linux_dsm_epyc7002/drivers/mtd/nand/mxc_nand.c
Fabio Estevam 2ebf0622cd mtd: mxc_nand: Fix warning on nr_parts unused variable
If CONFIG_MTD_PARTITIONS is not selected, then the following warning is generated:

  CC      drivers/mtd/nand/mxc_nand.o
drivers/mtd/nand/mxc_nand.c: In function 'mxcnd_probe':
drivers/mtd/nand/mxc_nand.c:1014: warning: unused variable 'nr_parts'

Fix it by marking nr_parts as __maybe_unused.

Signed-off-by: Fabio Estevam <fabio.estevam@freescale.com>
Signed-off-by: Artem Bityutskiy <Artem.Bityutskiy@nokia.com>
Signed-off-by: David Woodhouse <David.Woodhouse@intel.com>
2010-12-03 16:34:41 +00:00

1271 lines
32 KiB
C

/*
* Copyright 2004-2007 Freescale Semiconductor, Inc. All Rights Reserved.
* Copyright 2008 Sascha Hauer, kernel@pengutronix.de
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,
* MA 02110-1301, USA.
*/
#include <linux/delay.h>
#include <linux/slab.h>
#include <linux/init.h>
#include <linux/module.h>
#include <linux/mtd/mtd.h>
#include <linux/mtd/nand.h>
#include <linux/mtd/partitions.h>
#include <linux/interrupt.h>
#include <linux/device.h>
#include <linux/platform_device.h>
#include <linux/clk.h>
#include <linux/err.h>
#include <linux/io.h>
#include <linux/irq.h>
#include <linux/completion.h>
#include <asm/mach/flash.h>
#include <mach/mxc_nand.h>
#include <mach/hardware.h>
#define DRIVER_NAME "mxc_nand"
#define nfc_is_v21() (cpu_is_mx25() || cpu_is_mx35())
#define nfc_is_v1() (cpu_is_mx31() || cpu_is_mx27() || cpu_is_mx21())
#define nfc_is_v3_2() cpu_is_mx51()
#define nfc_is_v3() nfc_is_v3_2()
/* Addresses for NFC registers */
#define NFC_V1_V2_BUF_SIZE (host->regs + 0x00)
#define NFC_V1_V2_BUF_ADDR (host->regs + 0x04)
#define NFC_V1_V2_FLASH_ADDR (host->regs + 0x06)
#define NFC_V1_V2_FLASH_CMD (host->regs + 0x08)
#define NFC_V1_V2_CONFIG (host->regs + 0x0a)
#define NFC_V1_V2_ECC_STATUS_RESULT (host->regs + 0x0c)
#define NFC_V1_V2_RSLTMAIN_AREA (host->regs + 0x0e)
#define NFC_V1_V2_RSLTSPARE_AREA (host->regs + 0x10)
#define NFC_V1_V2_WRPROT (host->regs + 0x12)
#define NFC_V1_UNLOCKSTART_BLKADDR (host->regs + 0x14)
#define NFC_V1_UNLOCKEND_BLKADDR (host->regs + 0x16)
#define NFC_V21_UNLOCKSTART_BLKADDR (host->regs + 0x20)
#define NFC_V21_UNLOCKEND_BLKADDR (host->regs + 0x22)
#define NFC_V1_V2_NF_WRPRST (host->regs + 0x18)
#define NFC_V1_V2_CONFIG1 (host->regs + 0x1a)
#define NFC_V1_V2_CONFIG2 (host->regs + 0x1c)
#define NFC_V2_CONFIG1_ECC_MODE_4 (1 << 0)
#define NFC_V1_V2_CONFIG1_SP_EN (1 << 2)
#define NFC_V1_V2_CONFIG1_ECC_EN (1 << 3)
#define NFC_V1_V2_CONFIG1_INT_MSK (1 << 4)
#define NFC_V1_V2_CONFIG1_BIG (1 << 5)
#define NFC_V1_V2_CONFIG1_RST (1 << 6)
#define NFC_V1_V2_CONFIG1_CE (1 << 7)
#define NFC_V2_CONFIG1_ONE_CYCLE (1 << 8)
#define NFC_V2_CONFIG1_PPB(x) (((x) & 0x3) << 9)
#define NFC_V2_CONFIG1_FP_INT (1 << 11)
#define NFC_V1_V2_CONFIG2_INT (1 << 15)
/*
* Operation modes for the NFC. Valid for v1, v2 and v3
* type controllers.
