mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2025-01-27 02:33:13 +07:00
0160676bba
On hosts with more than 168 GB of memory, a 32-bit guest may attempt to grant map an MFN that is error cannot lookup in its mapping of the m2p table. There is an m2p lookup as part of m2p_add_override() and m2p_remove_override(). The lookup falls off the end of the mapped portion of the m2p and (because the mapping is at the highest virtual address) wraps around and the lookup causes a fault on what appears to be a user space address. do_page_fault() (thinking it's a fault to a userspace address), tries to lock mm->mmap_sem. If the gntdev device is used for the grant map, m2p_add_override() is called from from gnttab_mmap() with mm->mmap_sem already locked. do_page_fault() then deadlocks. The deadlock would most commonly occur when a 64-bit guest is started and xenconsoled attempts to grant map its console ring. Introduce mfn_to_pfn_no_overrides() which checks the MFN is within the mapped portion of the m2p table before accessing the table and use this in m2p_add_override(), m2p_remove_override(), and mfn_to_pfn() (which already had the correct range check). All faults caused by accessing the non-existant parts of the m2p are thus within the kernel address space and exception_fixup() is called without trying to lock mm->mmap_sem. This means that for MFNs that are outside the mapped range of the m2p then mfn_to_pfn() will always look in the m2p overrides. This is correct because it must be a foreign MFN (and the PFN in the m2p in this case is only relevant for the other domain). Signed-off-by: David Vrabel <david.vrabel@citrix.com> Cc: Stefano Stabellini <stefano.stabellini@citrix.com> Cc: Jan Beulich <JBeulich@suse.com> -- v3: check for auto_translated_physmap in mfn_to_pfn_no_overrides() v2: in mfn_to_pfn() look in m2p_overrides if the MFN is out of range as it's probably foreign. Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Acked-by: Stefano Stabellini <stefano.stabellini@eu.citrix.com>
1181 lines
35 KiB
C
1181 lines
35 KiB
C
/*
|
|
* Xen leaves the responsibility for maintaining p2m mappings to the
|
|
* guests themselves, but it must also access and update the p2m array
|
|
* during suspend/resume when all the pages are reallocated.
|
|
*
|
|
* The p2m table is logically a flat array, but we implement it as a
|
|
* three-level tree to allow the address space to be sparse.
|
|
*
|
|
* Xen
|
|
* |
|
|
* p2m_top p2m_top_mfn
|
|
* / \ / \
|
|
* p2m_mid p2m_mid p2m_mid_mfn p2m_mid_mfn
|
|
* / \ / \ / /
|
|
* p2m p2m p2m p2m p2m p2m p2m ...
|
|
*
|
|
* The p2m_mid_mfn pages are mapped by p2m_top_mfn_p.
|
|
*
|
|
* The p2m_top and p2m_top_mfn levels are limited to 1 page, so the
|
|
* maximum representable pseudo-physical address space is:
|
|
* P2M_TOP_PER_PAGE * P2M_MID_PER_PAGE * P2M_PER_PAGE pages
|
|
*
|
|
* P2M_PER_PAGE depends on the architecture, as a mfn is always
|
|
* unsigned long (8 bytes on 64-bit, 4 bytes on 32), leading to
|
|
* 512 and 1024 entries respectively.
|
|
*
|
|
* In short, these structures contain the Machine Frame Number (MFN) of the PFN.
|
|
*
|
|
* However not all entries are filled with MFNs. Specifically for all other
|
|
* leaf entries, or for the top root, or middle one, for which there is a void
|
|
* entry, we assume it is "missing". So (for example)
|
|
* pfn_to_mfn(0x90909090)=INVALID_P2M_ENTRY.
|
|
*
|
|
* We also have the possibility of setting 1-1 mappings on certain regions, so
|
|
* that:
|
|
* pfn_to_mfn(0xc0000)=0xc0000
|
|
*
|
|
* The benefit of this is, that we can assume for non-RAM regions (think
|
|
* PCI BARs, or ACPI spaces), we can create mappings easily b/c we
|
|
* get the PFN value to match the MFN.
|
|
*
|
|
* For this to work efficiently we have one new page p2m_identity and
|
|
* allocate (via reserved_brk) any other pages we need to cover the sides
|
|
* (1GB or 4MB boundary violations). All entries in p2m_identity are set to
|
|
* INVALID_P2M_ENTRY type (Xen toolstack only recognizes that and MFNs,
|
|
* no other fancy value).
|
|
*
|
|
* On lookup we spot that the entry points to p2m_identity and return the
|
|
* identity value instead of dereferencing and returning INVALID_P2M_ENTRY.
|
|
* If the entry points to an allocated page, we just proceed as before and
|
|
* return the PFN. If the PFN has IDENTITY_FRAME_BIT set we unmask that in
|
|
* appropriate functions (pfn_to_mfn).
|
|
*
|
|
* The reason for having the IDENTITY_FRAME_BIT instead of just returning the
|
|
* PFN is that we could find ourselves where pfn_to_mfn(pfn)==pfn for a
|
|
* non-identity pfn. To protect ourselves against we elect to set (and get) the
|
|
* IDENTITY_FRAME_BIT on all identity mapped PFNs.
|
|
*
|
|
* This simplistic diagram is used to explain the more subtle piece of code.
|
|
* There is also a digram of the P2M at the end that can help.
|
|
* Imagine your E820 looking as so:
|
|
*
|
|
* 1GB 2GB
|
|
* /-------------------+---------\/----\ /----------\ /---+-----\
|
|
* | System RAM | Sys RAM ||ACPI| | reserved | | Sys RAM |
|
|
* \-------------------+---------/\----/ \----------/ \---+-----/
|
|
* ^- 1029MB ^- 2001MB
|
|
*
|
|
* [1029MB = 263424 (0x40500), 2001MB = 512256 (0x7D100),
|
|
* 2048MB = 524288 (0x80000)]
|
|
*
|
|
* And dom0_mem=max:3GB,1GB is passed in to the guest, meaning memory past 1GB
|
|
* is actually not present (would have to kick the balloon driver to put it in).
|
|
*
|
|
* When we are told to set the PFNs for identity mapping (see patch: "xen/setup:
|
|
* Set identity mapping for non-RAM E820 and E820 gaps.") we pass in the start
|
|
* of the PFN and the end PFN (263424 and 512256 respectively). The first step
|
|
* is to reserve_brk a top leaf page if the p2m[1] is missing. The top leaf page
|
|
* covers 512^2 of page estate (1GB) and in case the start or end PFN is not
|
|
* aligned on 512^2*PAGE_SIZE (1GB) we loop on aligned 1GB PFNs from start pfn
|
|
* to end pfn. We reserve_brk top leaf pages if they are missing (means they
|
|
* point to p2m_mid_missing).
|
|
*
|
|
* With the E820 example above, 263424 is not 1GB aligned so we allocate a
|
|
* reserve_brk page which will cover the PFNs estate from 0x40000 to 0x80000.
|
|
* Each entry in the allocate page is "missing" (points to p2m_missing).
|
|
*
|
|
* Next stage is to determine if we need to do a more granular boundary check
|
|
* on the 4MB (or 2MB depending on architecture) off the start and end pfn's.
