mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2025-01-25 16:30:03 +07:00
e68bc75691
Introduce the following parameters in order to add the possibility to sync DMA memory for device before putting allocated pages in the page_pool caches: - PP_FLAG_DMA_SYNC_DEV: if set in page_pool_params flags, all pages that the driver gets from page_pool will be DMA-synced-for-device according to the length provided by the device driver. Please note DMA-sync-for-CPU is still device driver responsibility - offset: DMA address offset where the DMA engine starts copying rx data - max_len: maximum DMA memory size page_pool is allowed to flush. This is currently used in __page_pool_alloc_pages_slow routine when pages are allocated from page allocator These parameters are supposed to be set by device drivers. This optimization reduces the length of the DMA-sync-for-device. The optimization is valid because pages are initially DMA-synced-for-device as defined via max_len. At RX time, the driver will perform a DMA-sync-for-CPU on the memory for the packet length. What is important is the memory occupied by packet payload, because this is the area CPU is allowed to read and modify. As we don't track cache-lines written into by the CPU, simply use the packet payload length as dma_sync_size at page_pool recycle time. This also take into account any tail-extend. Tested-by: Matteo Croce <mcroce@redhat.com> Signed-off-by: Lorenzo Bianconi <lorenzo@kernel.org> Signed-off-by: Jesper Dangaard Brouer <brouer@redhat.com> Acked-by: Ilias Apalodimas <ilias.apalodimas@linaro.org> Signed-off-by: David S. Miller <davem@davemloft.net>
227 lines
6.9 KiB
C
227 lines
6.9 KiB
C
/* SPDX-License-Identifier: GPL-2.0
|
|
*
|
|
* page_pool.h
|
|
* Author: Jesper Dangaard Brouer <netoptimizer@brouer.com>
|
|
* Copyright (C) 2016 Red Hat, Inc.
|
|
*/
|
|
|
|
/**
|
|
* DOC: page_pool allocator
|
|
*
|
|
* This page_pool allocator is optimized for the XDP mode that
|
|
* uses one-frame-per-page, but have fallbacks that act like the
|
|
* regular page allocator APIs.
|
|
*
|
|
* Basic use involve replacing alloc_pages() calls with the
|
|
* page_pool_alloc_pages() call. Drivers should likely use
|
|
* page_pool_dev_alloc_pages() replacing dev_alloc_pages().
|
|
*
|
|
* API keeps track of in-flight pages, in-order to let API user know
|
|
* when it is safe to dealloactor page_pool object. Thus, API users
|
|
* must make sure to call page_pool_release_page() when a page is
|
|
* "leaving" the page_pool. Or call page_pool_put_page() where
|
|
* appropiate. For maintaining correct accounting.
|
|
*
|
|
* API user must only call page_pool_put_page() once on a page, as it
|
|
* will either recycle the page, or in case of elevated refcnt, it
|
|
* will release the DMA mapping and in-flight state accounting. We
|
|
* hope to lift this requirement in the future.
|
|
*/
|
|
#ifndef _NET_PAGE_POOL_H
|
|
#define _NET_PAGE_POOL_H
|
|
|
|
#include <linux/mm.h> /* Needed by ptr_ring */
|
|
#include <linux/ptr_ring.h>
|
|
#include <linux/dma-direction.h>
|
|
|
|
#define PP_FLAG_DMA_MAP BIT(0) /* Should page_pool do the DMA
|
|
* map/unmap
|
|
*/
|
|
#define PP_FLAG_DMA_SYNC_DEV BIT(1) /* If set all pages that the driver gets
|
|
* from page_pool will be
|
|
* DMA-synced-for-device according to
|
|
* the length provided by the device
|
|
* driver.
|
|
* Please note DMA-sync-for-CPU is still
|
|
* device driver responsibility
|
|
*/
|
|
#define PP_FLAG_ALL (PP_FLAG_DMA_MAP | PP_FLAG_DMA_SYNC_DEV)
|
|
|
|
/*
|
|
* Fast allocation side cache array/stack
|
|
*
|
|
* The cache size and refill watermark is related to the network
|
|
* use-case. The NAPI budget is 64 packets. After a NAPI poll the RX
|
|
* ring is usually refilled and the max consumed elements will be 64,
|
|
* thus a natural max size of objects needed in the cache.
|
|
*
|
|
* Keeping room for more objects, is due to XDP_DROP use-case. As
|
|
* XDP_DROP allows the opportunity to recycle objects directly into
|
|
* this array, as it shares the same softirq/NAPI protection. If
|
|
* cache is already full (or partly full) then the XDP_DROP recycles
|
|
* would have to take a slower code path.
|
|
*/
|
|
#define PP_ALLOC_CACHE_SIZE 128
|
|
#define PP_ALLOC_CACHE_REFILL 64
|
|
struct pp_alloc_cache {
|
|
u32 count;
|
|
void *cache[PP_ALLOC_CACHE_SIZE];
|
|
};
|
|
|
|
struct page_pool_params {
|
|
unsigned int flags;
|
|
unsigned int order;
|
|
unsigned int pool_size;
|
|
int nid; /* Numa node id to allocate from pages from */
|
|
struct device *dev; /* device, for DMA pre-mapping purposes */
|
|
enum dma_data_direction dma_dir; /* DMA mapping direction */
|
|
unsigned int max_len; /* max DMA sync memory size */
|
|
unsigned int offset; /* DMA addr offset */
|
|
};
|
|
|
|
struct page_pool {
|
|
struct page_pool_params p;
|
|
|
|
struct delayed_work release_dw;
|
|
void (*disconnect)(void *);
|
|
unsigned long defer_start;
|
|
unsigned long defer_warn;
|
|
|
|
u32 pages_state_hold_cnt;
|
|
|
|
/*
|
|
* Data structure for allocation side
|
|
*
|
|
* Drivers allocation side usually already perform some kind
|
|
* of resource protection. Piggyback on this protection, and
|
|
* require driver to protect allocation side.