*/
#define NFC_CMD (1 << 0)
#define NFC_ADDR (1 << 1)
#define NFC_INPUT (1 << 2)
#define NFC_OUTPUT (1 << 3)
#define NFC_ID (1 << 4)
#define NFC_STATUS (1 << 5)
#define NFC_V3_FLASH_CMD (host->regs_axi + 0x00)
#define NFC_V3_FLASH_ADDR0 (host->regs_axi + 0x04)
#define NFC_V3_CONFIG1 (host->regs_axi + 0x34)
#define NFC_V3_CONFIG1_SP_EN (1 << 0)
#define NFC_V3_CONFIG1_RBA(x) (((x) & 0x7 ) << 4)
#define NFC_V3_ECC_STATUS_RESULT (host->regs_axi + 0x38)
#define NFC_V3_LAUNCH (host->regs_axi + 0x40)
#define NFC_V3_WRPROT (host->regs_ip + 0x0)
#define NFC_V3_WRPROT_LOCK_TIGHT (1 << 0)
#define NFC_V3_WRPROT_LOCK (1 << 1)
#define NFC_V3_WRPROT_UNLOCK (1 << 2)
#define NFC_V3_WRPROT_BLS_UNLOCK (2 << 6)
#define NFC_V3_WRPROT_UNLOCK_BLK_ADD0 (host->regs_ip + 0x04)
#define NFC_V3_CONFIG2 (host->regs_ip + 0x24)
#define NFC_V3_CONFIG2_PS_512 (0 << 0)
#define NFC_V3_CONFIG2_PS_2048 (1 << 0)
#define NFC_V3_CONFIG2_PS_4096 (2 << 0)
#define NFC_V3_CONFIG2_ONE_CYCLE (1 << 2)
#define NFC_V3_CONFIG2_ECC_EN (1 << 3)
#define NFC_V3_CONFIG2_2CMD_PHASES (1 << 4)
#define NFC_V3_CONFIG2_NUM_ADDR_PHASE0 (1 << 5)
#define NFC_V3_CONFIG2_ECC_MODE_8 (1 << 6)
#define NFC_V3_CONFIG2_PPB(x) (((x) & 0x3) << 7)
#define NFC_V3_CONFIG2_NUM_ADDR_PHASE1(x) (((x) & 0x3) << 12)
#define NFC_V3_CONFIG2_INT_MSK (1 << 15)
#define NFC_V3_CONFIG2_ST_CMD(x) (((x) & 0xff) << 24)
#define NFC_V3_CONFIG2_SPAS(x) (((x) & 0xff) << 16)
#define NFC_V3_CONFIG3 (host->regs_ip + 0x28)
#define NFC_V3_CONFIG3_ADD_OP(x) (((x) & 0x3) << 0)
#define NFC_V3_CONFIG3_FW8 (1 << 3)
#define NFC_V3_CONFIG3_SBB(x) (((x) & 0x7) << 8)
#define NFC_V3_CONFIG3_NUM_OF_DEVICES(x) (((x) & 0x7) << 12)
#define NFC_V3_CONFIG3_RBB_MODE (1 << 15)
#define NFC_V3_CONFIG3_NO_SDMA (1 << 20)
#define NFC_V3_IPC (host->regs_ip + 0x2C)
#define NFC_V3_IPC_CREQ (1 << 0)
#define NFC_V3_IPC_INT (1 << 31)
#define NFC_V3_DELAY_LINE (host->regs_ip + 0x34)
struct mxc_nand_host {
struct mtd_info mtd;
struct nand_chip nand;
struct mtd_partition *parts;
struct device *dev;
void *spare0;
void *main_area0;
void __iomem *base;
void __iomem *regs;
void __iomem *regs_axi;
void __iomem *regs_ip;
int status_request;
struct clk *clk;
int clk_act;
int irq;
int eccsize;
struct completion op_completion;
uint8_t *data_buf;
unsigned int buf_start;
int spare_len;
void (*preset)(struct mtd_info *);
void (*send_cmd)(struct mxc_nand_host *, uint16_t, int);
void (*send_addr)(struct mxc_nand_host *, uint16_t, int);
void (*send_page)(struct mtd_info *, unsigned int);
void (*send_read_id)(struct mxc_nand_host *);
uint16_t (*get_dev_status)(struct mxc_nand_host *);
int (*check_int)(struct mxc_nand_host *);
void (*irq_control)(struct mxc_nand_host *, int);
};
/* OOB placement block for use with hardware ecc generation */
static struct nand_ecclayout nandv1_hw_eccoob_smallpage = {
.eccbytes = 5,
.eccpos = {6, 7, 8, 9, 10},
.oobfree = {{0, 5}, {12, 4}, }
};
static struct nand_ecclayout nandv1_hw_eccoob_largepage = {
.eccbytes = 20,
.eccpos = {6, 7, 8, 9, 10, 22, 23, 24, 25, 26,
38, 39, 40, 41, 42, 54, 55, 56, 57, 58},
.oobfree = {{2, 4}, {11, 10}, {27, 10}, {43, 10}, {59, 5}, }
};
/* OOB description for 512 byte pages with 16 byte OOB */
static struct nand_ecclayout nandv2_hw_eccoob_smallpage = {
.eccbytes = 1 * 9,
.eccpos = {
7, 8, 9, 10, 11, 12, 13, 14, 15
},
.oobfree = {
{.offset = 0, .length = 5}
}
};
/* OOB description for 2048 byte pages with 64 byte OOB */
static struct nand_ecclayout nandv2_hw_eccoob_largepage = {
.eccbytes = 4 * 9,
.eccpos = {
7, 8, 9, 10, 11, 12, 13, 14, 15,
23, 24, 25, 26, 27, 28, 29, 30, 31,
39, 40, 41, 42, 43, 44, 45, 46, 47,
55, 56, 57, 58, 59, 60, 61, 62, 63
},
.oobfree = {
{.offset = 2, .length = 4},
{.offset = 16, .length = 7},
{.offset = 32, .length = 7},
{.offset = 48, .length = 7}
}
};
#ifdef CONFIG_MTD_PARTITIONS
static const char *part_probes[] = { "RedBoot", "cmdlinepart", NULL };
#endif
static irqreturn_t mxc_nfc_irq(int irq, void *dev_id)
{
struct mxc_nand_host *host = dev_id;
if (!host->check_int(host))
return IRQ_NONE;
host->irq_control(host, 0);
complete(&host->op_completion);
return IRQ_HANDLED;
}
static int check_int_v3(struct mxc_nand_host *host)
{
uint32_t tmp;
tmp = readl(NFC_V3_IPC);
if (!(tmp & NFC_V3_IPC_INT))
return 0;
tmp &= ~NFC_V3_IPC_INT;
writel(tmp, NFC_V3_IPC);
return 1;
}
static int check_int_v1_v2(struct mxc_nand_host *host)
{
uint32_t tmp;
tmp = readw(NFC_V1_V2_CONFIG2);
if (!(tmp & NFC_V1_V2_CONFIG2_INT))
return 0;
if (!cpu_is_mx21())
writew(tmp & ~NFC_V1_V2_CONFIG2_INT, NFC_V1_V2_CONFIG2);
return 1;
}
/*
* It has been observed that the i.MX21 cannot read the CONFIG2:INT bit
* if interrupts are masked (CONFIG1:INT_MSK is set). To handle this, the
* driver can enable/disable the irq line rather than simply masking the
* interrupts.
