mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2025-01-25 12:39:38 +07:00
743162013d
The current "wait_on_bit" interface requires an 'action' function to be provided which does the actual waiting. There are over 20 such functions, many of them identical. Most cases can be satisfied by one of just two functions, one which uses io_schedule() and one which just uses schedule(). So: Rename wait_on_bit and wait_on_bit_lock to wait_on_bit_action and wait_on_bit_lock_action to make it explicit that they need an action function. Introduce new wait_on_bit{,_lock} and wait_on_bit{,_lock}_io which are *not* given an action function but implicitly use a standard one. The decision to error-out if a signal is pending is now made based on the 'mode' argument rather than being encoded in the action function. All instances of the old wait_on_bit and wait_on_bit_lock which can use the new version have been changed accordingly and their action functions have been discarded. wait_on_bit{_lock} does not return any specific error code in the event of a signal so the caller must check for non-zero and interpolate their own error code as appropriate. The wait_on_bit() call in __fscache_wait_on_invalidate() was ambiguous as it specified TASK_UNINTERRUPTIBLE but used fscache_wait_bit_interruptible as an action function. David Howells confirms this should be uniformly "uninterruptible" The main remaining user of wait_on_bit{,_lock}_action is NFS which needs to use a freezer-aware schedule() call. A comment in fs/gfs2/glock.c notes that having multiple 'action' functions is useful as they display differently in the 'wchan' field of 'ps'. (and /proc/$PID/wchan). As the new bit_wait{,_io} functions are tagged "__sched", they will not show up at all, but something higher in the stack. So the distinction will still be visible, only with different function names (gds2_glock_wait versus gfs2_glock_dq_wait in the gfs2/glock.c case). Since first version of this patch (against 3.15) two new action functions appeared, on in NFS and one in CIFS. CIFS also now uses an action function that makes the same freezer aware schedule call as NFS. Signed-off-by: NeilBrown <neilb@suse.de> Acked-by: David Howells <dhowells@redhat.com> (fscache, keys) Acked-by: Steven Whitehouse <swhiteho@redhat.com> (gfs2) Acked-by: Peter Zijlstra <peterz@infradead.org> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Steve French <sfrench@samba.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Link: http://lkml.kernel.org/r/20140707051603.28027.72349.stgit@notabene.brown Signed-off-by: Ingo Molnar <mingo@kernel.org>
924 lines
24 KiB
C
924 lines
24 KiB
C
/*
|
|
* linux/fs/nfs/file.c
|
|
*
|
|
* Copyright (C) 1992 Rick Sladkey
|
|
*
|
|
* Changes Copyright (C) 1994 by Florian La Roche
|
|
* - Do not copy data too often around in the kernel.
|
|
* - In nfs_file_read the return value of kmalloc wasn't checked.
|
|
* - Put in a better version of read look-ahead buffering. Original idea
|
|
* and implementation by Wai S Kok elekokws@ee.nus.sg.
|
|
*
|
|
* Expire cache on write to a file by Wai S Kok (Oct 1994).
|
|
*
|
|
* Total rewrite of read side for new NFS buffer cache.. Linus.
|
|
*
|
|
* nfs regular file handling functions
|
|
*/
|
|
|
|
#include <linux/module.h>
|
|
#include <linux/time.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/errno.h>
|
|
#include <linux/fcntl.h>
|
|
#include <linux/stat.h>
|
|
#include <linux/nfs_fs.h>
|
|
#include <linux/nfs_mount.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/pagemap.h>
|
|
#include <linux/aio.h>
|
|
#include <linux/gfp.h>
|
|
#include <linux/swap.h>
|
|
|
|
#include <asm/uaccess.h>
|
|
|
|
#include "delegation.h"
|
|
#include "internal.h"
|
|
#include "iostat.h"
|
|
#include "fscache.h"
|
|
|
|
#include "nfstrace.h"
|
|
|
|
#define NFSDBG_FACILITY NFSDBG_FILE
|
|
|
|
static const struct vm_operations_struct nfs_file_vm_ops;
|
|
|
|
/* Hack for future NFS swap support */
|
|
#ifndef IS_SWAPFILE
|
|
# define IS_SWAPFILE(inode) (0)
|
|
#endif
|
|
|
|
int nfs_check_flags(int flags)
|
|
{
|
|
if ((flags & (O_APPEND | O_DIRECT)) == (O_APPEND | O_DIRECT))
|
|
return -EINVAL;
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(nfs_check_flags);
|
|
|
|
/*
|
|
* Open file
|
|
*/
|
|
static int
|
|
nfs_file_open(struct inode *inode, struct file *filp)
|
|
{
|
|
int res;
|
|
|
|
dprintk("NFS: open file(%pD2)\n", filp);
|
|
|
|
nfs_inc_stats(inode, NFSIOS_VFSOPEN);
|
|
res = nfs_check_flags(filp->f_flags);
|
|
if (res)
|
|
return res;
|
|
|
|
res = nfs_open(inode, filp);
|
|
return res;
|
|
}
|
|
|
|
int
|
|
nfs_file_release(struct inode *inode, struct file *filp)
|
|
{
|
|
dprintk("NFS: release(%pD2)\n", filp);
|
|
|
|
nfs_inc_stats(inode, NFSIOS_VFSRELEASE);
|
|
return nfs_release(inode, filp);
|
|
}
|
|
EXPORT_SYMBOL_GPL(nfs_file_release);
|
|
|
|
/**
|
|
* nfs_revalidate_size - Revalidate the file size
|
|
* @inode - pointer to inode struct
|
|
* @file - pointer to struct file
|
|
*
|
|
* Revalidates the file length. This is basically a wrapper around
|
|
* nfs_revalidate_inode() that takes into account the fact that we may
|
|
* have cached writes (in which case we don't care about the server's
|
|
* idea of what the file length is), or O_DIRECT (in which case we
|
|
* shouldn't trust the cache).