|
|
* We check if the start pfn and end pfn violate that boundary check, and if
|
|
* so reserve_brk a middle (p2m[x][y]) leaf page. This way we have a much finer
|
|
* granularity of setting which PFNs are missing and which ones are identity.
|
|
* In our example 263424 and 512256 both fail the check so we reserve_brk two
|
|
* pages. Populate them with INVALID_P2M_ENTRY (so they both have "missing"
|
|
* values) and assign them to p2m[1][2] and p2m[1][488] respectively.
|
|
*
|
|
* At this point we would at minimum reserve_brk one page, but could be up to
|
|
* three. Each call to set_phys_range_identity has at maximum a three page
|
|
* cost. If we were to query the P2M at this stage, all those entries from
|
|
* start PFN through end PFN (so 1029MB -> 2001MB) would return
|
|
* INVALID_P2M_ENTRY ("missing").
|
|
*
|
|
* The next step is to walk from the start pfn to the end pfn setting
|
|
* the IDENTITY_FRAME_BIT on each PFN. This is done in set_phys_range_identity.
|
|
* If we find that the middle leaf is pointing to p2m_missing we can swap it
|
|
* over to p2m_identity - this way covering 4MB (or 2MB) PFN space. At this
|
|
* point we do not need to worry about boundary aligment (so no need to
|
|
* reserve_brk a middle page, figure out which PFNs are "missing" and which
|
|
* ones are identity), as that has been done earlier. If we find that the
|
|
* middle leaf is not occupied by p2m_identity or p2m_missing, we dereference
|
|
* that page (which covers 512 PFNs) and set the appropriate PFN with
|
|
* IDENTITY_FRAME_BIT. In our example 263424 and 512256 end up there, and we
|
|
* set from p2m[1][2][256->511] and p2m[1][488][0->256] with
|
|
* IDENTITY_FRAME_BIT set.
|
|
*
|
|
* All other regions that are void (or not filled) either point to p2m_missing
|
|
* (considered missing) or have the default value of INVALID_P2M_ENTRY (also
|
|
* considered missing). In our case, p2m[1][2][0->255] and p2m[1][488][257->511]
|
|
* contain the INVALID_P2M_ENTRY value and are considered "missing."
|
|
*
|
|
* This is what the p2m ends up looking (for the E820 above) with this
|
|
* fabulous drawing:
|
|
*
|
|
* p2m /--------------\
|
|
* /-----\ | &mfn_list[0],| /-----------------\
|
|
* | 0 |------>| &mfn_list[1],| /---------------\ | ~0, ~0, .. |
|
|
* |-----| | ..., ~0, ~0 | | ~0, ~0, [x]---+----->| IDENTITY [@256] |
|
|
* | 1 |---\ \--------------/ | [p2m_identity]+\ | IDENTITY [@257] |
|
|
* |-----| \ | [p2m_identity]+\\ | .... |
|
|
* | 2 |--\ \-------------------->| ... | \\ \----------------/
|
|
* |-----| \ \---------------/ \\
|
|
* | 3 |\ \ \\ p2m_identity
|
|
* |-----| \ \-------------------->/---------------\ /-----------------\
|
|
* | .. +->+ | [p2m_identity]+-->| ~0, ~0, ~0, ... |
|
|
* \-----/ / | [p2m_identity]+-->| ..., ~0 |
|
|
* / /---------------\ | .... | \-----------------/
|
|
* / | IDENTITY[@0] | /-+-[x], ~0, ~0.. |
|
|
* / | IDENTITY[@256]|<----/ \---------------/
|
|
* / | ~0, ~0, .... |
|
|
* | \---------------/
|
|
* |
|
|
* p2m_mid_missing p2m_missing
|
|
* /-----------------\ /------------\
|
|
* | [p2m_missing] +---->| ~0, ~0, ~0 |
|
|
* | [p2m_missing] +---->| ..., ~0 |
|
|
* \-----------------/ \------------/
|
|
*
|
|
* where ~0 is INVALID_P2M_ENTRY. IDENTITY is (PFN | IDENTITY_BIT)
|
|
*/
|
|
|
|
#include <linux/init.h>
|
|
#include <linux/module.h>
|
|
#include <linux/list.h>
|
|
#include <linux/hash.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/seq_file.h>
|
|
|
|
#include <asm/cache.h>
|
|
#include <asm/setup.h>
|
|
|
|
#include <asm/xen/page.h>
|
|
#include <asm/xen/hypercall.h>
|
|
#include <asm/xen/hypervisor.h>
|
|
#include <xen/balloon.h>
|
|
#include <xen/grant_table.h>
|
|
|
|
#include "multicalls.h"
|
|
#include "xen-ops.h"
|
|
|
|
static void __init m2p_override_init(void);
|
|
|
|
unsigned long xen_max_p2m_pfn __read_mostly;
|
|
|
|
#define P2M_PER_PAGE (PAGE_SIZE / sizeof(unsigned long))
|
|
#define P2M_MID_PER_PAGE (PAGE_SIZE / sizeof(unsigned long *))
|
|
#define P2M_TOP_PER_PAGE (PAGE_SIZE / sizeof(unsigned long **))
|
|
|
|
#define MAX_P2M_PFN (P2M_TOP_PER_PAGE * P2M_MID_PER_PAGE * P2M_PER_PAGE)
|
|
|
|
/* Placeholders for holes in the address space */
|
|
static RESERVE_BRK_ARRAY(unsigned long, p2m_missing, P2M_PER_PAGE);
|
|
static RESERVE_BRK_ARRAY(unsigned long *, p2m_mid_missing, P2M_MID_PER_PAGE);
|
|
static RESERVE_BRK_ARRAY(unsigned long, p2m_mid_missing_mfn, P2M_MID_PER_PAGE);
|
|
|
|
static RESERVE_BRK_ARRAY(unsigned long **, p2m_top, P2M_TOP_PER_PAGE);
|
|
static RESERVE_BRK_ARRAY(unsigned long, p2m_top_mfn, P2M_TOP_PER_PAGE);
|
|
static RESERVE_BRK_ARRAY(unsigned long *, p2m_top_mfn_p, P2M_TOP_PER_PAGE);
|
|
|
|
static RESERVE_BRK_ARRAY(unsigned long, p2m_identity, P2M_PER_PAGE);
|
|
|
|
RESERVE_BRK(p2m_mid, PAGE_SIZE * (MAX_DOMAIN_PAGES / (P2M_PER_PAGE * P2M_MID_PER_PAGE)));
|
|
RESERVE_BRK(p2m_mid_mfn, PAGE_SIZE * (MAX_DOMAIN_PAGES / (P2M_PER_PAGE * P2M_MID_PER_PAGE)));
|
|
|
|
/* We might hit two boundary violations at the start and end, at max each
|
|
* boundary violation will require three middle nodes. */
|
|
RESERVE_BRK(p2m_mid_identity, PAGE_SIZE * 2 * 3);
|
|
|
|
/* When we populate back during bootup, the amount of pages can vary. The
|
|
* max we have is seen is 395979, but that does not mean it can't be more.
