mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2024-12-24 14:58:10 +07:00
245715cbe8
When the VCPU is blocked (for example from WFI) we don't inject the
physical timer interrupt if it should fire while the CPU is blocked, but
instead we just wake up the VCPU and expect kvm_timer_vcpu_load to take
care of injecting the interrupt.
Unfortunately, kvm_timer_vcpu_load() doesn't actually do that, it only
has support to schedule a soft timer if the emulated phys timer is
expected to fire in the future.
Follow the same pattern as kvm_timer_update_state() and update the irq
state after potentially scheduling a soft timer.
Reported-by: Andre Przywara <andre.przywara@arm.com>
Cc: Stable <stable@vger.kernel.org> # 4.15+
Fixes: bbdd52cfcb
("KVM: arm/arm64: Avoid phys timer emulation in vcpu entry/exit")
Signed-off-by: Christoffer Dall <christoffer.dall@arm.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
967 lines
26 KiB
C
967 lines
26 KiB
C
/*
|
|
* Copyright (C) 2012 ARM Ltd.
|
|
* Author: Marc Zyngier <marc.zyngier@arm.com>
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License version 2 as
|
|
* published by the Free Software Foundation.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software
|
|
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
|
|
*/
|
|
|
|
#include <linux/cpu.h>
|
|
#include <linux/kvm.h>
|
|
#include <linux/kvm_host.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/irq.h>
|
|
#include <linux/uaccess.h>
|
|
|
|
#include <clocksource/arm_arch_timer.h>
|
|
#include <asm/arch_timer.h>
|
|
#include <asm/kvm_hyp.h>
|
|
|
|
#include <kvm/arm_vgic.h>
|
|
#include <kvm/arm_arch_timer.h>
|
|
|
|
#include "trace.h"
|
|
|
|
static struct timecounter *timecounter;
|
|
static unsigned int host_vtimer_irq;
|
|
static u32 host_vtimer_irq_flags;
|
|
|
|
static DEFINE_STATIC_KEY_FALSE(has_gic_active_state);
|
|
|
|
static const struct kvm_irq_level default_ptimer_irq = {
|
|
.irq = 30,
|
|
.level = 1,
|
|
};
|
|
|
|
static const struct kvm_irq_level default_vtimer_irq = {
|
|
.irq = 27,
|
|
.level = 1,
|
|
};
|
|
|
|
static bool kvm_timer_irq_can_fire(struct arch_timer_context *timer_ctx);
|
|
static void kvm_timer_update_irq(struct kvm_vcpu *vcpu, bool new_level,
|
|
struct arch_timer_context *timer_ctx);
|
|
static bool kvm_timer_should_fire(struct arch_timer_context *timer_ctx);
|
|
|
|
u64 kvm_phys_timer_read(void)
|
|
{
|
|
return timecounter->cc->read(timecounter->cc);
|
|
}
|
|
|
|
static inline bool userspace_irqchip(struct kvm *kvm)
|
|
{
|
|
return static_branch_unlikely(&userspace_irqchip_in_use) &&
|
|
unlikely(!irqchip_in_kernel(kvm));
|
|
}
|
|
|
|
static void soft_timer_start(struct hrtimer *hrt, u64 ns)
|
|
{
|
|
hrtimer_start(hrt, ktime_add_ns(ktime_get(), ns),
|
|
HRTIMER_MODE_ABS);
|
|
}
|
|
|
|
static void soft_timer_cancel(struct hrtimer *hrt, struct work_struct *work)
|
|
{
|
|
hrtimer_cancel(hrt);
|
|
if (work)
|
|
cancel_work_sync(work);
|
|
}
|
|
|
|
static irqreturn_t kvm_arch_timer_handler(int irq, void *dev_id)
|
|
{
|
|
struct kvm_vcpu *vcpu = *(struct kvm_vcpu **)dev_id;
|
|
struct arch_timer_context *vtimer;
|
|
|
|
/*
|
|
* We may see a timer interrupt after vcpu_put() has been called which
|
|
* sets the CPU's vcpu pointer to NULL, because even though the timer
|
|
* has been disabled in vtimer_save_state(), the hardware interrupt
|
|
* signal may not have been retired from the interrupt controller yet.
|
|
*/
|
|
if (!vcpu)
|
|
return IRQ_HANDLED;
|
|
|
|
vtimer = vcpu_vtimer(vcpu);
|
|
if (kvm_timer_should_fire(vtimer))
|
|
kvm_timer_update_irq(vcpu, true, vtimer);
|
|
|
|
if (userspace_irqchip(vcpu->kvm) &&
|
|
!static_branch_unlikely(&has_gic_active_state))
|
|
disable_percpu_irq(host_vtimer_irq);
|
|
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
/*
|
|
* Work function for handling the backup timer that we schedule when a vcpu is
|
|
* no longer running, but had a timer programmed to fire in the future.