|
|
*/
|
|
static int nfs_revalidate_file_size(struct inode *inode, struct file *filp)
|
|
{
|
|
struct nfs_server *server = NFS_SERVER(inode);
|
|
struct nfs_inode *nfsi = NFS_I(inode);
|
|
|
|
if (nfs_have_delegated_attributes(inode))
|
|
goto out_noreval;
|
|
|
|
if (filp->f_flags & O_DIRECT)
|
|
goto force_reval;
|
|
if (nfsi->cache_validity & NFS_INO_REVAL_PAGECACHE)
|
|
goto force_reval;
|
|
if (nfs_attribute_timeout(inode))
|
|
goto force_reval;
|
|
out_noreval:
|
|
return 0;
|
|
force_reval:
|
|
return __nfs_revalidate_inode(server, inode);
|
|
}
|
|
|
|
loff_t nfs_file_llseek(struct file *filp, loff_t offset, int whence)
|
|
{
|
|
dprintk("NFS: llseek file(%pD2, %lld, %d)\n",
|
|
filp, offset, whence);
|
|
|
|
/*
|
|
* whence == SEEK_END || SEEK_DATA || SEEK_HOLE => we must revalidate
|
|
* the cached file length
|
|
*/
|
|
if (whence != SEEK_SET && whence != SEEK_CUR) {
|
|
struct inode *inode = filp->f_mapping->host;
|
|
|
|
int retval = nfs_revalidate_file_size(inode, filp);
|
|
if (retval < 0)
|
|
return (loff_t)retval;
|
|
}
|
|
|
|
return generic_file_llseek(filp, offset, whence);
|
|
}
|
|
EXPORT_SYMBOL_GPL(nfs_file_llseek);
|
|
|
|
/*
|
|
* Flush all dirty pages, and check for write errors.
|
|
*/
|
|
int
|
|
nfs_file_flush(struct file *file, fl_owner_t id)
|
|
{
|
|
struct inode *inode = file_inode(file);
|
|
|
|
dprintk("NFS: flush(%pD2)\n", file);
|
|
|
|
nfs_inc_stats(inode, NFSIOS_VFSFLUSH);
|
|
if ((file->f_mode & FMODE_WRITE) == 0)
|
|
return 0;
|
|
|
|
/*
|
|
* If we're holding a write delegation, then just start the i/o
|
|
* but don't wait for completion (or send a commit).
|
|
*/
|
|
if (NFS_PROTO(inode)->have_delegation(inode, FMODE_WRITE))
|
|
return filemap_fdatawrite(file->f_mapping);
|
|
|
|
/* Flush writes to the server and return any errors */
|
|
return vfs_fsync(file, 0);
|
|
}
|
|
EXPORT_SYMBOL_GPL(nfs_file_flush);
|
|
|
|
ssize_t
|
|
nfs_file_read(struct kiocb *iocb, struct iov_iter *to)
|
|
{
|
|
struct inode *inode = file_inode(iocb->ki_filp);
|
|
ssize_t result;
|
|
|
|
if (iocb->ki_filp->f_flags & O_DIRECT)
|
|
return nfs_file_direct_read(iocb, to, iocb->ki_pos, true);
|
|
|
|
dprintk("NFS: read(%pD2, %zu@%lu)\n",
|
|
iocb->ki_filp,
|
|
iov_iter_count(to), (unsigned long) iocb->ki_pos);
|
|
|
|
result = nfs_revalidate_mapping(inode, iocb->ki_filp->f_mapping);
|
|
if (!result) {
|
|
result = generic_file_read_iter(iocb, to);
|
|
if (result > 0)
|
|
nfs_add_stats(inode, NFSIOS_NORMALREADBYTES, result);
|
|
}
|
|
return result;
|
|
}
|
|
EXPORT_SYMBOL_GPL(nfs_file_read);
|
|
|
|
ssize_t
|
|
nfs_file_splice_read(struct file *filp, loff_t *ppos,
|
|
struct pipe_inode_info *pipe, size_t count,
|
|
unsigned int flags)
|
|
{
|
|
struct inode *inode = file_inode(filp);
|
|
ssize_t res;
|
|
|
|
dprintk("NFS: splice_read(%pD2, %lu@%Lu)\n",
|
|
filp, (unsigned long) count, (unsigned long long) *ppos);
|
|
|
|
res = nfs_revalidate_mapping(inode, filp->f_mapping);
|
|
if (!res) {
|
|
res = generic_file_splice_read(filp, ppos, pipe, count, flags);
|
|
if (res > 0)
|
|
nfs_add_stats(inode, NFSIOS_NORMALREADBYTES, res);
|
|
}
|
|
return res;
|
|
}
|
|
