_info mps_stat_tx_intr_info[] = {
|
|
{ 0xfffff, "MPS statistics Tx FIFO parity error", -1, 1 },
|
|
{ 0, NULL, 0, 0 }
|
|
};
|
|
static struct intr_info mps_stat_rx_intr_info[] = {
|
|
{ 0xffffff, "MPS statistics Rx FIFO parity error", -1, 1 },
|
|
{ 0, NULL, 0, 0 }
|
|
};
|
|
static struct intr_info mps_cls_intr_info[] = {
|
|
{ MATCHSRAM_F, "MPS match SRAM parity error", -1, 1 },
|
|
{ MATCHTCAM_F, "MPS match TCAM parity error", -1, 1 },
|
|
{ HASHSRAM_F, "MPS hash SRAM parity error", -1, 1 },
|
|
{ 0, NULL, 0, 0 }
|
|
};
|
|
|
|
int fat;
|
|
|
|
fat = csio_handle_intr_status(hw, MPS_RX_PERR_INT_CAUSE_A,
|
|
mps_rx_intr_info) +
|
|
csio_handle_intr_status(hw, MPS_TX_INT_CAUSE_A,
|
|
mps_tx_intr_info) +
|
|
csio_handle_intr_status(hw, MPS_TRC_INT_CAUSE_A,
|
|
mps_trc_intr_info) +
|
|
csio_handle_intr_status(hw, MPS_STAT_PERR_INT_CAUSE_SRAM_A,
|
|
mps_stat_sram_intr_info) +
|
|
csio_handle_intr_status(hw, MPS_STAT_PERR_INT_CAUSE_TX_FIFO_A,
|
|
mps_stat_tx_intr_info) +
|
|
csio_handle_intr_status(hw, MPS_STAT_PERR_INT_CAUSE_RX_FIFO_A,
|
|
mps_stat_rx_intr_info) +
|
|
csio_handle_intr_status(hw, MPS_CLS_INT_CAUSE_A,
|
|
mps_cls_intr_info);
|
|
|
|
csio_wr_reg32(hw, 0, MPS_INT_CAUSE_A);
|
|
csio_rd_reg32(hw, MPS_INT_CAUSE_A); /* flush */
|
|
if (fat)
|
|
csio_hw_fatal_err(hw);
|
|
}
|
|
|
|
#define MEM_INT_MASK (PERR_INT_CAUSE_F | ECC_CE_INT_CAUSE_F | \
|
|
ECC_UE_INT_CAUSE_F)
|
|
|
|
/*
|
|
* EDC/MC interrupt handler.
|
|
*/
|
|
static void csio_mem_intr_handler(struct csio_hw *hw, int idx)
|
|
{
|
|
static const char name[3][5] = { "EDC0", "EDC1", "MC" };
|
|
|
|
unsigned int addr, cnt_addr, v;
|
|
|
|
if (idx <= MEM_EDC1) {
|
|
addr = EDC_REG(EDC_INT_CAUSE_A, idx);
|
|
cnt_addr = EDC_REG(EDC_ECC_STATUS_A, idx);
|
|
} else {
|
|
addr = MC_INT_CAUSE_A;
|
|
cnt_addr = MC_ECC_STATUS_A;
|
|
}
|
|
|
|
v = csio_rd_reg32(hw, addr) & MEM_INT_MASK;
|
|
if (v & PERR_INT_CAUSE_F)
|
|
csio_fatal(hw, "%s FIFO parity error\n", name[idx]);
|
|
if (v & ECC_CE_INT_CAUSE_F) {
|
|
uint32_t cnt = ECC_CECNT_G(csio_rd_reg32(hw, cnt_addr));
|
|
|
|
csio_wr_reg32(hw, ECC_CECNT_V(ECC_CECNT_M), cnt_addr);
|
|
csio_warn(hw, "%u %s correctable ECC data error%s\n",
|
|
cnt, name[idx], cnt > 1 ? "s" : "");
|
|
}
|
|
if (v & ECC_UE_INT_CAUSE_F)
|
|
csio_fatal(hw, "%s uncorrectable ECC data error\n", name[idx]);
|
|
|
|
csio_wr_reg32(hw, v, addr);
|
|
if (v & (PERR_INT_CAUSE_F | ECC_UE_INT_CAUSE_F))
|
|
csio_hw_fatal_err(hw);
|
|
}
|
|
|
|
/*
|
|
* MA interrupt handler.
|
|
*/
|
|
static void csio_ma_intr_handler(struct csio_hw *hw)
|
|
{
|
|
uint32_t v, status = csio_rd_reg32(hw, MA_INT_CAUSE_A);
|
|
|
|
if (status & MEM_PERR_INT_CAUSE_F)
|
|
csio_fatal(hw, "MA parity error, parity status %#x\n",
|
|
csio_rd_reg32(hw, MA_PARITY_ERROR_STATUS_A));
|
|
if (status & MEM_WRAP_INT_CAUSE_F) {
|
|
v = csio_rd_reg32(hw, MA_INT_WRAP_STATUS_A);
|
|
csio_fatal(hw,
|
|
"MA address wrap-around error by client %u to address %#x\n",
|
|
MEM_WRAP_CLIENT_NUM_G(v), MEM_WRAP_ADDRESS_G(v) << 4);
|
|
}
|
|
csio_wr_reg32(hw, status, MA_INT_CAUSE_A);
|
|
csio_hw_fatal_err(hw);
|
|
}
|
|
|
|
/*
|
|
* SMB interrupt handler.
