mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2024-11-25 03:50:53 +07:00
9f55684c2d
Signed-off-by: Sankar P <sankar.curiosity@gmail.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
6014 lines
155 KiB
C
6014 lines
155 KiB
C
/*
|
|
* Copyright (C) 2007 Oracle. All rights reserved.
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public
|
|
* License v2 as published by the Free Software Foundation.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public
|
|
* License along with this program; if not, write to the
|
|
* Free Software Foundation, Inc., 59 Temple Place - Suite 330,
|
|
* Boston, MA 021110-1307, USA.
|
|
*/
|
|
#include <linux/sched.h>
|
|
#include <linux/pagemap.h>
|
|
#include <linux/writeback.h>
|
|
#include <linux/blkdev.h>
|
|
#include <linux/sort.h>
|
|
#include <linux/rcupdate.h>
|
|
#include "compat.h"
|
|
#include "hash.h"
|
|
#include "crc32c.h"
|
|
#include "ctree.h"
|
|
#include "disk-io.h"
|
|
#include "print-tree.h"
|
|
#include "transaction.h"
|
|
#include "volumes.h"
|
|
#include "locking.h"
|
|
#include "ref-cache.h"
|
|
#include "free-space-cache.h"
|
|
|
|
#define PENDING_EXTENT_INSERT 0
|
|
#define PENDING_EXTENT_DELETE 1
|
|
#define PENDING_BACKREF_UPDATE 2
|
|
|
|
struct pending_extent_op {
|
|
int type;
|
|
u64 bytenr;
|
|
u64 num_bytes;
|
|
u64 parent;
|
|
u64 orig_parent;
|
|
u64 generation;
|
|
u64 orig_generation;
|
|
int level;
|
|
struct list_head list;
|
|
int del;
|
|
};
|
|
|
|
static int __btrfs_alloc_reserved_extent(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *root, u64 parent,
|
|
u64 root_objectid, u64 ref_generation,
|
|
u64 owner, struct btrfs_key *ins,
|
|
int ref_mod);
|
|
static int update_reserved_extents(struct btrfs_root *root,
|
|
u64 bytenr, u64 num, int reserve);
|
|
static int update_block_group(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *root,
|
|
u64 bytenr, u64 num_bytes, int alloc,
|
|
int mark_free);
|
|
static noinline int __btrfs_free_extent(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *root,
|
|
u64 bytenr, u64 num_bytes, u64 parent,
|
|
u64 root_objectid, u64 ref_generation,
|
|
u64 owner_objectid, int pin,
|
|
int ref_to_drop);
|
|
|
|
static int do_chunk_alloc(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *extent_root, u64 alloc_bytes,
|
|
u64 flags, int force);
|
|
|
|
static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits)
|
|
{
|
|
return (cache->flags & bits) == bits;
|
|
}
|
|
|
|
/*
|
|
* this adds the block group to the fs_info rb tree for the block group
|
|
* cache
|
|
*/
|
|
static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
|
|
struct btrfs_block_group_cache *block_group)
|
|
{
|
|
struct rb_node **p;
|
|
struct rb_node *parent = NULL;
|
|
struct btrfs_block_group_cache *cache;
|
|
|
|
spin_lock(&info->block_group_cache_lock);
|
|
p = &info->block_group_cache_tree.rb_node;
|
|
|
|
while (*p) {
|
|
parent = *p;
|
|
cache = rb_entry(parent, struct btrfs_block_group_cache,
|
|
cache_node);
|
|
if (block_group->key.objectid < cache->key.objectid) {
|
|
p = &(*p)->rb_left;
|
|
} else if (block_group->key.objectid > cache->key.objectid) {
|
|
p = &(*p)->rb_right;
|
|
} else {
|
|
spin_unlock(&info->block_group_cache_lock);
|
|
return -EEXIST;
|
|
}
|
|
}
|
|
|
|
rb_link_node(&block_group->cache_node, parent, p);
|
|
rb_insert_color(&block_group->cache_node,
|
|
&info->block_group_cache_tree);
|
|
spin_unlock(&info->block_group_cache_lock);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* This will return the block group at or after bytenr if contains is 0, else
|
|
* it will return the block group that contains the bytenr
|
|
*/
|
|
static struct btrfs_block_group_cache *
|
|
block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr,
|
|
int contains)
|
|
{
|
|
struct btrfs_block_group_cache *cache, *ret = NULL;
|
|
struct rb_node *n;
|
|
u64 end, start;
|
|
|
|
spin_lock(&info->block_group_cache_lock);
|
|
n = info->block_group_cache_tree.rb_node;
|
|
|
|
while (n) {
|
|
cache = rb_entry(n, struct btrfs_block_group_cache,
|
|
cache_node);
|
|
end = cache->key.objectid + cache->key.offset - 1;
|
|
start = cache->key.objectid;
|
|
|
|
if (bytenr < start) {
|
|
if (!contains && (!ret || start < ret->key.objectid))
|
|
ret = cache;
|
|
n = n->rb_left;
|
|
} else if (bytenr > start) {
|
|
if (contains && bytenr <= end) {
|
|
ret = cache;
|
|
break;
|
|
}
|
|
n = n->rb_right;
|
|
} else {
|
|
ret = cache;
|
|
break;
|
|
}
|
|
}
|
|
if (ret)
|
|
atomic_inc(&ret->count);
|
|
spin_unlock(&info->block_group_cache_lock);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* this is only called by cache_block_group, since we could have freed extents
|
|
* we need to check the pinned_extents for any extents that can't be used yet
|
|
* since their free space will be released as soon as the transaction commits.
|
|
*/
|
|
static int add_new_free_space(struct btrfs_block_group_cache *block_group,
|
|
struct btrfs_fs_info *info, u64 start, u64 end)
|
|
{
|
|
u64 extent_start, extent_end, size;
|
|
int ret;
|
|
|
|
while (start < end) {
|
|
ret = find_first_extent_bit(&info->pinned_extents, start,
|
|
&extent_start, &extent_end,
|
|
EXTENT_DIRTY);
|
|
if (ret)
|
|
break;
|
|
|
|
if (extent_start == start) {
|
|
start = extent_end + 1;
|
|
} else if (extent_start > start && extent_start < end) {
|
|
size = extent_start - start;
|
|
ret = btrfs_add_free_space(block_group, start,
|
|
size);
|
|
BUG_ON(ret);
|
|
start = extent_end + 1;
|
|
} else {
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (start < end) {
|
|
size = end - start;
|
|
ret = btrfs_add_free_space(block_group, start, size);
|
|
BUG_ON(ret);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int remove_sb_from_cache(struct btrfs_root *root,
|
|
struct btrfs_block_group_cache *cache)
|
|
{
|
|
u64 bytenr;
|
|
u64 *logical;
|
|
int stripe_len;
|
|
int i, nr, ret;
|
|
|
|
for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
|
|
bytenr = btrfs_sb_offset(i);
|
|
ret = btrfs_rmap_block(&root->fs_info->mapping_tree,
|
|
cache->key.objectid, bytenr, 0,
|
|
&logical, &nr, &stripe_len);
|
|
BUG_ON(ret);
|
|
while (nr--) {
|
|
btrfs_remove_free_space(cache, logical[nr],
|
|
stripe_len);
|
|
}
|
|
kfree(logical);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int cache_block_group(struct btrfs_root *root,
|
|
struct btrfs_block_group_cache *block_group)
|
|
{
|
|
struct btrfs_path *path;
|
|
int ret = 0;
|
|
struct btrfs_key key;
|
|
struct extent_buffer *leaf;
|
|
int slot;
|
|
u64 last;
|
|
|
|
if (!block_group)
|
|
return 0;
|
|
|
|
root = root->fs_info->extent_root;
|
|
|
|
if (block_group->cached)
|
|
return 0;
|
|
|
|
path = btrfs_alloc_path();
|
|
if (!path)
|
|
return -ENOMEM;
|
|
|
|
path->reada = 2;
|
|
/*
|
|
* we get into deadlocks with paths held by callers of this function.
|
|
* since the alloc_mutex is protecting things right now, just
|
|
* skip the locking here
|
|
*/
|
|
path->skip_locking = 1;
|
|
last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET);
|
|
key.objectid = last;
|
|
key.offset = 0;
|
|
btrfs_set_key_type(&key, BTRFS_EXTENT_ITEM_KEY);
|
|
ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
|
|
if (ret < 0)
|
|
goto err;
|
|
|
|
while (1) {
|
|
leaf = path->nodes[0];
|
|
slot = path->slots[0];
|
|
if (slot >= btrfs_header_nritems(leaf)) {
|
|
ret = btrfs_next_leaf(root, path);
|
|
if (ret < 0)
|
|
goto err;
|
|
if (ret == 0)
|
|
continue;
|
|
else
|
|
break;
|
|
}
|
|
btrfs_item_key_to_cpu(leaf, &key, slot);
|
|
if (key.objectid < block_group->key.objectid)
|
|
goto next;
|
|
|
|
if (key.objectid >= block_group->key.objectid +
|
|
block_group->key.offset)
|
|
break;
|
|
|
|
if (btrfs_key_type(&key) == BTRFS_EXTENT_ITEM_KEY) {
|
|
add_new_free_space(block_group, root->fs_info, last,
|
|
key.objectid);
|
|
|
|
last = key.objectid + key.offset;
|
|
}
|
|
next:
|
|
path->slots[0]++;
|
|
}
|
|
|
|
add_new_free_space(block_group, root->fs_info, last,
|
|
block_group->key.objectid +
|
|
block_group->key.offset);
|
|
|
|
block_group->cached = 1;
|
|
remove_sb_from_cache(root, block_group);
|
|
ret = 0;
|
|
err:
|
|
btrfs_free_path(path);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* return the block group that starts at or after bytenr
|
|
*/
|
|
static struct btrfs_block_group_cache *
|
|
btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr)
|
|
{
|
|
struct btrfs_block_group_cache *cache;
|
|
|
|
cache = block_group_cache_tree_search(info, bytenr, 0);
|
|
|
|
return cache;
|
|
}
|
|
|
|
/*
|
|
* return the block group that contains the given bytenr
|
|
*/
|
|
struct btrfs_block_group_cache *btrfs_lookup_block_group(
|
|
struct btrfs_fs_info *info,
|
|
u64 bytenr)
|
|
{
|
|
struct btrfs_block_group_cache *cache;
|
|
|
|
cache = block_group_cache_tree_search(info, bytenr, 1);
|
|
|
|
return cache;
|
|
}
|
|
|
|
void btrfs_put_block_group(struct btrfs_block_group_cache *cache)
|
|
{
|
|
if (atomic_dec_and_test(&cache->count))
|
|
kfree(cache);
|
|
}
|
|
|
|
static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info,
|
|
u64 flags)
|
|
{
|
|
struct list_head *head = &info->space_info;
|
|
struct btrfs_space_info *found;
|
|
|
|
rcu_read_lock();
|
|
list_for_each_entry_rcu(found, head, list) {
|
|
if (found->flags == flags) {
|
|
rcu_read_unlock();
|
|
return found;
|
|
}
|
|
}
|
|
rcu_read_unlock();
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* after adding space to the filesystem, we need to clear the full flags
|
|
* on all the space infos.