EXPORT_SYMBOL_GPL(nfs_file_splice_read);
|
|
|
|
int
|
|
nfs_file_mmap(struct file * file, struct vm_area_struct * vma)
|
|
{
|
|
struct inode *inode = file_inode(file);
|
|
int status;
|
|
|
|
dprintk("NFS: mmap(%pD2)\n", file);
|
|
|
|
/* Note: generic_file_mmap() returns ENOSYS on nommu systems
|
|
* so we call that before revalidating the mapping
|
|
*/
|
|
status = generic_file_mmap(file, vma);
|
|
if (!status) {
|
|
vma->vm_ops = &nfs_file_vm_ops;
|
|
status = nfs_revalidate_mapping(inode, file->f_mapping);
|
|
}
|
|
return status;
|
|
}
|
|
EXPORT_SYMBOL_GPL(nfs_file_mmap);
|
|
|
|
/*
|
|
* Flush any dirty pages for this process, and check for write errors.
|
|
* The return status from this call provides a reliable indication of
|
|
* whether any write errors occurred for this process.
|
|
*
|
|
* Notice that it clears the NFS_CONTEXT_ERROR_WRITE before synching to
|
|
* disk, but it retrieves and clears ctx->error after synching, despite
|
|
* the two being set at the same time in nfs_context_set_write_error().
|
|
* This is because the former is used to notify the _next_ call to
|
|
* nfs_file_write() that a write error occurred, and hence cause it to
|
|
* fall back to doing a synchronous write.
|
|
*/
|
|
int
|
|
nfs_file_fsync_commit(struct file *file, loff_t start, loff_t end, int datasync)
|
|
{
|
|
struct nfs_open_context *ctx = nfs_file_open_context(file);
|
|
struct inode *inode = file_inode(file);
|
|
int have_error, do_resend, status;
|
|
int ret = 0;
|
|
|
|
dprintk("NFS: fsync file(%pD2) datasync %d\n", file, datasync);
|
|
|
|
nfs_inc_stats(inode, NFSIOS_VFSFSYNC);
|
|
do_resend = test_and_clear_bit(NFS_CONTEXT_RESEND_WRITES, &ctx->flags);
|
|
have_error = test_and_clear_bit(NFS_CONTEXT_ERROR_WRITE, &ctx->flags);
|
|
status = nfs_commit_inode(inode, FLUSH_SYNC);
|
|
have_error |= test_bit(NFS_CONTEXT_ERROR_WRITE, &ctx->flags);
|
|
if (have_error) {
|
|
ret = xchg(&ctx->error, 0);
|
|
if (ret)
|
|
goto out;
|
|
}
|
|
if (status < 0) {
|
|
ret = status;
|
|
goto out;
|
|
}
|
|
do_resend |= test_bit(NFS_CONTEXT_RESEND_WRITES, &ctx->flags);
|
|
if (do_resend)
|
|
ret = -EAGAIN;
|
|
out:
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL_GPL(nfs_file_fsync_commit);
|
|
|
|
static int
|
|
nfs_file_fsync(struct file *file, loff_t start, loff_t end, int datasync)
|
|
{
|
|
int ret;
|
|
struct inode *inode = file_inode(file);
|
|
|
|
trace_nfs_fsync_enter(inode);
|
|
|
|
do {
|
|
ret = filemap_write_and_wait_range(inode->i_mapping, start, end);
|
|
if (ret != 0)
|
|
break;
|
|
mutex_lock(&inode->i_mutex);
|
|
ret = nfs_file_fsync_commit(file, start, end, datasync);
|
|
mutex_unlock(&inode->i_mutex);
|
|
/*
|
|
* If nfs_file_fsync_commit detected a server reboot, then
|
|
* resend all dirty pages that might have been covered by
|
|
* the NFS_CONTEXT_RESEND_WRITES flag
|
|
*/
|
|
start = 0;
|
|
end = LLONG_MAX;
|
|
} while (ret == -EAGAIN);
|
|
|
|
trace_nfs_fsync_exit(inode, ret);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Decide whether a read/modify/write cycle may be more efficient
|
|
* then a modify/write/read cycle when writing to a page in the
|
|
* page cache.