|
|
*/
|
|
static void csio_smb_intr_handler(struct csio_hw *hw)
|
|
{
|
|
static struct intr_info smb_intr_info[] = {
|
|
{ MSTTXFIFOPARINT_F, "SMB master Tx FIFO parity error", -1, 1 },
|
|
{ MSTRXFIFOPARINT_F, "SMB master Rx FIFO parity error", -1, 1 },
|
|
{ SLVFIFOPARINT_F, "SMB slave FIFO parity error", -1, 1 },
|
|
{ 0, NULL, 0, 0 }
|
|
};
|
|
|
|
if (csio_handle_intr_status(hw, SMB_INT_CAUSE_A, smb_intr_info))
|
|
csio_hw_fatal_err(hw);
|
|
}
|
|
|
|
/*
|
|
* NC-SI interrupt handler.
|
|
*/
|
|
static void csio_ncsi_intr_handler(struct csio_hw *hw)
|
|
{
|
|
static struct intr_info ncsi_intr_info[] = {
|
|
{ CIM_DM_PRTY_ERR_F, "NC-SI CIM parity error", -1, 1 },
|
|
{ MPS_DM_PRTY_ERR_F, "NC-SI MPS parity error", -1, 1 },
|
|
{ TXFIFO_PRTY_ERR_F, "NC-SI Tx FIFO parity error", -1, 1 },
|
|
{ RXFIFO_PRTY_ERR_F, "NC-SI Rx FIFO parity error", -1, 1 },
|
|
{ 0, NULL, 0, 0 }
|
|
};
|
|
|
|
if (csio_handle_intr_status(hw, NCSI_INT_CAUSE_A, ncsi_intr_info))
|
|
csio_hw_fatal_err(hw);
|
|
}
|
|
|
|
/*
|
|
* XGMAC interrupt handler.
|
|
*/
|
|
static void csio_xgmac_intr_handler(struct csio_hw *hw, int port)
|
|
{
|
|
uint32_t v = csio_rd_reg32(hw, T5_PORT_REG(port, MAC_PORT_INT_CAUSE_A));
|
|
|
|
v &= TXFIFO_PRTY_ERR_F | RXFIFO_PRTY_ERR_F;
|
|
if (!v)
|
|
return;
|
|
|
|
if (v & TXFIFO_PRTY_ERR_F)
|
|
csio_fatal(hw, "XGMAC %d Tx FIFO parity error\n", port);
|
|
if (v & RXFIFO_PRTY_ERR_F)
|
|
csio_fatal(hw, "XGMAC %d Rx FIFO parity error\n", port);
|
|
csio_wr_reg32(hw, v, T5_PORT_REG(port, MAC_PORT_INT_CAUSE_A));
|
|
csio_hw_fatal_err(hw);
|
|
}
|
|
|
|
/*
|
|
* PL interrupt handler.
|
|
*/
|
|
static void csio_pl_intr_handler(struct csio_hw *hw)
|
|
{
|
|
static struct intr_info pl_intr_info[] = {
|
|
{ FATALPERR_F, "T4 fatal parity error", -1, 1 },
|
|
{ PERRVFID_F, "PL VFID_MAP parity error", -1, 1 },
|
|
{ 0, NULL, 0, 0 }
|
|
};
|
|
|
|
if (csio_handle_intr_status(hw, PL_PL_INT_CAUSE_A, pl_intr_info))
|
|
csio_hw_fatal_err(hw);
|
|
}
|
|
|
|
/*
|
|
* csio_hw_slow_intr_handler - control path interrupt handler
|
|
* @hw: HW module
|
|
*
|
|
* Interrupt handler for non-data global interrupt events, e.g., errors.
|
|
* The designation 'slow' is because it involves register reads, while
|
|
* data interrupts typically don't involve any MMIOs.