|
|
*
|
|
* For NIC drivers this means, allocate a page_pool per
|
|
* RX-queue. As the RX-queue is already protected by
|
|
* Softirq/BH scheduling and napi_schedule. NAPI schedule
|
|
* guarantee that a single napi_struct will only be scheduled
|
|
* on a single CPU (see napi_schedule).
|
|
*/
|
|
struct pp_alloc_cache alloc ____cacheline_aligned_in_smp;
|
|
|
|
/* Data structure for storing recycled pages.
|
|
*
|
|
* Returning/freeing pages is more complicated synchronization
|
|
* wise, because free's can happen on remote CPUs, with no
|
|
* association with allocation resource.
|
|
*
|
|
* Use ptr_ring, as it separates consumer and producer
|
|
* effeciently, it a way that doesn't bounce cache-lines.
|
|
*
|
|
* TODO: Implement bulk return pages into this structure.
|
|
*/
|
|
struct ptr_ring ring;
|
|
|
|
atomic_t pages_state_release_cnt;
|
|
|
|
/* A page_pool is strictly tied to a single RX-queue being
|
|
* protected by NAPI, due to above pp_alloc_cache. This
|
|
* refcnt serves purpose is to simplify drivers error handling.
|
|
*/
|
|
refcount_t user_cnt;
|
|
|
|
u64 destroy_cnt;
|
|
};
|
|
|
|
struct page *page_pool_alloc_pages(struct page_pool *pool, gfp_t gfp);
|
|
|
|
static inline struct page *page_pool_dev_alloc_pages(struct page_pool *pool)
|
|
{
|
|
gfp_t gfp = (GFP_ATOMIC | __GFP_NOWARN);
|
|
|
|
return page_pool_alloc_pages(pool, gfp);
|
|
}
|
|
|
|
/* get the stored dma direction. A driver might decide to treat this locally and
|
|
* avoid the extra cache line from page_pool to determine the direction
|
|
*/
|
|
static
|
|
inline enum dma_data_direction page_pool_get_dma_dir(struct page_pool *pool)
|
|
{
|
|
return pool->p.dma_dir;
|
|
}
|
|
|
|
struct page_pool *page_pool_create(const struct page_pool_params *params);
|
|
|
|
#ifdef CONFIG_PAGE_POOL
|
|
void page_pool_destroy(struct page_pool *pool);
|
|
void page_pool_use_xdp_mem(struct page_pool *pool, void (*disconnect)(void *));
|
|
#else
|
|
static inline void page_pool_destroy(struct page_pool *pool)
|
|
{
|
|
}
|
|
|
|
static inline void page_pool_use_xdp_mem(struct page_pool *pool,
|
|
void (*disconnect)(void *))
|
|
{
|
|
}
|
|
#endif
|
|
|
|
/* Never call this directly, use helpers below */
|
|
void __page_pool_put_page(struct page_pool *pool, struct page *page,
|
|
unsigned int dma_sync_size, bool allow_direct);
|
|
|
|
static inline void page_pool_put_page(struct page_pool *pool,
|
|
struct page *page, bool allow_direct)
|
|
{
|
|
/* When page_pool isn't compiled-in, net/core/xdp.c doesn't
|
|
* allow registering MEM_TYPE_PAGE_POOL, but shield linker.
|
|
*/
|
|
#ifdef CONFIG_PAGE_POOL
|
|
__page_pool_put_page(pool, page, -1, allow_direct);
|
|
#endif
|
|
}
|
|
/* Very limited use-cases allow recycle direct */
|
|
static inline void page_pool_recycle_direct(struct page_pool *pool,
|
|
struct page *page)
|
|
{
|
|
__page_pool_put_page(pool, page, -1, true);
|
|
}
|
|
|
|
/* Disconnects a page (from a page_pool). API users can have a need
|
|
* to disconnect a page (from a page_pool), to allow it to be used as
|
|
* a regular page (that will eventually be returned to the normal
|
|
* page-allocator via put_page).
|
|
*/
|
|
void page_pool_unmap_page(struct page_pool *pool, struct page *page);
|
|
static inline void page_pool_release_page(struct page_pool *pool,
|
|
struct page *page)
|
|
{
|
|
#ifdef CONFIG_PAGE_POOL
|
|
page_pool_unmap_page(pool, page);
|
|
#endif
|
|
}
|
|
|
|
static inline dma_addr_t page_pool_get_dma_addr(struct page *page)
|
|
{
|
|
return page->dma_addr;
|
|
}
|
|
|
|
static inline bool is_page_pool_compiled_in(void)
|
|
{
|
|
#ifdef CONFIG_PAGE_POOL
|
|
return true;
|
|
#else
|
|
return false;
|
|
#endif
|
|
}
|
|
|
|
static inline bool page_pool_put(struct page_pool *pool)
|
|
{
|
|
return refcount_dec_and_test(&pool->user_cnt);
|
|
}
|
|
|
|
/* Caller must provide appropriate safe context, e.g. NAPI. */
|
|
void page_pool_update_nid(struct page_pool *pool, int new_nid);
|
|
static inline void page_pool_nid_changed(struct page_pool *pool, int new_nid)
|
|
{
|
|
if (unlikely(pool->p.nid != new_nid))
|
|
page_pool_update_nid(pool, new_nid);
|
|
}
|
|
#endif /* _NET_PAGE_POOL_H */
|