|
|
* Some machines can have 3GB I/O holes even. With early_can_reuse_p2m_middle
|
|
* it can re-use Xen provided mfn_list array, so we only need to allocate at
|
|
* most three P2M top nodes. */
|
|
RESERVE_BRK(p2m_populated, PAGE_SIZE * 3);
|
|
|
|
static inline unsigned p2m_top_index(unsigned long pfn)
|
|
{
|
|
BUG_ON(pfn >= MAX_P2M_PFN);
|
|
return pfn / (P2M_MID_PER_PAGE * P2M_PER_PAGE);
|
|
}
|
|
|
|
static inline unsigned p2m_mid_index(unsigned long pfn)
|
|
{
|
|
return (pfn / P2M_PER_PAGE) % P2M_MID_PER_PAGE;
|
|
}
|
|
|
|
static inline unsigned p2m_index(unsigned long pfn)
|
|
{
|
|
return pfn % P2M_PER_PAGE;
|
|
}
|
|
|
|
static void p2m_top_init(unsigned long ***top)
|
|
{
|
|
unsigned i;
|
|
|
|
for (i = 0; i < P2M_TOP_PER_PAGE; i++)
|
|
top[i] = p2m_mid_missing;
|
|
}
|
|
|
|
static void p2m_top_mfn_init(unsigned long *top)
|
|
{
|
|
unsigned i;
|
|
|
|
for (i = 0; i < P2M_TOP_PER_PAGE; i++)
|
|
top[i] = virt_to_mfn(p2m_mid_missing_mfn);
|
|
}
|
|
|
|
static void p2m_top_mfn_p_init(unsigned long **top)
|
|
{
|
|
unsigned i;
|
|
|
|
for (i = 0; i < P2M_TOP_PER_PAGE; i++)
|
|
top[i] = p2m_mid_missing_mfn;
|
|
}
|
|
|
|
static void p2m_mid_init(unsigned long **mid)
|
|
{
|
|
unsigned i;
|
|
|
|
for (i = 0; i < P2M_MID_PER_PAGE; i++)
|
|
mid[i] = p2m_missing;
|
|
}
|
|
|
|
static void p2m_mid_mfn_init(unsigned long *mid)
|
|
{
|
|
unsigned i;
|
|
|
|
for (i = 0; i < P2M_MID_PER_PAGE; i++)
|
|
mid[i] = virt_to_mfn(p2m_missing);
|
|
}
|
|
|
|
static void p2m_init(unsigned long *p2m)
|
|
{
|
|
unsigned i;
|
|
|
|
for (i = 0; i < P2M_MID_PER_PAGE; i++)
|
|
p2m[i] = INVALID_P2M_ENTRY;
|
|
}
|
|
|
|
/*
|
|
* Build the parallel p2m_top_mfn and p2m_mid_mfn structures
|
|
*
|
|
* This is called both at boot time, and after resuming from suspend:
|
|
* - At boot time we're called very early, and must use extend_brk()
|
|
* to allocate memory.
|
|
*
|
|
* - After resume we're called from within stop_machine, but the mfn
|
|
* tree should alreay be completely allocated.
|
|
*/
|
|
void __ref xen_build_mfn_list_list(void)
|
|
{
|
|
unsigned long pfn;
|
|
|
|
/* Pre-initialize p2m_top_mfn to be completely missing */
|
|
if (p2m_top_mfn == NULL) {
|
|
p2m_mid_missing_mfn = extend_brk(PAGE_SIZE, PAGE_SIZE);
|
|
p2m_mid_mfn_init(p2m_mid_missing_mfn);
|
|
|
|
p2m_top_mfn_p = extend_brk(PAGE_SIZE, PAGE_SIZE);
|
|
p2m_top_mfn_p_init(p2m_top_mfn_p);
|
|
|
|
p2m_top_mfn = extend_brk(PAGE_SIZE, PAGE_SIZE);
|
|
p2m_top_mfn_init(p2m_top_mfn);
|
|
} else {
|
|
/* Reinitialise, mfn's all change after migration */
|
|
p2m_mid_mfn_init(p2m_mid_missing_mfn);
|
|
}
|
|
|
|
for (pfn = 0; pfn < xen_max_p2m_pfn; pfn += P2M_PER_PAGE) {
|
|
unsigned topidx = p2m_top_index(pfn);
|
|
unsigned mididx = p2m_mid_index(pfn);
|
|
unsigned long **mid;
|
|
unsigned long *mid_mfn_p;
|
|
|
|
mid = p2m_top[topidx];
|
|
mid_mfn_p = p2m_top_mfn_p[topidx];
|
|
|
|
/* Don't bother allocating any mfn mid levels if
|
|
* they're just missing, just update the stored mfn,
|
|
* since all could have changed over a migrate.
|
|
*/
|
|
if (mid == p2m_mid_missing) {
|
|
BUG_ON(mididx);
|
|
BUG_ON(mid_mfn_p != p2m_mid_missing_mfn);
|
|
p2m_top_mfn[topidx] = virt_to_mfn(p2m_mid_missing_mfn);
|
|
pfn += (P2M_MID_PER_PAGE - 1) * P2M_PER_PAGE;
|
|
continue;
|
|
}
|
|
|
|
if (mid_mfn_p == p2m_mid_missing_mfn) {
|
|
/*
|
|
* XXX boot-time only! We should never find
|
|
* missing parts of the mfn tree after
|
|
* runtime. extend_brk() will BUG if we call
|
|
* it too late.
|
|
*/
|
|
mid_mfn_p = extend_brk(PAGE_SIZE, PAGE_SIZE);
|
|
p2m_mid_mfn_init(mid_mfn_p);
|
|
|
|
p2m_top_mfn_p[topidx] = mid_mfn_p;
|
|
}
|
|
|
|
p2m_top_mfn[topidx] = virt_to_mfn(mid_mfn_p);
|
|
mid_mfn_p[mididx] = virt_to_mfn(mid[mididx]);
|
|
}
|
|
}
|
|
|
|
void xen_setup_mfn_list_list(void)
|
|
{
|
|
BUG_ON(HYPERVISOR_shared_info == &xen_dummy_shared_info);
|
|
|
|
HYPERVISOR_shared_info->arch.pfn_to_mfn_frame_list_list =
|
|
virt_to_mfn(p2m_top_mfn);
|
|
HYPERVISOR_shared_info->arch.max_pfn = xen_max_p2m_pfn;
|
|
}
|
|
|
|
/* Set up p2m_top to point to the domain-builder provided p2m pages */
|
|
void __init xen_build_dynamic_phys_to_machine(void)
|
|
{
|
|
unsigned long *mfn_list = (unsigned long *)xen_start_info->mfn_list;
|
|
unsigned long max_pfn = min(MAX_DOMAIN_PAGES, xen_start_info->nr_pages);
|
|
unsigned long pfn;
|
|
|
|
xen_max_p2m_pfn = max_pfn;
|
|
|
|
p2m_missing = extend_brk(PAGE_SIZE, PAGE_SIZE);
|
|
p2m_init(p2m_missing);
|
|
|
|
p2m_mid_missing = extend_brk(PAGE_SIZE, PAGE_SIZE);
|
|
p2m_mid_init(p2m_mid_missing);
|
|
|
|
p2m_top = extend_brk(PAGE_SIZE, PAGE_SIZE);
|
|
p2m_top_init(p2m_top);
|
|
|
|
p2m_identity = extend_brk(PAGE_SIZE, PAGE_SIZE);
|
|
p2m_init(p2m_identity);
|
|
|
|
/*
|
|
* The domain builder gives us a pre-constructed p2m array in
|
|
* mfn_list for all the pages initially given to us, so we just
|
|
* need to graft that into our tree structure.