|
|
*/
|
|
static void kvm_timer_inject_irq_work(struct work_struct *work)
|
|
{
|
|
struct kvm_vcpu *vcpu;
|
|
|
|
vcpu = container_of(work, struct kvm_vcpu, arch.timer_cpu.expired);
|
|
|
|
/*
|
|
* If the vcpu is blocked we want to wake it up so that it will see
|
|
* the timer has expired when entering the guest.
|
|
*/
|
|
kvm_vcpu_wake_up(vcpu);
|
|
}
|
|
|
|
static u64 kvm_timer_compute_delta(struct arch_timer_context *timer_ctx)
|
|
{
|
|
u64 cval, now;
|
|
|
|
cval = timer_ctx->cnt_cval;
|
|
now = kvm_phys_timer_read() - timer_ctx->cntvoff;
|
|
|
|
if (now < cval) {
|
|
u64 ns;
|
|
|
|
ns = cyclecounter_cyc2ns(timecounter->cc,
|
|
cval - now,
|
|
timecounter->mask,
|
|
&timecounter->frac);
|
|
return ns;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static bool kvm_timer_irq_can_fire(struct arch_timer_context *timer_ctx)
|
|
{
|
|
return !(timer_ctx->cnt_ctl & ARCH_TIMER_CTRL_IT_MASK) &&
|
|
(timer_ctx->cnt_ctl & ARCH_TIMER_CTRL_ENABLE);
|
|
}
|
|
|
|
/*
|
|
* Returns the earliest expiration time in ns among guest timers.
|
|
* Note that it will return 0 if none of timers can fire.
|
|
*/
|
|
static u64 kvm_timer_earliest_exp(struct kvm_vcpu *vcpu)
|
|
{
|
|
u64 min_virt = ULLONG_MAX, min_phys = ULLONG_MAX;
|
|
struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
|
|
struct arch_timer_context *ptimer = vcpu_ptimer(vcpu);
|
|
|
|
if (kvm_timer_irq_can_fire(vtimer))
|
|
min_virt = kvm_timer_compute_delta(vtimer);
|
|
|
|
if (kvm_timer_irq_can_fire(ptimer))
|
|
min_phys = kvm_timer_compute_delta(ptimer);
|
|
|
|
/* If none of timers can fire, then return 0 */
|
|
if ((min_virt == ULLONG_MAX) && (min_phys == ULLONG_MAX))
|
|
return 0;
|
|
|
|
return min(min_virt, min_phys);
|
|
}
|
|
|
|
static enum hrtimer_restart kvm_bg_timer_expire(struct hrtimer *hrt)
|
|
{
|
|
struct arch_timer_cpu *timer;
|
|
struct kvm_vcpu *vcpu;
|
|
u64 ns;
|
|
|
|
timer = container_of(hrt, struct arch_timer_cpu, bg_timer);
|
|
vcpu = container_of(timer, struct kvm_vcpu, arch.timer_cpu);
|
|
|
|
/*
|
|
* Check that the timer has really expired from the guest's
|
|
* PoV (NTP on the host may have forced it to expire
|
|
* early). If we should have slept longer, restart it.
|
|
*/
|
|
ns = kvm_timer_earliest_exp(vcpu);
|
|
if (unlikely(ns)) {
|
|
hrtimer_forward_now(hrt, ns_to_ktime(ns));
|
|
return HRTIMER_RESTART;
|
|
}
|
|
|
|
schedule_work(&timer->expired);
|
|
return HRTIMER_NORESTART;
|
|
}
|
|
|
|
static enum hrtimer_restart kvm_phys_timer_expire(struct hrtimer *hrt)
|
|
{
|
|
struct arch_timer_context *ptimer;
|
|
struct arch_timer_cpu *timer;
|
|
struct kvm_vcpu *vcpu;
|
|
u64 ns;
|
|
|
|
timer = container_of(hrt, struct arch_timer_cpu, phys_timer);
|
|
vcpu = container_of(timer, struct kvm_vcpu, arch.timer_cpu);
|
|
ptimer = vcpu_ptimer(vcpu);
|
|
|
|
/*
|
|
* Check that the timer has really expired from the guest's
|
|
* PoV (NTP on the host may have forced it to expire
|
|
* early). If not ready, schedule for a later time.