|
|
*
|
|
* The modify/write/read cycle may occur if a page is read before
|
|
* being completely filled by the writer. In this situation, the
|
|
* page must be completely written to stable storage on the server
|
|
* before it can be refilled by reading in the page from the server.
|
|
* This can lead to expensive, small, FILE_SYNC mode writes being
|
|
* done.
|
|
*
|
|
* It may be more efficient to read the page first if the file is
|
|
* open for reading in addition to writing, the page is not marked
|
|
* as Uptodate, it is not dirty or waiting to be committed,
|
|
* indicating that it was previously allocated and then modified,
|
|
* that there were valid bytes of data in that range of the file,
|
|
* and that the new data won't completely replace the old data in
|
|
* that range of the file.
|
|
*/
|
|
static int nfs_want_read_modify_write(struct file *file, struct page *page,
|
|
loff_t pos, unsigned len)
|
|
{
|
|
unsigned int pglen = nfs_page_length(page);
|
|
unsigned int offset = pos & (PAGE_CACHE_SIZE - 1);
|
|
unsigned int end = offset + len;
|
|
|
|
if ((file->f_mode & FMODE_READ) && /* open for read? */
|
|
!PageUptodate(page) && /* Uptodate? */
|
|
!PagePrivate(page) && /* i/o request already? */
|
|
pglen && /* valid bytes of file? */
|
|
(end < pglen || offset)) /* replace all valid bytes? */
|
|
return 1;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* This does the "real" work of the write. We must allocate and lock the
|
|
* page to be sent back to the generic routine, which then copies the
|
|
* data from user space.
|
|
*
|
|
* If the writer ends up delaying the write, the writer needs to
|
|
* increment the page use counts until he is done with the page.
|
|
*/
|
|
static int nfs_write_begin(struct file *file, struct address_space *mapping,
|
|
loff_t pos, unsigned len, unsigned flags,
|
|
struct page **pagep, void **fsdata)
|
|
{
|
|
int ret;
|
|
pgoff_t index = pos >> PAGE_CACHE_SHIFT;
|
|
struct page *page;
|
|
int once_thru = 0;
|
|
|
|
dfprintk(PAGECACHE, "NFS: write_begin(%pD2(%lu), %u@%lld)\n",
|
|
file, mapping->host->i_ino, len, (long long) pos);
|
|
|
|
start:
|
|
/*
|
|
* Prevent starvation issues if someone is doing a consistency
|
|
* sync-to-disk
|
|
*/
|
|
ret = wait_on_bit_action(&NFS_I(mapping->host)->flags, NFS_INO_FLUSHING,
|
|
nfs_wait_bit_killable, TASK_KILLABLE);
|
|
if (ret)
|
|
return ret;
|
|
|
|
page = grab_cache_page_write_begin(mapping, index, flags);
|
|
if (!page)
|
|
return -ENOMEM;
|
|
*pagep = page;
|
|
|
|
ret = nfs_flush_incompatible(file, page);
|
|
if (ret) {
|
|
unlock_page(page);
|
|
page_cache_release(page);
|
|
} else if (!once_thru &&
|
|
nfs_want_read_modify_write(file, page, pos, len)) {
|
|
once_thru = 1;
|
|
ret = nfs_readpage(file, page);
|
|
page_cache_release(page);
|
|
if (!ret)
|
|
goto start;
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
static int nfs_write_end(struct file *file, struct address_space *mapping,
|
|
loff_t pos, unsigned len, unsigned copied,
|
|
struct page *page, void *fsdata)
|
|
{
|
|
unsigned offset = pos & (PAGE_CACHE_SIZE - 1);
|
|
struct nfs_open_context *ctx = nfs_file_open_context(file);
|
|
int status;
|
|
|
|
dfprintk(PAGECACHE, "NFS: write_end(%pD2(%lu), %u@%lld)\n",
|
|
file, mapping->host->i_ino, len, (long long) pos);
|
|
|
|
/*
|
|
* Zero any uninitialised parts of the page, and then mark the page
|
|
* as up to date if it turns out that we're extending the file.
