mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2024-11-30 13:56:53 +07:00
b3205dea8f
Instead of hardcoding the SYSRAM details for each SoC, pass this information through device tree (DT) and make the code SoC agnostic. Generic DT SRAM bindings are used for achieving this. Signed-off-by: Sachin Kamat <sachin.kamat@linaro.org> Acked-by: Arnd Bergmann <arnd@arndb.de> Acked-by: Heiko Stuebner <heiko@sntech.de> Reviewed-by: Tomasz Figa <t.figa@samsung.com> Signed-off-by: Kukjin Kim <kgene.kim@samsung.com>
286 lines
6.5 KiB
C
286 lines
6.5 KiB
C
/* linux/arch/arm/mach-exynos4/platsmp.c
|
|
*
|
|
* Copyright (c) 2010-2011 Samsung Electronics Co., Ltd.
|
|
* http://www.samsung.com
|
|
*
|
|
* Cloned from linux/arch/arm/mach-vexpress/platsmp.c
|
|
*
|
|
* Copyright (C) 2002 ARM Ltd.
|
|
* All Rights Reserved
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License version 2 as
|
|
* published by the Free Software Foundation.
|
|
*/
|
|
|
|
#include <linux/init.h>
|
|
#include <linux/errno.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/device.h>
|
|
#include <linux/jiffies.h>
|
|
#include <linux/smp.h>
|
|
#include <linux/io.h>
|
|
#include <linux/of_address.h>
|
|
|
|
#include <asm/cacheflush.h>
|
|
#include <asm/smp_plat.h>
|
|
#include <asm/smp_scu.h>
|
|
#include <asm/firmware.h>
|
|
|
|
#include <plat/cpu.h>
|
|
|
|
#include "common.h"
|
|
#include "regs-pmu.h"
|
|
|
|
extern void exynos4_secondary_startup(void);
|
|
|
|
static void __iomem *sysram_base_addr;
|
|
void __iomem *sysram_ns_base_addr;
|
|
|
|
static void __init exynos_smp_prepare_sysram(void)
|
|
{
|
|
struct device_node *node;
|
|
|
|
for_each_compatible_node(node, NULL, "samsung,exynos4210-sysram") {
|
|
if (!of_device_is_available(node))
|
|
continue;
|
|
sysram_base_addr = of_iomap(node, 0);
|
|
break;
|
|
}
|
|
|
|
for_each_compatible_node(node, NULL, "samsung,exynos4210-sysram-ns") {
|
|
if (!of_device_is_available(node))
|
|
continue;
|
|
sysram_ns_base_addr = of_iomap(node, 0);
|
|
break;
|
|
}
|
|
}
|
|
|
|
static inline void __iomem *cpu_boot_reg_base(void)
|
|
{
|
|
if (soc_is_exynos4210() && samsung_rev() == EXYNOS4210_REV_1_1)
|
|
return S5P_INFORM5;
|
|
return sysram_base_addr;
|
|
}
|
|
|
|
static inline void __iomem *cpu_boot_reg(int cpu)
|
|
{
|
|
void __iomem *boot_reg;
|
|
|
|
boot_reg = cpu_boot_reg_base();
|
|
if (!boot_reg)
|
|
return ERR_PTR(-ENODEV);
|
|
if (soc_is_exynos4412())
|
|
boot_reg += 4*cpu;
|
|
else if (soc_is_exynos5420())
|
|
boot_reg += 4;
|
|
return boot_reg;
|
|
}
|
|
|
|
/*
|
|
* Write pen_release in a way that is guaranteed to be visible to all
|
|
* observers, irrespective of whether they're taking part in coherency
|
|
* or not. This is necessary for the hotplug code to work reliably.
|
|
*/
|
|
static void write_pen_release(int val)
|
|
{
|
|
pen_release = val;
|
|
smp_wmb();
|
|
sync_cache_w(&pen_release);
|
|
}
|
|
|
|
static void __iomem *scu_base_addr(void)
|
|
{
|
|
return (void __iomem *)(S5P_VA_SCU);
|
|
}
|
|
|
|
static DEFINE_SPINLOCK(boot_lock);
|
|
|
|
static void exynos_secondary_init(unsigned int cpu)
|
|
{
|
|
/*
|
|
* let the primary processor know we're out of the
|
|
* pen, then head off into the C entry point
|
|
*/
|
|
write_pen_release(-1);
|
|
|
|
/*
|
|
* Synchronise with the boot thread.
|
|
*/
|
|
spin_lock(&boot_lock);
|
|
spin_unlock(&boot_lock);
|
|
}
|
|
|
|
static int exynos_boot_secondary(unsigned int cpu, struct task_struct *idle)
|
|
{
|
|
unsigned long timeout;
|
|
unsigned long phys_cpu = cpu_logical_map(cpu);
|
|
int ret = -ENOSYS;
|
|
|
|
/*
|
|
* Set synchronisation state between this boot processor
|
|
* and the secondary one
|
|
*/
|
|
spin_lock(&boot_lock);
|
|
|
|
/*
|
|
* The secondary processor is waiting to be released from
|
|
* the holding pen - release it, then wait for it to flag
|
|
* that it has been released by resetting pen_release.
|
|
*
|
|
* Note that "pen_release" is the hardware CPU ID, whereas
|
|
* "cpu" is Linux's internal ID.