|
|
*/
|
|
void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
|
|
{
|
|
struct list_head *head = &info->space_info;
|
|
struct btrfs_space_info *found;
|
|
|
|
rcu_read_lock();
|
|
list_for_each_entry_rcu(found, head, list)
|
|
found->full = 0;
|
|
rcu_read_unlock();
|
|
}
|
|
|
|
static u64 div_factor(u64 num, int factor)
|
|
{
|
|
if (factor == 10)
|
|
return num;
|
|
num *= factor;
|
|
do_div(num, 10);
|
|
return num;
|
|
}
|
|
|
|
u64 btrfs_find_block_group(struct btrfs_root *root,
|
|
u64 search_start, u64 search_hint, int owner)
|
|
{
|
|
struct btrfs_block_group_cache *cache;
|
|
u64 used;
|
|
u64 last = max(search_hint, search_start);
|
|
u64 group_start = 0;
|
|
int full_search = 0;
|
|
int factor = 9;
|
|
int wrapped = 0;
|
|
again:
|
|
while (1) {
|
|
cache = btrfs_lookup_first_block_group(root->fs_info, last);
|
|
if (!cache)
|
|
break;
|
|
|
|
spin_lock(&cache->lock);
|
|
last = cache->key.objectid + cache->key.offset;
|
|
used = btrfs_block_group_used(&cache->item);
|
|
|
|
if ((full_search || !cache->ro) &&
|
|
block_group_bits(cache, BTRFS_BLOCK_GROUP_METADATA)) {
|
|
if (used + cache->pinned + cache->reserved <
|
|
div_factor(cache->key.offset, factor)) {
|
|
group_start = cache->key.objectid;
|
|
spin_unlock(&cache->lock);
|
|
btrfs_put_block_group(cache);
|
|
goto found;
|
|
}
|
|
}
|
|
spin_unlock(&cache->lock);
|
|
btrfs_put_block_group(cache);
|
|
cond_resched();
|
|
}
|
|
if (!wrapped) {
|
|
last = search_start;
|
|
wrapped = 1;
|
|
goto again;
|
|
}
|
|
if (!full_search && factor < 10) {
|
|
last = search_start;
|
|
full_search = 1;
|
|
factor = 10;
|
|
goto again;
|
|
}
|
|
found:
|
|
return group_start;
|
|
}
|
|
|
|
/* simple helper to search for an existing extent at a given offset */
|
|
int btrfs_lookup_extent(struct btrfs_root *root, u64 start, u64 len)
|
|
{
|
|
int ret;
|
|
struct btrfs_key key;
|
|
struct btrfs_path *path;
|
|
|
|
path = btrfs_alloc_path();
|
|
BUG_ON(!path);
|
|
key.objectid = start;
|
|
key.offset = len;
|
|
btrfs_set_key_type(&key, BTRFS_EXTENT_ITEM_KEY);
|
|
ret = btrfs_search_slot(NULL, root->fs_info->extent_root, &key, path,
|
|
0, 0);
|
|
btrfs_free_path(path);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Back reference rules. Back refs have three main goals:
|
|
*
|
|
* 1) differentiate between all holders of references to an extent so that
|
|
* when a reference is dropped we can make sure it was a valid reference
|
|
* before freeing the extent.
|
|
*
|
|
* 2) Provide enough information to quickly find the holders of an extent
|
|
* if we notice a given block is corrupted or bad.
|
|
*
|
|
* 3) Make it easy to migrate blocks for FS shrinking or storage pool
|
|
* maintenance. This is actually the same as #2, but with a slightly
|
|
* different use case.
|
|
*
|
|
* File extents can be referenced by:
|
|
*
|
|
* - multiple snapshots, subvolumes, or different generations in one subvol
|
|
* - different files inside a single subvolume
|
|
* - different offsets inside a file (bookend extents in file.c)
|
|
*
|
|
* The extent ref structure has fields for:
|
|
*
|
|
* - Objectid of the subvolume root
|
|
* - Generation number of the tree holding the reference
|
|
* - objectid of the file holding the reference
|
|
* - number of references holding by parent node (alway 1 for tree blocks)
|
|
*
|
|
* Btree leaf may hold multiple references to a file extent. In most cases,
|
|
* these references are from same file and the corresponding offsets inside
|
|
* the file are close together.
|
|
*
|
|
* When a file extent is allocated the fields are filled in:
|
|
* (root_key.objectid, trans->transid, inode objectid, 1)
|
|
*
|
|
* When a leaf is cow'd new references are added for every file extent found
|
|
* in the leaf. It looks similar to the create case, but trans->transid will
|
|
* be different when the block is cow'd.
|
|
*
|
|
* (root_key.objectid, trans->transid, inode objectid,
|
|
* number of references in the leaf)
|
|
*
|
|
* When a file extent is removed either during snapshot deletion or
|
|
* file truncation, we find the corresponding back reference and check
|
|
* the following fields:
|
|
*
|
|
* (btrfs_header_owner(leaf), btrfs_header_generation(leaf),
|
|
* inode objectid)
|
|
*
|
|
* Btree extents can be referenced by:
|
|
*
|
|
* - Different subvolumes
|
|
* - Different generations of the same subvolume
|
|
*
|
|
* When a tree block is created, back references are inserted:
|
|
*
|
|
* (root->root_key.objectid, trans->transid, level, 1)
|
|
*
|
|
* When a tree block is cow'd, new back references are added for all the
|
|
* blocks it points to. If the tree block isn't in reference counted root,
|
|
* the old back references are removed. These new back references are of
|
|
* the form (trans->transid will have increased since creation):
|
|
*
|
|
* (root->root_key.objectid, trans->transid, level, 1)
|
|
*
|
|
* When a backref is in deleting, the following fields are checked:
|
|
*
|
|
* if backref was for a tree root:
|
|
* (btrfs_header_owner(itself), btrfs_header_generation(itself), level)
|
|
* else
|
|
* (btrfs_header_owner(parent), btrfs_header_generation(parent), level)
|
|
*
|
|
* Back Reference Key composing:
|
|
*
|
|
* The key objectid corresponds to the first byte in the extent, the key
|
|
* type is set to BTRFS_EXTENT_REF_KEY, and the key offset is the first
|
|
* byte of parent extent. If a extent is tree root, the key offset is set
|
|
* to the key objectid.
|
|
*/
|
|
|
|
static noinline int lookup_extent_backref(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *root,
|
|
struct btrfs_path *path,
|
|
u64 bytenr, u64 parent,
|
|
u64 ref_root, u64 ref_generation,
|
|
u64 owner_objectid, int del)
|
|
{
|
|
struct btrfs_key key;
|
|
struct btrfs_extent_ref *ref;
|
|
struct extent_buffer *leaf;
|
|
u64 ref_objectid;
|
|
int ret;
|
|
|
|
key.objectid = bytenr;
|
|
key.type = BTRFS_EXTENT_REF_KEY;
|
|
key.offset = parent;
|
|
|
|
ret = btrfs_search_slot(trans, root, &key, path, del ? -1 : 0, 1);
|
|
if (ret < 0)
|
|
goto out;
|
|
if (ret > 0) {
|
|
ret = -ENOENT;
|
|
goto out;
|
|
}
|
|
|
|
leaf = path->nodes[0];
|
|
ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_ref);
|
|
ref_objectid = btrfs_ref_objectid(leaf, ref);
|
|
if (btrfs_ref_root(leaf, ref) != ref_root ||
|
|
btrfs_ref_generation(leaf, ref) != ref_generation ||
|
|
(ref_objectid != owner_objectid &&
|
|
ref_objectid != BTRFS_MULTIPLE_OBJECTIDS)) {
|
|
ret = -EIO;
|
|
WARN_ON(1);
|
|
goto out;
|
|
}
|
|
ret = 0;
|
|
out:
|
|
return ret;
|
|
}
|
|
|
|
static noinline int insert_extent_backref(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *root,
|
|
struct btrfs_path *path,
|
|
u64 bytenr, u64 parent,
|
|
u64 ref_root, u64 ref_generation,
|
|
u64 owner_objectid,
|
|
int refs_to_add)
|
|
{
|
|
struct btrfs_key key;
|
|
struct extent_buffer *leaf;
|
|
struct btrfs_extent_ref *ref;
|
|
u32 num_refs;
|
|
int ret;
|
|
|
|
key.objectid = bytenr;
|
|
key.type = BTRFS_EXTENT_REF_KEY;
|
|
key.offset = parent;
|
|
|
|
ret = btrfs_insert_empty_item(trans, root, path, &key, sizeof(*ref));
|
|
if (ret == 0) {
|
|
leaf = path->nodes[0];
|
|
ref = btrfs_item_ptr(leaf, path->slots[0],
|
|
struct btrfs_extent_ref);
|
|
btrfs_set_ref_root(leaf, ref, ref_root);
|
|
btrfs_set_ref_generation(leaf, ref, ref_generation);
|
|
btrfs_set_ref_objectid(leaf, ref, owner_objectid);
|
|
btrfs_set_ref_num_refs(leaf, ref, refs_to_add);
|
|
} else if (ret == -EEXIST) {
|
|
u64 existing_owner;
|
|
|
|
BUG_ON(owner_objectid < BTRFS_FIRST_FREE_OBJECTID);
|
|
leaf = path->nodes[0];
|
|
ref = btrfs_item_ptr(leaf, path->slots[0],
|
|
struct btrfs_extent_ref);
|
|
if (btrfs_ref_root(leaf, ref) != ref_root ||
|
|
btrfs_ref_generation(leaf, ref) != ref_generation) {
|
|
ret = -EIO;
|
|
WARN_ON(1);
|
|
goto out;
|
|
}
|
|
|
|
num_refs = btrfs_ref_num_refs(leaf, ref);
|
|
BUG_ON(num_refs == 0);
|
|
btrfs_set_ref_num_refs(leaf, ref, num_refs + refs_to_add);
|
|
|
|
existing_owner = btrfs_ref_objectid(leaf, ref);
|
|
if (existing_owner != owner_objectid &&
|
|
existing_owner != BTRFS_MULTIPLE_OBJECTIDS) {
|
|
btrfs_set_ref_objectid(leaf, ref,
|
|
BTRFS_MULTIPLE_OBJECTIDS);
|
|
}
|
|
ret = 0;
|
|
} else {
|
|
goto out;
|
|
}
|
|
btrfs_unlock_up_safe(path, 1);
|
|
btrfs_mark_buffer_dirty(path->nodes[0]);
|
|
out:
|
|
btrfs_release_path(root, path);
|
|
return ret;
|
|
}
|
|
|
|
static noinline int remove_extent_backref(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *root,
|
|
struct btrfs_path *path,
|
|
int refs_to_drop)
|
|
{
|
|
struct extent_buffer *leaf;
|
|
struct btrfs_extent_ref *ref;
|
|
u32 num_refs;
|
|
int ret = 0;
|
|
|
|
leaf = path->nodes[0];
|
|
ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_ref);
|
|
num_refs = btrfs_ref_num_refs(leaf, ref);
|
|
BUG_ON(num_refs < refs_to_drop);
|
|
num_refs -= refs_to_drop;
|
|
if (num_refs == 0) {
|
|
ret = btrfs_del_item(trans, root, path);
|
|
} else {
|
|
btrfs_set_ref_num_refs(leaf, ref, num_refs);
|
|
btrfs_mark_buffer_dirty(leaf);
|
|
}
|
|
btrfs_release_path(root, path);
|
|
return ret;
|
|
}
|
|
|
|
#ifdef BIO_RW_DISCARD
|
|
static void btrfs_issue_discard(struct block_device *bdev,