*/
static void irq_control_mx21(struct mxc_nand_host *host, int activate)
{
if (activate)
enable_irq(host->irq);
else
disable_irq_nosync(host->irq);
}
static void irq_control_v1_v2(struct mxc_nand_host *host, int activate)
{
uint16_t tmp;
tmp = readw(NFC_V1_V2_CONFIG1);
if (activate)
tmp &= ~NFC_V1_V2_CONFIG1_INT_MSK;
else
tmp |= NFC_V1_V2_CONFIG1_INT_MSK;
writew(tmp, NFC_V1_V2_CONFIG1);
}
static void irq_control_v3(struct mxc_nand_host *host, int activate)
{
uint32_t tmp;
tmp = readl(NFC_V3_CONFIG2);
if (activate)
tmp &= ~NFC_V3_CONFIG2_INT_MSK;
else
tmp |= NFC_V3_CONFIG2_INT_MSK;
writel(tmp, NFC_V3_CONFIG2);
}
/* This function polls the NANDFC to wait for the basic operation to
* complete by checking the INT bit of config2 register.
*/
static void wait_op_done(struct mxc_nand_host *host, int useirq)
{
int max_retries = 8000;
if (useirq) {
if (!host->check_int(host)) {
INIT_COMPLETION(host->op_completion);
host->irq_control(host, 1);
wait_for_completion(&host->op_completion);
}
} else {
while (max_retries-- > 0) {
if (host->check_int(host))
break;
udelay(1);
}
if (max_retries < 0)
DEBUG(MTD_DEBUG_LEVEL0, "%s: INT not set\n",
__func__);
}
}
static void send_cmd_v3(struct mxc_nand_host *host, uint16_t cmd, int useirq)
{
/* fill command */
writel(cmd, NFC_V3_FLASH_CMD);
/* send out command */
writel(NFC_CMD, NFC_V3_LAUNCH);
/* Wait for operation to complete */
wait_op_done(host, useirq);
}
/* This function issues the specified command to the NAND device and
* waits for completion. */
static void send_cmd_v1_v2(struct mxc_nand_host *host, uint16_t cmd, int useirq)
{
DEBUG(MTD_DEBUG_LEVEL3, "send_cmd(host, 0x%x, %d)\n", cmd, useirq);
writew(cmd, NFC_V1_V2_FLASH_CMD);
writew(NFC_CMD, NFC_V1_V2_CONFIG2);
if (cpu_is_mx21() && (cmd == NAND_CMD_RESET)) {
int max_retries = 100;
/* Reset completion is indicated by NFC_CONFIG2 */
/* being set to 0 */
while (max_retries-- > 0) {
if (readw(NFC_V1_V2_CONFIG2) == 0) {
break;
}
udelay(1);
}
if (max_retries < 0)
DEBUG(MTD_DEBUG_LEVEL0, "%s: RESET failed\n",
__func__);
} else {
/* Wait for operation to complete */
wait_op_done(host, useirq);
}
}
static void send_addr_v3(struct mxc_nand_host *host, uint16_t addr, int islast)
{
/* fill address */
writel(addr, NFC_V3_FLASH_ADDR0);
/* send out address */
writel(NFC_ADDR, NFC_V3_LAUNCH);
wait_op_done(host, 0);
}
/* This function sends an address (or partial address) to the
* NAND device. The address is used to select the source/destination for
* a NAND command. */
static void send_addr_v1_v2(struct mxc_nand_host *host, uint16_t addr, int islast)
{
DEBUG(MTD_DEBUG_LEVEL3, "send_addr(host, 0x%x %d)\n", addr, islast);
writew(addr, NFC_V1_V2_FLASH_ADDR);
writew(NFC_ADDR, NFC_V1_V2_CONFIG2);
/* Wait for operation to complete */
wait_op_done(host, islast);
}
static void send_page_v3(struct mtd_info *mtd, unsigned int ops)
{
struct nand_chip *nand_chip = mtd->priv;
struct mxc_nand_host *host = nand_chip->priv;
uint32_t tmp;
tmp = readl(NFC_V3_CONFIG1);
tmp &= ~(7 << 4);
writel(tmp, NFC_V3_CONFIG1);
/* transfer data from NFC ram to nand */
writel(ops, NFC_V3_LAUNCH);
wait_op_done(host, false);
}
static void send_page_v1_v2(struct mtd_info *mtd, unsigned int ops)
{
struct nand_chip *nand_chip = mtd->priv;
struct mxc_nand_host *host = nand_chip->priv;
int bufs, i;
if (nfc_is_v1() && mtd->writesize > 512)
bufs = 4;
else
bufs = 1;
for (i = 0; i < bufs; i++) {
/* NANDFC buffer 0 is used for page read/write */
writew(i, NFC_V1_V2_BUF_ADDR);
writew(ops, NFC_V1_V2_CONFIG2);
/* Wait for operation to complete */
wait_op_done(host, true);
}
}
static void send_read_id_v3(struct mxc_nand_host *host)
{
/* Read ID into main buffer */
writel(NFC_ID, NFC_V3_LAUNCH);
wait_op_done(host, true);
memcpy(host->data_buf, host->main_area0, 16);
}
/* Request the NANDFC to perform a read of the NAND device ID. */
static void send_read_id_v1_v2(struct mxc_nand_host *host)
{
struct nand_chip *this = &host->nand;
/* NANDFC buffer 0 is used for device ID output */
writew(0x0, NFC_V1_V2_BUF_ADDR);
writew(NFC_ID, NFC_V1_V2_CONFIG2);
/* Wait for operation to complete */
wait_op_done(host, true);
memcpy(host->data_buf, host->main_area0, 16);
if (this->options & NAND_BUSWIDTH_16) {