|
|
*/
|
|
for (pfn = 0; pfn < max_pfn; pfn += P2M_PER_PAGE) {
|
|
unsigned topidx = p2m_top_index(pfn);
|
|
unsigned mididx = p2m_mid_index(pfn);
|
|
|
|
if (p2m_top[topidx] == p2m_mid_missing) {
|
|
unsigned long **mid = extend_brk(PAGE_SIZE, PAGE_SIZE);
|
|
p2m_mid_init(mid);
|
|
|
|
p2m_top[topidx] = mid;
|
|
}
|
|
|
|
/*
|
|
* As long as the mfn_list has enough entries to completely
|
|
* fill a p2m page, pointing into the array is ok. But if
|
|
* not the entries beyond the last pfn will be undefined.
|
|
*/
|
|
if (unlikely(pfn + P2M_PER_PAGE > max_pfn)) {
|
|
unsigned long p2midx;
|
|
|
|
p2midx = max_pfn % P2M_PER_PAGE;
|
|
for ( ; p2midx < P2M_PER_PAGE; p2midx++)
|
|
mfn_list[pfn + p2midx] = INVALID_P2M_ENTRY;
|
|
}
|
|
p2m_top[topidx][mididx] = &mfn_list[pfn];
|
|
}
|
|
|
|
m2p_override_init();
|
|
}
|
|
#ifdef CONFIG_X86_64
|
|
#include <linux/bootmem.h>
|
|
unsigned long __init xen_revector_p2m_tree(void)
|
|
{
|
|
unsigned long va_start;
|
|
unsigned long va_end;
|
|
unsigned long pfn;
|
|
unsigned long pfn_free = 0;
|
|
unsigned long *mfn_list = NULL;
|
|
unsigned long size;
|
|
|
|
va_start = xen_start_info->mfn_list;
|
|
/*We copy in increments of P2M_PER_PAGE * sizeof(unsigned long),
|
|
* so make sure it is rounded up to that */
|
|
size = PAGE_ALIGN(xen_start_info->nr_pages * sizeof(unsigned long));
|
|
va_end = va_start + size;
|
|
|
|
/* If we were revectored already, don't do it again. */
|
|
if (va_start <= __START_KERNEL_map && va_start >= __PAGE_OFFSET)
|
|
return 0;
|
|
|
|
mfn_list = alloc_bootmem_align(size, PAGE_SIZE);
|
|
if (!mfn_list) {
|
|
pr_warn("Could not allocate space for a new P2M tree!\n");
|
|
return xen_start_info->mfn_list;
|
|
}
|
|
/* Fill it out with INVALID_P2M_ENTRY value */
|
|
memset(mfn_list, 0xFF, size);
|
|
|
|
for (pfn = 0; pfn < ALIGN(MAX_DOMAIN_PAGES, P2M_PER_PAGE); pfn += P2M_PER_PAGE) {
|
|
unsigned topidx = p2m_top_index(pfn);
|
|
unsigned mididx;
|
|
unsigned long *mid_p;
|
|
|
|
if (!p2m_top[topidx])
|
|
continue;
|
|
|
|
if (p2m_top[topidx] == p2m_mid_missing)
|
|
continue;
|
|
|
|
mididx = p2m_mid_index(pfn);
|
|
mid_p = p2m_top[topidx][mididx];
|
|
if (!mid_p)
|
|
continue;
|
|
if ((mid_p == p2m_missing) || (mid_p == p2m_identity))
|
|
continue;
|
|
|
|
if ((unsigned long)mid_p == INVALID_P2M_ENTRY)
|
|
continue;
|
|
|
|
/* The old va. Rebase it on mfn_list */
|
|
if (mid_p >= (unsigned long *)va_start && mid_p <= (unsigned long *)va_end) {
|
|
unsigned long *new;
|
|
|
|
if (pfn_free > (size / sizeof(unsigned long))) {
|
|
WARN(1, "Only allocated for %ld pages, but we want %ld!\n",
|
|
size / sizeof(unsigned long), pfn_free);
|
|
return 0;
|
|
}
|
|
new = &mfn_list[pfn_free];
|
|
|
|
copy_page(new, mid_p);
|
|
p2m_top[topidx][mididx] = &mfn_list[pfn_free];
|
|
p2m_top_mfn_p[topidx][mididx] = virt_to_mfn(&mfn_list[pfn_free]);
|
|
|
|
pfn_free += P2M_PER_PAGE;
|
|
|
|
}
|
|
/* This should be the leafs allocated for identity from _brk. */
|
|
}
|
|
return (unsigned long)mfn_list;
|
|
|
|
}
|
|
#else
|
|
unsigned long __init xen_revector_p2m_tree(void)
|
|
{
|
|
return 0;
|
|
}
|
|
#endif
|
|
unsigned long get_phys_to_machine(unsigned long pfn)
|
|
{
|
|
unsigned topidx, mididx, idx;
|
|
|
|
if (unlikely(pfn >= MAX_P2M_PFN))
|
|
return INVALID_P2M_ENTRY;
|
|
|
|
topidx = p2m_top_index(pfn);
|
|
mididx = p2m_mid_index(pfn);
|
|
idx = p2m_index(pfn);
|
|
|
|
/*
|
|
* The INVALID_P2M_ENTRY is filled in both p2m_*identity
|
|
* and in p2m_*missing, so returning the INVALID_P2M_ENTRY
|
|
* would be wrong.
|
|
*/
|
|
if (p2m_top[topidx][mididx] == p2m_identity)
|
|
return IDENTITY_FRAME(pfn);
|
|
|
|
return p2m_top[topidx][mididx][idx];
|
|
}
|
|
EXPORT_SYMBOL_GPL(get_phys_to_machine);
|
|
|
|
static void *alloc_p2m_page(void)
|
|
{
|
|
return (void *)__get_free_page(GFP_KERNEL | __GFP_REPEAT);
|
|
}
|
|
|
|
static void free_p2m_page(void *p)
|
|
{
|
|
free_page((unsigned long)p);
|
|
}
|
|
|
|
/*
|
|
* Fully allocate the p2m structure for a given pfn. We need to check
|
|
* that both the top and mid levels are allocated, and make sure the
|
|
* parallel mfn tree is kept in sync. We may race with other cpus, so
|
|
* the new pages are installed with cmpxchg; if we lose the race then
|
|
* simply free the page we allocated and use the one that's there.