|
|
*/
|
|
ns = kvm_timer_compute_delta(ptimer);
|
|
if (unlikely(ns)) {
|
|
hrtimer_forward_now(hrt, ns_to_ktime(ns));
|
|
return HRTIMER_RESTART;
|
|
}
|
|
|
|
kvm_timer_update_irq(vcpu, true, ptimer);
|
|
return HRTIMER_NORESTART;
|
|
}
|
|
|
|
static bool kvm_timer_should_fire(struct arch_timer_context *timer_ctx)
|
|
{
|
|
u64 cval, now;
|
|
|
|
if (timer_ctx->loaded) {
|
|
u32 cnt_ctl;
|
|
|
|
/* Only the virtual timer can be loaded so far */
|
|
cnt_ctl = read_sysreg_el0(cntv_ctl);
|
|
return (cnt_ctl & ARCH_TIMER_CTRL_ENABLE) &&
|
|
(cnt_ctl & ARCH_TIMER_CTRL_IT_STAT) &&
|
|
!(cnt_ctl & ARCH_TIMER_CTRL_IT_MASK);
|
|
}
|
|
|
|
if (!kvm_timer_irq_can_fire(timer_ctx))
|
|
return false;
|
|
|
|
cval = timer_ctx->cnt_cval;
|
|
now = kvm_phys_timer_read() - timer_ctx->cntvoff;
|
|
|
|
return cval <= now;
|
|
}
|
|
|
|
bool kvm_timer_is_pending(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
|
|
struct arch_timer_context *ptimer = vcpu_ptimer(vcpu);
|
|
|
|
if (kvm_timer_should_fire(vtimer))
|
|
return true;
|
|
|
|
return kvm_timer_should_fire(ptimer);
|
|
}
|
|
|
|
/*
|
|
* Reflect the timer output level into the kvm_run structure
|
|
*/
|
|
void kvm_timer_update_run(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
|
|
struct arch_timer_context *ptimer = vcpu_ptimer(vcpu);
|
|
struct kvm_sync_regs *regs = &vcpu->run->s.regs;
|
|
|
|
/* Populate the device bitmap with the timer states */
|
|
regs->device_irq_level &= ~(KVM_ARM_DEV_EL1_VTIMER |
|
|
KVM_ARM_DEV_EL1_PTIMER);
|
|
if (kvm_timer_should_fire(vtimer))
|
|
regs->device_irq_level |= KVM_ARM_DEV_EL1_VTIMER;
|
|
if (kvm_timer_should_fire(ptimer))
|
|
regs->device_irq_level |= KVM_ARM_DEV_EL1_PTIMER;
|
|
}
|
|
|
|
static void kvm_timer_update_irq(struct kvm_vcpu *vcpu, bool new_level,
|
|
struct arch_timer_context *timer_ctx)
|
|
{
|
|
int ret;
|
|
|
|
timer_ctx->irq.level = new_level;
|
|
trace_kvm_timer_update_irq(vcpu->vcpu_id, timer_ctx->irq.irq,
|
|
timer_ctx->irq.level);
|
|
|
|
if (!userspace_irqchip(vcpu->kvm)) {
|
|
ret = kvm_vgic_inject_irq(vcpu->kvm, vcpu->vcpu_id,
|
|
timer_ctx->irq.irq,
|
|
timer_ctx->irq.level,
|
|
timer_ctx);
|
|
WARN_ON(ret);
|
|
}
|
|
}
|
|
|
|
/* Schedule the background timer for the emulated timer. */
|
|
static void phys_timer_emulate(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu;
|
|
struct arch_timer_context *ptimer = vcpu_ptimer(vcpu);
|
|
|
|
/*
|
|
* If the timer can fire now, we don't need to have a soft timer
|
|
* scheduled for the future. If the timer cannot fire at all,
|
|
* then we also don't need a soft timer.
|
|
*/
|
|
if (kvm_timer_should_fire(ptimer) || !kvm_timer_irq_can_fire(ptimer)) {
|
|
soft_timer_cancel(&timer->phys_timer, NULL);
|
|
return;
|
|
}
|
|
|
|
soft_timer_start(&timer->phys_timer, kvm_timer_compute_delta(ptimer));
|
|
}
|
|
|
|
/*
|
|
* Check if there was a change in the timer state, so that we should either
|
|
* raise or lower the line level to the GIC or schedule a background timer to
|
|
* emulate the physical timer.
|
|
*/
|
|
static void kvm_timer_update_state(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu;
|
|
struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
|
|
struct arch_timer_context *ptimer = vcpu_ptimer(vcpu);
|
|
bool level;
|
|
|
|
if (unlikely(!timer->enabled))
|
|
return;
|
|
|
|
/*
|
|
* The vtimer virtual interrupt is a 'mapped' interrupt, meaning part
|
|
* of its lifecycle is offloaded to the hardware, and we therefore may
|
|
* not have lowered the irq.level value before having to signal a new
|
|
* interrupt, but have to signal an interrupt every time the level is
|
|
* asserted.
|
|
*/
|
|
level = kvm_timer_should_fire(vtimer);
|
|
kvm_timer_update_irq(vcpu, level, vtimer);
|
|
|
|
phys_timer_emulate(vcpu);
|
|
|
|
if (kvm_timer_should_fire(ptimer) != ptimer->irq.level)
|
|
kvm_timer_update_irq(vcpu, !ptimer->irq.level, ptimer);
|
|
}
|
|
|
|
static void vtimer_save_state(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu;
|
|
struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
|
|
unsigned long flags;
|
|
|
|
local_irq_save(flags);
|
|
|
|
if (!vtimer->loaded)
|
|
goto out;
|
|
|
|
if (timer->enabled) {
|
|
vtimer->cnt_ctl = read_sysreg_el0(cntv_ctl);
|
|
vtimer->cnt_cval = read_sysreg_el0(cntv_cval);
|
|
}
|
|
|
|
/* Disable the virtual timer */
|
|
write_sysreg_el0(0, cntv_ctl);
|
|
isb();
|
|
|
|
vtimer->loaded = false;
|
|
out:
|
|
local_irq_restore(flags);
|
|
}
|
|
|
|
/*
|
|
* Schedule the background timer before calling kvm_vcpu_block, so that this
|
|
* thread is removed from its waitqueue and made runnable when there's a timer
|
|
* interrupt to handle.