|
|
*/
|
|
int
|
|
csio_hw_slow_intr_handler(struct csio_hw *hw)
|
|
{
|
|
uint32_t cause = csio_rd_reg32(hw, PL_INT_CAUSE_A);
|
|
|
|
if (!(cause & CSIO_GLBL_INTR_MASK)) {
|
|
CSIO_INC_STATS(hw, n_plint_unexp);
|
|
return 0;
|
|
}
|
|
|
|
csio_dbg(hw, "Slow interrupt! cause: 0x%x\n", cause);
|
|
|
|
CSIO_INC_STATS(hw, n_plint_cnt);
|
|
|
|
if (cause & CIM_F)
|
|
csio_cim_intr_handler(hw);
|
|
|
|
if (cause & MPS_F)
|
|
csio_mps_intr_handler(hw);
|
|
|
|
if (cause & NCSI_F)
|
|
csio_ncsi_intr_handler(hw);
|
|
|
|
if (cause & PL_F)
|
|
csio_pl_intr_handler(hw);
|
|
|
|
if (cause & SMB_F)
|
|
csio_smb_intr_handler(hw);
|
|
|
|
if (cause & XGMAC0_F)
|
|
csio_xgmac_intr_handler(hw, 0);
|
|
|
|
if (cause & XGMAC1_F)
|
|
csio_xgmac_intr_handler(hw, 1);
|
|
|
|
if (cause & XGMAC_KR0_F)
|
|
csio_xgmac_intr_handler(hw, 2);
|
|
|
|
if (cause & XGMAC_KR1_F)
|
|
csio_xgmac_intr_handler(hw, 3);
|
|
|
|
if (cause & PCIE_F)
|
|
hw->chip_ops->chip_pcie_intr_handler(hw);
|
|
|
|
if (cause & MC_F)
|
|
csio_mem_intr_handler(hw, MEM_MC);
|
|
|
|
if (cause & EDC0_F)
|
|
csio_mem_intr_handler(hw, MEM_EDC0);
|
|
|
|
if (cause & EDC1_F)
|
|
csio_mem_intr_handler(hw, MEM_EDC1);
|
|
|
|
if (cause & LE_F)
|
|
csio_le_intr_handler(hw);
|
|
|
|
if (cause & TP_F)
|
|
csio_tp_intr_handler(hw);
|
|
|
|
if (cause & MA_F)
|
|
csio_ma_intr_handler(hw);
|
|
|
|
if (cause & PM_TX_F)
|
|
csio_pmtx_intr_handler(hw);
|
|
|
|
if (cause & PM_RX_F)
|
|
csio_pmrx_intr_handler(hw);
|
|
|
|
if (cause & ULP_RX_F)
|
|
csio_ulprx_intr_handler(hw);
|
|
|
|
if (cause & CPL_SWITCH_F)
|
|
csio_cplsw_intr_handler(hw);
|
|
|
|
if (cause & SGE_F)
|
|
csio_sge_intr_handler(hw);
|
|
|
|
if (cause & ULP_TX_F)
|
|
csio_ulptx_intr_handler(hw);
|
|
|
|
/* Clear the interrupts just processed for which we are the master. */
|
|
csio_wr_reg32(hw, cause & CSIO_GLBL_INTR_MASK, PL_INT_CAUSE_A);
|
|
csio_rd_reg32(hw, PL_INT_CAUSE_A); /* flush */
|
|
|
|
return 1;
|
|
}
|
|
|
|
/*****************************************************************************
|
|
* HW <--> mailbox interfacing routines.
|
|
****************************************************************************/
|
|
/*
|
|
* csio_mberr_worker - Worker thread (dpc) for mailbox/error completions
|
|
*
|
|
* @data: Private data pointer.
|
|
*
|
|
* Called from worker thread context.
|
|
*/
|
|
static void
|
|
csio_mberr_worker(void *data)
|
|
{
|
|
struct csio_hw *hw = (struct csio_hw *)data;
|
|
struct csio_mbm *mbm = &hw->mbm;
|
|
LIST_HEAD(cbfn_q);
|
|
struct csio_mb *mbp_next;
|
|
int rv;
|
|
|
|
del_timer_sync(&mbm->timer);
|
|
|
|
spin_lock_irq(&hw->lock);
|
|
if (list_empty(&mbm->cbfn_q)) {
|
|
spin_unlock_irq(&hw->lock);
|
|
return;
|
|
}
|
|
|
|
list_splice_tail_init(&mbm->cbfn_q, &cbfn_q);
|
|
mbm->stats.n_cbfnq = 0;
|
|
|
|
/* Try to start waiting mailboxes */
|
|
if (!list_empty(&mbm->req_q)) {
|
|
mbp_next = list_first_entry(&mbm->req_q, struct csio_mb, list);
|
|
list_del_init(&mbp_next->list);
|
|
|
|
rv = csio_mb_issue(hw, mbp_next);
|
|
if (rv != 0)
|
|
list_add_tail(&mbp_next->list, &mbm->req_q);
|
|
else
|
|
CSIO_DEC_STATS(mbm, n_activeq);
|
|
}
|
|
spin_unlock_irq(&hw->lock);
|
|
|
|
/* Now callback completions */
|
|
csio_mb_completions(hw, &cbfn_q);
|
|
}
|
|
|
|
/*
|
|
* csio_hw_mb_timer - Top-level Mailbox timeout handler.
|
|
*
|
|
* @data: private data pointer
|
|
*
|
|
**/
|
|
static void
|
|
csio_hw_mb_timer(struct timer_list *t)
|
|
{
|
|
struct csio_mbm *mbm = from_timer(mbm, t, timer);
|
|
struct csio_hw *hw = mbm->hw;
|
|
struct csio_mb *mbp = NULL;
|
|
|
|
spin_lock_irq(&hw->lock);
|
|
mbp = csio_mb_tmo_handler(hw);
|
|
spin_unlock_irq(&hw->lock);
|
|
|
|
/* Call back the function for the timed-out Mailbox */
|
|
if (mbp)
|
|
mbp->mb_cbfn(hw, mbp);
|
|
|
|
}
|
|
|
|
/*
|
|
* csio_hw_mbm_cleanup - Cleanup Mailbox module.
|
|
* @hw: HW module
|
|
*
|
|
* Called with lock held, should exit with lock held.
|
|
* Cancels outstanding mailboxes (waiting, in-flight) and gathers them
|
|
* into a local queue. Drops lock and calls the completions. Holds
|
|
* lock and returns.