|
|
*/
|
|
static bool alloc_p2m(unsigned long pfn)
|
|
{
|
|
unsigned topidx, mididx;
|
|
unsigned long ***top_p, **mid;
|
|
unsigned long *top_mfn_p, *mid_mfn;
|
|
|
|
topidx = p2m_top_index(pfn);
|
|
mididx = p2m_mid_index(pfn);
|
|
|
|
top_p = &p2m_top[topidx];
|
|
mid = *top_p;
|
|
|
|
if (mid == p2m_mid_missing) {
|
|
/* Mid level is missing, allocate a new one */
|
|
mid = alloc_p2m_page();
|
|
if (!mid)
|
|
return false;
|
|
|
|
p2m_mid_init(mid);
|
|
|
|
if (cmpxchg(top_p, p2m_mid_missing, mid) != p2m_mid_missing)
|
|
free_p2m_page(mid);
|
|
}
|
|
|
|
top_mfn_p = &p2m_top_mfn[topidx];
|
|
mid_mfn = p2m_top_mfn_p[topidx];
|
|
|
|
BUG_ON(virt_to_mfn(mid_mfn) != *top_mfn_p);
|
|
|
|
if (mid_mfn == p2m_mid_missing_mfn) {
|
|
/* Separately check the mid mfn level */
|
|
unsigned long missing_mfn;
|
|
unsigned long mid_mfn_mfn;
|
|
|
|
mid_mfn = alloc_p2m_page();
|
|
if (!mid_mfn)
|
|
return false;
|
|
|
|
p2m_mid_mfn_init(mid_mfn);
|
|
|
|
missing_mfn = virt_to_mfn(p2m_mid_missing_mfn);
|
|
mid_mfn_mfn = virt_to_mfn(mid_mfn);
|
|
if (cmpxchg(top_mfn_p, missing_mfn, mid_mfn_mfn) != missing_mfn)
|
|
free_p2m_page(mid_mfn);
|
|
else
|
|
p2m_top_mfn_p[topidx] = mid_mfn;
|
|
}
|
|
|
|
if (p2m_top[topidx][mididx] == p2m_identity ||
|
|
p2m_top[topidx][mididx] == p2m_missing) {
|
|
/* p2m leaf page is missing */
|
|
unsigned long *p2m;
|
|
unsigned long *p2m_orig = p2m_top[topidx][mididx];
|
|
|
|
p2m = alloc_p2m_page();
|
|
if (!p2m)
|
|
return false;
|
|
|
|
p2m_init(p2m);
|
|
|
|
if (cmpxchg(&mid[mididx], p2m_orig, p2m) != p2m_orig)
|
|
free_p2m_page(p2m);
|
|
else
|
|
mid_mfn[mididx] = virt_to_mfn(p2m);
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
static bool __init early_alloc_p2m_middle(unsigned long pfn, bool check_boundary)
|
|
{
|
|
unsigned topidx, mididx, idx;
|
|
unsigned long *p2m;
|
|
unsigned long *mid_mfn_p;
|
|
|
|
topidx = p2m_top_index(pfn);
|
|
mididx = p2m_mid_index(pfn);
|
|
idx = p2m_index(pfn);
|
|
|
|
/* Pfff.. No boundary cross-over, lets get out. */
|
|
if (!idx && check_boundary)
|
|
return false;
|
|
|
|
WARN(p2m_top[topidx][mididx] == p2m_identity,
|
|
"P2M[%d][%d] == IDENTITY, should be MISSING (or alloced)!\n",
|
|
topidx, mididx);
|
|
|
|
/*
|
|
* Could be done by xen_build_dynamic_phys_to_machine..
|
|
*/
|
|
if (p2m_top[topidx][mididx] != p2m_missing)
|
|
return false;
|
|
|
|
/* Boundary cross-over for the edges: */
|
|
p2m = extend_brk(PAGE_SIZE, PAGE_SIZE);
|
|
|
|
p2m_init(p2m);
|
|
|
|
p2m_top[topidx][mididx] = p2m;
|
|
|
|
/* For save/restore we need to MFN of the P2M saved */
|
|
|
|
mid_mfn_p = p2m_top_mfn_p[topidx];
|
|
WARN(mid_mfn_p[mididx] != virt_to_mfn(p2m_missing),
|
|
"P2M_TOP_P[%d][%d] != MFN of p2m_missing!\n",
|
|
topidx, mididx);
|
|
mid_mfn_p[mididx] = virt_to_mfn(p2m);
|
|
|
|
return true;
|
|
}
|
|
|
|
static bool __init early_alloc_p2m(unsigned long pfn)
|
|
{
|
|
unsigned topidx = p2m_top_index(pfn);
|
|
unsigned long *mid_mfn_p;
|
|
unsigned long **mid;
|
|
|
|
mid = p2m_top[topidx];
|
|
mid_mfn_p = p2m_top_mfn_p[topidx];
|
|
if (mid == p2m_mid_missing) {
|
|
mid = extend_brk(PAGE_SIZE, PAGE_SIZE);
|
|
|
|
p2m_mid_init(mid);
|
|
|
|
p2m_top[topidx] = mid;
|
|
|
|
BUG_ON(mid_mfn_p != p2m_mid_missing_mfn);
|
|
}
|
|
/* And the save/restore P2M tables.. */
|
|
if (mid_mfn_p == p2m_mid_missing_mfn) {
|
|
mid_mfn_p = extend_brk(PAGE_SIZE, PAGE_SIZE);
|
|
p2m_mid_mfn_init(mid_mfn_p);
|
|
|
|
p2m_top_mfn_p[topidx] = mid_mfn_p;
|
|
p2m_top_mfn[topidx] = virt_to_mfn(mid_mfn_p);
|
|
/* Note: we don't set mid_mfn_p[midix] here,
|
|
* look in early_alloc_p2m_middle */
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
* Skim over the P2M tree looking at pages that are either filled with
|
|
* INVALID_P2M_ENTRY or with 1:1 PFNs. If found, re-use that page and
|
|
* replace the P2M leaf with a p2m_missing or p2m_identity.
|
|
* Stick the old page in the new P2M tree location.