|
|
*/
|
|
void kvm_timer_schedule(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu;
|
|
struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
|
|
struct arch_timer_context *ptimer = vcpu_ptimer(vcpu);
|
|
|
|
vtimer_save_state(vcpu);
|
|
|
|
/*
|
|
* No need to schedule a background timer if any guest timer has
|
|
* already expired, because kvm_vcpu_block will return before putting
|
|
* the thread to sleep.
|
|
*/
|
|
if (kvm_timer_should_fire(vtimer) || kvm_timer_should_fire(ptimer))
|
|
return;
|
|
|
|
/*
|
|
* If both timers are not capable of raising interrupts (disabled or
|
|
* masked), then there's no more work for us to do.
|
|
*/
|
|
if (!kvm_timer_irq_can_fire(vtimer) && !kvm_timer_irq_can_fire(ptimer))
|
|
return;
|
|
|
|
/*
|
|
* The guest timers have not yet expired, schedule a background timer.
|
|
* Set the earliest expiration time among the guest timers.
|
|
*/
|
|
soft_timer_start(&timer->bg_timer, kvm_timer_earliest_exp(vcpu));
|
|
}
|
|
|
|
static void vtimer_restore_state(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu;
|
|
struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
|
|
unsigned long flags;
|
|
|
|
local_irq_save(flags);
|
|
|
|
if (vtimer->loaded)
|
|
goto out;
|
|
|
|
if (timer->enabled) {
|
|
write_sysreg_el0(vtimer->cnt_cval, cntv_cval);
|
|
isb();
|
|
write_sysreg_el0(vtimer->cnt_ctl, cntv_ctl);
|
|
}
|
|
|
|
vtimer->loaded = true;
|
|
out:
|
|
local_irq_restore(flags);
|
|
}
|
|
|
|
void kvm_timer_unschedule(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu;
|
|
|
|
vtimer_restore_state(vcpu);
|
|
|
|
soft_timer_cancel(&timer->bg_timer, &timer->expired);
|
|
}
|
|
|
|
static void set_cntvoff(u64 cntvoff)
|
|
{
|
|
u32 low = lower_32_bits(cntvoff);
|
|
u32 high = upper_32_bits(cntvoff);
|
|
|
|
/*
|
|
* Since kvm_call_hyp doesn't fully support the ARM PCS especially on
|
|
* 32-bit systems, but rather passes register by register shifted one
|
|
* place (we put the function address in r0/x0), we cannot simply pass
|
|
* a 64-bit value as an argument, but have to split the value in two
|
|
* 32-bit halves.
|
|
*/
|
|
kvm_call_hyp(__kvm_timer_set_cntvoff, low, high);
|
|
}
|
|
|
|
static inline void set_vtimer_irq_phys_active(struct kvm_vcpu *vcpu, bool active)
|
|
{
|
|
int r;
|
|
r = irq_set_irqchip_state(host_vtimer_irq, IRQCHIP_STATE_ACTIVE, active);
|
|
WARN_ON(r);
|
|
}
|
|
|
|
static void kvm_timer_vcpu_load_gic(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
|
|
bool phys_active;
|
|
|
|
if (irqchip_in_kernel(vcpu->kvm))
|
|
phys_active = kvm_vgic_map_is_active(vcpu, vtimer->irq.irq);
|
|
else
|
|
phys_active = vtimer->irq.level;
|
|
set_vtimer_irq_phys_active(vcpu, phys_active);
|
|
}
|
|
|
|
static void kvm_timer_vcpu_load_nogic(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
|
|
|
|
/*
|
|
* When using a userspace irqchip with the architected timers and a
|
|
* host interrupt controller that doesn't support an active state, we
|
|
* must still prevent continuously exiting from the guest, and
|
|
* therefore mask the physical interrupt by disabling it on the host
|
|
* interrupt controller when the virtual level is high, such that the
|
|
* guest can make forward progress. Once we detect the output level
|
|
* being de-asserted, we unmask the interrupt again so that we exit
|
|
* from the guest when the timer fires.