/* compress the ID info */
host->data_buf[1] = host->data_buf[2];
host->data_buf[2] = host->data_buf[4];
host->data_buf[3] = host->data_buf[6];
host->data_buf[4] = host->data_buf[8];
host->data_buf[5] = host->data_buf[10];
}
}
static uint16_t get_dev_status_v3(struct mxc_nand_host *host)
{
writew(NFC_STATUS, NFC_V3_LAUNCH);
wait_op_done(host, true);
return readl(NFC_V3_CONFIG1) >> 16;
}
/* This function requests the NANDFC to perform a read of the
* NAND device status and returns the current status. */
static uint16_t get_dev_status_v1_v2(struct mxc_nand_host *host)
{
void __iomem *main_buf = host->main_area0;
uint32_t store;
uint16_t ret;
writew(0x0, NFC_V1_V2_BUF_ADDR);
/*
* The device status is stored in main_area0. To
* prevent corruption of the buffer save the value
* and restore it afterwards.
*/
store = readl(main_buf);
writew(NFC_STATUS, NFC_V1_V2_CONFIG2);
wait_op_done(host, true);
ret = readw(main_buf);
writel(store, main_buf);
return ret;
}
/* This functions is used by upper layer to checks if device is ready */
static int mxc_nand_dev_ready(struct mtd_info *mtd)
{
/*
* NFC handles R/B internally. Therefore, this function
* always returns status as ready.
*/
return 1;
}
static void mxc_nand_enable_hwecc(struct mtd_info *mtd, int mode)
{
/*
* If HW ECC is enabled, we turn it on during init. There is
* no need to enable again here.
*/
}
static int mxc_nand_correct_data_v1(struct mtd_info *mtd, u_char *dat,
u_char *read_ecc, u_char *calc_ecc)
{
struct nand_chip *nand_chip = mtd->priv;
struct mxc_nand_host *host = nand_chip->priv;
/*
* 1-Bit errors are automatically corrected in HW. No need for
* additional correction. 2-Bit errors cannot be corrected by
* HW ECC, so we need to return failure
*/
uint16_t ecc_status = readw(NFC_V1_V2_ECC_STATUS_RESULT);
if (((ecc_status & 0x3) == 2) || ((ecc_status >> 2) == 2)) {
DEBUG(MTD_DEBUG_LEVEL0,
"MXC_NAND: HWECC uncorrectable 2-bit ECC error\n");
return -1;
}
return 0;
}
static int mxc_nand_correct_data_v2_v3(struct mtd_info *mtd, u_char *dat,
u_char *read_ecc, u_char *calc_ecc)
{
struct nand_chip *nand_chip = mtd->priv;
struct mxc_nand_host *host = nand_chip->priv;
u32 ecc_stat, err;
int no_subpages = 1;
int ret = 0;
u8 ecc_bit_mask, err_limit;
ecc_bit_mask = (host->eccsize == 4) ? 0x7 : 0xf;
err_limit = (host->eccsize == 4) ? 0x4 : 0x8;
no_subpages = mtd->writesize >> 9;
if (nfc_is_v21())
ecc_stat = readl(NFC_V1_V2_ECC_STATUS_RESULT);
else
ecc_stat = readl(NFC_V3_ECC_STATUS_RESULT);
do {
err = ecc_stat & ecc_bit_mask;
if (err > err_limit) {
printk(KERN_WARNING "UnCorrectable RS-ECC Error\n");
return -1;
} else {
ret += err;
}
ecc_stat >>= 4;
} while (--no_subpages);
mtd->ecc_stats.corrected += ret;
pr_debug("%d Symbol Correctable RS-ECC Error\n", ret);
return ret;
}
static int mxc_nand_calculate_ecc(struct mtd_info *mtd, const u_char *dat,
u_char *ecc_code)
{
return 0;
}
static u_char mxc_nand_read_byte(struct mtd_info *mtd)
{
struct nand_chip *nand_chip = mtd->priv;
struct mxc_nand_host *host = nand_chip->priv;
uint8_t ret;
/* Check for status request */
if (host->status_request)
return host->get_dev_status(host) & 0xFF;
ret = *(uint8_t *)(host->data_buf + host->buf_start);
host->buf_start++;
return ret;
}
static uint16_t mxc_nand_read_word(struct mtd_info *mtd)
{
struct nand_chip *nand_chip = mtd->priv;
struct mxc_nand_host *host = nand_chip->priv;
uint16_t ret;
ret = *(uint16_t *)(host->data_buf + host->buf_start);
host->buf_start += 2;
return ret;
}
/* Write data of length len to buffer buf. The data to be
* written on NAND Flash is first copied to RAMbuffer. After the Data Input
* Operation by the NFC, the data is written to NAND Flash */
static void mxc_nand_write_buf(struct mtd_info *mtd,
const u_char *buf, int len)
{
struct nand_chip *nand_chip = mtd->priv;
struct mxc_nand_host *host = nand_chip->priv;
u16 col = host->buf_start;
int n = mtd->oobsize + mtd->writesize - col;
n = min(n, len);
memcpy(host->data_buf + col, buf, n);
host->buf_start += n;
}
/* Read the data buffer from the NAND Flash. To read the data from NAND
* Flash first the data output cycle is initiated by the NFC, which copies
* the data to RAMbuffer. This data of length len is then copied to buffer buf.