|
|
*/
|
|
static void
|
|
csio_hw_mbm_cleanup(struct csio_hw *hw)
|
|
{
|
|
LIST_HEAD(cbfn_q);
|
|
|
|
csio_mb_cancel_all(hw, &cbfn_q);
|
|
|
|
spin_unlock_irq(&hw->lock);
|
|
csio_mb_completions(hw, &cbfn_q);
|
|
spin_lock_irq(&hw->lock);
|
|
}
|
|
|
|
/*****************************************************************************
|
|
* Event handling
|
|
****************************************************************************/
|
|
int
|
|
csio_enqueue_evt(struct csio_hw *hw, enum csio_evt type, void *evt_msg,
|
|
uint16_t len)
|
|
{
|
|
struct csio_evt_msg *evt_entry = NULL;
|
|
|
|
if (type >= CSIO_EVT_MAX)
|
|
return -EINVAL;
|
|
|
|
if (len > CSIO_EVT_MSG_SIZE)
|
|
return -EINVAL;
|
|
|
|
if (hw->flags & CSIO_HWF_FWEVT_STOP)
|
|
return -EINVAL;
|
|
|
|
if (list_empty(&hw->evt_free_q)) {
|
|
csio_err(hw, "Failed to alloc evt entry, msg type %d len %d\n",
|
|
type, len);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
evt_entry = list_first_entry(&hw->evt_free_q,
|
|
struct csio_evt_msg, list);
|
|
list_del_init(&evt_entry->list);
|
|
|
|
/* copy event msg and queue the event */
|
|
evt_entry->type = type;
|
|
memcpy((void *)evt_entry->data, evt_msg, len);
|
|
list_add_tail(&evt_entry->list, &hw->evt_active_q);
|
|
|
|
CSIO_DEC_STATS(hw, n_evt_freeq);
|
|
CSIO_INC_STATS(hw, n_evt_activeq);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
csio_enqueue_evt_lock(struct csio_hw *hw, enum csio_evt type, void *evt_msg,
|
|
uint16_t len, bool msg_sg)
|
|
{
|
|
struct csio_evt_msg *evt_entry = NULL;
|
|
struct csio_fl_dma_buf *fl_sg;
|
|
uint32_t off = 0;
|
|
unsigned long flags;
|
|
int n, ret = 0;
|
|
|
|
if (type >= CSIO_EVT_MAX)
|
|
return -EINVAL;
|
|
|
|
if (len > CSIO_EVT_MSG_SIZE)
|
|
return -EINVAL;
|
|
|
|
spin_lock_irqsave(&hw->lock, flags);
|
|
if (hw->flags & CSIO_HWF_FWEVT_STOP) {
|
|
ret = -EINVAL;
|
|
goto out;
|
|
}
|
|
|
|
if (list_empty(&hw->evt_free_q)) {
|
|
csio_err(hw, "Failed to alloc evt entry, msg type %d len %d\n",
|
|
type, len);
|
|
ret = -ENOMEM;
|
|
goto out;
|
|
}
|
|
|
|
evt_entry = list_first_entry(&hw->evt_free_q,
|
|
struct csio_evt_msg, list);
|
|
list_del_init(&evt_entry->list);
|
|
|
|
/* copy event msg and queue the event */
|
|
evt_entry->type = type;
|
|
|
|
/* If Payload in SG list*/
|
|
if (msg_sg) {
|
|
fl_sg = (struct csio_fl_dma_buf *) evt_msg;
|
|
for (n = 0; (n < CSIO_MAX_FLBUF_PER_IQWR && off < len); n++) {
|
|
memcpy((void *)((uintptr_t)evt_entry->data + off),
|
|
fl_sg->flbufs[n].vaddr,
|
|
fl_sg->flbufs[n].len);
|
|
off += fl_sg->flbufs[n].len;
|
|
}
|
|
} else
|
|
memcpy((void *)evt_entry->data, evt_msg, len);
|
|
|
|
list_add_tail(&evt_entry->list, &hw->evt_active_q);
|
|
CSIO_DEC_STATS(hw, n_evt_freeq);
|
|
CSIO_INC_STATS(hw, n_evt_activeq);
|
|
out:
|
|
spin_unlock_irqrestore(&hw->lock, flags);
|
|
return ret;
|
|
}
|
|
|
|
static void
|
|
csio_free_evt(struct csio_hw *hw, struct csio_evt_msg *evt_entry)
|
|
{
|
|
if (evt_entry) {
|
|
spin_lock_irq(&hw->lock);
|
|
list_del_init(&evt_entry->list);
|
|
list_add_tail(&evt_entry->list, &hw->evt_free_q);
|
|
CSIO_DEC_STATS(hw, n_evt_activeq);
|
|
CSIO_INC_STATS(hw, n_evt_freeq);
|
|
spin_unlock_irq(&hw->lock);
|
|
}
|
|
}
|
|
|
|
void
|
|
csio_evtq_flush(struct csio_hw *hw)
|
|
{
|
|
uint32_t count;
|
|
count = 30;
|
|
while (hw->flags & CSIO_HWF_FWEVT_PENDING && count--) {
|
|
spin_unlock_irq(&hw->lock);
|
|
msleep(2000);
|
|
spin_lock_irq(&hw->lock);
|
|
}
|
|
|
|
CSIO_DB_ASSERT(!(hw->flags & CSIO_HWF_FWEVT_PENDING));
|
|
}
|
|
|
|
static void
|
|
csio_evtq_stop(struct csio_hw *hw)
|
|
{
|
|
hw->flags |= CSIO_HWF_FWEVT_STOP;
|
|
}
|
|
|
|
static void
|
|
csio_evtq_start(struct csio_hw *hw)
|
|
{
|
|
hw->flags &= ~CSIO_HWF_FWEVT_STOP;
