mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2025-01-14 01:46:21 +07:00
64fc2a947a
All low-level PM/SMP code using virt_to_phys() should actually use __pa_symbol() against kernel symbols. Update code where relevant to move away from virt_to_phys(). Acked-by: Russell King <rmk+kernel@armlinux.org.uk> Reviewed-by: Laura Abbott <labbott@redhat.com> Signed-off-by: Florian Fainelli <f.fainelli@gmail.com> Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
267 lines
7.3 KiB
C
267 lines
7.3 KiB
C
/*
|
|
* arch/arm/mach-vexpress/tc2_pm.c - TC2 power management support
|
|
*
|
|
* Created by: Nicolas Pitre, October 2012
|
|
* Copyright: (C) 2012-2013 Linaro Limited
|
|
*
|
|
* Some portions of this file were originally written by Achin Gupta
|
|
* Copyright: (C) 2012 ARM Limited
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License version 2 as
|
|
* published by the Free Software Foundation.
|
|
*/
|
|
|
|
#include <linux/delay.h>
|
|
#include <linux/init.h>
|
|
#include <linux/io.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/of_address.h>
|
|
#include <linux/of_irq.h>
|
|
#include <linux/errno.h>
|
|
#include <linux/irqchip/arm-gic.h>
|
|
|
|
#include <asm/mcpm.h>
|
|
#include <asm/proc-fns.h>
|
|
#include <asm/cacheflush.h>
|
|
#include <asm/cputype.h>
|
|
#include <asm/cp15.h>
|
|
|
|
#include <linux/arm-cci.h>
|
|
|
|
#include "spc.h"
|
|
|
|
/* SCC conf registers */
|
|
#define RESET_CTRL 0x018
|
|
#define RESET_A15_NCORERESET(cpu) (1 << (2 + (cpu)))
|
|
#define RESET_A7_NCORERESET(cpu) (1 << (16 + (cpu)))
|
|
|
|
#define A15_CONF 0x400
|
|
#define A7_CONF 0x500
|
|
#define SYS_INFO 0x700
|
|
#define SPC_BASE 0xb00
|
|
|
|
static void __iomem *scc;
|
|
|
|
#define TC2_CLUSTERS 2
|
|
#define TC2_MAX_CPUS_PER_CLUSTER 3
|
|
|
|
static unsigned int tc2_nr_cpus[TC2_CLUSTERS];
|
|
|
|
static int tc2_pm_cpu_powerup(unsigned int cpu, unsigned int cluster)
|
|
{
|
|
pr_debug("%s: cpu %u cluster %u\n", __func__, cpu, cluster);
|
|
if (cluster >= TC2_CLUSTERS || cpu >= tc2_nr_cpus[cluster])
|
|
return -EINVAL;
|
|
ve_spc_set_resume_addr(cluster, cpu,
|
|
__pa_symbol(mcpm_entry_point));
|
|
ve_spc_cpu_wakeup_irq(cluster, cpu, true);
|
|
return 0;
|
|
}
|
|
|
|
static int tc2_pm_cluster_powerup(unsigned int cluster)
|
|
{
|
|
pr_debug("%s: cluster %u\n", __func__, cluster);
|
|
if (cluster >= TC2_CLUSTERS)
|
|
return -EINVAL;
|
|
ve_spc_powerdown(cluster, false);
|
|
return 0;
|
|
}
|
|
|
|
static void tc2_pm_cpu_powerdown_prepare(unsigned int cpu, unsigned int cluster)
|
|
{
|
|
pr_debug("%s: cpu %u cluster %u\n", __func__, cpu, cluster);
|
|
BUG_ON(cluster >= TC2_CLUSTERS || cpu >= TC2_MAX_CPUS_PER_CLUSTER);
|
|
ve_spc_cpu_wakeup_irq(cluster, cpu, true);
|
|
/*
|
|
* If the CPU is committed to power down, make sure
|
|
* the power controller will be in charge of waking it
|
|
* up upon IRQ, ie IRQ lines are cut from GIC CPU IF
|
|
* to the CPU by disabling the GIC CPU IF to prevent wfi
|
|
* from completing execution behind power controller back
|
|
*/
|
|
gic_cpu_if_down(0);
|
|
}
|
|
|
|
static void tc2_pm_cluster_powerdown_prepare(unsigned int cluster)
|
|
{
|
|
pr_debug("%s: cluster %u\n", __func__, cluster);
|
|
BUG_ON(cluster >= TC2_CLUSTERS);
|
|
ve_spc_powerdown(cluster, true);
|
|
ve_spc_global_wakeup_irq(true);
|
|
}
|
|
|
|
static void tc2_pm_cpu_cache_disable(void)
|
|
{
|
|
v7_exit_coherency_flush(louis);
|
|
}
|
|
|
|
static void tc2_pm_cluster_cache_disable(void)
|
|
{
|
|
if (read_cpuid_part() == ARM_CPU_PART_CORTEX_A15) {
|
|
/*
|
|
* On the Cortex-A15 we need to disable
|
|
* L2 prefetching before flushing the cache.