|
|
*/
|
|
if (vtimer->irq.level)
|
|
disable_percpu_irq(host_vtimer_irq);
|
|
else
|
|
enable_percpu_irq(host_vtimer_irq, host_vtimer_irq_flags);
|
|
}
|
|
|
|
void kvm_timer_vcpu_load(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu;
|
|
struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
|
|
struct arch_timer_context *ptimer = vcpu_ptimer(vcpu);
|
|
|
|
if (unlikely(!timer->enabled))
|
|
return;
|
|
|
|
if (static_branch_likely(&has_gic_active_state))
|
|
kvm_timer_vcpu_load_gic(vcpu);
|
|
else
|
|
kvm_timer_vcpu_load_nogic(vcpu);
|
|
|
|
set_cntvoff(vtimer->cntvoff);
|
|
|
|
vtimer_restore_state(vcpu);
|
|
|
|
/* Set the background timer for the physical timer emulation. */
|
|
phys_timer_emulate(vcpu);
|
|
|
|
/* If the timer fired while we weren't running, inject it now */
|
|
if (kvm_timer_should_fire(ptimer) != ptimer->irq.level)
|
|
kvm_timer_update_irq(vcpu, !ptimer->irq.level, ptimer);
|
|
}
|
|
|
|
bool kvm_timer_should_notify_user(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
|
|
struct arch_timer_context *ptimer = vcpu_ptimer(vcpu);
|
|
struct kvm_sync_regs *sregs = &vcpu->run->s.regs;
|
|
bool vlevel, plevel;
|
|
|
|
if (likely(irqchip_in_kernel(vcpu->kvm)))
|
|
return false;
|
|
|
|
vlevel = sregs->device_irq_level & KVM_ARM_DEV_EL1_VTIMER;
|
|
plevel = sregs->device_irq_level & KVM_ARM_DEV_EL1_PTIMER;
|
|
|
|
return kvm_timer_should_fire(vtimer) != vlevel ||
|
|
kvm_timer_should_fire(ptimer) != plevel;
|
|
}
|
|
|
|
void kvm_timer_vcpu_put(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu;
|
|
|
|
if (unlikely(!timer->enabled))
|
|
return;
|
|
|
|
vtimer_save_state(vcpu);
|
|
|
|
/*
|
|
* Cancel the physical timer emulation, because the only case where we
|
|
* need it after a vcpu_put is in the context of a sleeping VCPU, and
|
|
* in that case we already factor in the deadline for the physical
|
|
* timer when scheduling the bg_timer.
|
|
*
|
|
* In any case, we re-schedule the hrtimer for the physical timer when
|
|
* coming back to the VCPU thread in kvm_timer_vcpu_load().
|
|
*/
|
|
soft_timer_cancel(&timer->phys_timer, NULL);
|
|
|
|
/*
|
|
* The kernel may decide to run userspace after calling vcpu_put, so
|
|
* we reset cntvoff to 0 to ensure a consistent read between user
|
|
* accesses to the virtual counter and kernel access to the physical
|
|
* counter of non-VHE case. For VHE, the virtual counter uses a fixed
|
|
* virtual offset of zero, so no need to zero CNTVOFF_EL2 register.
|
|
*/
|
|
if (!has_vhe())
|
|
set_cntvoff(0);
|
|
}
|
|
|
|
/*
|
|
* With a userspace irqchip we have to check if the guest de-asserted the
|
|
* timer and if so, unmask the timer irq signal on the host interrupt
|
|
* controller to ensure that we see future timer signals.
|
|
*/
|
|
static void unmask_vtimer_irq_user(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
|
|
|
|
if (!kvm_timer_should_fire(vtimer)) {
|
|
kvm_timer_update_irq(vcpu, false, vtimer);
|
|
if (static_branch_likely(&has_gic_active_state))
|
|
set_vtimer_irq_phys_active(vcpu, false);
|
|
else
|
|
enable_percpu_irq(host_vtimer_irq, host_vtimer_irq_flags);
|
|
}
|
|
}
|
|
|
|
void kvm_timer_sync_hwstate(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu;
|
|
|
|
if (unlikely(!timer->enabled))
|
|
return;
|
|
|
|
if (unlikely(!irqchip_in_kernel(vcpu->kvm)))
|
|
unmask_vtimer_irq_user(vcpu);
|
|
}
|
|
|
|
int kvm_timer_vcpu_reset(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu;
|
|
struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
|
|
struct arch_timer_context *ptimer = vcpu_ptimer(vcpu);
|
|
|
|
/*
|
|
* The bits in CNTV_CTL are architecturally reset to UNKNOWN for ARMv8
|
|
* and to 0 for ARMv7. We provide an implementation that always
|
|
* resets the timer to be disabled and unmasked and is compliant with
|
|
* the ARMv7 architecture.