*/
static void mxc_nand_read_buf(struct mtd_info *mtd, u_char *buf, int len)
{
struct nand_chip *nand_chip = mtd->priv;
struct mxc_nand_host *host = nand_chip->priv;
u16 col = host->buf_start;
int n = mtd->oobsize + mtd->writesize - col;
n = min(n, len);
memcpy(buf, host->data_buf + col, len);
host->buf_start += len;
}
/* Used by the upper layer to verify the data in NAND Flash
* with the data in the buf. */
static int mxc_nand_verify_buf(struct mtd_info *mtd,
const u_char *buf, int len)
{
return -EFAULT;
}
/* This function is used by upper layer for select and
* deselect of the NAND chip */
static void mxc_nand_select_chip(struct mtd_info *mtd, int chip)
{
struct nand_chip *nand_chip = mtd->priv;
struct mxc_nand_host *host = nand_chip->priv;
switch (chip) {
case -1:
/* Disable the NFC clock */
if (host->clk_act) {
clk_disable(host->clk);
host->clk_act = 0;
}
break;
case 0:
/* Enable the NFC clock */
if (!host->clk_act) {
clk_enable(host->clk);
host->clk_act = 1;
}
break;
default:
break;
}
}
/*
* Function to transfer data to/from spare area.
*/
static void copy_spare(struct mtd_info *mtd, bool bfrom)
{
struct nand_chip *this = mtd->priv;
struct mxc_nand_host *host = this->priv;
u16 i, j;
u16 n = mtd->writesize >> 9;
u8 *d = host->data_buf + mtd->writesize;
u8 *s = host->spare0;
u16 t = host->spare_len;
j = (mtd->oobsize / n >> 1) << 1;
if (bfrom) {
for (i = 0; i < n - 1; i++)
memcpy(d + i * j, s + i * t, j);
/* the last section */
memcpy(d + i * j, s + i * t, mtd->oobsize - i * j);
} else {
for (i = 0; i < n - 1; i++)
memcpy(&s[i * t], &d[i * j], j);
/* the last section */
memcpy(&s[i * t], &d[i * j], mtd->oobsize - i * j);
}
}
static void mxc_do_addr_cycle(struct mtd_info *mtd, int column, int page_addr)
{
struct nand_chip *nand_chip = mtd->priv;
struct mxc_nand_host *host = nand_chip->priv;
/* Write out column address, if necessary */
if (column != -1) {
/*
* MXC NANDFC can only perform full page+spare or
* spare-only read/write. When the upper layers
* layers perform a read/write buf operation,
* we will used the saved column address to index into
* the full page.
*/
host->send_addr(host, 0, page_addr == -1);
if (mtd->writesize > 512)
/* another col addr cycle for 2k page */
host->send_addr(host, 0, false);
}
/* Write out page address, if necessary */
if (page_addr != -1) {
/* paddr_0 - p_addr_7 */
host->send_addr(host, (page_addr & 0xff), false);
if (mtd->writesize > 512) {
if (mtd->size >= 0x10000000) {
/* paddr_8 - paddr_15 */
host->send_addr(host, (page_addr >> 8) & 0xff, false);
host->send_addr(host, (page_addr >> 16) & 0xff, true);
} else
/* paddr_8 - paddr_15 */
host->send_addr(host, (page_addr >> 8) & 0xff, true);
} else {
/* One more address cycle for higher density devices */
if (mtd->size >= 0x4000000) {
/* paddr_8 - paddr_15 */
host->send_addr(host, (page_addr >> 8) & 0xff, false);
host->send_addr(host, (page_addr >> 16) & 0xff, true);
} else
/* paddr_8 - paddr_15 */
host->send_addr(host, (page_addr >> 8) & 0xff, true);
}
}
}
/*
* v2 and v3 type controllers can do 4bit or 8bit ecc depending
* on how much oob the nand chip has. For 8bit ecc we need at least
* 26 bytes of oob data per 512 byte block.