|
|
*/
|
|
if (!PageUptodate(page)) {
|
|
unsigned pglen = nfs_page_length(page);
|
|
unsigned end = offset + len;
|
|
|
|
if (pglen == 0) {
|
|
zero_user_segments(page, 0, offset,
|
|
end, PAGE_CACHE_SIZE);
|
|
SetPageUptodate(page);
|
|
} else if (end >= pglen) {
|
|
zero_user_segment(page, end, PAGE_CACHE_SIZE);
|
|
if (offset == 0)
|
|
SetPageUptodate(page);
|
|
} else
|
|
zero_user_segment(page, pglen, PAGE_CACHE_SIZE);
|
|
}
|
|
|
|
status = nfs_updatepage(file, page, offset, copied);
|
|
|
|
unlock_page(page);
|
|
page_cache_release(page);
|
|
|
|
if (status < 0)
|
|
return status;
|
|
NFS_I(mapping->host)->write_io += copied;
|
|
|
|
if (nfs_ctx_key_to_expire(ctx)) {
|
|
status = nfs_wb_all(mapping->host);
|
|
if (status < 0)
|
|
return status;
|
|
}
|
|
|
|
return copied;
|
|
}
|
|
|
|
/*
|
|
* Partially or wholly invalidate a page
|
|
* - Release the private state associated with a page if undergoing complete
|
|
* page invalidation
|
|
* - Called if either PG_private or PG_fscache is set on the page
|
|
* - Caller holds page lock
|
|
*/
|
|
static void nfs_invalidate_page(struct page *page, unsigned int offset,
|
|
unsigned int length)
|
|
{
|
|
dfprintk(PAGECACHE, "NFS: invalidate_page(%p, %u, %u)\n",
|
|
page, offset, length);
|
|
|
|
if (offset != 0 || length < PAGE_CACHE_SIZE)
|
|
return;
|
|
/* Cancel any unstarted writes on this page */
|
|
nfs_wb_page_cancel(page_file_mapping(page)->host, page);
|
|
|
|
nfs_fscache_invalidate_page(page, page->mapping->host);
|
|
}
|
|
|
|
/*
|
|
* Attempt to release the private state associated with a page
|
|
* - Called if either PG_private or PG_fscache is set on the page
|
|
* - Caller holds page lock
|
|
* - Return true (may release page) or false (may not)
|
|
*/
|
|
static int nfs_release_page(struct page *page, gfp_t gfp)
|
|
{
|
|
struct address_space *mapping = page->mapping;
|
|
|
|
dfprintk(PAGECACHE, "NFS: release_page(%p)\n", page);
|
|
|
|
/* Only do I/O if gfp is a superset of GFP_KERNEL, and we're not
|
|
* doing this memory reclaim for a fs-related allocation.
|
|
*/
|
|
if (mapping && (gfp & GFP_KERNEL) == GFP_KERNEL &&
|
|
!(current->flags & PF_FSTRANS)) {
|
|
int how = FLUSH_SYNC;
|
|
|
|
/* Don't let kswapd deadlock waiting for OOM RPC calls */
|
|
if (current_is_kswapd())
|
|
how = 0;
|
|
nfs_commit_inode(mapping->host, how);
|
|
}
|
|
/* If PagePrivate() is set, then the page is not freeable */
|
|
if (PagePrivate(page))
|
|
return 0;
|
|
return nfs_fscache_release_page(page, gfp);
|
|
}
|
|
|
|
static void nfs_check_dirty_writeback(struct page *page,
|
|
bool *dirty, bool *writeback)
|
|
{
|
|
struct nfs_inode *nfsi;
|
|
struct address_space *mapping = page_file_mapping(page);
|
|
|
|
if (!mapping || PageSwapCache(page))
|
|
return;
|
|
|
|
/*
|
|
* Check if an unstable page is currently being committed and
|
|
* if so, have the VM treat it as if the page is under writeback
|
|
* so it will not block due to pages that will shortly be freeable.
|
|
*/
|
|
nfsi = NFS_I(mapping->host);
|
|
if (test_bit(NFS_INO_COMMIT, &nfsi->flags)) {
|
|
*writeback = true;
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* If PagePrivate() is set, then the page is not freeable and as the
|
|
* inode is not being committed, it's not going to be cleaned in the
|
|
* near future so treat it as dirty
|
|
*/
|
|
if (PagePrivate(page))
|
|
*dirty = true;
|
|
}
|
|
|
|
/*
|
|
* Attempt to clear the private state associated with a page when an error
|
|
* occurs that requires the cached contents of an inode to be written back or
|
|
* destroyed
|
|
* - Called if either PG_private or fscache is set on the page
|
|
* - Caller holds page lock
|
|
* - Return 0 if successful, -error otherwise
|
|
*/
|
|
static int nfs_launder_page(struct page *page)
|
|
{
|
|
struct inode *inode = page_file_mapping(page)->host;
|
|
struct nfs_inode *nfsi = NFS_I(inode);
