mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2024-12-23 17:02:23 +07:00
18e4af04d2
Now that we have fast timeslicing on semaphores, we no longer need to prioritise none-semaphore work as we will yield any work blocked on a semaphore to the next in the queue. Previously with no timeslicing, blocking on the semaphore caused extremely bad scheduling with multiple clients utilising multiple rings. Now, there is no impact and we can remove the complication. Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk> Reviewed-by: Mika Kuoppala <mika.kuoppala@linux.intel.com> Link: https://patchwork.freedesktop.org/patch/msgid/20200513173504.28322-1-chris@chris-wilson.co.uk
544 lines
14 KiB
C
544 lines
14 KiB
C
/*
|
|
* SPDX-License-Identifier: MIT
|
|
*
|
|
* Copyright © 2018 Intel Corporation
|
|
*/
|
|
|
|
#include <linux/mutex.h>
|
|
|
|
#include "i915_drv.h"
|
|
#include "i915_globals.h"
|
|
#include "i915_request.h"
|
|
#include "i915_scheduler.h"
|
|
|
|
static struct i915_global_scheduler {
|
|
struct i915_global base;
|
|
struct kmem_cache *slab_dependencies;
|
|
struct kmem_cache *slab_priorities;
|
|
} global;
|
|
|
|
static DEFINE_SPINLOCK(schedule_lock);
|
|
|
|
static const struct i915_request *
|
|
node_to_request(const struct i915_sched_node *node)
|
|
{
|
|
return container_of(node, const struct i915_request, sched);
|
|
}
|
|
|
|
static inline bool node_started(const struct i915_sched_node *node)
|
|
{
|
|
return i915_request_started(node_to_request(node));
|
|
}
|
|
|
|
static inline bool node_signaled(const struct i915_sched_node *node)
|
|
{
|
|
return i915_request_completed(node_to_request(node));
|
|
}
|
|
|
|
static inline struct i915_priolist *to_priolist(struct rb_node *rb)
|
|
{
|
|
return rb_entry(rb, struct i915_priolist, node);
|
|
}
|
|
|
|
static void assert_priolists(struct intel_engine_execlists * const execlists)
|
|
{
|
|
struct rb_node *rb;
|
|
long last_prio, i;
|
|
|
|
if (!IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
|
|
return;
|
|
|
|
GEM_BUG_ON(rb_first_cached(&execlists->queue) !=
|
|
rb_first(&execlists->queue.rb_root));
|
|
|
|
last_prio = INT_MAX;
|
|
for (rb = rb_first_cached(&execlists->queue); rb; rb = rb_next(rb)) {
|
|
const struct i915_priolist *p = to_priolist(rb);
|
|
|
|
GEM_BUG_ON(p->priority > last_prio);
|
|
last_prio = p->priority;
|
|
|
|
GEM_BUG_ON(!p->used);
|
|
for (i = 0; i < ARRAY_SIZE(p->requests); i++) {
|
|
if (list_empty(&p->requests[i]))
|
|
continue;
|
|
|
|
GEM_BUG_ON(!(p->used & BIT(i)));
|
|
}
|
|
}
|
|
}
|
|
|
|
struct list_head *
|
|
i915_sched_lookup_priolist(struct intel_engine_cs *engine, int prio)
|
|
{
|
|
struct intel_engine_execlists * const execlists = &engine->execlists;
|
|
struct i915_priolist *p;
|
|
struct rb_node **parent, *rb;
|
|
bool first = true;
|
|
int idx, i;
|
|
|
|
lockdep_assert_held(&engine->active.lock);
|
|
assert_priolists(execlists);
|
|
|
|
/* buckets sorted from highest [in slot 0] to lowest priority */
|
|
idx = I915_PRIORITY_COUNT - (prio & I915_PRIORITY_MASK) - 1;
|
|
prio >>= I915_USER_PRIORITY_SHIFT;
|
|
if (unlikely(execlists->no_priolist))
|
|
prio = I915_PRIORITY_NORMAL;
|
|
|
|
find_priolist:
|
|
/* most positive priority is scheduled first, equal priorities fifo */
|
|
rb = NULL;
|
|
parent = &execlists->queue.rb_root.rb_node;
|
|
while (*parent) {
|
|
rb = *parent;
|
|
p = to_priolist(rb);
|
|
if (prio > p->priority) {
|
|
parent = &rb->rb_left;
|
|
} else if (prio < p->priority) {
|
|
parent = &rb->rb_right;
|
|
first = false;
|
|
} else {
|
|
goto out;
|
|
}
|
|
}
|
|
|
|
if (prio == I915_PRIORITY_NORMAL) {
|
|
p = &execlists->default_priolist;
|
|
} else {
|
|
p = kmem_cache_alloc(global.slab_priorities, GFP_ATOMIC);
|
|
/* Convert an allocation failure to a priority bump */
|
|
if (unlikely(!p)) {
|
|
prio = I915_PRIORITY_NORMAL; /* recurses just once */
|
|
|
|
/* To maintain ordering with all rendering, after an
|
|
* allocation failure we have to disable all scheduling.