|
|
*/
|
|
write_pen_release(phys_cpu);
|
|
|
|
if (!(__raw_readl(S5P_ARM_CORE1_STATUS) & S5P_CORE_LOCAL_PWR_EN)) {
|
|
__raw_writel(S5P_CORE_LOCAL_PWR_EN,
|
|
S5P_ARM_CORE1_CONFIGURATION);
|
|
|
|
timeout = 10;
|
|
|
|
/* wait max 10 ms until cpu1 is on */
|
|
while ((__raw_readl(S5P_ARM_CORE1_STATUS)
|
|
& S5P_CORE_LOCAL_PWR_EN) != S5P_CORE_LOCAL_PWR_EN) {
|
|
if (timeout-- == 0)
|
|
break;
|
|
|
|
mdelay(1);
|
|
}
|
|
|
|
if (timeout == 0) {
|
|
printk(KERN_ERR "cpu1 power enable failed");
|
|
spin_unlock(&boot_lock);
|
|
return -ETIMEDOUT;
|
|
}
|
|
}
|
|
/*
|
|
* Send the secondary CPU a soft interrupt, thereby causing
|
|
* the boot monitor to read the system wide flags register,
|
|
* and branch to the address found there.
|
|
*/
|
|
|
|
timeout = jiffies + (1 * HZ);
|
|
while (time_before(jiffies, timeout)) {
|
|
unsigned long boot_addr;
|
|
|
|
smp_rmb();
|
|
|
|
boot_addr = virt_to_phys(exynos4_secondary_startup);
|
|
|
|
/*
|
|
* Try to set boot address using firmware first
|
|
* and fall back to boot register if it fails.
|
|
*/
|
|
ret = call_firmware_op(set_cpu_boot_addr, phys_cpu, boot_addr);
|
|
if (ret && ret != -ENOSYS)
|
|
goto fail;
|
|
if (ret == -ENOSYS) {
|
|
void __iomem *boot_reg = cpu_boot_reg(phys_cpu);
|
|
|
|
if (IS_ERR(boot_reg)) {
|
|
ret = PTR_ERR(boot_reg);
|
|
goto fail;
|
|
}
|
|
__raw_writel(boot_addr, cpu_boot_reg(phys_cpu));
|
|
}
|
|
|
|
call_firmware_op(cpu_boot, phys_cpu);
|
|
|
|
arch_send_wakeup_ipi_mask(cpumask_of(cpu));
|
|
|
|
if (pen_release == -1)
|
|
break;
|
|
|
|
udelay(10);
|
|
}
|
|
|
|
/*
|
|
* now the secondary core is starting up let it run its
|
|
* calibrations, then wait for it to finish
|
|
*/
|
|
fail:
|
|
spin_unlock(&boot_lock);
|
|
|
|
return pen_release != -1 ? ret : 0;
|
|
}
|
|
|
|
/*
|
|
* Initialise the CPU possible map early - this describes the CPUs
|
|
* which may be present or become present in the system.
|
|
*/
|
|
|
|
static void __init exynos_smp_init_cpus(void)
|
|
{
|
|
void __iomem *scu_base = scu_base_addr();
|
|
unsigned int i, ncores;
|
|
|
|
if (read_cpuid_part_number() == ARM_CPU_PART_CORTEX_A9)
|
|
ncores = scu_base ? scu_get_core_count(scu_base) : 1;
|
|
else
|
|
/*
|
|
* CPU Nodes are passed thru DT and set_cpu_possible
|
|
* is set by "arm_dt_init_cpu_maps".
|
|
*/
|
|
return;
|
|
|
|
/* sanity check */
|
|
if (ncores > nr_cpu_ids) {
|
|
pr_warn("SMP: %u cores greater than maximum (%u), clipping\n",
|
|
ncores, nr_cpu_ids);
|
|
ncores = nr_cpu_ids;
|
|
}
|
|
|
|
for (i = 0; i < ncores; i++)
|
|
set_cpu_possible(i, true);
|
|
}
|
|
|
|
static void __init exynos_smp_prepare_cpus(unsigned int max_cpus)
|
|
{
|
|
int i;
|
|
|
|
if (read_cpuid_part_number() == ARM_CPU_PART_CORTEX_A9)
|
|
scu_enable(scu_base_addr());
|
|
|
|
exynos_smp_prepare_sysram();
|
|
|
|
/*
|
|
* Write the address of secondary startup into the
|
|
* system-wide flags register. The boot monitor waits
|
|
* until it receives a soft interrupt, and then the
|
|
* secondary CPU branches to this address.
|
|
*
|
|
* Try using firmware operation first and fall back to
|
|
* boot register if it fails.
|
|
*/
|
|
for (i = 1; i < max_cpus; ++i) {
|
|
unsigned long phys_cpu;
|
|
unsigned long boot_addr;
|
|
int ret;
|
|
|
|
phys_cpu = cpu_logical_map(i);
|
|
boot_addr = virt_to_phys(exynos4_secondary_startup);
|
|
|
|
ret = call_firmware_op(set_cpu_boot_addr, phys_cpu, boot_addr);
|
|
if (ret && ret != -ENOSYS)
|
|
break;
|
|
if (ret == -ENOSYS) {
|
|
void __iomem *boot_reg = cpu_boot_reg(phys_cpu);
|
|
|
|
if (IS_ERR(boot_reg))
|
|
break;
|
|
__raw_writel(boot_addr, cpu_boot_reg(phys_cpu));
|
|
}
|
|
}
|
|
}
|
|
|
|
struct smp_operations exynos_smp_ops __initdata = {
|
|
.smp_init_cpus = exynos_smp_init_cpus,
|
|
.smp_prepare_cpus = exynos_smp_prepare_cpus,
|
|
.smp_secondary_init = exynos_secondary_init,
|
|
.smp_boot_secondary = exynos_boot_secondary,
|
|
#ifdef CONFIG_HOTPLUG_CPU
|
|
.cpu_die = exynos_cpu_die,
|
|
#endif
|
|
};
|