|
|
*/
|
|
vtimer->cnt_ctl = 0;
|
|
ptimer->cnt_ctl = 0;
|
|
kvm_timer_update_state(vcpu);
|
|
|
|
if (timer->enabled && irqchip_in_kernel(vcpu->kvm))
|
|
kvm_vgic_reset_mapped_irq(vcpu, vtimer->irq.irq);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Make the updates of cntvoff for all vtimer contexts atomic */
|
|
static void update_vtimer_cntvoff(struct kvm_vcpu *vcpu, u64 cntvoff)
|
|
{
|
|
int i;
|
|
struct kvm *kvm = vcpu->kvm;
|
|
struct kvm_vcpu *tmp;
|
|
|
|
mutex_lock(&kvm->lock);
|
|
kvm_for_each_vcpu(i, tmp, kvm)
|
|
vcpu_vtimer(tmp)->cntvoff = cntvoff;
|
|
|
|
/*
|
|
* When called from the vcpu create path, the CPU being created is not
|
|
* included in the loop above, so we just set it here as well.
|
|
*/
|
|
vcpu_vtimer(vcpu)->cntvoff = cntvoff;
|
|
mutex_unlock(&kvm->lock);
|
|
}
|
|
|
|
void kvm_timer_vcpu_init(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu;
|
|
struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
|
|
struct arch_timer_context *ptimer = vcpu_ptimer(vcpu);
|
|
|
|
/* Synchronize cntvoff across all vtimers of a VM. */
|
|
update_vtimer_cntvoff(vcpu, kvm_phys_timer_read());
|
|
vcpu_ptimer(vcpu)->cntvoff = 0;
|
|
|
|
INIT_WORK(&timer->expired, kvm_timer_inject_irq_work);
|
|
hrtimer_init(&timer->bg_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
|
|
timer->bg_timer.function = kvm_bg_timer_expire;
|
|
|
|
hrtimer_init(&timer->phys_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
|
|
timer->phys_timer.function = kvm_phys_timer_expire;
|
|
|
|
vtimer->irq.irq = default_vtimer_irq.irq;
|
|
ptimer->irq.irq = default_ptimer_irq.irq;
|
|
}
|
|
|
|
static void kvm_timer_init_interrupt(void *info)
|
|
{
|
|
enable_percpu_irq(host_vtimer_irq, host_vtimer_irq_flags);
|
|
}
|
|
|
|
int kvm_arm_timer_set_reg(struct kvm_vcpu *vcpu, u64 regid, u64 value)
|
|
{
|
|
struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
|
|
struct arch_timer_context *ptimer = vcpu_ptimer(vcpu);
|
|
|
|
switch (regid) {
|
|
case KVM_REG_ARM_TIMER_CTL:
|
|
vtimer->cnt_ctl = value & ~ARCH_TIMER_CTRL_IT_STAT;
|
|
break;
|
|
case KVM_REG_ARM_TIMER_CNT:
|
|
update_vtimer_cntvoff(vcpu, kvm_phys_timer_read() - value);
|
|
break;
|
|
case KVM_REG_ARM_TIMER_CVAL:
|
|
vtimer->cnt_cval = value;
|
|
break;
|
|
case KVM_REG_ARM_PTIMER_CTL:
|
|
ptimer->cnt_ctl = value & ~ARCH_TIMER_CTRL_IT_STAT;
|
|
break;
|
|
case KVM_REG_ARM_PTIMER_CVAL:
|
|
ptimer->cnt_cval = value;
|
|
break;
|
|
|
|
default:
|
|
return -1;
|
|
}
|
|
|
|
kvm_timer_update_state(vcpu);
|
|
return 0;
|
|
}
|
|
|
|
static u64 read_timer_ctl(struct arch_timer_context *timer)
|
|
{
|
|
/*
|
|
* Set ISTATUS bit if it's expired.
|
|
* Note that according to ARMv8 ARM Issue A.k, ISTATUS bit is
|
|
* UNKNOWN when ENABLE bit is 0, so we chose to set ISTATUS bit
|
|
* regardless of ENABLE bit for our implementation convenience.