|
|
* Requests will then be executed in fifo, and schedule
|
|
* will ensure that dependencies are emitted in fifo.
|
|
* There will be still some reordering with existing
|
|
* requests, so if userspace lied about their
|
|
* dependencies that reordering may be visible.
|
|
*/
|
|
execlists->no_priolist = true;
|
|
goto find_priolist;
|
|
}
|
|
}
|
|
|
|
p->priority = prio;
|
|
for (i = 0; i < ARRAY_SIZE(p->requests); i++)
|
|
INIT_LIST_HEAD(&p->requests[i]);
|
|
rb_link_node(&p->node, rb, parent);
|
|
rb_insert_color_cached(&p->node, &execlists->queue, first);
|
|
p->used = 0;
|
|
|
|
out:
|
|
p->used |= BIT(idx);
|
|
return &p->requests[idx];
|
|
}
|
|
|
|
void __i915_priolist_free(struct i915_priolist *p)
|
|
{
|
|
kmem_cache_free(global.slab_priorities, p);
|
|
}
|
|
|
|
struct sched_cache {
|
|
struct list_head *priolist;
|
|
};
|
|
|
|
static struct intel_engine_cs *
|
|
sched_lock_engine(const struct i915_sched_node *node,
|
|
struct intel_engine_cs *locked,
|
|
struct sched_cache *cache)
|
|
{
|
|
const struct i915_request *rq = node_to_request(node);
|
|
struct intel_engine_cs *engine;
|
|
|
|
GEM_BUG_ON(!locked);
|
|
|
|
/*
|
|
* Virtual engines complicate acquiring the engine timeline lock,
|
|
* as their rq->engine pointer is not stable until under that
|
|
* engine lock. The simple ploy we use is to take the lock then
|
|
* check that the rq still belongs to the newly locked engine.
|
|
*/
|
|
while (locked != (engine = READ_ONCE(rq->engine))) {
|
|
spin_unlock(&locked->active.lock);
|
|
memset(cache, 0, sizeof(*cache));
|
|
spin_lock(&engine->active.lock);
|
|
locked = engine;
|
|
}
|
|
|
|
GEM_BUG_ON(locked != engine);
|
|
return locked;
|
|
}
|
|
|
|
static inline int rq_prio(const struct i915_request *rq)
|
|
{
|
|
return rq->sched.attr.priority;
|
|
}
|
|
|
|
static inline bool need_preempt(int prio, int active)
|
|
{
|
|
/*
|
|
* Allow preemption of low -> normal -> high, but we do
|
|
* not allow low priority tasks to preempt other low priority
|
|
* tasks under the impression that latency for low priority
|
|
* tasks does not matter (as much as background throughput),
|
|
* so kiss.
|
|
*/
|
|
return prio >= max(I915_PRIORITY_NORMAL, active);
|
|
}
|
|
|
|
static void kick_submission(struct intel_engine_cs *engine,
|
|
const struct i915_request *rq,
|
|
int prio)
|
|
{
|
|
const struct i915_request *inflight;
|
|
|
|
/*
|
|
* We only need to kick the tasklet once for the high priority
|
|
* new context we add into the queue.
|
|
*/
|
|
if (prio <= engine->execlists.queue_priority_hint)
|
|
return;
|
|
|
|
rcu_read_lock();
|
|
|
|
/* Nothing currently active? We're overdue for a submission! */
|
|
inflight = execlists_active(&engine->execlists);
|
|
if (!inflight)
|
|
goto unlock;
|
|
|
|
ENGINE_TRACE(engine,
|
|
"bumping queue-priority-hint:%d for rq:%llx:%lld, inflight:%llx:%lld prio %d\n",
|
|
prio,
|
|
rq->fence.context, rq->fence.seqno,
|
|
inflight->fence.context, inflight->fence.seqno,
|
|
inflight->sched.attr.priority);
|
|
engine->execlists.queue_priority_hint = prio;
|
|
|
|
/*
|
|
* If we are already the currently executing context, don't
|
|
* bother evaluating if we should preempt ourselves.