|
|
}
|
|
|
|
static void
|
|
csio_evtq_cleanup(struct csio_hw *hw)
|
|
{
|
|
struct list_head *evt_entry, *next_entry;
|
|
|
|
/* Release outstanding events from activeq to freeq*/
|
|
if (!list_empty(&hw->evt_active_q))
|
|
list_splice_tail_init(&hw->evt_active_q, &hw->evt_free_q);
|
|
|
|
hw->stats.n_evt_activeq = 0;
|
|
hw->flags &= ~CSIO_HWF_FWEVT_PENDING;
|
|
|
|
/* Freeup event entry */
|
|
list_for_each_safe(evt_entry, next_entry, &hw->evt_free_q) {
|
|
kfree(evt_entry);
|
|
CSIO_DEC_STATS(hw, n_evt_freeq);
|
|
}
|
|
|
|
hw->stats.n_evt_freeq = 0;
|
|
}
|
|
|
|
|
|
static void
|
|
csio_process_fwevtq_entry(struct csio_hw *hw, void *wr, uint32_t len,
|
|
struct csio_fl_dma_buf *flb, void *priv)
|
|
{
|
|
__u8 op;
|
|
void *msg = NULL;
|
|
uint32_t msg_len = 0;
|
|
bool msg_sg = 0;
|
|
|
|
op = ((struct rss_header *) wr)->opcode;
|
|
if (op == CPL_FW6_PLD) {
|
|
CSIO_INC_STATS(hw, n_cpl_fw6_pld);
|
|
if (!flb || !flb->totlen) {
|
|
CSIO_INC_STATS(hw, n_cpl_unexp);
|
|
return;
|
|
}
|
|
|
|
msg = (void *) flb;
|
|
msg_len = flb->totlen;
|
|
msg_sg = 1;
|
|
} else if (op == CPL_FW6_MSG || op == CPL_FW4_MSG) {
|
|
|
|
CSIO_INC_STATS(hw, n_cpl_fw6_msg);
|
|
/* skip RSS header */
|
|
msg = (void *)((uintptr_t)wr + sizeof(__be64));
|
|
msg_len = (op == CPL_FW6_MSG) ? sizeof(struct cpl_fw6_msg) :
|
|
sizeof(struct cpl_fw4_msg);
|
|
} else {
|
|
csio_warn(hw, "unexpected CPL %#x on FW event queue\n", op);
|
|
CSIO_INC_STATS(hw, n_cpl_unexp);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Enqueue event to EventQ. Events processing happens
|
|
* in Event worker thread context
|
|
*/
|
|
if (csio_enqueue_evt_lock(hw, CSIO_EVT_FW, msg,
|
|
(uint16_t)msg_len, msg_sg))
|
|
CSIO_INC_STATS(hw, n_evt_drop);
|
|
}
|
|
|
|
void
|
|
csio_evtq_worker(struct work_struct *work)
|
|
{
|
|
struct csio_hw *hw = container_of(work, struct csio_hw, evtq_work);
|
|
struct list_head *evt_entry, *next_entry;
|
|
LIST_HEAD(evt_q);
|
|
struct csio_evt_msg *evt_msg;
|
|
struct cpl_fw6_msg *msg;
|
|
struct csio_rnode *rn;
|
|
int rv = 0;
|
|
uint8_t evtq_stop = 0;
|
|
|
|
csio_dbg(hw, "event worker thread active evts#%d\n",
|
|
hw->stats.n_evt_activeq);
|
|
|
|
spin_lock_irq(&hw->lock);
|
|
while (!list_empty(&hw->evt_active_q)) {
|
|
list_splice_tail_init(&hw->evt_active_q, &evt_q);
|
|
spin_unlock_irq(&hw->lock);
|
|
|
|
list_for_each_safe(evt_entry, next_entry, &evt_q) {
|
|
evt_msg = (struct csio_evt_msg *) evt_entry;
|
|
|
|
/* Drop events if queue is STOPPED */
|
|
spin_lock_irq(&hw->lock);
|
|
if (hw->flags & CSIO_HWF_FWEVT_STOP)
|
|
evtq_stop = 1;
|
|
spin_unlock_irq(&hw->lock);
|
|
if (evtq_stop) {
|
|
CSIO_INC_STATS(hw, n_evt_drop);
|
|
goto free_evt;
|
|
}
|
|
|
|
switch (evt_msg->type) {
|
|
case CSIO_EVT_FW:
|
|
msg = (struct cpl_fw6_msg *)(evt_msg->data);
|
|
|
|
if ((msg->opcode == CPL_FW6_MSG ||
|
|
msg->opcode == CPL_FW4_MSG) &&
|
|
!msg->type) {
|
|
rv = csio_mb_fwevt_handler(hw,
|
|
msg->data);
|
|
if (!rv)
|
|
break;
|
|
/* Handle any remaining fw events */
|
|
csio_fcoe_fwevt_handler(hw,
|
|
msg->opcode, msg->data);
|
|
} else if (msg->opcode == CPL_FW6_PLD) {
|
|
|
|
csio_fcoe_fwevt_handler(hw,
|
|
msg->opcode, msg->data);
|
|
} else {
|
|
csio_warn(hw,
|
|
"Unhandled FW msg op %x type %x\n",
|
|
msg->opcode, msg->type);
|
|
CSIO_INC_STATS(hw, n_evt_drop);
|
|
}
|
|
break;
|
|
|
|
case CSIO_EVT_MBX:
|
|
csio_mberr_worker(hw);
|
|
break;
|
|
|
|
case CSIO_EVT_DEV_LOSS:
|
|
memcpy(&rn, evt_msg->data, sizeof(rn));
|
|
csio_rnode_devloss_handler(rn);
|
|
break;
|
|
|
|
default:
|
|
csio_warn(hw, "Unhandled event %x on evtq\n",
|
|
evt_msg->type);
|
|
CSIO_INC_STATS(hw, n_evt_unexp);
|
|
break;
|
|
}
|
|
free_evt:
|
|
csio_free_evt(hw, evt_msg);
|
|
}