|
|
u64 start, u64 len)
|
|
{
|
|
blkdev_issue_discard(bdev, start >> 9, len >> 9, GFP_KERNEL);
|
|
}
|
|
#endif
|
|
|
|
static int btrfs_discard_extent(struct btrfs_root *root, u64 bytenr,
|
|
u64 num_bytes)
|
|
{
|
|
#ifdef BIO_RW_DISCARD
|
|
int ret;
|
|
u64 map_length = num_bytes;
|
|
struct btrfs_multi_bio *multi = NULL;
|
|
|
|
/* Tell the block device(s) that the sectors can be discarded */
|
|
ret = btrfs_map_block(&root->fs_info->mapping_tree, READ,
|
|
bytenr, &map_length, &multi, 0);
|
|
if (!ret) {
|
|
struct btrfs_bio_stripe *stripe = multi->stripes;
|
|
int i;
|
|
|
|
if (map_length > num_bytes)
|
|
map_length = num_bytes;
|
|
|
|
for (i = 0; i < multi->num_stripes; i++, stripe++) {
|
|
btrfs_issue_discard(stripe->dev->bdev,
|
|
stripe->physical,
|
|
map_length);
|
|
}
|
|
kfree(multi);
|
|
}
|
|
|
|
return ret;
|
|
#else
|
|
return 0;
|
|
#endif
|
|
}
|
|
|
|
static int __btrfs_update_extent_ref(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *root, u64 bytenr,
|
|
u64 num_bytes,
|
|
u64 orig_parent, u64 parent,
|
|
u64 orig_root, u64 ref_root,
|
|
u64 orig_generation, u64 ref_generation,
|
|
u64 owner_objectid)
|
|
{
|
|
int ret;
|
|
int pin = owner_objectid < BTRFS_FIRST_FREE_OBJECTID;
|
|
|
|
ret = btrfs_update_delayed_ref(trans, bytenr, num_bytes,
|
|
orig_parent, parent, orig_root,
|
|
ref_root, orig_generation,
|
|
ref_generation, owner_objectid, pin);
|
|
BUG_ON(ret);
|
|
return ret;
|
|
}
|
|
|
|
int btrfs_update_extent_ref(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *root, u64 bytenr,
|
|
u64 num_bytes, u64 orig_parent, u64 parent,
|
|
u64 ref_root, u64 ref_generation,
|
|
u64 owner_objectid)
|
|
{
|
|
int ret;
|
|
if (ref_root == BTRFS_TREE_LOG_OBJECTID &&
|
|
owner_objectid < BTRFS_FIRST_FREE_OBJECTID)
|
|
return 0;
|
|
|
|
ret = __btrfs_update_extent_ref(trans, root, bytenr, num_bytes,
|
|
orig_parent, parent, ref_root,
|
|
ref_root, ref_generation,
|
|
ref_generation, owner_objectid);
|
|
return ret;
|
|
}
|
|
static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *root, u64 bytenr,
|
|
u64 num_bytes,
|
|
u64 orig_parent, u64 parent,
|
|
u64 orig_root, u64 ref_root,
|
|
u64 orig_generation, u64 ref_generation,
|
|
u64 owner_objectid)
|
|
{
|
|
int ret;
|
|
|
|
ret = btrfs_add_delayed_ref(trans, bytenr, num_bytes, parent, ref_root,
|
|
ref_generation, owner_objectid,
|
|
BTRFS_ADD_DELAYED_REF, 0);
|
|
BUG_ON(ret);
|
|
return ret;
|
|
}
|
|
|
|
static noinline_for_stack int add_extent_ref(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *root, u64 bytenr,
|
|
u64 num_bytes, u64 parent, u64 ref_root,
|
|
u64 ref_generation, u64 owner_objectid,
|
|
int refs_to_add)
|
|
{
|
|
struct btrfs_path *path;
|
|
int ret;
|
|
struct btrfs_key key;
|
|
struct extent_buffer *l;
|
|
struct btrfs_extent_item *item;
|
|
u32 refs;
|
|
|
|
path = btrfs_alloc_path();
|
|
if (!path)
|
|
return -ENOMEM;
|
|
|
|
path->reada = 1;
|
|
path->leave_spinning = 1;
|
|
key.objectid = bytenr;
|
|
key.type = BTRFS_EXTENT_ITEM_KEY;
|
|
key.offset = num_bytes;
|
|
|
|
/* first find the extent item and update its reference count */
|
|
ret = btrfs_search_slot(trans, root->fs_info->extent_root, &key,
|
|
path, 0, 1);
|
|
if (ret < 0) {
|
|
btrfs_set_path_blocking(path);
|
|
return ret;
|
|
}
|
|
|
|
if (ret > 0) {
|
|
WARN_ON(1);
|
|
btrfs_free_path(path);
|
|
return -EIO;
|
|
}
|
|
l = path->nodes[0];
|
|
|
|
btrfs_item_key_to_cpu(l, &key, path->slots[0]);
|
|
if (key.objectid != bytenr) {
|
|
btrfs_print_leaf(root->fs_info->extent_root, path->nodes[0]);
|
|
printk(KERN_ERR "btrfs wanted %llu found %llu\n",
|
|
(unsigned long long)bytenr,
|
|
(unsigned long long)key.objectid);
|
|
BUG();
|
|
}
|
|
BUG_ON(key.type != BTRFS_EXTENT_ITEM_KEY);
|
|
|
|
item = btrfs_item_ptr(l, path->slots[0], struct btrfs_extent_item);
|
|
|
|
refs = btrfs_extent_refs(l, item);
|
|
btrfs_set_extent_refs(l, item, refs + refs_to_add);
|
|
btrfs_unlock_up_safe(path, 1);
|
|
|
|
btrfs_mark_buffer_dirty(path->nodes[0]);
|
|
|
|
btrfs_release_path(root->fs_info->extent_root, path);
|
|
|
|
path->reada = 1;
|
|
path->leave_spinning = 1;
|
|
|
|
/* now insert the actual backref */
|
|
ret = insert_extent_backref(trans, root->fs_info->extent_root,
|
|
path, bytenr, parent,
|
|
ref_root, ref_generation,
|
|
owner_objectid, refs_to_add);
|
|
BUG_ON(ret);
|
|
btrfs_free_path(path);
|
|
return 0;
|
|
}
|
|
|
|
int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *root,
|
|
u64 bytenr, u64 num_bytes, u64 parent,
|
|
u64 ref_root, u64 ref_generation,
|
|
u64 owner_objectid)
|
|
{
|
|
int ret;
|
|
if (ref_root == BTRFS_TREE_LOG_OBJECTID &&
|
|
owner_objectid < BTRFS_FIRST_FREE_OBJECTID)
|
|
return 0;
|
|
|
|
ret = __btrfs_inc_extent_ref(trans, root, bytenr, num_bytes, 0, parent,
|
|
0, ref_root, 0, ref_generation,
|
|
owner_objectid);
|
|
return ret;
|
|
}
|
|
|
|
static int drop_delayed_ref(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *root,
|
|
struct btrfs_delayed_ref_node *node)
|
|
{
|
|
int ret = 0;
|
|
struct btrfs_delayed_ref *ref = btrfs_delayed_node_to_ref(node);
|
|
|
|
BUG_ON(node->ref_mod == 0);
|
|
ret = __btrfs_free_extent(trans, root, node->bytenr, node->num_bytes,
|
|
node->parent, ref->root, ref->generation,
|
|
ref->owner_objectid, ref->pin, node->ref_mod);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/* helper function to actually process a single delayed ref entry */
|
|
static noinline int run_one_delayed_ref(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *root,
|
|
struct btrfs_delayed_ref_node *node,
|
|
int insert_reserved)
|
|
{
|
|
int ret;
|
|
struct btrfs_delayed_ref *ref;
|
|
|
|
if (node->parent == (u64)-1) {
|
|
struct btrfs_delayed_ref_head *head;
|
|
/*
|
|
* we've hit the end of the chain and we were supposed
|
|
* to insert this extent into the tree. But, it got
|
|
* deleted before we ever needed to insert it, so all
|
|
* we have to do is clean up the accounting
|
|
*/
|
|
if (insert_reserved) {
|
|
update_reserved_extents(root, node->bytenr,
|
|
node->num_bytes, 0);
|
|
}
|
|
head = btrfs_delayed_node_to_head(node);
|
|
mutex_unlock(&head->mutex);
|
|
return 0;
|
|
}
|
|
|
|
ref = btrfs_delayed_node_to_ref(node);
|
|
if (ref->action == BTRFS_ADD_DELAYED_REF) {
|
|
if (insert_reserved) {
|
|
struct btrfs_key ins;
|
|
|
|
ins.objectid = node->bytenr;
|
|
ins.offset = node->num_bytes;
|
|
ins.type = BTRFS_EXTENT_ITEM_KEY;
|
|
|
|
/* record the full extent allocation */
|
|
ret = __btrfs_alloc_reserved_extent(trans, root,
|
|
node->parent, ref->root,
|
|
ref->generation, ref->owner_objectid,
|
|
&ins, node->ref_mod);
|
|
update_reserved_extents(root, node->bytenr,
|
|
node->num_bytes, 0);
|
|
} else {
|
|
/* just add one backref */
|
|
ret = add_extent_ref(trans, root, node->bytenr,
|
|
node->num_bytes,
|
|
node->parent, ref->root, ref->generation,
|
|
ref->owner_objectid, node->ref_mod);
|
|
}
|
|
BUG_ON(ret);
|
|
} else if (ref->action == BTRFS_DROP_DELAYED_REF) {
|
|
WARN_ON(insert_reserved);
|
|
ret = drop_delayed_ref(trans, root, node);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static noinline struct btrfs_delayed_ref_node *
|
|
select_delayed_ref(struct btrfs_delayed_ref_head *head)
|
|
{
|
|
struct rb_node *node;
|
|
struct btrfs_delayed_ref_node *ref;
|
|
int action = BTRFS_ADD_DELAYED_REF;
|
|
again:
|
|
/*
|
|
* select delayed ref of type BTRFS_ADD_DELAYED_REF first.
|
|
* this prevents ref count from going down to zero when
|
|
* there still are pending delayed ref.
|
|
*/
|
|
node = rb_prev(&head->node.rb_node);
|
|
while (1) {
|
|
if (!node)
|
|
break;
|
|
ref = rb_entry(node, struct btrfs_delayed_ref_node,
|
|
rb_node);
|
|
if (ref->bytenr != head->node.bytenr)
|
|
break;
|
|
if (btrfs_delayed_node_to_ref(ref)->action == action)
|
|
return ref;
|
|
node = rb_prev(node);
|
|
}
|
|
if (action == BTRFS_ADD_DELAYED_REF) {
|
|
action = BTRFS_DROP_DELAYED_REF;
|
|
goto again;
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
static noinline int run_clustered_refs(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *root,
|
|
struct list_head *cluster)
|
|
{
|
|
struct btrfs_delayed_ref_root *delayed_refs;
|
|
struct btrfs_delayed_ref_node *ref;
|
|
struct btrfs_delayed_ref_head *locked_ref = NULL;
|
|
int ret;
|
|
int count = 0;
|
|
int must_insert_reserved = 0;
|
|
|
|
delayed_refs = &trans->transaction->delayed_refs;
|
|
while (1) {
|
|
if (!locked_ref) {
|
|
/* pick a new head ref from the cluster list */
|
|
if (list_empty(cluster))
|
|
break;
|
|
|
|
locked_ref = list_entry(cluster->next,
|
|
struct btrfs_delayed_ref_head, cluster);
|
|
|
|
/* grab the lock that says we are going to process
|
|
* all the refs for this head */
|
|
ret = btrfs_delayed_ref_lock(trans, locked_ref);
|
|
|
|
/*
|
|
* we may have dropped the spin lock to get the head
|
|
* mutex lock, and that might have given someone else
|
|
* time to free the head. If that's true, it has been
|
|
* removed from our list and we can move on.
|
|
*/
|
|
if (ret == -EAGAIN) {
|
|
locked_ref = NULL;
|
|
count++;
|
|
continue;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* record the must insert reserved flag before we
|
|
* drop the spin lock.