|
|
*/
|
|
if (!kvm_timer_compute_delta(timer))
|
|
return timer->cnt_ctl | ARCH_TIMER_CTRL_IT_STAT;
|
|
else
|
|
return timer->cnt_ctl;
|
|
}
|
|
|
|
u64 kvm_arm_timer_get_reg(struct kvm_vcpu *vcpu, u64 regid)
|
|
{
|
|
struct arch_timer_context *ptimer = vcpu_ptimer(vcpu);
|
|
struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
|
|
|
|
switch (regid) {
|
|
case KVM_REG_ARM_TIMER_CTL:
|
|
return read_timer_ctl(vtimer);
|
|
case KVM_REG_ARM_TIMER_CNT:
|
|
return kvm_phys_timer_read() - vtimer->cntvoff;
|
|
case KVM_REG_ARM_TIMER_CVAL:
|
|
return vtimer->cnt_cval;
|
|
case KVM_REG_ARM_PTIMER_CTL:
|
|
return read_timer_ctl(ptimer);
|
|
case KVM_REG_ARM_PTIMER_CVAL:
|
|
return ptimer->cnt_cval;
|
|
case KVM_REG_ARM_PTIMER_CNT:
|
|
return kvm_phys_timer_read();
|
|
}
|
|
return (u64)-1;
|
|
}
|
|
|
|
static int kvm_timer_starting_cpu(unsigned int cpu)
|
|
{
|
|
kvm_timer_init_interrupt(NULL);
|
|
return 0;
|
|
}
|
|
|
|
static int kvm_timer_dying_cpu(unsigned int cpu)
|
|
{
|
|
disable_percpu_irq(host_vtimer_irq);
|
|
return 0;
|
|
}
|
|
|
|
int kvm_timer_hyp_init(bool has_gic)
|
|
{
|
|
struct arch_timer_kvm_info *info;
|
|
int err;
|
|
|
|
info = arch_timer_get_kvm_info();
|
|
timecounter = &info->timecounter;
|
|
|
|
if (!timecounter->cc) {
|
|
kvm_err("kvm_arch_timer: uninitialized timecounter\n");
|
|
return -ENODEV;
|
|
}
|
|
|
|
if (info->virtual_irq <= 0) {
|
|
kvm_err("kvm_arch_timer: invalid virtual timer IRQ: %d\n",
|
|
info->virtual_irq);
|
|
return -ENODEV;
|
|
}
|
|
host_vtimer_irq = info->virtual_irq;
|
|
|
|
host_vtimer_irq_flags = irq_get_trigger_type(host_vtimer_irq);
|
|
if (host_vtimer_irq_flags != IRQF_TRIGGER_HIGH &&
|
|
host_vtimer_irq_flags != IRQF_TRIGGER_LOW) {
|
|
kvm_err("Invalid trigger for IRQ%d, assuming level low\n",
|
|
host_vtimer_irq);
|
|
host_vtimer_irq_flags = IRQF_TRIGGER_LOW;
|
|
}
|
|
|
|
err = request_percpu_irq(host_vtimer_irq, kvm_arch_timer_handler,
|
|
"kvm guest timer", kvm_get_running_vcpus());
|
|
if (err) {
|
|
kvm_err("kvm_arch_timer: can't request interrupt %d (%d)\n",
|
|
host_vtimer_irq, err);
|
|
return err;
|
|
}
|
|
|
|
if (has_gic) {
|
|
err = irq_set_vcpu_affinity(host_vtimer_irq,
|
|
kvm_get_running_vcpus());
|
|
if (err) {
|
|
kvm_err("kvm_arch_timer: error setting vcpu affinity\n");
|
|
goto out_free_irq;
|
|
}
|
|
|
|
static_branch_enable(&has_gic_active_state);
|
|
}
|
|
|
|
kvm_debug("virtual timer IRQ%d\n", host_vtimer_irq);
|
|
|
|
cpuhp_setup_state(CPUHP_AP_KVM_ARM_TIMER_STARTING,
|
|
"kvm/arm/timer:starting", kvm_timer_starting_cpu,
|
|
kvm_timer_dying_cpu);
|
|
return 0;
|
|
out_free_irq:
|
|
free_percpu_irq(host_vtimer_irq, kvm_get_running_vcpus());
|
|
return err;
|
|
}
|
|
|
|
void kvm_timer_vcpu_terminate(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu;
|
|
struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
|
|
|
|
soft_timer_cancel(&timer->bg_timer, &timer->expired);
|
|
soft_timer_cancel(&timer->phys_timer, NULL);
|
|
kvm_vgic_unmap_phys_irq(vcpu, vtimer->irq.irq);
|
|
}
|
|
|
|
static bool timer_irqs_are_valid(struct kvm_vcpu *vcpu)
|
|
{
|
|
int vtimer_irq, ptimer_irq;
|
|
int i, ret;
|
|
|
|
vtimer_irq = vcpu_vtimer(vcpu)->irq.irq;
|
|
ret = kvm_vgic_set_owner(vcpu, vtimer_irq, vcpu_vtimer(vcpu));
|
|
if (ret)
|
|
return false;
|
|
|
|
ptimer_irq = vcpu_ptimer(vcpu)->irq.irq;
|
|
ret = kvm_vgic_set_owner(vcpu, ptimer_irq, vcpu_ptimer(vcpu));
|
|
if (ret)
|
|
return false;
|
|
|
|
kvm_for_each_vcpu(i, vcpu, vcpu->kvm) {
|
|
if (vcpu_vtimer(vcpu)->irq.irq != vtimer_irq ||
|
|
vcpu_ptimer(vcpu)->irq.irq != ptimer_irq)
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
bool kvm_arch_timer_get_input_level(int vintid)
|
|
{
|
|
struct kvm_vcpu *vcpu = kvm_arm_get_running_vcpu();
|
|
struct arch_timer_context *timer;
|
|
|
|
if (vintid == vcpu_vtimer(vcpu)->irq.irq)
|
|
timer = vcpu_vtimer(vcpu);
|
|
else
|
|
BUG(); /* We only map the vtimer so far */
|
|
|
|
return kvm_timer_should_fire(timer);
|
|
}
|
|
|
|
int kvm_timer_enable(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu;
|
|
struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
|
|
int ret;
|
|
|
|
if (timer->enabled)
|
|
return 0;
|
|
|
|
/* Without a VGIC we do not map virtual IRQs to physical IRQs */
|
|
if (!irqchip_in_kernel(vcpu->kvm))
|
|
goto no_vgic;
|
|
|
|
if (!vgic_initialized(vcpu->kvm))
|
|
return -ENODEV;
|
|
|
|
if (!timer_irqs_are_valid(vcpu)) {
|
|
kvm_debug("incorrectly configured timer irqs\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
ret = kvm_vgic_map_phys_irq(vcpu, host_vtimer_irq, vtimer->irq.irq,
|
|
kvm_arch_timer_get_input_level);
|
|
if (ret)
|
|
return ret;
|
|
|
|
no_vgic:
|
|
timer->enabled = 1;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* On VHE system, we only need to configure trap on physical timer and counter
|
|
* accesses in EL0 and EL1 once, not for every world switch.