*/
static int get_eccsize(struct mtd_info *mtd)
{
int oobbytes_per_512 = 0;
oobbytes_per_512 = mtd->oobsize * 512 / mtd->writesize;
if (oobbytes_per_512 < 26)
return 4;
else
return 8;
}
static void preset_v1_v2(struct mtd_info *mtd)
{
struct nand_chip *nand_chip = mtd->priv;
struct mxc_nand_host *host = nand_chip->priv;
uint16_t config1 = 0;
if (nand_chip->ecc.mode == NAND_ECC_HW)
config1 |= NFC_V1_V2_CONFIG1_ECC_EN;
if (nfc_is_v21())
config1 |= NFC_V2_CONFIG1_FP_INT;
if (!cpu_is_mx21())
config1 |= NFC_V1_V2_CONFIG1_INT_MSK;
if (nfc_is_v21() && mtd->writesize) {
uint16_t pages_per_block = mtd->erasesize / mtd->writesize;
host->eccsize = get_eccsize(mtd);
if (host->eccsize == 4)
config1 |= NFC_V2_CONFIG1_ECC_MODE_4;
config1 |= NFC_V2_CONFIG1_PPB(ffs(pages_per_block) - 6);
} else {
host->eccsize = 1;
}
writew(config1, NFC_V1_V2_CONFIG1);
/* preset operation */
/* Unlock the internal RAM Buffer */
writew(0x2, NFC_V1_V2_CONFIG);
/* Blocks to be unlocked */
if (nfc_is_v21()) {
writew(0x0, NFC_V21_UNLOCKSTART_BLKADDR);
writew(0xffff, NFC_V21_UNLOCKEND_BLKADDR);
} else if (nfc_is_v1()) {
writew(0x0, NFC_V1_UNLOCKSTART_BLKADDR);
writew(0x4000, NFC_V1_UNLOCKEND_BLKADDR);
} else
BUG();
/* Unlock Block Command for given address range */
writew(0x4, NFC_V1_V2_WRPROT);
}
static void preset_v3(struct mtd_info *mtd)
{
struct nand_chip *chip = mtd->priv;
struct mxc_nand_host *host = chip->priv;
uint32_t config2, config3;
int i, addr_phases;
writel(NFC_V3_CONFIG1_RBA(0), NFC_V3_CONFIG1);
writel(NFC_V3_IPC_CREQ, NFC_V3_IPC);
/* Unlock the internal RAM Buffer */
writel(NFC_V3_WRPROT_BLS_UNLOCK | NFC_V3_WRPROT_UNLOCK,
NFC_V3_WRPROT);
/* Blocks to be unlocked */
for (i = 0; i < NAND_MAX_CHIPS; i++)
writel(0x0 | (0xffff << 16),
NFC_V3_WRPROT_UNLOCK_BLK_ADD0 + (i << 2));
writel(0, NFC_V3_IPC);
config2 = NFC_V3_CONFIG2_ONE_CYCLE |
NFC_V3_CONFIG2_2CMD_PHASES |
NFC_V3_CONFIG2_SPAS(mtd->oobsize >> 1) |
NFC_V3_CONFIG2_ST_CMD(0x70) |
NFC_V3_CONFIG2_INT_MSK |
NFC_V3_CONFIG2_NUM_ADDR_PHASE0;
if (chip->ecc.mode == NAND_ECC_HW)
config2 |= NFC_V3_CONFIG2_ECC_EN;
addr_phases = fls(chip->pagemask) >> 3;
if (mtd->writesize == 2048) {
config2 |= NFC_V3_CONFIG2_PS_2048;
config2 |= NFC_V3_CONFIG2_NUM_ADDR_PHASE1(addr_phases);
} else if (mtd->writesize == 4096) {
config2 |= NFC_V3_CONFIG2_PS_4096;
config2 |= NFC_V3_CONFIG2_NUM_ADDR_PHASE1(addr_phases);
} else {
config2 |= NFC_V3_CONFIG2_PS_512;
config2 |= NFC_V3_CONFIG2_NUM_ADDR_PHASE1(addr_phases - 1);
}
if (mtd->writesize) {
config2 |= NFC_V3_CONFIG2_PPB(ffs(mtd->erasesize / mtd->writesize) - 6);
host->eccsize = get_eccsize(mtd);
if (host->eccsize == 8)
config2 |= NFC_V3_CONFIG2_ECC_MODE_8;
}
writel(config2, NFC_V3_CONFIG2);
config3 = NFC_V3_CONFIG3_NUM_OF_DEVICES(0) |
NFC_V3_CONFIG3_NO_SDMA |
NFC_V3_CONFIG3_RBB_MODE |
NFC_V3_CONFIG3_SBB(6) | /* Reset default */
NFC_V3_CONFIG3_ADD_OP(0);
if (!(chip->options & NAND_BUSWIDTH_16))
config3 |= NFC_V3_CONFIG3_FW8;
writel(config3, NFC_V3_CONFIG3);
writel(0, NFC_V3_DELAY_LINE);
}
/* Used by the upper layer to write command to NAND Flash for
* different operations to be carried out on NAND Flash */
static void mxc_nand_command(struct mtd_info *mtd, unsigned command,
int column, int page_addr)
{
struct nand_chip *nand_chip = mtd->priv;
struct mxc_nand_host *host = nand_chip->priv;
DEBUG(MTD_DEBUG_LEVEL3,
"mxc_nand_command (cmd = 0x%x, col = 0x%x, page = 0x%x)\n",
command, column, page_addr);
/* Reset command state information */
host->status_request = false;
/* Command pre-processing step */
switch (command) {
case NAND_CMD_RESET:
host->preset(mtd);
host->send_cmd(host, command, false);
break;
case NAND_CMD_STATUS:
host->buf_start = 0;
host->status_request = true;
host->send_cmd(host, command, true);
mxc_do_addr_cycle(mtd, column, page_addr);
break;
case NAND_CMD_READ0:
case NAND_CMD_READOOB:
if (command == NAND_CMD_READ0)
host->buf_start = column;
else
host->buf_start = column + mtd->writesize;