|
|
*/
|
|
must_insert_reserved = locked_ref->must_insert_reserved;
|
|
locked_ref->must_insert_reserved = 0;
|
|
|
|
/*
|
|
* locked_ref is the head node, so we have to go one
|
|
* node back for any delayed ref updates
|
|
*/
|
|
ref = select_delayed_ref(locked_ref);
|
|
if (!ref) {
|
|
/* All delayed refs have been processed, Go ahead
|
|
* and send the head node to run_one_delayed_ref,
|
|
* so that any accounting fixes can happen
|
|
*/
|
|
ref = &locked_ref->node;
|
|
list_del_init(&locked_ref->cluster);
|
|
locked_ref = NULL;
|
|
}
|
|
|
|
ref->in_tree = 0;
|
|
rb_erase(&ref->rb_node, &delayed_refs->root);
|
|
delayed_refs->num_entries--;
|
|
spin_unlock(&delayed_refs->lock);
|
|
|
|
ret = run_one_delayed_ref(trans, root, ref,
|
|
must_insert_reserved);
|
|
BUG_ON(ret);
|
|
btrfs_put_delayed_ref(ref);
|
|
|
|
count++;
|
|
cond_resched();
|
|
spin_lock(&delayed_refs->lock);
|
|
}
|
|
return count;
|
|
}
|
|
|
|
/*
|
|
* this starts processing the delayed reference count updates and
|
|
* extent insertions we have queued up so far. count can be
|
|
* 0, which means to process everything in the tree at the start
|
|
* of the run (but not newly added entries), or it can be some target
|
|
* number you'd like to process.
|
|
*/
|
|
int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *root, unsigned long count)
|
|
{
|
|
struct rb_node *node;
|
|
struct btrfs_delayed_ref_root *delayed_refs;
|
|
struct btrfs_delayed_ref_node *ref;
|
|
struct list_head cluster;
|
|
int ret;
|
|
int run_all = count == (unsigned long)-1;
|
|
int run_most = 0;
|
|
|
|
if (root == root->fs_info->extent_root)
|
|
root = root->fs_info->tree_root;
|
|
|
|
delayed_refs = &trans->transaction->delayed_refs;
|
|
INIT_LIST_HEAD(&cluster);
|
|
again:
|
|
spin_lock(&delayed_refs->lock);
|
|
if (count == 0) {
|
|
count = delayed_refs->num_entries * 2;
|
|
run_most = 1;
|
|
}
|
|
while (1) {
|
|
if (!(run_all || run_most) &&
|
|
delayed_refs->num_heads_ready < 64)
|
|
break;
|
|
|
|
/*
|
|
* go find something we can process in the rbtree. We start at
|
|
* the beginning of the tree, and then build a cluster
|
|
* of refs to process starting at the first one we are able to
|
|
* lock
|
|
*/
|
|
ret = btrfs_find_ref_cluster(trans, &cluster,
|
|
delayed_refs->run_delayed_start);
|
|
if (ret)
|
|
break;
|
|
|
|
ret = run_clustered_refs(trans, root, &cluster);
|
|
BUG_ON(ret < 0);
|
|
|
|
count -= min_t(unsigned long, ret, count);
|
|
|
|
if (count == 0)
|
|
break;
|
|
}
|
|
|
|
if (run_all) {
|
|
node = rb_first(&delayed_refs->root);
|
|
if (!node)
|
|
goto out;
|
|
count = (unsigned long)-1;
|
|
|
|
while (node) {
|
|
ref = rb_entry(node, struct btrfs_delayed_ref_node,
|
|
rb_node);
|
|
if (btrfs_delayed_ref_is_head(ref)) {
|
|
struct btrfs_delayed_ref_head *head;
|
|
|
|
head = btrfs_delayed_node_to_head(ref);
|
|
atomic_inc(&ref->refs);
|
|
|
|
spin_unlock(&delayed_refs->lock);
|
|
mutex_lock(&head->mutex);
|
|
mutex_unlock(&head->mutex);
|
|
|
|
btrfs_put_delayed_ref(ref);
|
|
cond_resched();
|
|
goto again;
|
|
}
|
|
node = rb_next(node);
|
|
}
|
|
spin_unlock(&delayed_refs->lock);
|
|
schedule_timeout(1);
|
|
goto again;
|
|
}
|
|
out:
|
|
spin_unlock(&delayed_refs->lock);
|
|
return 0;
|
|
}
|
|
|
|
int btrfs_cross_ref_exist(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *root, u64 objectid, u64 bytenr)
|
|
{
|
|
struct btrfs_root *extent_root = root->fs_info->extent_root;
|
|
struct btrfs_path *path;
|
|
struct extent_buffer *leaf;
|
|
struct btrfs_extent_ref *ref_item;
|
|
struct btrfs_key key;
|
|
struct btrfs_key found_key;
|
|
u64 ref_root;
|
|
u64 last_snapshot;
|
|
u32 nritems;
|
|
int ret;
|
|
|
|
key.objectid = bytenr;
|
|
key.offset = (u64)-1;
|
|
key.type = BTRFS_EXTENT_ITEM_KEY;
|
|
|
|
path = btrfs_alloc_path();
|
|
ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
|
|
if (ret < 0)
|
|
goto out;
|
|
BUG_ON(ret == 0);
|
|
|
|
ret = -ENOENT;
|
|
if (path->slots[0] == 0)
|
|
goto out;
|
|
|
|
path->slots[0]--;
|
|
leaf = path->nodes[0];
|
|
btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
|
|
|
|
if (found_key.objectid != bytenr ||
|
|
found_key.type != BTRFS_EXTENT_ITEM_KEY)
|
|
goto out;
|
|
|
|
last_snapshot = btrfs_root_last_snapshot(&root->root_item);
|
|
while (1) {
|
|
leaf = path->nodes[0];
|
|
nritems = btrfs_header_nritems(leaf);
|
|
if (path->slots[0] >= nritems) {
|
|
ret = btrfs_next_leaf(extent_root, path);
|
|
if (ret < 0)
|
|
goto out;
|
|
if (ret == 0)
|
|
continue;
|
|
break;
|
|
}
|
|
btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
|
|
if (found_key.objectid != bytenr)
|
|
break;
|
|
|
|
if (found_key.type != BTRFS_EXTENT_REF_KEY) {
|
|
path->slots[0]++;
|
|
continue;
|
|
}
|
|
|
|
ref_item = btrfs_item_ptr(leaf, path->slots[0],
|
|
struct btrfs_extent_ref);
|
|
ref_root = btrfs_ref_root(leaf, ref_item);
|
|
if ((ref_root != root->root_key.objectid &&
|
|
ref_root != BTRFS_TREE_LOG_OBJECTID) ||
|
|
objectid != btrfs_ref_objectid(leaf, ref_item)) {
|
|
ret = 1;
|
|
goto out;
|
|
}
|
|
if (btrfs_ref_generation(leaf, ref_item) <= last_snapshot) {
|
|
ret = 1;
|
|
goto out;
|
|
}
|
|
|
|
path->slots[0]++;
|
|
}
|
|
ret = 0;
|
|
out:
|
|
btrfs_free_path(path);
|
|
return ret;
|
|
}
|
|
|
|
int btrfs_cache_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
|
|
struct extent_buffer *buf, u32 nr_extents)
|
|
{
|
|
struct btrfs_key key;
|
|
struct btrfs_file_extent_item *fi;
|
|
u64 root_gen;
|
|
u32 nritems;
|
|
int i;
|
|
int level;
|
|
int ret = 0;
|
|
int shared = 0;
|
|
|
|
if (!root->ref_cows)
|
|
return 0;
|
|
|
|
if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
|
|
shared = 0;
|
|
root_gen = root->root_key.offset;
|
|
} else {
|
|
shared = 1;
|
|
root_gen = trans->transid - 1;
|
|
}
|
|
|
|
level = btrfs_header_level(buf);
|
|
nritems = btrfs_header_nritems(buf);
|
|
|
|
if (level == 0) {
|
|
struct btrfs_leaf_ref *ref;
|
|
struct btrfs_extent_info *info;
|
|
|
|
ref = btrfs_alloc_leaf_ref(root, nr_extents);
|
|
if (!ref) {
|
|
ret = -ENOMEM;
|
|
goto out;
|
|
}
|
|
|
|
ref->root_gen = root_gen;
|
|
ref->bytenr = buf->start;
|
|
ref->owner = btrfs_header_owner(buf);
|
|
ref->generation = btrfs_header_generation(buf);
|
|
ref->nritems = nr_extents;
|
|
info = ref->extents;
|
|
|
|
for (i = 0; nr_extents > 0 && i < nritems; i++) {
|
|
u64 disk_bytenr;
|
|
btrfs_item_key_to_cpu(buf, &key, i);
|
|
if (btrfs_key_type(&key) != BTRFS_EXTENT_DATA_KEY)
|
|
continue;
|
|
fi = btrfs_item_ptr(buf, i,
|
|
struct btrfs_file_extent_item);
|
|
if (btrfs_file_extent_type(buf, fi) ==
|
|
BTRFS_FILE_EXTENT_INLINE)
|
|
continue;
|
|
disk_bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
|
|
if (disk_bytenr == 0)
|
|
continue;
|
|
|
|
info->bytenr = disk_bytenr;
|
|
info->num_bytes =
|
|
btrfs_file_extent_disk_num_bytes(buf, fi);
|
|
info->objectid = key.objectid;
|
|
info->offset = key.offset;
|
|
info++;
|
|
}
|
|
|
|
ret = btrfs_add_leaf_ref(root, ref, shared);
|
|
if (ret == -EEXIST && shared) {
|
|
struct btrfs_leaf_ref *old;
|
|
old = btrfs_lookup_leaf_ref(root, ref->bytenr);
|
|
BUG_ON(!old);
|
|
btrfs_remove_leaf_ref(root, old);
|
|
btrfs_free_leaf_ref(root, old);
|
|
ret = btrfs_add_leaf_ref(root, ref, shared);
|
|
}
|
|
WARN_ON(ret);
|
|
btrfs_free_leaf_ref(root, ref);
|
|
}
|
|
out:
|
|
return ret;
|
|
}
|
|
|
|
/* when a block goes through cow, we update the reference counts of
|
|
* everything that block points to. The internal pointers of the block
|
|
* can be in just about any order, and it is likely to have clusters of
|
|
* things that are close together and clusters of things that are not.
|
|
*
|
|
* To help reduce the seeks that come with updating all of these reference
|
|
* counts, sort them by byte number before actual updates are done.
|
|
*
|
|
* struct refsort is used to match byte number to slot in the btree block.
|
|
* we sort based on the byte number and then use the slot to actually
|
|
* find the item.
|
|
*
|
|
* struct refsort is smaller than strcut btrfs_item and smaller than
|
|
* struct btrfs_key_ptr. Since we're currently limited to the page size
|
|
* for a btree block, there's no way for a kmalloc of refsorts for a
|
|
* single node to be bigger than a page.