|
|
|
|
spin_lock_irq(&hw->lock);
|
|
}
|
|
hw->flags &= ~CSIO_HWF_FWEVT_PENDING;
|
|
spin_unlock_irq(&hw->lock);
|
|
}
|
|
|
|
int
|
|
csio_fwevtq_handler(struct csio_hw *hw)
|
|
{
|
|
int rv;
|
|
|
|
if (csio_q_iqid(hw, hw->fwevt_iq_idx) == CSIO_MAX_QID) {
|
|
CSIO_INC_STATS(hw, n_int_stray);
|
|
return -EINVAL;
|
|
}
|
|
|
|
rv = csio_wr_process_iq_idx(hw, hw->fwevt_iq_idx,
|
|
csio_process_fwevtq_entry, NULL);
|
|
return rv;
|
|
}
|
|
|
|
/****************************************************************************
|
|
* Entry points
|
|
****************************************************************************/
|
|
|
|
/* Management module */
|
|
/*
|
|
* csio_mgmt_req_lookup - Lookup the given IO req exist in Active Q.
|
|
* mgmt - mgmt module
|
|
* @io_req - io request
|
|
*
|
|
* Return - 0:if given IO Req exists in active Q.
|
|
* -EINVAL :if lookup fails.
|
|
*/
|
|
int
|
|
csio_mgmt_req_lookup(struct csio_mgmtm *mgmtm, struct csio_ioreq *io_req)
|
|
{
|
|
struct list_head *tmp;
|
|
|
|
/* Lookup ioreq in the ACTIVEQ */
|
|
list_for_each(tmp, &mgmtm->active_q) {
|
|
if (io_req == (struct csio_ioreq *)tmp)
|
|
return 0;
|
|
}
|
|
return -EINVAL;
|
|
}
|
|
|
|
#define ECM_MIN_TMO 1000 /* Minimum timeout value for req */
|
|
|
|
/*
|
|
* csio_mgmts_tmo_handler - MGMT IO Timeout handler.
|
|
* @data - Event data.
|
|
*
|
|
* Return - none.
|
|
*/
|
|
static void
|
|
csio_mgmt_tmo_handler(struct timer_list *t)
|
|
{
|
|
struct csio_mgmtm *mgmtm = from_timer(mgmtm, t, mgmt_timer);
|
|
struct list_head *tmp;
|
|
struct csio_ioreq *io_req;
|
|
|
|
csio_dbg(mgmtm->hw, "Mgmt timer invoked!\n");
|
|
|
|
spin_lock_irq(&mgmtm->hw->lock);
|
|
|
|
list_for_each(tmp, &mgmtm->active_q) {
|
|
io_req = (struct csio_ioreq *) tmp;
|
|
io_req->tmo -= min_t(uint32_t, io_req->tmo, ECM_MIN_TMO);
|
|
|
|
if (!io_req->tmo) {
|
|
/* Dequeue the request from retry Q. */
|
|
tmp = csio_list_prev(tmp);
|
|
list_del_init(&io_req->sm.sm_list);
|
|
if (io_req->io_cbfn) {
|
|
/* io_req will be freed by completion handler */
|
|
io_req->wr_status = -ETIMEDOUT;
|
|
io_req->io_cbfn(mgmtm->hw, io_req);
|
|
} else {
|
|
CSIO_DB_ASSERT(0);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* If retry queue is not empty, re-arm timer */
|
|
if (!list_empty(&mgmtm->active_q))
|
|
mod_timer(&mgmtm->mgmt_timer,
|
|
jiffies + msecs_to_jiffies(ECM_MIN_TMO));
|
|
spin_unlock_irq(&mgmtm->hw->lock);
|
|
}
|
|
|
|
static void
|
|
csio_mgmtm_cleanup(struct csio_mgmtm *mgmtm)
|
|
{
|
|
struct csio_hw *hw = mgmtm->hw;
|
|
struct csio_ioreq *io_req;
|
|
struct list_head *tmp;
|
|
uint32_t count;
|
|
|
|
count = 30;
|
|
/* Wait for all outstanding req to complete gracefully */
|
|
while ((!list_empty(&mgmtm->active_q)) && count--) {
|
|
spin_unlock_irq(&hw->lock);
|
|
msleep(2000);
|
|
spin_lock_irq(&hw->lock);
|
|
}
|
|
|
|
/* release outstanding req from ACTIVEQ */
|
|
list_for_each(tmp, &mgmtm->active_q) {
|
|
io_req = (struct csio_ioreq *) tmp;
|
|
tmp = csio_list_prev(tmp);
|
|
list_del_init(&io_req->sm.sm_list);
|
|
mgmtm->stats.n_active--;
|
|
if (io_req->io_cbfn) {
|
|
/* io_req will be freed by completion handler */
|
|
io_req->wr_status = -ETIMEDOUT;
|
|
io_req->io_cbfn(mgmtm->hw, io_req);
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* csio_mgmt_init - Mgmt module init entry point
|
|
* @mgmtsm - mgmt module
|
|
* @hw - HW module
|
|
*
|
|
* Initialize mgmt timer, resource wait queue, active queue,
|
|
* completion q. Allocate Egress and Ingress
|
|
* WR queues and save off the queue index returned by the WR
|
|
* module for future use. Allocate and save off mgmt reqs in the
|
|
* mgmt_req_freelist for future use. Make sure their SM is initialized
|
|
* to uninit state.