|
|
*/
|
|
bool __init early_can_reuse_p2m_middle(unsigned long set_pfn, unsigned long set_mfn)
|
|
{
|
|
unsigned topidx;
|
|
unsigned mididx;
|
|
unsigned ident_pfns;
|
|
unsigned inv_pfns;
|
|
unsigned long *p2m;
|
|
unsigned long *mid_mfn_p;
|
|
unsigned idx;
|
|
unsigned long pfn;
|
|
|
|
/* We only look when this entails a P2M middle layer */
|
|
if (p2m_index(set_pfn))
|
|
return false;
|
|
|
|
for (pfn = 0; pfn < MAX_DOMAIN_PAGES; pfn += P2M_PER_PAGE) {
|
|
topidx = p2m_top_index(pfn);
|
|
|
|
if (!p2m_top[topidx])
|
|
continue;
|
|
|
|
if (p2m_top[topidx] == p2m_mid_missing)
|
|
continue;
|
|
|
|
mididx = p2m_mid_index(pfn);
|
|
p2m = p2m_top[topidx][mididx];
|
|
if (!p2m)
|
|
continue;
|
|
|
|
if ((p2m == p2m_missing) || (p2m == p2m_identity))
|
|
continue;
|
|
|
|
if ((unsigned long)p2m == INVALID_P2M_ENTRY)
|
|
continue;
|
|
|
|
ident_pfns = 0;
|
|
inv_pfns = 0;
|
|
for (idx = 0; idx < P2M_PER_PAGE; idx++) {
|
|
/* IDENTITY_PFNs are 1:1 */
|
|
if (p2m[idx] == IDENTITY_FRAME(pfn + idx))
|
|
ident_pfns++;
|
|
else if (p2m[idx] == INVALID_P2M_ENTRY)
|
|
inv_pfns++;
|
|
else
|
|
break;
|
|
}
|
|
if ((ident_pfns == P2M_PER_PAGE) || (inv_pfns == P2M_PER_PAGE))
|
|
goto found;
|
|
}
|
|
return false;
|
|
found:
|
|
/* Found one, replace old with p2m_identity or p2m_missing */
|
|
p2m_top[topidx][mididx] = (ident_pfns ? p2m_identity : p2m_missing);
|
|
/* And the other for save/restore.. */
|
|
mid_mfn_p = p2m_top_mfn_p[topidx];
|
|
/* NOTE: Even if it is a p2m_identity it should still be point to
|
|
* a page filled with INVALID_P2M_ENTRY entries. */
|
|
mid_mfn_p[mididx] = virt_to_mfn(p2m_missing);
|
|
|
|
/* Reset where we want to stick the old page in. */
|
|
topidx = p2m_top_index(set_pfn);
|
|
mididx = p2m_mid_index(set_pfn);
|
|
|
|
/* This shouldn't happen */
|
|
if (WARN_ON(p2m_top[topidx] == p2m_mid_missing))
|
|
early_alloc_p2m(set_pfn);
|
|
|
|
if (WARN_ON(p2m_top[topidx][mididx] != p2m_missing))
|
|
return false;
|
|
|
|
p2m_init(p2m);
|
|
p2m_top[topidx][mididx] = p2m;
|
|
mid_mfn_p = p2m_top_mfn_p[topidx];
|
|
mid_mfn_p[mididx] = virt_to_mfn(p2m);
|
|
|
|
return true;
|
|
}
|
|
bool __init early_set_phys_to_machine(unsigned long pfn, unsigned long mfn)
|
|
{
|
|
if (unlikely(!__set_phys_to_machine(pfn, mfn))) {
|
|
if (!early_alloc_p2m(pfn))
|
|
return false;
|
|
|
|
if (early_can_reuse_p2m_middle(pfn, mfn))
|
|
return __set_phys_to_machine(pfn, mfn);
|
|
|
|
if (!early_alloc_p2m_middle(pfn, false /* boundary crossover OK!*/))
|
|
return false;
|
|
|
|
if (!__set_phys_to_machine(pfn, mfn))
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
unsigned long __init set_phys_range_identity(unsigned long pfn_s,
|
|
unsigned long pfn_e)
|
|
{
|
|
unsigned long pfn;
|
|
|
|
if (unlikely(pfn_s >= MAX_P2M_PFN || pfn_e >= MAX_P2M_PFN))
|
|
return 0;
|
|
|
|
if (unlikely(xen_feature(XENFEAT_auto_translated_physmap)))
|
|
return pfn_e - pfn_s;
|
|
|
|
if (pfn_s > pfn_e)
|
|
return 0;
|
|
|
|
for (pfn = (pfn_s & ~(P2M_MID_PER_PAGE * P2M_PER_PAGE - 1));
|
|
pfn < ALIGN(pfn_e, (P2M_MID_PER_PAGE * P2M_PER_PAGE));
|
|
pfn += P2M_MID_PER_PAGE * P2M_PER_PAGE)
|
|
{
|
|
WARN_ON(!early_alloc_p2m(pfn));
|
|
}
|
|
|
|
early_alloc_p2m_middle(pfn_s, true);
|
|
early_alloc_p2m_middle(pfn_e, true);
|
|
|
|
for (pfn = pfn_s; pfn < pfn_e; pfn++)
|
|
if (!__set_phys_to_machine(pfn, IDENTITY_FRAME(pfn)))
|
|
break;
|
|
|
|
if (!WARN((pfn - pfn_s) != (pfn_e - pfn_s),
|
|
"Identity mapping failed. We are %ld short of 1-1 mappings!\n",
|
|
(pfn_e - pfn_s) - (pfn - pfn_s)))
|
|
printk(KERN_DEBUG "1-1 mapping on %lx->%lx\n", pfn_s, pfn);
|
|
|
|
return pfn - pfn_s;
|
|
}
|
|
|
|
/* Try to install p2m mapping; fail if intermediate bits missing */
|
|
bool __set_phys_to_machine(unsigned long pfn, unsigned long mfn)
|
|
{
|
|
unsigned topidx, mididx, idx;
|
|
|
|
if (unlikely(xen_feature(XENFEAT_auto_translated_physmap))) {
|
|
BUG_ON(pfn != mfn && mfn != INVALID_P2M_ENTRY);
|
|
return true;
|
|
}
|
|
if (unlikely(pfn >= MAX_P2M_PFN)) {
|
|
BUG_ON(mfn != INVALID_P2M_ENTRY);
|
|
return true;
|
|
}
|
|
|
|
topidx = p2m_top_index(pfn);
|
|
mididx = p2m_mid_index(pfn);
|
|
idx = p2m_index(pfn);
|
|
|
|
/* For sparse holes were the p2m leaf has real PFN along with
|
|
* PCI holes, stick in the PFN as the MFN value.