|
|
*/
|
|
if (inflight->context == rq->context)
|
|
goto unlock;
|
|
|
|
if (need_preempt(prio, rq_prio(inflight)))
|
|
tasklet_hi_schedule(&engine->execlists.tasklet);
|
|
|
|
unlock:
|
|
rcu_read_unlock();
|
|
}
|
|
|
|
static void __i915_schedule(struct i915_sched_node *node,
|
|
const struct i915_sched_attr *attr)
|
|
{
|
|
const int prio = max(attr->priority, node->attr.priority);
|
|
struct intel_engine_cs *engine;
|
|
struct i915_dependency *dep, *p;
|
|
struct i915_dependency stack;
|
|
struct sched_cache cache;
|
|
LIST_HEAD(dfs);
|
|
|
|
/* Needed in order to use the temporary link inside i915_dependency */
|
|
lockdep_assert_held(&schedule_lock);
|
|
GEM_BUG_ON(prio == I915_PRIORITY_INVALID);
|
|
|
|
if (node_signaled(node))
|
|
return;
|
|
|
|
stack.signaler = node;
|
|
list_add(&stack.dfs_link, &dfs);
|
|
|
|
/*
|
|
* Recursively bump all dependent priorities to match the new request.
|
|
*
|
|
* A naive approach would be to use recursion:
|
|
* static void update_priorities(struct i915_sched_node *node, prio) {
|
|
* list_for_each_entry(dep, &node->signalers_list, signal_link)
|
|
* update_priorities(dep->signal, prio)
|
|
* queue_request(node);
|
|
* }
|
|
* but that may have unlimited recursion depth and so runs a very
|
|
* real risk of overunning the kernel stack. Instead, we build
|
|
* a flat list of all dependencies starting with the current request.
|
|
* As we walk the list of dependencies, we add all of its dependencies
|
|
* to the end of the list (this may include an already visited
|
|
* request) and continue to walk onwards onto the new dependencies. The
|
|
* end result is a topological list of requests in reverse order, the
|
|
* last element in the list is the request we must execute first.
|
|
*/
|
|
list_for_each_entry(dep, &dfs, dfs_link) {
|
|
struct i915_sched_node *node = dep->signaler;
|
|
|
|
/* If we are already flying, we know we have no signalers */
|
|
if (node_started(node))
|
|
continue;
|
|
|
|
/*
|
|
* Within an engine, there can be no cycle, but we may
|
|
* refer to the same dependency chain multiple times
|
|
* (redundant dependencies are not eliminated) and across
|
|
* engines.
|
|
*/
|
|
list_for_each_entry(p, &node->signalers_list, signal_link) {
|
|
GEM_BUG_ON(p == dep); /* no cycles! */
|
|
|
|
if (node_signaled(p->signaler))
|
|
continue;
|
|
|
|
if (prio > READ_ONCE(p->signaler->attr.priority))
|
|
list_move_tail(&p->dfs_link, &dfs);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* If we didn't need to bump any existing priorities, and we haven't
|
|
* yet submitted this request (i.e. there is no potential race with
|
|
* execlists_submit_request()), we can set our own priority and skip
|
|
* acquiring the engine locks.
|
|
*/
|
|
if (node->attr.priority == I915_PRIORITY_INVALID) {
|
|
GEM_BUG_ON(!list_empty(&node->link));
|
|
node->attr = *attr;
|
|
|
|
if (stack.dfs_link.next == stack.dfs_link.prev)
|
|
return;
|
|
|
|
__list_del_entry(&stack.dfs_link);
|
|
}
|
|
|
|
memset(&cache, 0, sizeof(cache));
|
|
engine = node_to_request(node)->engine;
|
|
spin_lock(&engine->active.lock);
|
|
|
|
/* Fifo and depth-first replacement ensure our deps execute before us */
|
|
engine = sched_lock_engine(node, engine, &cache);
|
|
list_for_each_entry_safe_reverse(dep, p, &dfs, dfs_link) {
|
|
INIT_LIST_HEAD(&dep->dfs_link);
|
|
|
|
node = dep->signaler;
|
|
engine = sched_lock_engine(node, engine, &cache);
|
|
lockdep_assert_held(&engine->active.lock);
|
|
|
|
/* Recheck after acquiring the engine->timeline.lock */
|
|
if (prio <= node->attr.priority || node_signaled(node))
|
|
continue;
|
|
|
|
GEM_BUG_ON(node_to_request(node)->engine != engine);
|
|
|
|
WRITE_ONCE(node->attr.priority, prio);
|
|
|
|
/*
|
|
* Once the request is ready, it will be placed into the
|
|
* priority lists and then onto the HW runlist. Before the
|
|
* request is ready, it does not contribute to our preemption
|
|
* decisions and we can safely ignore it, as it will, and
|
|
* any preemption required, be dealt with upon submission.