|
|
* Returns: 0 - on success
|
|
* -ENOMEM - on error.
|
|
*/
|
|
static int
|
|
csio_mgmtm_init(struct csio_mgmtm *mgmtm, struct csio_hw *hw)
|
|
{
|
|
timer_setup(&mgmtm->mgmt_timer, csio_mgmt_tmo_handler, 0);
|
|
|
|
INIT_LIST_HEAD(&mgmtm->active_q);
|
|
INIT_LIST_HEAD(&mgmtm->cbfn_q);
|
|
|
|
mgmtm->hw = hw;
|
|
/*mgmtm->iq_idx = hw->fwevt_iq_idx;*/
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* csio_mgmtm_exit - MGMT module exit entry point
|
|
* @mgmtsm - mgmt module
|
|
*
|
|
* This function called during MGMT module uninit.
|
|
* Stop timers, free ioreqs allocated.
|
|
* Returns: None
|
|
*
|
|
*/
|
|
static void
|
|
csio_mgmtm_exit(struct csio_mgmtm *mgmtm)
|
|
{
|
|
del_timer_sync(&mgmtm->mgmt_timer);
|
|
}
|
|
|
|
|
|
/**
|
|
* csio_hw_start - Kicks off the HW State machine
|
|
* @hw: Pointer to HW module.
|
|
*
|
|
* It is assumed that the initialization is a synchronous operation.
|
|
* So when we return after posting the event, the HW SM should be in
|
|
* the ready state, if there were no errors during init.
|
|
*/
|
|
int
|
|
csio_hw_start(struct csio_hw *hw)
|
|
{
|
|
spin_lock_irq(&hw->lock);
|
|
csio_post_event(&hw->sm, CSIO_HWE_CFG);
|
|
spin_unlock_irq(&hw->lock);
|
|
|
|
if (csio_is_hw_ready(hw))
|
|
return 0;
|
|
else if (csio_match_state(hw, csio_hws_uninit))
|
|
return -EINVAL;
|
|
else
|
|
return -ENODEV;
|
|
}
|
|
|
|
int
|
|
csio_hw_stop(struct csio_hw *hw)
|
|
{
|
|
csio_post_event(&hw->sm, CSIO_HWE_PCI_REMOVE);
|
|
|
|
if (csio_is_hw_removing(hw))
|
|
return 0;
|
|
else
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* Max reset retries */
|
|
#define CSIO_MAX_RESET_RETRIES 3
|
|
|
|
/**
|
|
* csio_hw_reset - Reset the hardware
|
|
* @hw: HW module.
|
|
*
|
|
* Caller should hold lock across this function.
|
|
*/
|
|
int
|
|
csio_hw_reset(struct csio_hw *hw)
|
|
{
|
|
if (!csio_is_hw_master(hw))
|
|
return -EPERM;
|
|
|
|
if (hw->rst_retries >= CSIO_MAX_RESET_RETRIES) {
|
|
csio_dbg(hw, "Max hw reset attempts reached..");
|
|
return -EINVAL;
|
|
}
|
|
|
|
hw->rst_retries++;
|
|
csio_post_event(&hw->sm, CSIO_HWE_HBA_RESET);
|
|
|
|
if (csio_is_hw_ready(hw)) {
|
|
hw->rst_retries = 0;
|
|
hw->stats.n_reset_start = jiffies_to_msecs(jiffies);
|
|
return 0;
|
|
} else
|
|
return -EINVAL;
|
|
}
|
|
|
|
/*
|
|
* csio_hw_get_device_id - Caches the Adapter's vendor & device id.
|
|
* @hw: HW module.
|
|
*/
|
|
static void
|
|
csio_hw_get_device_id(struct csio_hw *hw)
|
|
{
|
|
/* Is the adapter device id cached already ?*/
|
|
if (csio_is_dev_id_cached(hw))
|
|
return;
|
|
|
|
/* Get the PCI vendor & device id */
|
|
pci_read_config_word(hw->pdev, PCI_VENDOR_ID,
|
|
&hw->params.pci.vendor_id);
|
|
pci_read_config_word(hw->pdev, PCI_DEVICE_ID,
|
|
&hw->params.pci.device_id);
|
|
|
|
csio_dev_id_cached(hw);
|
|
hw->chip_id = (hw->params.pci.device_id & CSIO_HW_CHIP_MASK);
|
|
|
|
} /* csio_hw_get_device_id */
|
|
|
|
/*
|
|
* csio_hw_set_description - Set the model, description of the hw.
|
|
* @hw: HW module.