|
|
*/
|
|
if (mfn != INVALID_P2M_ENTRY && (mfn & IDENTITY_FRAME_BIT)) {
|
|
if (p2m_top[topidx][mididx] == p2m_identity)
|
|
return true;
|
|
|
|
/* Swap over from MISSING to IDENTITY if needed. */
|
|
if (p2m_top[topidx][mididx] == p2m_missing) {
|
|
WARN_ON(cmpxchg(&p2m_top[topidx][mididx], p2m_missing,
|
|
p2m_identity) != p2m_missing);
|
|
return true;
|
|
}
|
|
}
|
|
|
|
if (p2m_top[topidx][mididx] == p2m_missing)
|
|
return mfn == INVALID_P2M_ENTRY;
|
|
|
|
p2m_top[topidx][mididx][idx] = mfn;
|
|
|
|
return true;
|
|
}
|
|
|
|
bool set_phys_to_machine(unsigned long pfn, unsigned long mfn)
|
|
{
|
|
if (unlikely(!__set_phys_to_machine(pfn, mfn))) {
|
|
if (!alloc_p2m(pfn))
|
|
return false;
|
|
|
|
if (!__set_phys_to_machine(pfn, mfn))
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
#define M2P_OVERRIDE_HASH_SHIFT 10
|
|
#define M2P_OVERRIDE_HASH (1 << M2P_OVERRIDE_HASH_SHIFT)
|
|
|
|
static RESERVE_BRK_ARRAY(struct list_head, m2p_overrides, M2P_OVERRIDE_HASH);
|
|
static DEFINE_SPINLOCK(m2p_override_lock);
|
|
|
|
static void __init m2p_override_init(void)
|
|
{
|
|
unsigned i;
|
|
|
|
m2p_overrides = extend_brk(sizeof(*m2p_overrides) * M2P_OVERRIDE_HASH,
|
|
sizeof(unsigned long));
|
|
|
|
for (i = 0; i < M2P_OVERRIDE_HASH; i++)
|
|
INIT_LIST_HEAD(&m2p_overrides[i]);
|
|
}
|
|
|
|
static unsigned long mfn_hash(unsigned long mfn)
|
|
{
|
|
return hash_long(mfn, M2P_OVERRIDE_HASH_SHIFT);
|
|
}
|
|
|
|
/* Add an MFN override for a particular page */
|
|
int m2p_add_override(unsigned long mfn, struct page *page,
|
|
struct gnttab_map_grant_ref *kmap_op)
|
|
{
|
|
unsigned long flags;
|
|
unsigned long pfn;
|
|
unsigned long uninitialized_var(address);
|
|
unsigned level;
|
|
pte_t *ptep = NULL;
|
|
|
|
pfn = page_to_pfn(page);
|
|
if (!PageHighMem(page)) {
|
|
address = (unsigned long)__va(pfn << PAGE_SHIFT);
|
|
ptep = lookup_address(address, &level);
|
|
if (WARN(ptep == NULL || level != PG_LEVEL_4K,
|
|
"m2p_add_override: pfn %lx not mapped", pfn))
|
|
return -EINVAL;
|
|
}
|
|
WARN_ON(PagePrivate(page));
|
|
SetPagePrivate(page);
|
|
set_page_private(page, mfn);
|
|
page->index = pfn_to_mfn(pfn);
|
|
|
|
if (unlikely(!set_phys_to_machine(pfn, FOREIGN_FRAME(mfn))))
|
|
return -ENOMEM;
|
|
|
|
if (kmap_op != NULL) {
|
|
if (!PageHighMem(page)) {
|
|
struct multicall_space mcs =
|
|
xen_mc_entry(sizeof(*kmap_op));
|
|
|
|
MULTI_grant_table_op(mcs.mc,
|
|
GNTTABOP_map_grant_ref, kmap_op, 1);
|
|
|
|
xen_mc_issue(PARAVIRT_LAZY_MMU);
|
|
}
|
|
}
|
|
spin_lock_irqsave(&m2p_override_lock, flags);
|
|
list_add(&page->lru, &m2p_overrides[mfn_hash(mfn)]);
|
|
spin_unlock_irqrestore(&m2p_override_lock, flags);
|
|
|
|
/* p2m(m2p(mfn)) == mfn: the mfn is already present somewhere in
|
|
* this domain. Set the FOREIGN_FRAME_BIT in the p2m for the other
|
|
* pfn so that the following mfn_to_pfn(mfn) calls will return the
|
|
* pfn from the m2p_override (the backend pfn) instead.
|
|
* We need to do this because the pages shared by the frontend
|
|
* (xen-blkfront) can be already locked (lock_page, called by
|
|
* do_read_cache_page); when the userspace backend tries to use them
|
|
* with direct_IO, mfn_to_pfn returns the pfn of the frontend, so
|
|
* do_blockdev_direct_IO is going to try to lock the same pages
|
|
* again resulting in a deadlock.
|
|
* As a side effect get_user_pages_fast might not be safe on the
|
|
* frontend pages while they are being shared with the backend,
|
|
* because mfn_to_pfn (that ends up being called by GUPF) will
|
|
* return the backend pfn rather than the frontend pfn. */
|
|
pfn = mfn_to_pfn_no_overrides(mfn);
|
|
if (get_phys_to_machine(pfn) == mfn)
|
|
set_phys_to_machine(pfn, FOREIGN_FRAME(mfn));
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(m2p_add_override);
|
|
int m2p_remove_override(struct page *page,
|
|
struct gnttab_map_grant_ref *kmap_op)
|
|
{
|
|
unsigned long flags;
|
|
unsigned long mfn;
|
|
unsigned long pfn;
|
|
unsigned long uninitialized_var(address);
|
|
unsigned level;
|
|
pte_t *ptep = NULL;
|
|
|
|
pfn = page_to_pfn(page);
|
|
mfn = get_phys_to_machine(pfn);
|
|
if (mfn == INVALID_P2M_ENTRY || !(mfn & FOREIGN_FRAME_BIT))
|
|
return -EINVAL;
|
|
|
|
if (!PageHighMem(page)) {
|
|
address = (unsigned long)__va(pfn << PAGE_SHIFT);
|
|
ptep = lookup_address(address, &level);
|
|
|
|
if (WARN(ptep == NULL || level != PG_LEVEL_4K,
|
|
"m2p_remove_override: pfn %lx not mapped", pfn))
|
|
return -EINVAL;
|
|
}
|
|
|
|
spin_lock_irqsave(&m2p_override_lock, flags);
|
|
list_del(&page->lru);
|
|
spin_unlock_irqrestore(&m2p_override_lock, flags);
|
|
WARN_ON(!PagePrivate(page));
|
|
ClearPagePrivate(page);
|
|
|
|
set_phys_to_machine(pfn, page->index);
|
|
if (kmap_op != NULL) {
|
|
if (!PageHighMem(page)) {
|
|
struct multicall_space mcs;
|
|
struct gnttab_unmap_and_replace *unmap_op;
|
|
struct page *scratch_page = get_balloon_scratch_page();
|
|
unsigned long scratch_page_address = (unsigned long)
|
|
__va(page_to_pfn(scratch_page) << PAGE_SHIFT);
|
|
|
|
/*
|
|
* It might be that we queued all the m2p grant table
|
|
* hypercalls in a multicall, then m2p_remove_override
|
|
* get called before the multicall has actually been
|
|
* issued. In this case handle is going to -1 because
|
|
* it hasn't been modified yet.
|
|
*/
|
|
if (kmap_op->handle == -1)
|
|
xen_mc_flush();
|
|
/*
|
|
* Now if kmap_op->handle is negative it means that the
|
|
* hypercall actually returned an error.
|
|
*/
|
|
if (kmap_op->handle == GNTST_general_error) {
|
|
printk(KERN_WARNING "m2p_remove_override: "
|
|
"pfn %lx mfn %lx, failed to modify kernel mappings",
|
|
pfn, mfn);
|
|
put_balloon_scratch_page();
|
|
return -1;
|
|
}
|
|
|
|
xen_mc_batch();
|
|
|
|
mcs = __xen_mc_entry(
|
|
sizeof(struct gnttab_unmap_and_replace));
|
|
unmap_op = mcs.args;
|
|
unmap_op->host_addr = kmap_op->host_addr;
|
|
unmap_op->new_addr = scratch_page_address;
|
|
unmap_op->handle = kmap_op->handle;
|
|
|
|
MULTI_grant_table_op(mcs.mc,
|
|
GNTTABOP_unmap_and_replace, unmap_op, 1);
|
|
|
|
mcs = __xen_mc_entry(0);
|
|
MULTI_update_va_mapping(mcs.mc, scratch_page_address,
|
|
pfn_pte(page_to_pfn(scratch_page),
|
|
PAGE_KERNEL_RO), 0);
|
|
|
|
xen_mc_issue(PARAVIRT_LAZY_MMU);
|
|
|
|
kmap_op->host_addr = 0;
|
|
put_balloon_scratch_page();
|
|
}
|
|
}
|
|
|
|
/* p2m(m2p(mfn)) == FOREIGN_FRAME(mfn): the mfn is already present
|
|
* somewhere in this domain, even before being added to the
|
|
* m2p_override (see comment above in m2p_add_override).