|
|
*/
|
|
asm volatile(
|
|
"mcr p15, 1, %0, c15, c0, 3 \n\t"
|
|
"isb \n\t"
|
|
"dsb "
|
|
: : "r" (0x400) );
|
|
}
|
|
|
|
v7_exit_coherency_flush(all);
|
|
cci_disable_port_by_cpu(read_cpuid_mpidr());
|
|
}
|
|
|
|
static int tc2_core_in_reset(unsigned int cpu, unsigned int cluster)
|
|
{
|
|
u32 mask = cluster ?
|
|
RESET_A7_NCORERESET(cpu)
|
|
: RESET_A15_NCORERESET(cpu);
|
|
|
|
return !(readl_relaxed(scc + RESET_CTRL) & mask);
|
|
}
|
|
|
|
#define POLL_MSEC 10
|
|
#define TIMEOUT_MSEC 1000
|
|
|
|
static int tc2_pm_wait_for_powerdown(unsigned int cpu, unsigned int cluster)
|
|
{
|
|
unsigned tries;
|
|
|
|
pr_debug("%s: cpu %u cluster %u\n", __func__, cpu, cluster);
|
|
BUG_ON(cluster >= TC2_CLUSTERS || cpu >= TC2_MAX_CPUS_PER_CLUSTER);
|
|
|
|
for (tries = 0; tries < TIMEOUT_MSEC / POLL_MSEC; ++tries) {
|
|
pr_debug("%s(cpu=%u, cluster=%u): RESET_CTRL = 0x%08X\n",
|
|
__func__, cpu, cluster,
|
|
readl_relaxed(scc + RESET_CTRL));
|
|
|
|
/*
|
|
* We need the CPU to reach WFI, but the power
|
|
* controller may put the cluster in reset and
|
|
* power it off as soon as that happens, before
|
|
* we have a chance to see STANDBYWFI.
|
|
*
|
|
* So we need to check for both conditions:
|
|
*/
|
|
if (tc2_core_in_reset(cpu, cluster) ||
|
|
ve_spc_cpu_in_wfi(cpu, cluster))
|
|
return 0; /* success: the CPU is halted */
|
|
|
|
/* Otherwise, wait and retry: */
|
|
msleep(POLL_MSEC);
|
|
}
|
|
|
|
return -ETIMEDOUT; /* timeout */
|
|
}
|
|
|
|
static void tc2_pm_cpu_suspend_prepare(unsigned int cpu, unsigned int cluster)
|
|
{
|
|
ve_spc_set_resume_addr(cluster, cpu, __pa_symbol(mcpm_entry_point));
|
|
}
|
|
|
|
static void tc2_pm_cpu_is_up(unsigned int cpu, unsigned int cluster)
|
|
{
|
|
pr_debug("%s: cpu %u cluster %u\n", __func__, cpu, cluster);
|
|
BUG_ON(cluster >= TC2_CLUSTERS || cpu >= TC2_MAX_CPUS_PER_CLUSTER);
|
|
ve_spc_cpu_wakeup_irq(cluster, cpu, false);
|
|
ve_spc_set_resume_addr(cluster, cpu, 0);
|
|
}
|
|
|
|
static void tc2_pm_cluster_is_up(unsigned int cluster)
|
|
{
|
|
pr_debug("%s: cluster %u\n", __func__, cluster);
|
|
BUG_ON(cluster >= TC2_CLUSTERS);
|
|
ve_spc_powerdown(cluster, false);
|
|
ve_spc_global_wakeup_irq(false);
|
|
}
|
|
|
|
static const struct mcpm_platform_ops tc2_pm_power_ops = {
|
|
.cpu_powerup = tc2_pm_cpu_powerup,
|
|
.cluster_powerup = tc2_pm_cluster_powerup,
|
|
.cpu_suspend_prepare = tc2_pm_cpu_suspend_prepare,
|
|
.cpu_powerdown_prepare = tc2_pm_cpu_powerdown_prepare,
|
|
.cluster_powerdown_prepare = tc2_pm_cluster_powerdown_prepare,
|
|
.cpu_cache_disable = tc2_pm_cpu_cache_disable,
|
|
.cluster_cache_disable = tc2_pm_cluster_cache_disable,
|
|
.wait_for_powerdown = tc2_pm_wait_for_powerdown,
|
|
.cpu_is_up = tc2_pm_cpu_is_up,
|
|
.cluster_is_up = tc2_pm_cluster_is_up,
|
|
};
|
|
|
|
/*
|
|
* Enable cluster-level coherency, in preparation for turning on the MMU.