|
|
* See engine->submit_request()
|
|
*/
|
|
if (list_empty(&node->link))
|
|
continue;
|
|
|
|
if (i915_request_in_priority_queue(node_to_request(node))) {
|
|
if (!cache.priolist)
|
|
cache.priolist =
|
|
i915_sched_lookup_priolist(engine,
|
|
prio);
|
|
list_move_tail(&node->link, cache.priolist);
|
|
}
|
|
|
|
/* Defer (tasklet) submission until after all of our updates. */
|
|
kick_submission(engine, node_to_request(node), prio);
|
|
}
|
|
|
|
spin_unlock(&engine->active.lock);
|
|
}
|
|
|
|
void i915_schedule(struct i915_request *rq, const struct i915_sched_attr *attr)
|
|
{
|
|
spin_lock_irq(&schedule_lock);
|
|
__i915_schedule(&rq->sched, attr);
|
|
spin_unlock_irq(&schedule_lock);
|
|
}
|
|
|
|
static void __bump_priority(struct i915_sched_node *node, unsigned int bump)
|
|
{
|
|
struct i915_sched_attr attr = node->attr;
|
|
|
|
if (attr.priority & bump)
|
|
return;
|
|
|
|
attr.priority |= bump;
|
|
__i915_schedule(node, &attr);
|
|
}
|
|
|
|
void i915_schedule_bump_priority(struct i915_request *rq, unsigned int bump)
|
|
{
|
|
unsigned long flags;
|
|
|
|
GEM_BUG_ON(bump & ~I915_PRIORITY_MASK);
|
|
if (READ_ONCE(rq->sched.attr.priority) & bump)
|
|
return;
|
|
|
|
spin_lock_irqsave(&schedule_lock, flags);
|
|
__bump_priority(&rq->sched, bump);
|
|
spin_unlock_irqrestore(&schedule_lock, flags);
|
|
}
|
|
|
|
void i915_sched_node_init(struct i915_sched_node *node)
|
|
{
|
|
INIT_LIST_HEAD(&node->signalers_list);
|
|
INIT_LIST_HEAD(&node->waiters_list);
|
|
INIT_LIST_HEAD(&node->link);
|
|
|
|
i915_sched_node_reinit(node);
|
|
}
|
|
|
|
void i915_sched_node_reinit(struct i915_sched_node *node)
|
|
{
|
|
node->attr.priority = I915_PRIORITY_INVALID;
|
|
node->semaphores = 0;
|
|
node->flags = 0;
|
|
|
|
GEM_BUG_ON(!list_empty(&node->signalers_list));
|
|
GEM_BUG_ON(!list_empty(&node->waiters_list));
|
|
GEM_BUG_ON(!list_empty(&node->link));
|
|
}
|
|
|
|
static struct i915_dependency *
|
|
i915_dependency_alloc(void)
|
|
{
|
|
return kmem_cache_alloc(global.slab_dependencies, GFP_KERNEL);
|
|
}
|
|
|
|
static void
|
|
i915_dependency_free(struct i915_dependency *dep)
|
|
{
|
|
kmem_cache_free(global.slab_dependencies, dep);
|
|
}
|
|
|
|
bool __i915_sched_node_add_dependency(struct i915_sched_node *node,
|
|
struct i915_sched_node *signal,
|
|
struct i915_dependency *dep,
|
|
unsigned long flags)
|
|
{
|
|
bool ret = false;
|
|
|
|
spin_lock_irq(&schedule_lock);
|
|
|
|
if (!node_signaled(signal)) {
|
|
INIT_LIST_HEAD(&dep->dfs_link);
|
|
dep->signaler = signal;
|
|
dep->waiter = node;
|
|
dep->flags = flags;
|
|
|
|
/* All set, now publish. Beware the lockless walkers. */
|
|
list_add_rcu(&dep->signal_link, &node->signalers_list);
|
|
list_add_rcu(&dep->wait_link, &signal->waiters_list);
|
|
|
|