|
|
|
|
dfprintk(PAGECACHE, "NFS: launder_page(%ld, %llu)\n",
|
|
inode->i_ino, (long long)page_offset(page));
|
|
|
|
nfs_fscache_wait_on_page_write(nfsi, page);
|
|
return nfs_wb_page(inode, page);
|
|
}
|
|
|
|
#ifdef CONFIG_NFS_SWAP
|
|
static int nfs_swap_activate(struct swap_info_struct *sis, struct file *file,
|
|
sector_t *span)
|
|
{
|
|
*span = sis->pages;
|
|
return xs_swapper(NFS_CLIENT(file->f_mapping->host)->cl_xprt, 1);
|
|
}
|
|
|
|
static void nfs_swap_deactivate(struct file *file)
|
|
{
|
|
xs_swapper(NFS_CLIENT(file->f_mapping->host)->cl_xprt, 0);
|
|
}
|
|
#endif
|
|
|
|
const struct address_space_operations nfs_file_aops = {
|
|
.readpage = nfs_readpage,
|
|
.readpages = nfs_readpages,
|
|
.set_page_dirty = __set_page_dirty_nobuffers,
|
|
.writepage = nfs_writepage,
|
|
.writepages = nfs_writepages,
|
|
.write_begin = nfs_write_begin,
|
|
.write_end = nfs_write_end,
|
|
.invalidatepage = nfs_invalidate_page,
|
|
.releasepage = nfs_release_page,
|
|
.direct_IO = nfs_direct_IO,
|
|
.migratepage = nfs_migrate_page,
|
|
.launder_page = nfs_launder_page,
|
|
.is_dirty_writeback = nfs_check_dirty_writeback,
|
|
.error_remove_page = generic_error_remove_page,
|
|
#ifdef CONFIG_NFS_SWAP
|
|
.swap_activate = nfs_swap_activate,
|
|
.swap_deactivate = nfs_swap_deactivate,
|
|
#endif
|
|
};
|
|
|
|
/*
|
|
* Notification that a PTE pointing to an NFS page is about to be made
|
|
* writable, implying that someone is about to modify the page through a
|
|
* shared-writable mapping
|
|
*/
|
|
static int nfs_vm_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
|
|
{
|
|
struct page *page = vmf->page;
|
|
struct file *filp = vma->vm_file;
|
|
struct inode *inode = file_inode(filp);
|
|
unsigned pagelen;
|
|
int ret = VM_FAULT_NOPAGE;
|
|
struct address_space *mapping;
|
|
|
|
dfprintk(PAGECACHE, "NFS: vm_page_mkwrite(%pD2(%lu), offset %lld)\n",
|
|
filp, filp->f_mapping->host->i_ino,
|
|
(long long)page_offset(page));
|
|
|
|
/* make sure the cache has finished storing the page */
|
|
nfs_fscache_wait_on_page_write(NFS_I(inode), page);
|
|
|
|
lock_page(page);
|
|
mapping = page_file_mapping(page);
|
|
if (mapping != inode->i_mapping)
|
|
goto out_unlock;
|
|
|
|
wait_on_page_writeback(page);
|
|
|
|
pagelen = nfs_page_length(page);
|
|
if (pagelen == 0)
|
|
goto out_unlock;
|
|
|
|
ret = VM_FAULT_LOCKED;
|
|
if (nfs_flush_incompatible(filp, page) == 0 &&
|
|
nfs_updatepage(filp, page, 0, pagelen) == 0)
|
|
goto out;
|
|
|
|
ret = VM_FAULT_SIGBUS;
|
|
out_unlock:
|
|
unlock_page(page);
|
|
out:
|
|
return ret;
|
|
}
|
|
|
|
static const struct vm_operations_struct nfs_file_vm_ops = {
|
|
.fault = filemap_fault,
|
|
.map_pages = filemap_map_pages,
|
|
.page_mkwrite = nfs_vm_page_mkwrite,
|
|
.remap_pages = generic_file_remap_pages,
|
|
};
|
|
|
|
static int nfs_need_sync_write(struct file *filp, struct inode *inode)
|
|
{
|
|
struct nfs_open_context *ctx;
|
|
|
|
if (IS_SYNC(inode) || (filp->f_flags & O_DSYNC))
|
|
return 1;
|
|
ctx = nfs_file_open_context(filp);
|
|
if (test_bit(NFS_CONTEXT_ERROR_WRITE, &ctx->flags) ||
|
|
nfs_ctx_key_to_expire(ctx))
|
|
return 1;
|
|
return 0;
|
|
}
|
|
|
|
ssize_t nfs_file_write(struct kiocb *iocb, struct iov_iter *from)
|
|
{
|
|
struct file *file = iocb->ki_filp;
|
|
struct inode *inode = file_inode(file);
|
|
unsigned long written = 0;
|
|
ssize_t result;
|
|
size_t count = iov_iter_count(from);
|
|
loff_t pos = iocb->ki_pos;
|
|
|
|
result = nfs_key_timeout_notify(file, inode);
|
|
if (result)
|
|
return result;
|
|
|
|
if (file->f_flags & O_DIRECT)
|
|
return nfs_file_direct_write(iocb, from, pos, true);
|
|
|
|
dprintk("NFS: write(%pD2, %zu@%Ld)\n",
|
|
file, count, (long long) pos);
|
|
|
|
result = -EBUSY;
|
|
if (IS_SWAPFILE(inode))
|
|
goto out_swapfile;
|
|
/*
|
|
* O_APPEND implies that we must revalidate the file length.