|
|
* The host kernel runs at EL2 with HCR_EL2.TGE == 1,
|
|
* and this makes those bits have no effect for the host kernel execution.
|
|
*/
|
|
void kvm_timer_init_vhe(void)
|
|
{
|
|
/* When HCR_EL2.E2H ==1, EL1PCEN and EL1PCTEN are shifted by 10 */
|
|
u32 cnthctl_shift = 10;
|
|
u64 val;
|
|
|
|
/*
|
|
* Disallow physical timer access for the guest.
|
|
* Physical counter access is allowed.
|
|
*/
|
|
val = read_sysreg(cnthctl_el2);
|
|
val &= ~(CNTHCTL_EL1PCEN << cnthctl_shift);
|
|
val |= (CNTHCTL_EL1PCTEN << cnthctl_shift);
|
|
write_sysreg(val, cnthctl_el2);
|
|
}
|
|
|
|
static void set_timer_irqs(struct kvm *kvm, int vtimer_irq, int ptimer_irq)
|
|
{
|
|
struct kvm_vcpu *vcpu;
|
|
int i;
|
|
|
|
kvm_for_each_vcpu(i, vcpu, kvm) {
|
|
vcpu_vtimer(vcpu)->irq.irq = vtimer_irq;
|
|
vcpu_ptimer(vcpu)->irq.irq = ptimer_irq;
|
|
}
|
|
}
|
|
|
|
int kvm_arm_timer_set_attr(struct kvm_vcpu *vcpu, struct kvm_device_attr *attr)
|
|
{
|
|
int __user *uaddr = (int __user *)(long)attr->addr;
|
|
struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
|
|
struct arch_timer_context *ptimer = vcpu_ptimer(vcpu);
|
|
int irq;
|
|
|
|
if (!irqchip_in_kernel(vcpu->kvm))
|
|
return -EINVAL;
|
|
|
|
if (get_user(irq, uaddr))
|
|
return -EFAULT;
|
|
|
|
if (!(irq_is_ppi(irq)))
|
|
return -EINVAL;
|
|
|
|
if (vcpu->arch.timer_cpu.enabled)
|
|
return -EBUSY;
|
|
|
|
switch (attr->attr) {
|
|
case KVM_ARM_VCPU_TIMER_IRQ_VTIMER:
|
|
set_timer_irqs(vcpu->kvm, irq, ptimer->irq.irq);
|
|
break;
|
|
case KVM_ARM_VCPU_TIMER_IRQ_PTIMER:
|
|
set_timer_irqs(vcpu->kvm, vtimer->irq.irq, irq);
|
|
break;
|
|
default:
|
|
return -ENXIO;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
int kvm_arm_timer_get_attr(struct kvm_vcpu *vcpu, struct kvm_device_attr *attr)
|
|
{
|
|
int __user *uaddr = (int __user *)(long)attr->addr;
|
|
struct arch_timer_context *timer;
|
|
int irq;
|
|
|
|
switch (attr->attr) {
|
|
case KVM_ARM_VCPU_TIMER_IRQ_VTIMER:
|
|
timer = vcpu_vtimer(vcpu);
|
|
break;
|
|
case KVM_ARM_VCPU_TIMER_IRQ_PTIMER:
|
|
timer = vcpu_ptimer(vcpu);
|
|
break;
|
|
default:
|
|
return -ENXIO;
|
|
}
|
|
|
|
irq = timer->irq.irq;
|
|
return put_user(irq, uaddr);
|
|
}
|
|
|
|
int kvm_arm_timer_has_attr(struct kvm_vcpu *vcpu, struct kvm_device_attr *attr)
|
|
{
|
|
switch (attr->attr) {
|
|
case KVM_ARM_VCPU_TIMER_IRQ_VTIMER:
|
|
case KVM_ARM_VCPU_TIMER_IRQ_PTIMER:
|
|
return 0;
|
|
}
|
|
|
|
return -ENXIO;
|
|
}
|