|
|
* If there are no other entries in the m2p_override corresponding
|
|
* to this mfn, then remove the FOREIGN_FRAME_BIT from the p2m for
|
|
* the original pfn (the one shared by the frontend): the backend
|
|
* cannot do any IO on this page anymore because it has been
|
|
* unshared. Removing the FOREIGN_FRAME_BIT from the p2m entry of
|
|
* the original pfn causes mfn_to_pfn(mfn) to return the frontend
|
|
* pfn again. */
|
|
mfn &= ~FOREIGN_FRAME_BIT;
|
|
pfn = mfn_to_pfn_no_overrides(mfn);
|
|
if (get_phys_to_machine(pfn) == FOREIGN_FRAME(mfn) &&
|
|
m2p_find_override(mfn) == NULL)
|
|
set_phys_to_machine(pfn, mfn);
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(m2p_remove_override);
|
|
|
|
struct page *m2p_find_override(unsigned long mfn)
|
|
{
|
|
unsigned long flags;
|
|
struct list_head *bucket = &m2p_overrides[mfn_hash(mfn)];
|
|
struct page *p, *ret;
|
|
|
|
ret = NULL;
|
|
|
|
spin_lock_irqsave(&m2p_override_lock, flags);
|
|
|
|
list_for_each_entry(p, bucket, lru) {
|
|
if (page_private(p) == mfn) {
|
|
ret = p;
|
|
break;
|
|
}
|
|
}
|
|
|
|
spin_unlock_irqrestore(&m2p_override_lock, flags);
|
|
|
|
return ret;
|
|
}
|
|
|
|
unsigned long m2p_find_override_pfn(unsigned long mfn, unsigned long pfn)
|
|
{
|
|
struct page *p = m2p_find_override(mfn);
|
|
unsigned long ret = pfn;
|
|
|
|
if (p)
|
|
ret = page_to_pfn(p);
|
|
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL_GPL(m2p_find_override_pfn);
|
|
|
|
#ifdef CONFIG_XEN_DEBUG_FS
|
|
#include <linux/debugfs.h>
|
|
#include "debugfs.h"
|
|
static int p2m_dump_show(struct seq_file *m, void *v)
|
|
{
|
|
static const char * const level_name[] = { "top", "middle",
|
|
"entry", "abnormal", "error"};
|
|
#define TYPE_IDENTITY 0
|
|
#define TYPE_MISSING 1
|
|
#define TYPE_PFN 2
|
|
#define TYPE_UNKNOWN 3
|
|
static const char * const type_name[] = {
|
|
[TYPE_IDENTITY] = "identity",
|
|
[TYPE_MISSING] = "missing",
|
|
[TYPE_PFN] = "pfn",
|
|
[TYPE_UNKNOWN] = "abnormal"};
|
|
unsigned long pfn, prev_pfn_type = 0, prev_pfn_level = 0;
|
|
unsigned int uninitialized_var(prev_level);
|
|
unsigned int uninitialized_var(prev_type);
|
|
|
|
if (!p2m_top)
|
|
return 0;
|
|
|
|
for (pfn = 0; pfn < MAX_DOMAIN_PAGES; pfn++) {
|
|
unsigned topidx = p2m_top_index(pfn);
|
|
unsigned mididx = p2m_mid_index(pfn);
|
|
unsigned idx = p2m_index(pfn);
|
|
unsigned lvl, type;
|
|
|
|
lvl = 4;
|
|
type = TYPE_UNKNOWN;
|
|
if (p2m_top[topidx] == p2m_mid_missing) {
|
|
lvl = 0; type = TYPE_MISSING;
|
|
} else if (p2m_top[topidx] == NULL) {
|
|
lvl = 0; type = TYPE_UNKNOWN;
|
|
} else if (p2m_top[topidx][mididx] == NULL) {
|
|
lvl = 1; type = TYPE_UNKNOWN;
|
|
} else if (p2m_top[topidx][mididx] == p2m_identity) {
|
|
lvl = 1; type = TYPE_IDENTITY;
|
|
} else if (p2m_top[topidx][mididx] == p2m_missing) {
|
|
lvl = 1; type = TYPE_MISSING;
|
|
} else if (p2m_top[topidx][mididx][idx] == 0) {
|
|
lvl = 2; type = TYPE_UNKNOWN;
|
|
} else if (p2m_top[topidx][mididx][idx] == IDENTITY_FRAME(pfn)) {
|
|
lvl = 2; type = TYPE_IDENTITY;
|
|
} else if (p2m_top[topidx][mididx][idx] == INVALID_P2M_ENTRY) {
|
|
lvl = 2; type = TYPE_MISSING;
|
|
} else if (p2m_top[topidx][mididx][idx] == pfn) {
|
|
lvl = 2; type = TYPE_PFN;
|
|
} else if (p2m_top[topidx][mididx][idx] != pfn) {
|
|
lvl = 2; type = TYPE_PFN;
|
|
}
|
|
if (pfn == 0) {
|
|
prev_level = lvl;
|
|
prev_type = type;
|
|
}
|
|
if (pfn == MAX_DOMAIN_PAGES-1) {
|
|
lvl = 3;
|
|
type = TYPE_UNKNOWN;
|
|
}
|
|
if (prev_type != type) {
|
|
seq_printf(m, " [0x%lx->0x%lx] %s\n",
|
|
prev_pfn_type, pfn, type_name[prev_type]);
|
|
prev_pfn_type = pfn;
|
|
prev_type = type;
|
|
}
|
|
if (prev_level != lvl) {
|
|
seq_printf(m, " [0x%lx->0x%lx] level %s\n",
|
|
prev_pfn_level, pfn, level_name[prev_level]);
|
|
prev_pfn_level = pfn;
|
|
prev_level = lvl;
|
|
}
|
|
}
|
|
return 0;
|
|
#undef TYPE_IDENTITY
|
|
#undef TYPE_MISSING
|
|
#undef TYPE_PFN
|
|
#undef TYPE_UNKNOWN
|
|
}
|
|
|
|
static int p2m_dump_open(struct inode *inode, struct file *filp)
|
|
{
|
|
return single_open(filp, p2m_dump_show, NULL);
|
|
}
|
|
|
|
static const struct file_operations p2m_dump_fops = {
|
|
.open = p2m_dump_open,
|
|
.read = seq_read,
|
|
.llseek = seq_lseek,
|
|
.release = single_release,
|
|
};
|
|
|
|
static struct dentry *d_mmu_debug;
|
|
|
|
static int __init xen_p2m_debugfs(void)
|
|
{
|
|
struct dentry *d_xen = xen_init_debugfs();
|
|
|
|
if (d_xen == NULL)
|
|
return -ENOMEM;
|
|
|
|
d_mmu_debug = debugfs_create_dir("mmu", d_xen);
|
|
|
|
debugfs_create_file("p2m", 0600, d_mmu_debug, NULL, &p2m_dump_fops);
|
|
return 0;
|
|
}
|
|
fs_initcall(xen_p2m_debugfs);
|
|
#endif /* CONFIG_XEN_DEBUG_FS */
|