|
|
*/
|
|
if (file->f_flags & O_APPEND) {
|
|
result = nfs_revalidate_file_size(inode, file);
|
|
if (result)
|
|
goto out;
|
|
}
|
|
|
|
result = count;
|
|
if (!count)
|
|
goto out;
|
|
|
|
result = generic_file_write_iter(iocb, from);
|
|
if (result > 0)
|
|
written = result;
|
|
|
|
/* Return error values for O_DSYNC and IS_SYNC() */
|
|
if (result >= 0 && nfs_need_sync_write(file, inode)) {
|
|
int err = vfs_fsync(file, 0);
|
|
if (err < 0)
|
|
result = err;
|
|
}
|
|
if (result > 0)
|
|
nfs_add_stats(inode, NFSIOS_NORMALWRITTENBYTES, written);
|
|
out:
|
|
return result;
|
|
|
|
out_swapfile:
|
|
printk(KERN_INFO "NFS: attempt to write to active swap file!\n");
|
|
goto out;
|
|
}
|
|
EXPORT_SYMBOL_GPL(nfs_file_write);
|
|
|
|
static int
|
|
do_getlk(struct file *filp, int cmd, struct file_lock *fl, int is_local)
|
|
{
|
|
struct inode *inode = filp->f_mapping->host;
|
|
int status = 0;
|
|
unsigned int saved_type = fl->fl_type;
|
|
|
|
/* Try local locking first */
|
|
posix_test_lock(filp, fl);
|
|
if (fl->fl_type != F_UNLCK) {
|
|
/* found a conflict */
|
|
goto out;
|
|
}
|
|
fl->fl_type = saved_type;
|
|
|
|
if (NFS_PROTO(inode)->have_delegation(inode, FMODE_READ))
|
|
goto out_noconflict;
|
|
|
|
if (is_local)
|
|
goto out_noconflict;
|
|
|
|
status = NFS_PROTO(inode)->lock(filp, cmd, fl);
|
|
out:
|
|
return status;
|
|
out_noconflict:
|
|
fl->fl_type = F_UNLCK;
|
|
goto out;
|
|
}
|
|
|
|
static int do_vfs_lock(struct file *file, struct file_lock *fl)
|
|
{
|
|
int res = 0;
|
|
switch (fl->fl_flags & (FL_POSIX|FL_FLOCK)) {
|
|
case FL_POSIX:
|
|
res = posix_lock_file_wait(file, fl);
|
|
break;
|
|
case FL_FLOCK:
|
|
res = flock_lock_file_wait(file, fl);
|
|
break;
|
|
default:
|
|
BUG();
|
|
}
|
|
return res;
|
|
}
|
|
|
|
static int
|
|
do_unlk(struct file *filp, int cmd, struct file_lock *fl, int is_local)
|
|
{
|
|
struct inode *inode = filp->f_mapping->host;
|
|
struct nfs_lock_context *l_ctx;
|
|
int status;
|
|
|
|
/*
|
|
* Flush all pending writes before doing anything
|
|
* with locks..
|
|
*/
|
|
nfs_sync_mapping(filp->f_mapping);
|
|
|
|
l_ctx = nfs_get_lock_context(nfs_file_open_context(filp));
|
|
if (!IS_ERR(l_ctx)) {
|
|
status = nfs_iocounter_wait(&l_ctx->io_count);
|
|
nfs_put_lock_context(l_ctx);
|
|
if (status < 0)
|
|
return status;
|
|
}
|
|
|
|
/* NOTE: special case
|
|
* If we're signalled while cleaning up locks on process exit, we
|
|
* still need to complete the unlock.
|
|
*/
|
|
/*
|
|
* Use local locking if mounted with "-onolock" or with appropriate
|
|
* "-olocal_lock="
|
|
*/
|
|
if (!is_local)
|
|
status = NFS_PROTO(inode)->lock(filp, cmd, fl);
|
|
else
|
|
status = do_vfs_lock(filp, fl);
|
|
return status;
|
|
}
|
|
|
|
static int
|
|
is_time_granular(struct timespec *ts) {
|
|
return ((ts->tv_sec == 0) && (ts->tv_nsec <= 1000));
|
|
}
|
|
|
|
static int
|
|
do_setlk(struct file *filp, int cmd, struct file_lock *fl, int is_local)
|
|
{
|
|
struct inode *inode = filp->f_mapping->host;
|
|
int status;
|
|
|
|
/*
|
|
* Flush all pending writes before doing anything
|
|
* with locks..
|
|
*/
|
|
status = nfs_sync_mapping(filp->f_mapping);
|
|
if (status != 0)
|
|
goto out;
|
|
|
|
/*
|
|
* Use local locking if mounted with "-onolock" or with appropriate
|
|
* "-olocal_lock="
|
|
*/
|
|
if (!is_local)
|
|
status = NFS_PROTO(inode)->lock(filp, cmd, fl);
|
|
else
|
|
status = do_vfs_lock(filp, fl);
|
|
if (status < 0)
|
|
goto out;
|
|
|
|
/*
|
|
* Revalidate the cache if the server has time stamps granular
|
|
* enough to detect subsecond changes. Otherwise, clear the
|
|
* cache to prevent missing any changes.
|
|
*
|
|
* This makes locking act as a cache coherency point.