|
|
*/
|
|
struct refsort {
|
|
u64 bytenr;
|
|
u32 slot;
|
|
};
|
|
|
|
/*
|
|
* for passing into sort()
|
|
*/
|
|
static int refsort_cmp(const void *a_void, const void *b_void)
|
|
{
|
|
const struct refsort *a = a_void;
|
|
const struct refsort *b = b_void;
|
|
|
|
if (a->bytenr < b->bytenr)
|
|
return -1;
|
|
if (a->bytenr > b->bytenr)
|
|
return 1;
|
|
return 0;
|
|
}
|
|
|
|
|
|
noinline int btrfs_inc_ref(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *root,
|
|
struct extent_buffer *orig_buf,
|
|
struct extent_buffer *buf, u32 *nr_extents)
|
|
{
|
|
u64 bytenr;
|
|
u64 ref_root;
|
|
u64 orig_root;
|
|
u64 ref_generation;
|
|
u64 orig_generation;
|
|
struct refsort *sorted;
|
|
u32 nritems;
|
|
u32 nr_file_extents = 0;
|
|
struct btrfs_key key;
|
|
struct btrfs_file_extent_item *fi;
|
|
int i;
|
|
int level;
|
|
int ret = 0;
|
|
int faili = 0;
|
|
int refi = 0;
|
|
int slot;
|
|
int (*process_func)(struct btrfs_trans_handle *, struct btrfs_root *,
|
|
u64, u64, u64, u64, u64, u64, u64, u64, u64);
|
|
|
|
ref_root = btrfs_header_owner(buf);
|
|
ref_generation = btrfs_header_generation(buf);
|
|
orig_root = btrfs_header_owner(orig_buf);
|
|
orig_generation = btrfs_header_generation(orig_buf);
|
|
|
|
nritems = btrfs_header_nritems(buf);
|
|
level = btrfs_header_level(buf);
|
|
|
|
sorted = kmalloc(sizeof(struct refsort) * nritems, GFP_NOFS);
|
|
BUG_ON(!sorted);
|
|
|
|
if (root->ref_cows) {
|
|
process_func = __btrfs_inc_extent_ref;
|
|
} else {
|
|
if (level == 0 &&
|
|
root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID)
|
|
goto out;
|
|
if (level != 0 &&
|
|
root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID)
|
|
goto out;
|
|
process_func = __btrfs_update_extent_ref;
|
|
}
|
|
|
|
/*
|
|
* we make two passes through the items. In the first pass we
|
|
* only record the byte number and slot. Then we sort based on
|
|
* byte number and do the actual work based on the sorted results
|
|
*/
|
|
for (i = 0; i < nritems; i++) {
|
|
cond_resched();
|
|
if (level == 0) {
|
|
btrfs_item_key_to_cpu(buf, &key, i);
|
|
if (btrfs_key_type(&key) != BTRFS_EXTENT_DATA_KEY)
|
|
continue;
|
|
fi = btrfs_item_ptr(buf, i,
|
|
struct btrfs_file_extent_item);
|
|
if (btrfs_file_extent_type(buf, fi) ==
|
|
BTRFS_FILE_EXTENT_INLINE)
|
|
continue;
|
|
bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
|
|
if (bytenr == 0)
|
|
continue;
|
|
|
|
nr_file_extents++;
|
|
sorted[refi].bytenr = bytenr;
|
|
sorted[refi].slot = i;
|
|
refi++;
|
|
} else {
|
|
bytenr = btrfs_node_blockptr(buf, i);
|
|
sorted[refi].bytenr = bytenr;
|
|
sorted[refi].slot = i;
|
|
refi++;
|
|
}
|
|
}
|
|
/*
|
|
* if refi == 0, we didn't actually put anything into the sorted
|
|
* array and we're done
|
|
*/
|
|
if (refi == 0)
|
|
goto out;
|
|
|
|
sort(sorted, refi, sizeof(struct refsort), refsort_cmp, NULL);
|
|
|
|
for (i = 0; i < refi; i++) {
|
|
cond_resched();
|
|
slot = sorted[i].slot;
|
|
bytenr = sorted[i].bytenr;
|
|
|
|
if (level == 0) {
|
|
btrfs_item_key_to_cpu(buf, &key, slot);
|
|
fi = btrfs_item_ptr(buf, slot,
|
|
struct btrfs_file_extent_item);
|
|
|
|
bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
|
|
if (bytenr == 0)
|
|
continue;
|
|
|
|
ret = process_func(trans, root, bytenr,
|
|
btrfs_file_extent_disk_num_bytes(buf, fi),
|
|
orig_buf->start, buf->start,
|
|
orig_root, ref_root,
|
|
orig_generation, ref_generation,
|
|
key.objectid);
|
|
|
|
if (ret) {
|
|
faili = slot;
|
|
WARN_ON(1);
|
|
goto fail;
|
|
}
|
|
} else {
|
|
ret = process_func(trans, root, bytenr, buf->len,
|
|
orig_buf->start, buf->start,
|
|
orig_root, ref_root,
|
|
orig_generation, ref_generation,
|
|
level - 1);
|
|
if (ret) {
|
|
faili = slot;
|
|
WARN_ON(1);
|
|
goto fail;
|
|
}
|
|
}
|
|
}
|
|
out:
|
|
kfree(sorted);
|
|
if (nr_extents) {
|
|
if (level == 0)
|
|
*nr_extents = nr_file_extents;
|
|
else
|
|
*nr_extents = nritems;
|
|
}
|
|
return 0;
|
|
fail:
|
|
kfree(sorted);
|
|
WARN_ON(1);
|
|
return ret;
|
|
}
|
|
|
|
int btrfs_update_ref(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *root, struct extent_buffer *orig_buf,
|
|
struct extent_buffer *buf, int start_slot, int nr)
|
|
|
|
{
|
|
u64 bytenr;
|
|
u64 ref_root;
|
|
u64 orig_root;
|
|
u64 ref_generation;
|
|
u64 orig_generation;
|
|
struct btrfs_key key;
|
|
struct btrfs_file_extent_item *fi;
|
|
int i;
|
|
int ret;
|
|
int slot;
|
|
int level;
|
|
|
|
BUG_ON(start_slot < 0);
|
|
BUG_ON(start_slot + nr > btrfs_header_nritems(buf));
|
|
|
|
ref_root = btrfs_header_owner(buf);
|
|
ref_generation = btrfs_header_generation(buf);
|
|
orig_root = btrfs_header_owner(orig_buf);
|
|
orig_generation = btrfs_header_generation(orig_buf);
|
|
level = btrfs_header_level(buf);
|
|
|
|
if (!root->ref_cows) {
|
|
if (level == 0 &&
|
|
root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID)
|
|
return 0;
|
|
if (level != 0 &&
|
|
root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID)
|
|
return 0;
|
|
}
|
|
|
|
for (i = 0, slot = start_slot; i < nr; i++, slot++) {
|
|
cond_resched();
|
|
if (level == 0) {
|
|
btrfs_item_key_to_cpu(buf, &key, slot);
|
|
if (btrfs_key_type(&key) != BTRFS_EXTENT_DATA_KEY)
|
|
continue;
|
|
fi = btrfs_item_ptr(buf, slot,
|
|
struct btrfs_file_extent_item);
|
|
if (btrfs_file_extent_type(buf, fi) ==
|
|
BTRFS_FILE_EXTENT_INLINE)
|
|
continue;
|
|
bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
|
|
if (bytenr == 0)
|
|
continue;
|
|
ret = __btrfs_update_extent_ref(trans, root, bytenr,
|
|
btrfs_file_extent_disk_num_bytes(buf, fi),
|
|
orig_buf->start, buf->start,
|
|
orig_root, ref_root, orig_generation,
|
|
ref_generation, key.objectid);
|
|
if (ret)
|
|
goto fail;
|
|
} else {
|
|
bytenr = btrfs_node_blockptr(buf, slot);
|
|
ret = __btrfs_update_extent_ref(trans, root, bytenr,
|
|
buf->len, orig_buf->start,
|
|
buf->start, orig_root, ref_root,
|
|
orig_generation, ref_generation,
|
|
level - 1);
|
|
if (ret)
|
|
goto fail;
|
|
}
|
|
}
|
|
return 0;
|
|
fail:
|
|
WARN_ON(1);
|
|
return -1;
|
|
}
|
|
|
|
static int write_one_cache_group(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *root,
|
|
struct btrfs_path *path,
|
|
struct btrfs_block_group_cache *cache)
|
|
{
|
|
int ret;
|
|
struct btrfs_root *extent_root = root->fs_info->extent_root;
|
|
unsigned long bi;
|
|
struct extent_buffer *leaf;
|
|
|
|
ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1);
|
|
if (ret < 0)
|
|
goto fail;
|
|
BUG_ON(ret);
|
|
|
|
leaf = path->nodes[0];
|
|
bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
|
|
write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item));
|
|
btrfs_mark_buffer_dirty(leaf);
|
|
btrfs_release_path(extent_root, path);
|
|
fail:
|
|
if (ret)
|
|
return ret;
|
|
return 0;
|
|
|
|
}
|
|
|
|
int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *root)
|
|
{
|
|
struct btrfs_block_group_cache *cache, *entry;
|
|
struct rb_node *n;
|
|
int err = 0;
|
|
int werr = 0;
|
|
struct btrfs_path *path;
|
|
u64 last = 0;
|
|
|
|
path = btrfs_alloc_path();
|
|
if (!path)
|
|
return -ENOMEM;
|
|
|
|
while (1) {
|
|
cache = NULL;
|
|
spin_lock(&root->fs_info->block_group_cache_lock);
|
|
for (n = rb_first(&root->fs_info->block_group_cache_tree);
|
|
n; n = rb_next(n)) {
|
|
entry = rb_entry(n, struct btrfs_block_group_cache,
|
|
cache_node);
|
|
if (entry->dirty) {
|
|
cache = entry;
|
|
break;
|
|
}
|
|
}
|
|
spin_unlock(&root->fs_info->block_group_cache_lock);
|
|
|
|
if (!cache)
|
|
break;
|
|
|
|
cache->dirty = 0;
|
|
last += cache->key.offset;
|
|
|
|
err = write_one_cache_group(trans, root,
|
|
path, cache);
|
|
/*
|
|
* if we fail to write the cache group, we want
|
|
* to keep it marked dirty in hopes that a later
|
|
* write will work
|
|
*/
|
|
if (err) {
|
|
werr = err;
|
|
continue;
|
|
}
|
|
}
|
|
btrfs_free_path(path);
|
|
return werr;
|
|
}
|
|
|
|
int btrfs_extent_readonly(struct btrfs_root *root, u64 bytenr)
|
|
{
|
|
struct btrfs_block_group_cache *block_group;
|
|
int readonly = 0;
|
|
|
|
block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
|
|
if (!block_group || block_group->ro)
|
|
readonly = 1;
|
|
if (block_group)
|
|
btrfs_put_block_group(block_group);