|
|
*/
|
|
static void __naked tc2_pm_power_up_setup(unsigned int affinity_level)
|
|
{
|
|
asm volatile (" \n"
|
|
" cmp r0, #1 \n"
|
|
" bxne lr \n"
|
|
" b cci_enable_port_for_self ");
|
|
}
|
|
|
|
static int __init tc2_pm_init(void)
|
|
{
|
|
unsigned int mpidr, cpu, cluster;
|
|
int ret, irq;
|
|
u32 a15_cluster_id, a7_cluster_id, sys_info;
|
|
struct device_node *np;
|
|
|
|
/*
|
|
* The power management-related features are hidden behind
|
|
* SCC registers. We need to extract runtime information like
|
|
* cluster ids and number of CPUs really available in clusters.
|
|
*/
|
|
np = of_find_compatible_node(NULL, NULL,
|
|
"arm,vexpress-scc,v2p-ca15_a7");
|
|
scc = of_iomap(np, 0);
|
|
if (!scc)
|
|
return -ENODEV;
|
|
|
|
a15_cluster_id = readl_relaxed(scc + A15_CONF) & 0xf;
|
|
a7_cluster_id = readl_relaxed(scc + A7_CONF) & 0xf;
|
|
if (a15_cluster_id >= TC2_CLUSTERS || a7_cluster_id >= TC2_CLUSTERS)
|
|
return -EINVAL;
|
|
|
|
sys_info = readl_relaxed(scc + SYS_INFO);
|
|
tc2_nr_cpus[a15_cluster_id] = (sys_info >> 16) & 0xf;
|
|
tc2_nr_cpus[a7_cluster_id] = (sys_info >> 20) & 0xf;
|
|
|
|
irq = irq_of_parse_and_map(np, 0);
|
|
|
|
/*
|
|
* A subset of the SCC registers is also used to communicate
|
|
* with the SPC (power controller). We need to be able to
|
|
* drive it very early in the boot process to power up
|
|
* processors, so we initialize the SPC driver here.
|
|
*/
|
|
ret = ve_spc_init(scc + SPC_BASE, a15_cluster_id, irq);
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (!cci_probed())
|
|
return -ENODEV;
|
|
|
|
mpidr = read_cpuid_mpidr();
|
|
cpu = MPIDR_AFFINITY_LEVEL(mpidr, 0);
|
|
cluster = MPIDR_AFFINITY_LEVEL(mpidr, 1);
|
|
pr_debug("%s: cpu %u cluster %u\n", __func__, cpu, cluster);
|
|
if (cluster >= TC2_CLUSTERS || cpu >= tc2_nr_cpus[cluster]) {
|
|
pr_err("%s: boot CPU is out of bound!\n", __func__);
|
|
return -EINVAL;
|
|
}
|
|
|
|
ret = mcpm_platform_register(&tc2_pm_power_ops);
|
|
if (!ret) {
|
|
mcpm_sync_init(tc2_pm_power_up_setup);
|
|
/* test if we can (re)enable the CCI on our own */
|
|
BUG_ON(mcpm_loopback(tc2_pm_cluster_cache_disable) != 0);
|
|
pr_info("TC2 power management initialized\n");
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
early_initcall(tc2_pm_init);
|