|
|
*/
|
|
nfs_sync_mapping(filp->f_mapping);
|
|
if (!NFS_PROTO(inode)->have_delegation(inode, FMODE_READ)) {
|
|
if (is_time_granular(&NFS_SERVER(inode)->time_delta))
|
|
__nfs_revalidate_inode(NFS_SERVER(inode), inode);
|
|
else
|
|
nfs_zap_caches(inode);
|
|
}
|
|
out:
|
|
return status;
|
|
}
|
|
|
|
/*
|
|
* Lock a (portion of) a file
|
|
*/
|
|
int nfs_lock(struct file *filp, int cmd, struct file_lock *fl)
|
|
{
|
|
struct inode *inode = filp->f_mapping->host;
|
|
int ret = -ENOLCK;
|
|
int is_local = 0;
|
|
|
|
dprintk("NFS: lock(%pD2, t=%x, fl=%x, r=%lld:%lld)\n",
|
|
filp, fl->fl_type, fl->fl_flags,
|
|
(long long)fl->fl_start, (long long)fl->fl_end);
|
|
|
|
nfs_inc_stats(inode, NFSIOS_VFSLOCK);
|
|
|
|
/* No mandatory locks over NFS */
|
|
if (__mandatory_lock(inode) && fl->fl_type != F_UNLCK)
|
|
goto out_err;
|
|
|
|
if (NFS_SERVER(inode)->flags & NFS_MOUNT_LOCAL_FCNTL)
|
|
is_local = 1;
|
|
|
|
if (NFS_PROTO(inode)->lock_check_bounds != NULL) {
|
|
ret = NFS_PROTO(inode)->lock_check_bounds(fl);
|
|
if (ret < 0)
|
|
goto out_err;
|
|
}
|
|
|
|
if (IS_GETLK(cmd))
|
|
ret = do_getlk(filp, cmd, fl, is_local);
|
|
else if (fl->fl_type == F_UNLCK)
|
|
ret = do_unlk(filp, cmd, fl, is_local);
|
|
else
|
|
ret = do_setlk(filp, cmd, fl, is_local);
|
|
out_err:
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL_GPL(nfs_lock);
|
|
|
|
/*
|
|
* Lock a (portion of) a file
|
|
*/
|
|
int nfs_flock(struct file *filp, int cmd, struct file_lock *fl)
|
|
{
|
|
struct inode *inode = filp->f_mapping->host;
|
|
int is_local = 0;
|
|
|
|
dprintk("NFS: flock(%pD2, t=%x, fl=%x)\n",
|
|
filp, fl->fl_type, fl->fl_flags);
|
|
|
|
if (!(fl->fl_flags & FL_FLOCK))
|
|
return -ENOLCK;
|
|
|
|
/*
|
|
* The NFSv4 protocol doesn't support LOCK_MAND, which is not part of
|
|
* any standard. In principle we might be able to support LOCK_MAND
|
|
* on NFSv2/3 since NLMv3/4 support DOS share modes, but for now the
|
|
* NFS code is not set up for it.
|
|
*/
|
|
if (fl->fl_type & LOCK_MAND)
|
|
return -EINVAL;
|
|
|
|
if (NFS_SERVER(inode)->flags & NFS_MOUNT_LOCAL_FLOCK)
|
|
is_local = 1;
|
|
|
|
/* We're simulating flock() locks using posix locks on the server */
|
|
if (fl->fl_type == F_UNLCK)
|
|
return do_unlk(filp, cmd, fl, is_local);
|
|
return do_setlk(filp, cmd, fl, is_local);
|
|
}
|
|
EXPORT_SYMBOL_GPL(nfs_flock);
|
|
|
|
/*
|
|
* There is no protocol support for leases, so we have no way to implement
|
|
* them correctly in the face of opens by other clients.
|
|
*/
|
|
int nfs_setlease(struct file *file, long arg, struct file_lock **fl)
|
|
{
|
|
dprintk("NFS: setlease(%pD2, arg=%ld)\n", file, arg);
|
|
return -EINVAL;
|
|
}
|
|
EXPORT_SYMBOL_GPL(nfs_setlease);
|
|
|
|
const struct file_operations nfs_file_operations = {
|
|
.llseek = nfs_file_llseek,
|
|
.read = new_sync_read,
|
|
.write = new_sync_write,
|
|
.read_iter = nfs_file_read,
|
|
.write_iter = nfs_file_write,
|
|
.mmap = nfs_file_mmap,
|
|
.open = nfs_file_open,
|
|
.flush = nfs_file_flush,
|
|
.release = nfs_file_release,
|
|
.fsync = nfs_file_fsync,
|
|
.lock = nfs_lock,
|
|
.flock = nfs_flock,
|
|
.splice_read = nfs_file_splice_read,
|
|
.splice_write = iter_file_splice_write,
|
|
.check_flags = nfs_check_flags,
|
|
.setlease = nfs_setlease,
|
|
};
|
|
EXPORT_SYMBOL_GPL(nfs_file_operations);
|