command = NAND_CMD_READ0; /* only READ0 is valid */
host->send_cmd(host, command, false);
mxc_do_addr_cycle(mtd, column, page_addr);
if (mtd->writesize > 512)
host->send_cmd(host, NAND_CMD_READSTART, true);
host->send_page(mtd, NFC_OUTPUT);
memcpy(host->data_buf, host->main_area0, mtd->writesize);
copy_spare(mtd, true);
break;
case NAND_CMD_SEQIN:
if (column >= mtd->writesize)
/* call ourself to read a page */
mxc_nand_command(mtd, NAND_CMD_READ0, 0, page_addr);
host->buf_start = column;
host->send_cmd(host, command, false);
mxc_do_addr_cycle(mtd, column, page_addr);
break;
case NAND_CMD_PAGEPROG:
memcpy(host->main_area0, host->data_buf, mtd->writesize);
copy_spare(mtd, false);
host->send_page(mtd, NFC_INPUT);
host->send_cmd(host, command, true);
mxc_do_addr_cycle(mtd, column, page_addr);
break;
case NAND_CMD_READID:
host->send_cmd(host, command, true);
mxc_do_addr_cycle(mtd, column, page_addr);
host->send_read_id(host);
host->buf_start = column;
break;
case NAND_CMD_ERASE1:
case NAND_CMD_ERASE2:
host->send_cmd(host, command, false);
mxc_do_addr_cycle(mtd, column, page_addr);
break;
}
}
/*
* The generic flash bbt decriptors overlap with our ecc
* hardware, so define some i.MX specific ones.
*/
static uint8_t bbt_pattern[] = { 'B', 'b', 't', '0' };
static uint8_t mirror_pattern[] = { '1', 't', 'b', 'B' };
static struct nand_bbt_descr bbt_main_descr = {
.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
| NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
.offs = 0,
.len = 4,
.veroffs = 4,
.maxblocks = 4,
.pattern = bbt_pattern,
};
static struct nand_bbt_descr bbt_mirror_descr = {
.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
| NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
.offs = 0,
.len = 4,
.veroffs = 4,
.maxblocks = 4,
.pattern = mirror_pattern,
};
static int __init mxcnd_probe(struct platform_device *pdev)
{
struct nand_chip *this;
struct mtd_info *mtd;
struct mxc_nand_platform_data *pdata = pdev->dev.platform_data;
struct mxc_nand_host *host;
struct resource *res;
int err = 0, __maybe_unused nr_parts = 0;
struct nand_ecclayout *oob_smallpage, *oob_largepage;
/* Allocate memory for MTD device structure and private data */
host = kzalloc(sizeof(struct mxc_nand_host) + NAND_MAX_PAGESIZE +
NAND_MAX_OOBSIZE, GFP_KERNEL);
if (!host)
return -ENOMEM;
host->data_buf = (uint8_t *)(host + 1);
host->dev = &pdev->dev;
/* structures must be linked */
this = &host->nand;
mtd = &host->mtd;
mtd->priv = this;
mtd->owner = THIS_MODULE;
mtd->dev.parent = &pdev->dev;
mtd->name = DRIVER_NAME;
/* 50 us command delay time */
this->chip_delay = 5;
this->priv = host;
this->dev_ready = mxc_nand_dev_ready;
this->cmdfunc = mxc_nand_command;
this->select_chip = mxc_nand_select_chip;
this->read_byte = mxc_nand_read_byte;
this->read_word = mxc_nand_read_word;
this->write_buf = mxc_nand_write_buf;
this->read_buf = mxc_nand_read_buf;
this->verify_buf = mxc_nand_verify_buf;
host->clk = clk_get(&pdev->dev, "nfc");
if (IS_ERR(host->clk)) {
err = PTR_ERR(host->clk);
goto eclk;
}
clk_enable(host->clk);
host->clk_act = 1;
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
if (!res) {
err = -ENODEV;
goto eres;
}
host->base = ioremap(res->start, resource_size(res));
if (!host->base) {
err = -ENOMEM;
goto eres;
}
host->main_area0 = host->base;
if (nfc_is_v1() || nfc_is_v21()) {
host->preset = preset_v1_v2;
host->send_cmd = send_cmd_v1_v2;
host->send_addr = send_addr_v1_v2;
host->send_page = send_page_v1_v2;
host->send_read_id = send_read_id_v1_v2;
host->get_dev_status = get_dev_status_v1_v2;
host->check_int = check_int_v1_v2;
if (cpu_is_mx21())
host->irq_control = irq_control_mx21;
else
host->irq_control = irq_control_v1_v2;
}
if (nfc_is_v21()) {
host->regs = host->base + 0x1e00;
host->spare0 = host->base + 0x1000;
host->spare_len = 64;
oob_smallpage = &nandv2_hw_eccoob_smallpage;
oob_largepage = &nandv2_hw_eccoob_largepage;
this->ecc.bytes = 9;
} else if (nfc_is_v1()) {
host->regs = host->base + 0xe00;