|
|
return readonly;
|
|
}
|
|
|
|
static int update_space_info(struct btrfs_fs_info *info, u64 flags,
|
|
u64 total_bytes, u64 bytes_used,
|
|
struct btrfs_space_info **space_info)
|
|
{
|
|
struct btrfs_space_info *found;
|
|
|
|
found = __find_space_info(info, flags);
|
|
if (found) {
|
|
spin_lock(&found->lock);
|
|
found->total_bytes += total_bytes;
|
|
found->bytes_used += bytes_used;
|
|
found->full = 0;
|
|
spin_unlock(&found->lock);
|
|
*space_info = found;
|
|
return 0;
|
|
}
|
|
found = kzalloc(sizeof(*found), GFP_NOFS);
|
|
if (!found)
|
|
return -ENOMEM;
|
|
|
|
INIT_LIST_HEAD(&found->block_groups);
|
|
init_rwsem(&found->groups_sem);
|
|
spin_lock_init(&found->lock);
|
|
found->flags = flags;
|
|
found->total_bytes = total_bytes;
|
|
found->bytes_used = bytes_used;
|
|
found->bytes_pinned = 0;
|
|
found->bytes_reserved = 0;
|
|
found->bytes_readonly = 0;
|
|
found->bytes_delalloc = 0;
|
|
found->full = 0;
|
|
found->force_alloc = 0;
|
|
*space_info = found;
|
|
list_add_rcu(&found->list, &info->space_info);
|
|
return 0;
|
|
}
|
|
|
|
static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
|
|
{
|
|
u64 extra_flags = flags & (BTRFS_BLOCK_GROUP_RAID0 |
|
|
BTRFS_BLOCK_GROUP_RAID1 |
|
|
BTRFS_BLOCK_GROUP_RAID10 |
|
|
BTRFS_BLOCK_GROUP_DUP);
|
|
if (extra_flags) {
|
|
if (flags & BTRFS_BLOCK_GROUP_DATA)
|
|
fs_info->avail_data_alloc_bits |= extra_flags;
|
|
if (flags & BTRFS_BLOCK_GROUP_METADATA)
|
|
fs_info->avail_metadata_alloc_bits |= extra_flags;
|
|
if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
|
|
fs_info->avail_system_alloc_bits |= extra_flags;
|
|
}
|
|
}
|
|
|
|
static void set_block_group_readonly(struct btrfs_block_group_cache *cache)
|
|
{
|
|
spin_lock(&cache->space_info->lock);
|
|
spin_lock(&cache->lock);
|
|
if (!cache->ro) {
|
|
cache->space_info->bytes_readonly += cache->key.offset -
|
|
btrfs_block_group_used(&cache->item);
|
|
cache->ro = 1;
|
|
}
|
|
spin_unlock(&cache->lock);
|
|
spin_unlock(&cache->space_info->lock);
|
|
}
|
|
|
|
u64 btrfs_reduce_alloc_profile(struct btrfs_root *root, u64 flags)
|
|
{
|
|
u64 num_devices = root->fs_info->fs_devices->rw_devices;
|
|
|
|
if (num_devices == 1)
|
|
flags &= ~(BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID0);
|
|
if (num_devices < 4)
|
|
flags &= ~BTRFS_BLOCK_GROUP_RAID10;
|
|
|
|
if ((flags & BTRFS_BLOCK_GROUP_DUP) &&
|
|
(flags & (BTRFS_BLOCK_GROUP_RAID1 |
|
|
BTRFS_BLOCK_GROUP_RAID10))) {
|
|
flags &= ~BTRFS_BLOCK_GROUP_DUP;
|
|
}
|
|
|
|
if ((flags & BTRFS_BLOCK_GROUP_RAID1) &&
|
|
(flags & BTRFS_BLOCK_GROUP_RAID10)) {
|
|
flags &= ~BTRFS_BLOCK_GROUP_RAID1;
|
|
}
|
|
|
|
if ((flags & BTRFS_BLOCK_GROUP_RAID0) &&
|
|
((flags & BTRFS_BLOCK_GROUP_RAID1) |
|
|
(flags & BTRFS_BLOCK_GROUP_RAID10) |
|
|
(flags & BTRFS_BLOCK_GROUP_DUP)))
|
|
flags &= ~BTRFS_BLOCK_GROUP_RAID0;
|
|
return flags;
|
|
}
|
|
|
|
static u64 btrfs_get_alloc_profile(struct btrfs_root *root, u64 data)
|
|
{
|
|
struct btrfs_fs_info *info = root->fs_info;
|
|
u64 alloc_profile;
|
|
|
|
if (data) {
|
|
alloc_profile = info->avail_data_alloc_bits &
|
|
info->data_alloc_profile;
|
|
data = BTRFS_BLOCK_GROUP_DATA | alloc_profile;
|
|
} else if (root == root->fs_info->chunk_root) {
|
|
alloc_profile = info->avail_system_alloc_bits &
|
|
info->system_alloc_profile;
|
|
data = BTRFS_BLOCK_GROUP_SYSTEM | alloc_profile;
|
|
} else {
|
|
alloc_profile = info->avail_metadata_alloc_bits &
|
|
info->metadata_alloc_profile;
|
|
data = BTRFS_BLOCK_GROUP_METADATA | alloc_profile;
|
|
}
|
|
|
|
return btrfs_reduce_alloc_profile(root, data);
|
|
}
|
|
|
|
void btrfs_set_inode_space_info(struct btrfs_root *root, struct inode *inode)
|
|
{
|
|
u64 alloc_target;
|
|
|
|
alloc_target = btrfs_get_alloc_profile(root, 1);
|
|
BTRFS_I(inode)->space_info = __find_space_info(root->fs_info,
|
|
alloc_target);
|
|
}
|
|
|
|
/*
|
|
* for now this just makes sure we have at least 5% of our metadata space free
|
|
* for use.
|
|
*/
|
|
int btrfs_check_metadata_free_space(struct btrfs_root *root)
|
|
{
|
|
struct btrfs_fs_info *info = root->fs_info;
|
|
struct btrfs_space_info *meta_sinfo;
|
|
u64 alloc_target, thresh;
|
|
int committed = 0, ret;
|
|
|
|
/* get the space info for where the metadata will live */
|
|
alloc_target = btrfs_get_alloc_profile(root, 0);
|
|
meta_sinfo = __find_space_info(info, alloc_target);
|
|
|
|
again:
|
|
spin_lock(&meta_sinfo->lock);
|
|
if (!meta_sinfo->full)
|
|
thresh = meta_sinfo->total_bytes * 80;
|
|
else
|
|
thresh = meta_sinfo->total_bytes * 95;
|
|
|
|
do_div(thresh, 100);
|
|
|
|
if (meta_sinfo->bytes_used + meta_sinfo->bytes_reserved +
|
|
meta_sinfo->bytes_pinned + meta_sinfo->bytes_readonly > thresh) {
|
|
struct btrfs_trans_handle *trans;
|
|
if (!meta_sinfo->full) {
|
|
meta_sinfo->force_alloc = 1;
|
|
spin_unlock(&meta_sinfo->lock);
|
|
|
|
trans = btrfs_start_transaction(root, 1);
|
|
if (!trans)
|
|
return -ENOMEM;
|
|
|
|
ret = do_chunk_alloc(trans, root->fs_info->extent_root,
|
|
2 * 1024 * 1024, alloc_target, 0);
|
|
btrfs_end_transaction(trans, root);
|
|
goto again;
|
|
}
|
|
spin_unlock(&meta_sinfo->lock);
|
|
|
|
if (!committed) {
|
|
committed = 1;
|
|
trans = btrfs_join_transaction(root, 1);
|
|
if (!trans)
|
|
return -ENOMEM;
|
|
ret = btrfs_commit_transaction(trans, root);
|
|
if (ret)
|
|
return ret;
|
|
goto again;
|
|
}
|
|
return -ENOSPC;
|
|
}
|
|
spin_unlock(&meta_sinfo->lock);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* This will check the space that the inode allocates from to make sure we have
|
|
* enough space for bytes.
|
|
*/
|
|
int btrfs_check_data_free_space(struct btrfs_root *root, struct inode *inode,
|
|
u64 bytes)
|
|
{
|
|
struct btrfs_space_info *data_sinfo;
|
|
int ret = 0, committed = 0;
|
|
|
|
/* make sure bytes are sectorsize aligned */
|
|
bytes = (bytes + root->sectorsize - 1) & ~((u64)root->sectorsize - 1);
|
|
|
|
data_sinfo = BTRFS_I(inode)->space_info;
|
|
again:
|
|
/* make sure we have enough space to handle the data first */
|
|
spin_lock(&data_sinfo->lock);
|
|
if (data_sinfo->total_bytes - data_sinfo->bytes_used -
|
|
data_sinfo->bytes_delalloc - data_sinfo->bytes_reserved -
|
|
data_sinfo->bytes_pinned - data_sinfo->bytes_readonly -
|
|
data_sinfo->bytes_may_use < bytes) {
|
|
struct btrfs_trans_handle *trans;
|
|
|
|
/*
|
|
* if we don't have enough free bytes in this space then we need
|
|
* to alloc a new chunk.
|
|
*/
|
|
if (!data_sinfo->full) {
|
|
u64 alloc_target;
|
|
|
|
data_sinfo->force_alloc = 1;
|
|
spin_unlock(&data_sinfo->lock);
|
|
|
|
alloc_target = btrfs_get_alloc_profile(root, 1);
|
|
trans = btrfs_start_transaction(root, 1);
|
|
if (!trans)
|
|
return -ENOMEM;
|
|
|
|
ret = do_chunk_alloc(trans, root->fs_info->extent_root,
|
|
bytes + 2 * 1024 * 1024,
|
|
alloc_target, 0);
|
|
btrfs_end_transaction(trans, root);
|
|
if (ret)
|
|
return ret;
|
|
goto again;
|
|
}
|
|
spin_unlock(&data_sinfo->lock);
|
|
|
|
/* commit the current transaction and try again */
|
|
if (!committed) {
|
|
committed = 1;
|
|
trans = btrfs_join_transaction(root, 1);
|
|
if (!trans)
|
|
return -ENOMEM;
|
|
ret = btrfs_commit_transaction(trans, root);
|
|
if (ret)
|
|
return ret;
|
|
goto again;
|
|
}
|
|
|
|
printk(KERN_ERR "no space left, need %llu, %llu delalloc bytes"
|
|
", %llu bytes_used, %llu bytes_reserved, "
|
|
"%llu bytes_pinned, %llu bytes_readonly, %llu may use"
|
|
"%llu total\n", (unsigned long long)bytes,
|
|
(unsigned long long)data_sinfo->bytes_delalloc,
|
|
(unsigned long long)data_sinfo->bytes_used,
|
|
(unsigned long long)data_sinfo->bytes_reserved,
|
|
(unsigned long long)data_sinfo->bytes_pinned,
|
|
(unsigned long long)data_sinfo->bytes_readonly,
|
|
(unsigned long long)data_sinfo->bytes_may_use,
|
|
(unsigned long long)data_sinfo->total_bytes);
|
|
return -ENOSPC;
|
|
}
|
|
data_sinfo->bytes_may_use += bytes;
|
|
BTRFS_I(inode)->reserved_bytes += bytes;
|
|
spin_unlock(&data_sinfo->lock);
|
|
|
|
return btrfs_check_metadata_free_space(root);
|
|
}
|
|
|
|
/*
|
|
* if there was an error for whatever reason after calling
|
|
* btrfs_check_data_free_space, call this so we can cleanup the counters.