|
|
* @ven_id: PCI Vendor ID
|
|
* @dev_id: PCI Device ID
|
|
*/
|
|
static void
|
|
csio_hw_set_description(struct csio_hw *hw, uint16_t ven_id, uint16_t dev_id)
|
|
{
|
|
uint32_t adap_type, prot_type;
|
|
|
|
if (ven_id == CSIO_VENDOR_ID) {
|
|
prot_type = (dev_id & CSIO_ASIC_DEVID_PROTO_MASK);
|
|
adap_type = (dev_id & CSIO_ASIC_DEVID_TYPE_MASK);
|
|
|
|
if (prot_type == CSIO_T5_FCOE_ASIC) {
|
|
memcpy(hw->hw_ver,
|
|
csio_t5_fcoe_adapters[adap_type].model_no, 16);
|
|
memcpy(hw->model_desc,
|
|
csio_t5_fcoe_adapters[adap_type].description,
|
|
32);
|
|
} else {
|
|
char tempName[32] = "Chelsio FCoE Controller";
|
|
memcpy(hw->model_desc, tempName, 32);
|
|
}
|
|
}
|
|
} /* csio_hw_set_description */
|
|
|
|
/**
|
|
* csio_hw_init - Initialize HW module.
|
|
* @hw: Pointer to HW module.
|
|
*
|
|
* Initialize the members of the HW module.
|
|
*/
|
|
int
|
|
csio_hw_init(struct csio_hw *hw)
|
|
{
|
|
int rv = -EINVAL;
|
|
uint32_t i;
|
|
uint16_t ven_id, dev_id;
|
|
struct csio_evt_msg *evt_entry;
|
|
|
|
INIT_LIST_HEAD(&hw->sm.sm_list);
|
|
csio_init_state(&hw->sm, csio_hws_uninit);
|
|
spin_lock_init(&hw->lock);
|
|
INIT_LIST_HEAD(&hw->sln_head);
|
|
|
|
/* Get the PCI vendor & device id */
|
|
csio_hw_get_device_id(hw);
|
|
|
|
strcpy(hw->name, CSIO_HW_NAME);
|
|
|
|
/* Initialize the HW chip ops T5 specific ops */
|
|
hw->chip_ops = &t5_ops;
|
|
|
|
/* Set the model & its description */
|
|
|
|
ven_id = hw->params.pci.vendor_id;
|
|
dev_id = hw->params.pci.device_id;
|
|
|
|
csio_hw_set_description(hw, ven_id, dev_id);
|
|
|
|
/* Initialize default log level */
|
|
hw->params.log_level = (uint32_t) csio_dbg_level;
|
|
|
|
csio_set_fwevt_intr_idx(hw, -1);
|
|
csio_set_nondata_intr_idx(hw, -1);
|
|
|
|
/* Init all the modules: Mailbox, WorkRequest and Transport */
|
|
if (csio_mbm_init(csio_hw_to_mbm(hw), hw, csio_hw_mb_timer))
|
|
goto err;
|
|
|
|
rv = csio_wrm_init(csio_hw_to_wrm(hw), hw);
|
|
if (rv)
|
|
goto err_mbm_exit;
|
|
|
|
rv = csio_scsim_init(csio_hw_to_scsim(hw), hw);
|
|
if (rv)
|
|
goto err_wrm_exit;
|
|
|
|
rv = csio_mgmtm_init(csio_hw_to_mgmtm(hw), hw);
|
|
if (rv)
|
|
goto err_scsim_exit;
|
|
/* Pre-allocate evtq and initialize them */
|
|
INIT_LIST_HEAD(&hw->evt_active_q);
|
|
INIT_LIST_HEAD(&hw->evt_free_q);
|
|
for (i = 0; i < csio_evtq_sz; i++) {
|
|
|
|
evt_entry = kzalloc(sizeof(struct csio_evt_msg), GFP_KERNEL);
|
|
if (!evt_entry) {
|
|
rv = -ENOMEM;
|
|
csio_err(hw, "Failed to initialize eventq");
|
|
goto err_evtq_cleanup;
|
|
}
|
|
|
|
list_add_tail(&evt_entry->list, &hw->evt_free_q);
|
|
CSIO_INC_STATS(hw, n_evt_freeq);
|
|
}
|
|
|
|
hw->dev_num = dev_num;
|
|
dev_num++;
|
|
|
|
return 0;
|
|
|
|
err_evtq_cleanup:
|
|
csio_evtq_cleanup(hw);
|
|
csio_mgmtm_exit(csio_hw_to_mgmtm(hw));
|
|
err_scsim_exit:
|
|
csio_scsim_exit(csio_hw_to_scsim(hw));
|
|
err_wrm_exit:
|
|
csio_wrm_exit(csio_hw_to_wrm(hw), hw);
|
|
err_mbm_exit:
|
|
csio_mbm_exit(csio_hw_to_mbm(hw));
|
|
err:
|
|
return rv;
|
|
}
|
|
|
|
/**
|
|
* csio_hw_exit - Un-initialize HW module.
|
|
* @hw: Pointer to HW module.
|
|
*
|
|
*/
|
|
void
|
|
csio_hw_exit(struct csio_hw *hw)
|
|
{
|
|
csio_evtq_cleanup(hw);
|
|
csio_mgmtm_exit(csio_hw_to_mgmtm(hw));
|
|
csio_scsim_exit(csio_hw_to_scsim(hw));
|
|
csio_wrm_exit(csio_hw_to_wrm(hw), hw);
|
|
csio_mbm_exit(csio_hw_to_mbm(hw));
|
|
}
|