host->spare0 = host->base + 0x800;
host->spare_len = 16;
oob_smallpage = &nandv1_hw_eccoob_smallpage;
oob_largepage = &nandv1_hw_eccoob_largepage;
this->ecc.bytes = 3;
host->eccsize = 1;
} else if (nfc_is_v3_2()) {
res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
if (!res) {
err = -ENODEV;
goto eirq;
}
host->regs_ip = ioremap(res->start, resource_size(res));
if (!host->regs_ip) {
err = -ENOMEM;
goto eirq;
}
host->regs_axi = host->base + 0x1e00;
host->spare0 = host->base + 0x1000;
host->spare_len = 64;
host->preset = preset_v3;
host->send_cmd = send_cmd_v3;
host->send_addr = send_addr_v3;
host->send_page = send_page_v3;
host->send_read_id = send_read_id_v3;
host->check_int = check_int_v3;
host->get_dev_status = get_dev_status_v3;
host->irq_control = irq_control_v3;
oob_smallpage = &nandv2_hw_eccoob_smallpage;
oob_largepage = &nandv2_hw_eccoob_largepage;
} else
BUG();
this->ecc.size = 512;
this->ecc.layout = oob_smallpage;
if (pdata->hw_ecc) {
this->ecc.calculate = mxc_nand_calculate_ecc;
this->ecc.hwctl = mxc_nand_enable_hwecc;
if (nfc_is_v1())
this->ecc.correct = mxc_nand_correct_data_v1;
else
this->ecc.correct = mxc_nand_correct_data_v2_v3;
this->ecc.mode = NAND_ECC_HW;
} else {
this->ecc.mode = NAND_ECC_SOFT;
}
/* NAND bus width determines access funtions used by upper layer */
if (pdata->width == 2)
this->options |= NAND_BUSWIDTH_16;
if (pdata->flash_bbt) {
this->bbt_td = &bbt_main_descr;
this->bbt_md = &bbt_mirror_descr;
/* update flash based bbt */
this->options |= NAND_USE_FLASH_BBT;
}
init_completion(&host->op_completion);
host->irq = platform_get_irq(pdev, 0);
/*
* mask the interrupt. For i.MX21 explicitely call
* irq_control_v1_v2 to use the mask bit. We can't call
* disable_irq_nosync() for an interrupt we do not own yet.
*/
if (cpu_is_mx21())
irq_control_v1_v2(host, 0);
else
host->irq_control(host, 0);
err = request_irq(host->irq, mxc_nfc_irq, IRQF_DISABLED, DRIVER_NAME, host);
if (err)
goto eirq;
host->irq_control(host, 0);
/*
* Now that the interrupt is disabled make sure the interrupt
* mask bit is cleared on i.MX21. Otherwise we can't read
* the interrupt status bit on this machine.
*/
if (cpu_is_mx21())
irq_control_v1_v2(host, 1);
/* first scan to find the device and get the page size */
if (nand_scan_ident(mtd, 1, NULL)) {
err = -ENXIO;
goto escan;
}
/* Call preset again, with correct writesize this time */
host->preset(mtd);
if (mtd->writesize == 2048)
this->ecc.layout = oob_largepage;
/* second phase scan */
if (nand_scan_tail(mtd)) {
err = -ENXIO;
goto escan;
}
/* Register the partitions */
#ifdef CONFIG_MTD_PARTITIONS
nr_parts =
parse_mtd_partitions(mtd, part_probes, &host->parts, 0);
if (nr_parts > 0)
add_mtd_partitions(mtd, host->parts, nr_parts);
else if (pdata->parts)
add_mtd_partitions(mtd, pdata->parts, pdata->nr_parts);
else
#endif
{
pr_info("Registering %s as whole device\n", mtd->name);
add_mtd_device(mtd);
}
platform_set_drvdata(pdev, host);
return 0;
escan:
free_irq(host->irq, host);
eirq:
if (host->regs_ip)
iounmap(host->regs_ip);
iounmap(host->base);
eres:
clk_put(host->clk);
eclk:
kfree(host);
return err;
}
static int __devexit mxcnd_remove(struct platform_device *pdev)
{
struct mxc_nand_host *host = platform_get_drvdata(pdev);
clk_put(host->clk);
platform_set_drvdata(pdev, NULL);
nand_release(&host->mtd);
free_irq(host->irq, host);
if (host->regs_ip)
iounmap(host->regs_ip);
iounmap(host->base);
kfree(host);
return 0;
}
static struct platform_driver mxcnd_driver = {
.driver = {
.name = DRIVER_NAME,
},
.remove = __devexit_p(mxcnd_remove),
};
static int __init mxc_nd_init(void)
{
return platform_driver_probe(&mxcnd_driver, mxcnd_probe);
}
static void __exit mxc_nd_cleanup(void)
{
/* Unregister the device structure */
platform_driver_unregister(&mxcnd_driver);
}
module_init(mxc_nd_init);
module_exit(mxc_nd_cleanup);
MODULE_AUTHOR("Freescale Semiconductor, Inc.");
MODULE_DESCRIPTION("MXC NAND MTD driver");
MODULE_LICENSE("GPL");