|
|
*/
|
|
void btrfs_free_reserved_data_space(struct btrfs_root *root,
|
|
struct inode *inode, u64 bytes)
|
|
{
|
|
struct btrfs_space_info *data_sinfo;
|
|
|
|
/* make sure bytes are sectorsize aligned */
|
|
bytes = (bytes + root->sectorsize - 1) & ~((u64)root->sectorsize - 1);
|
|
|
|
data_sinfo = BTRFS_I(inode)->space_info;
|
|
spin_lock(&data_sinfo->lock);
|
|
data_sinfo->bytes_may_use -= bytes;
|
|
BTRFS_I(inode)->reserved_bytes -= bytes;
|
|
spin_unlock(&data_sinfo->lock);
|
|
}
|
|
|
|
/* called when we are adding a delalloc extent to the inode's io_tree */
|
|
void btrfs_delalloc_reserve_space(struct btrfs_root *root, struct inode *inode,
|
|
u64 bytes)
|
|
{
|
|
struct btrfs_space_info *data_sinfo;
|
|
|
|
/* get the space info for where this inode will be storing its data */
|
|
data_sinfo = BTRFS_I(inode)->space_info;
|
|
|
|
/* make sure we have enough space to handle the data first */
|
|
spin_lock(&data_sinfo->lock);
|
|
data_sinfo->bytes_delalloc += bytes;
|
|
|
|
/*
|
|
* we are adding a delalloc extent without calling
|
|
* btrfs_check_data_free_space first. This happens on a weird
|
|
* writepage condition, but shouldn't hurt our accounting
|
|
*/
|
|
if (unlikely(bytes > BTRFS_I(inode)->reserved_bytes)) {
|
|
data_sinfo->bytes_may_use -= BTRFS_I(inode)->reserved_bytes;
|
|
BTRFS_I(inode)->reserved_bytes = 0;
|
|
} else {
|
|
data_sinfo->bytes_may_use -= bytes;
|
|
BTRFS_I(inode)->reserved_bytes -= bytes;
|
|
}
|
|
|
|
spin_unlock(&data_sinfo->lock);
|
|
}
|
|
|
|
/* called when we are clearing an delalloc extent from the inode's io_tree */
|
|
void btrfs_delalloc_free_space(struct btrfs_root *root, struct inode *inode,
|
|
u64 bytes)
|
|
{
|
|
struct btrfs_space_info *info;
|
|
|
|
info = BTRFS_I(inode)->space_info;
|
|
|
|
spin_lock(&info->lock);
|
|
info->bytes_delalloc -= bytes;
|
|
spin_unlock(&info->lock);
|
|
}
|
|
|
|
static void force_metadata_allocation(struct btrfs_fs_info *info)
|
|
{
|
|
struct list_head *head = &info->space_info;
|
|
struct btrfs_space_info *found;
|
|
|
|
rcu_read_lock();
|
|
list_for_each_entry_rcu(found, head, list) {
|
|
if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
|
|
found->force_alloc = 1;
|
|
}
|
|
rcu_read_unlock();
|
|
}
|
|
|
|
static int do_chunk_alloc(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *extent_root, u64 alloc_bytes,
|
|
u64 flags, int force)
|
|
{
|
|
struct btrfs_space_info *space_info;
|
|
struct btrfs_fs_info *fs_info = extent_root->fs_info;
|
|
u64 thresh;
|
|
int ret = 0;
|
|
|
|
mutex_lock(&fs_info->chunk_mutex);
|
|
|
|
flags = btrfs_reduce_alloc_profile(extent_root, flags);
|
|
|
|
space_info = __find_space_info(extent_root->fs_info, flags);
|
|
if (!space_info) {
|
|
ret = update_space_info(extent_root->fs_info, flags,
|
|
0, 0, &space_info);
|
|
BUG_ON(ret);
|
|
}
|
|
BUG_ON(!space_info);
|
|
|
|
spin_lock(&space_info->lock);
|
|
if (space_info->force_alloc) {
|
|
force = 1;
|
|
space_info->force_alloc = 0;
|
|
}
|
|
if (space_info->full) {
|
|
spin_unlock(&space_info->lock);
|
|
goto out;
|
|
}
|
|
|
|
thresh = space_info->total_bytes - space_info->bytes_readonly;
|
|
thresh = div_factor(thresh, 6);
|
|
if (!force &&
|
|
(space_info->bytes_used + space_info->bytes_pinned +
|
|
space_info->bytes_reserved + alloc_bytes) < thresh) {
|
|
spin_unlock(&space_info->lock);
|
|
goto out;
|
|
}
|
|
spin_unlock(&space_info->lock);
|
|
|
|
/*
|
|
* if we're doing a data chunk, go ahead and make sure that
|
|
* we keep a reasonable number of metadata chunks allocated in the
|
|
* FS as well.
|
|
*/
|
|
if (flags & BTRFS_BLOCK_GROUP_DATA) {
|
|
fs_info->data_chunk_allocations++;
|
|
if (!(fs_info->data_chunk_allocations %
|
|
fs_info->metadata_ratio))
|
|
force_metadata_allocation(fs_info);
|
|
}
|
|
|
|
ret = btrfs_alloc_chunk(trans, extent_root, flags);
|
|
if (ret)
|
|
space_info->full = 1;
|
|
out:
|
|
mutex_unlock(&extent_root->fs_info->chunk_mutex);
|
|
return ret;
|
|
}
|
|
|
|
static int update_block_group(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *root,
|
|
u64 bytenr, u64 num_bytes, int alloc,
|
|
int mark_free)
|
|
{
|
|
struct btrfs_block_group_cache *cache;
|
|
struct btrfs_fs_info *info = root->fs_info;
|
|
u64 total = num_bytes;
|
|
u64 old_val;
|
|
u64 byte_in_group;
|
|
|
|
while (total) {
|
|
cache = btrfs_lookup_block_group(info, bytenr);
|
|
if (!cache)
|
|
return -1;
|
|
byte_in_group = bytenr - cache->key.objectid;
|
|
WARN_ON(byte_in_group > cache->key.offset);
|
|
|
|
spin_lock(&cache->space_info->lock);
|
|
spin_lock(&cache->lock);
|
|
cache->dirty = 1;
|
|
old_val = btrfs_block_group_used(&cache->item);
|
|
num_bytes = min(total, cache->key.offset - byte_in_group);
|
|
if (alloc) {
|
|
old_val += num_bytes;
|
|
cache->space_info->bytes_used += num_bytes;
|
|
if (cache->ro)
|
|
cache->space_info->bytes_readonly -= num_bytes;
|
|
btrfs_set_block_group_used(&cache->item, old_val);
|
|
spin_unlock(&cache->lock);
|
|
spin_unlock(&cache->space_info->lock);
|
|
} else {
|
|
old_val -= num_bytes;
|
|
cache->space_info->bytes_used -= num_bytes;
|
|
if (cache->ro)
|
|
cache->space_info->bytes_readonly += num_bytes;
|
|
btrfs_set_block_group_used(&cache->item, old_val);
|
|
spin_unlock(&cache->lock);
|
|
spin_unlock(&cache->space_info->lock);
|
|
if (mark_free) {
|
|
int ret;
|
|
|
|
ret = btrfs_discard_extent(root, bytenr,
|
|
num_bytes);
|
|
WARN_ON(ret);
|
|
|
|
ret = btrfs_add_free_space(cache, bytenr,
|
|
num_bytes);
|
|
WARN_ON(ret);
|
|
}
|
|
}
|
|
btrfs_put_block_group(cache);
|
|
total -= num_bytes;
|
|
bytenr += num_bytes;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static u64 first_logical_byte(struct btrfs_root *root, u64 search_start)
|
|
{
|
|
struct btrfs_block_group_cache *cache;
|
|
u64 bytenr;
|
|
|
|
cache = btrfs_lookup_first_block_group(root->fs_info, search_start);
|
|
if (!cache)
|
|
return 0;
|
|
|
|
bytenr = cache->key.objectid;
|
|
btrfs_put_block_group(cache);
|
|
|
|
return bytenr;
|
|
}
|
|
|
|
int btrfs_update_pinned_extents(struct btrfs_root *root,
|
|
u64 bytenr, u64 num, int pin)
|
|
{
|
|
u64 len;
|
|
struct btrfs_block_group_cache *cache;
|
|
struct btrfs_fs_info *fs_info = root->fs_info;
|
|
|
|
if (pin) {
|
|
set_extent_dirty(&fs_info->pinned_extents,
|
|
bytenr, bytenr + num - 1, GFP_NOFS);
|
|
} else {
|
|
clear_extent_dirty(&fs_info->pinned_extents,
|
|
bytenr, bytenr + num - 1, GFP_NOFS);
|
|
}
|
|
|
|
while (num > 0) {
|
|
cache = btrfs_lookup_block_group(fs_info, bytenr);
|
|
BUG_ON(!cache);
|
|
len = min(num, cache->key.offset -
|
|
(bytenr - cache->key.objectid));
|
|
if (pin) {
|
|
spin_lock(&cache->space_info->lock);
|
|
spin_lock(&cache->lock);
|
|
cache->pinned += len;
|
|
cache->space_info->bytes_pinned += len;
|
|
spin_unlock(&cache->lock);
|
|
spin_unlock(&cache->space_info->lock);
|
|
fs_info->total_pinned += len;
|
|
} else {
|
|
spin_lock(&cache->space_info->lock);
|
|
spin_lock(&cache->lock);
|
|
cache->pinned -= len;
|
|
cache->space_info->bytes_pinned -= len;
|
|
spin_unlock(&cache->lock);
|
|
spin_unlock(&cache->space_info->lock);
|
|
fs_info->total_pinned -= len;
|
|
if (cache->cached)
|
|
btrfs_add_free_space(cache, bytenr, len);
|
|
}
|
|
btrfs_put_block_group(cache);
|
|
bytenr += len;
|
|
num -= len;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int update_reserved_extents(struct btrfs_root *root,
|
|
u64 bytenr, u64 num, int reserve)
|
|
{
|
|
u64 len;
|
|
struct btrfs_block_group_cache *cache;
|
|
struct btrfs_fs_info *fs_info = root->fs_info;
|
|
|
|
while (num > 0) {
|
|
cache = btrfs_lookup_block_group(fs_info, bytenr);
|
|
BUG_ON(!cache);
|
|
len = min(num, cache->key.offset -
|
|
(bytenr - cache->key.objectid));
|
|
|
|
spin_lock(&cache->space_info->lock);
|
|
spin_lock(&cache->lock);
|
|
if (reserve) {
|
|
cache->reserved += len;
|
|
cache->space_info->bytes_reserved += len;
|
|
} else {
|
|
cache->reserved -= len;
|
|
cache->space_info->bytes_reserved -= len;
|
|
}
|
|
spin_unlock(&cache->lock);
|
|
spin_unlock(&cache->space_info->lock);
|
|
btrfs_put_block_group(cache);
|
|
bytenr += len;
|
|
num -= len;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
int btrfs_copy_pinned(struct btrfs_root *root, struct extent_io_tree *copy)
|
|
{
|
|
u64 last = 0;
|
|
u64 start;
|
|
u64 end;
|
|
struct extent_io_tree *pinned_extents = &root->fs_info->pinned_extents;
|
|
int ret;
|
|
|
|
while (1) {
|
|
ret = find_first_extent_bit(pinned_extents, last,
|
|
&start, &end, EXTENT_DIRTY);
|
|
if (ret)
|
|
break;
|
|
set_extent_dirty(copy, start, end, GFP_NOFS);
|
|
last = end + 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *root,
|
|
struct extent_io_tree *unpin)
|
|
{
|
|
u64 start;
|
|
u64 end;
|
|
int ret;
|
|
|
|
while (1) {
|
|
ret = find_first_extent_bit(unpin, 0, &start, &end,
|
|
EXTENT_DIRTY);
|
|
if (ret)
|
|
break;
|
|
|
|
ret = btrfs_discard_extent(root, start, end + 1 - start);
|
|
|
|
/* unlocks the pinned mutex */
|
|
btrfs_update_pinned_extents(root, start, end + 1 - start, 0);
|
|
clear_extent_dirty(unpin, start, end, GFP_NOFS);
|
|
|
|
cond_resched();
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
static int pin_down_bytes(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *root,
|
|
struct btrfs_path *path,
|
|
u64 bytenr, u64 num_bytes, int is_data,
|
|
struct extent_buffer **must_clean)
|
|
{
|
|
int err = 0;
|
|
struct extent_buffer *buf;
|
|
|
|
if (is_data)
|
|
goto pinit;
|
|
|
|
buf = btrfs_find_tree_block(root, bytenr, num_bytes);
|
|
if (!buf)
|
|
goto pinit;
|
|
|
|
/* we can reuse a block if it hasn't been written
|
|
* and it is from this transaction. We can't
|
|
* reuse anything from the tree log root because
|
|
* it has tiny sub-transactions.