/* Propagate the chains */
|
|
node->flags |= signal->flags;
|
|
ret = true;
|
|
}
|
|
|
|
spin_unlock_irq(&schedule_lock);
|
|
|
|
return ret;
|
|
}
|
|
|
|
int i915_sched_node_add_dependency(struct i915_sched_node *node,
|
|
struct i915_sched_node *signal,
|
|
unsigned long flags)
|
|
{
|
|
struct i915_dependency *dep;
|
|
|
|
dep = i915_dependency_alloc();
|
|
if (!dep)
|
|
return -ENOMEM;
|
|
|
|
local_bh_disable();
|
|
|
|
if (!__i915_sched_node_add_dependency(node, signal, dep,
|
|
flags | I915_DEPENDENCY_ALLOC))
|
|
i915_dependency_free(dep);
|
|
|
|
local_bh_enable(); /* kick submission tasklet */
|
|
|
|
return 0;
|
|
}
|
|
|
|
void i915_sched_node_fini(struct i915_sched_node *node)
|
|
{
|
|
struct i915_dependency *dep, *tmp;
|
|
|
|
spin_lock_irq(&schedule_lock);
|
|
|
|
/*
|
|
* Everyone we depended upon (the fences we wait to be signaled)
|
|
* should retire before us and remove themselves from our list.
|
|
* However, retirement is run independently on each timeline and
|
|
* so we may be called out-of-order.
|
|
*/
|
|
list_for_each_entry_safe(dep, tmp, &node->signalers_list, signal_link) {
|
|
GEM_BUG_ON(!list_empty(&dep->dfs_link));
|
|
|
|
list_del_rcu(&dep->wait_link);
|
|
if (dep->flags & I915_DEPENDENCY_ALLOC)
|
|
i915_dependency_free(dep);
|
|
}
|
|
INIT_LIST_HEAD(&node->signalers_list);
|
|
|
|
/* Remove ourselves from everyone who depends upon us */
|
|
list_for_each_entry_safe(dep, tmp, &node->waiters_list, wait_link) {
|
|
GEM_BUG_ON(dep->signaler != node);
|
|
GEM_BUG_ON(!list_empty(&dep->dfs_link));
|
|
|
|
list_del_rcu(&dep->signal_link);
|
|
if (dep->flags & I915_DEPENDENCY_ALLOC)
|
|
i915_dependency_free(dep);
|
|
}
|
|
INIT_LIST_HEAD(&node->waiters_list);
|
|
|
|
spin_unlock_irq(&schedule_lock);
|
|
}
|
|
|
|
static void i915_global_scheduler_shrink(void)
|
|
{
|
|
kmem_cache_shrink(global.slab_dependencies);
|
|
kmem_cache_shrink(global.slab_priorities);
|
|
}
|
|
|
|
static void i915_global_scheduler_exit(void)
|
|
{
|
|
kmem_cache_destroy(global.slab_dependencies);
|
|
kmem_cache_destroy(global.slab_priorities);
|
|
}
|
|
|
|
static struct i915_global_scheduler global = { {
|
|
.shrink = i915_global_scheduler_shrink,
|
|
.exit = i915_global_scheduler_exit,
|
|
} };
|
|
|
|
int __init i915_global_scheduler_init(void)
|
|
{
|
|
global.slab_dependencies = KMEM_CACHE(i915_dependency,
|
|
SLAB_HWCACHE_ALIGN |
|
|
SLAB_TYPESAFE_BY_RCU);
|
|
if (!global.slab_dependencies)
|
|
return -ENOMEM;
|
|
|
|
global.slab_priorities = KMEM_CACHE(i915_priolist,
|
|
SLAB_HWCACHE_ALIGN);
|
|
if (!global.slab_priorities)
|
|
goto err_priorities;
|
|
|
|
i915_global_register(&global.base);
|
|
return 0;
|
|
|
|
err_priorities:
|
|
kmem_cache_destroy(global.slab_priorities);
|
|
return -ENOMEM;
|
|
}
|