|
|
*/
|
|
if (btrfs_buffer_uptodate(buf, 0) &&
|
|
btrfs_try_tree_lock(buf)) {
|
|
u64 header_owner = btrfs_header_owner(buf);
|
|
u64 header_transid = btrfs_header_generation(buf);
|
|
if (header_owner != BTRFS_TREE_LOG_OBJECTID &&
|
|
header_owner != BTRFS_TREE_RELOC_OBJECTID &&
|
|
header_owner != BTRFS_DATA_RELOC_TREE_OBJECTID &&
|
|
header_transid == trans->transid &&
|
|
!btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
|
|
*must_clean = buf;
|
|
return 1;
|
|
}
|
|
btrfs_tree_unlock(buf);
|
|
}
|
|
free_extent_buffer(buf);
|
|
pinit:
|
|
btrfs_set_path_blocking(path);
|
|
/* unlocks the pinned mutex */
|
|
btrfs_update_pinned_extents(root, bytenr, num_bytes, 1);
|
|
|
|
BUG_ON(err < 0);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* remove an extent from the root, returns 0 on success
|
|
*/
|
|
static int __free_extent(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *root,
|
|
u64 bytenr, u64 num_bytes, u64 parent,
|
|
u64 root_objectid, u64 ref_generation,
|
|
u64 owner_objectid, int pin, int mark_free,
|
|
int refs_to_drop)
|
|
{
|
|
struct btrfs_path *path;
|
|
struct btrfs_key key;
|
|
struct btrfs_fs_info *info = root->fs_info;
|
|
struct btrfs_root *extent_root = info->extent_root;
|
|
struct extent_buffer *leaf;
|
|
int ret;
|
|
int extent_slot = 0;
|
|
int found_extent = 0;
|
|
int num_to_del = 1;
|
|
struct btrfs_extent_item *ei;
|
|
u32 refs;
|
|
|
|
key.objectid = bytenr;
|
|
btrfs_set_key_type(&key, BTRFS_EXTENT_ITEM_KEY);
|
|
key.offset = num_bytes;
|
|
path = btrfs_alloc_path();
|
|
if (!path)
|
|
return -ENOMEM;
|
|
|
|
path->reada = 1;
|
|
path->leave_spinning = 1;
|
|
ret = lookup_extent_backref(trans, extent_root, path,
|
|
bytenr, parent, root_objectid,
|
|
ref_generation, owner_objectid, 1);
|
|
if (ret == 0) {
|
|
struct btrfs_key found_key;
|
|
extent_slot = path->slots[0];
|
|
while (extent_slot > 0) {
|
|
extent_slot--;
|
|
btrfs_item_key_to_cpu(path->nodes[0], &found_key,
|
|
extent_slot);
|
|
if (found_key.objectid != bytenr)
|
|
break;
|
|
if (found_key.type == BTRFS_EXTENT_ITEM_KEY &&
|
|
found_key.offset == num_bytes) {
|
|
found_extent = 1;
|
|
break;
|
|
}
|
|
if (path->slots[0] - extent_slot > 5)
|
|
break;
|
|
}
|
|
if (!found_extent) {
|
|
ret = remove_extent_backref(trans, extent_root, path,
|
|
refs_to_drop);
|
|
BUG_ON(ret);
|
|
btrfs_release_path(extent_root, path);
|
|
path->leave_spinning = 1;
|
|
ret = btrfs_search_slot(trans, extent_root,
|
|
&key, path, -1, 1);
|
|
if (ret) {
|
|
printk(KERN_ERR "umm, got %d back from search"
|
|
", was looking for %llu\n", ret,
|
|
(unsigned long long)bytenr);
|
|
btrfs_print_leaf(extent_root, path->nodes[0]);
|
|
}
|
|
BUG_ON(ret);
|
|
extent_slot = path->slots[0];
|
|
}
|
|
} else {
|
|
btrfs_print_leaf(extent_root, path->nodes[0]);
|
|
WARN_ON(1);
|
|
printk(KERN_ERR "btrfs unable to find ref byte nr %llu "
|
|
"parent %llu root %llu gen %llu owner %llu\n",
|
|
(unsigned long long)bytenr,
|
|
(unsigned long long)parent,
|
|
(unsigned long long)root_objectid,
|
|
(unsigned long long)ref_generation,
|
|
(unsigned long long)owner_objectid);
|
|
}
|
|
|
|
leaf = path->nodes[0];
|
|
ei = btrfs_item_ptr(leaf, extent_slot,
|
|
struct btrfs_extent_item);
|
|
refs = btrfs_extent_refs(leaf, ei);
|
|
|
|
/*
|
|
* we're not allowed to delete the extent item if there
|
|
* are other delayed ref updates pending
|
|
*/
|
|
|
|
BUG_ON(refs < refs_to_drop);
|
|
refs -= refs_to_drop;
|
|
btrfs_set_extent_refs(leaf, ei, refs);
|
|
btrfs_mark_buffer_dirty(leaf);
|
|
|
|
if (refs == 0 && found_extent &&
|
|
path->slots[0] == extent_slot + 1) {
|
|
struct btrfs_extent_ref *ref;
|
|
ref = btrfs_item_ptr(leaf, path->slots[0],
|
|
struct btrfs_extent_ref);
|
|
BUG_ON(btrfs_ref_num_refs(leaf, ref) != refs_to_drop);
|
|
/* if the back ref and the extent are next to each other
|
|
* they get deleted below in one shot
|
|
*/
|
|
path->slots[0] = extent_slot;
|
|
num_to_del = 2;
|
|
} else if (found_extent) {
|
|
/* otherwise delete the extent back ref */
|
|
ret = remove_extent_backref(trans, extent_root, path,
|
|
refs_to_drop);
|
|
BUG_ON(ret);
|
|
/* if refs are 0, we need to setup the path for deletion */
|
|
if (refs == 0) {
|
|
btrfs_release_path(extent_root, path);
|
|
path->leave_spinning = 1;
|
|
ret = btrfs_search_slot(trans, extent_root, &key, path,
|
|
-1, 1);
|
|
BUG_ON(ret);
|
|
}
|
|
}
|
|
|
|
if (refs == 0) {
|
|
u64 super_used;
|
|
u64 root_used;
|
|
struct extent_buffer *must_clean = NULL;
|
|
|
|
if (pin) {
|
|
ret = pin_down_bytes(trans, root, path,
|
|
bytenr, num_bytes,
|
|
owner_objectid >= BTRFS_FIRST_FREE_OBJECTID,
|
|
&must_clean);
|
|
if (ret > 0)
|
|
mark_free = 1;
|
|
BUG_ON(ret < 0);
|
|
}
|
|
|
|
/* block accounting for super block */
|
|
spin_lock(&info->delalloc_lock);
|
|
super_used = btrfs_super_bytes_used(&info->super_copy);
|
|
btrfs_set_super_bytes_used(&info->super_copy,
|
|
super_used - num_bytes);
|
|
|
|
/* block accounting for root item */
|
|
root_used = btrfs_root_used(&root->root_item);
|
|
btrfs_set_root_used(&root->root_item,
|
|
root_used - num_bytes);
|
|
spin_unlock(&info->delalloc_lock);
|
|
|
|
/*
|
|
* it is going to be very rare for someone to be waiting
|
|
* on the block we're freeing. del_items might need to
|
|
* schedule, so rather than get fancy, just force it
|
|
* to blocking here
|
|
*/
|
|
if (must_clean)
|
|
btrfs_set_lock_blocking(must_clean);
|
|
|
|
ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
|
|
num_to_del);
|
|
BUG_ON(ret);
|
|
btrfs_release_path(extent_root, path);
|
|
|
|
if (must_clean) {
|
|
clean_tree_block(NULL, root, must_clean);
|
|
btrfs_tree_unlock(must_clean);
|
|
free_extent_buffer(must_clean);
|
|
}
|
|
|
|
if (owner_objectid >= BTRFS_FIRST_FREE_OBJECTID) {
|
|
ret = btrfs_del_csums(trans, root, bytenr, num_bytes);
|
|
BUG_ON(ret);
|
|
} else {
|
|
invalidate_mapping_pages(info->btree_inode->i_mapping,
|
|
bytenr >> PAGE_CACHE_SHIFT,
|
|
(bytenr + num_bytes - 1) >> PAGE_CACHE_SHIFT);
|
|
}
|
|
|
|
ret = update_block_group(trans, root, bytenr, num_bytes, 0,
|
|
mark_free);
|
|
BUG_ON(ret);
|
|
}
|
|
btrfs_free_path(path);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* remove an extent from the root, returns 0 on success
|
|
*/
|
|
static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *root,
|
|
u64 bytenr, u64 num_bytes, u64 parent,
|
|
u64 root_objectid, u64 ref_generation,
|
|
u64 owner_objectid, int pin,
|
|
int refs_to_drop)
|
|
{
|
|
WARN_ON(num_bytes < root->sectorsize);
|
|
|
|
/*
|
|
* if metadata always pin
|
|
* if data pin when any transaction has committed this
|
|
*/
|
|
if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID ||
|
|
ref_generation != trans->transid)
|
|
pin = 1;
|
|
|
|
if (ref_generation != trans->transid)
|
|
pin = 1;
|
|
|
|
return __free_extent(trans, root, bytenr, num_bytes, parent,
|
|
root_objectid, ref_generation,
|
|
owner_objectid, pin, pin == 0, refs_to_drop);
|
|
}
|
|
|
|
/*
|
|
* when we free an extent, it is possible (and likely) that we free the last
|
|
* delayed ref for that extent as well. This searches the delayed ref tree for
|
|
* a given extent, and if there are no other delayed refs to be processed, it
|
|
* removes it from the tree.
|
|
*/
|
|
static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *root, u64 bytenr)
|
|
{
|
|
struct btrfs_delayed_ref_head *head;
|
|
struct btrfs_delayed_ref_root *delayed_refs;
|
|
struct btrfs_delayed_ref_node *ref;
|
|
struct rb_node *node;
|
|
int ret;
|
|
|
|
delayed_refs = &trans->transaction->delayed_refs;
|
|
spin_lock(&delayed_refs->lock);
|
|
head = btrfs_find_delayed_ref_head(trans, bytenr);
|
|
if (!head)
|
|
goto out;
|
|
|
|
node = rb_prev(&head->node.rb_node);
|
|
if (!node)
|
|
goto out;
|
|
|
|
ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
|
|
|
|
/* there are still entries for this ref, we can't drop it */
|
|
if (ref->bytenr == bytenr)
|
|
goto out;
|
|
|
|
/*
|
|
* waiting for the lock here would deadlock. If someone else has it
|
|
* locked they are already in the process of dropping it anyway
|
|
*/
|
|
if (!mutex_trylock(&head->mutex))
|
|
goto out;
|
|
|
|
/*
|
|
* at this point we have a head with no other entries. Go
|
|
* ahead and process it.
|
|
*/
|
|
head->node.in_tree = 0;
|
|
rb_erase(&head->node.rb_node, &delayed_refs->root);
|
|
|
|
delayed_refs->num_entries--;
|
|
|
|
/*
|
|
* we don't take a ref on the node because we're removing it from the
|
|
* tree, so we just steal the ref the tree was holding.
|
|
*/
|
|
delayed_refs->num_heads--;
|
|
if (list_empty(&head->cluster))
|
|
delayed_refs->num_heads_ready--;
|
|
|
|
list_del_init(&head->cluster);
|
|
spin_unlock(&delayed_refs->lock);
|
|
|
|
ret = run_one_delayed_ref(trans, root->fs_info->tree_root,
|
|
&head->node, head->must_insert_reserved);
|
|
BUG_ON(ret);
|
|
btrfs_put_delayed_ref(&head->node);
|
|
return 0;
|
|
out:
|
|
spin_unlock(&delayed_refs->lock);
|
|
return 0;
|
|
}
|
|
|
|
int btrfs_free_extent(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *root,
|
|
u64 bytenr, u64 num_bytes, u64 parent,
|
|
u64 root_objectid, u64 ref_generation,
|
|
u64 owner_objectid, int pin)
|
|
{
|
|
int ret;
|
|
|
|
/*
|
|
* tree log blocks never actually go into the extent allocation
|
|
* tree, just update pinning info and exit early.
|
|
*
|
|
* data extents referenced by the tree log do need to have
|
|
* their reference counts bumped.
|
|
*/
|
|
if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID &&
|
|
owner_objectid < BTRFS_FIRST_FREE_OBJECTID) {
|
|
/* unlocks the pinned mutex */
|
|
btrfs_update_pinned_extents(root, bytenr, num_bytes, 1);
|
|
update_reserved_extents(root, bytenr, num_bytes, 0);
|
|
ret = 0;
|
|
} else {
|
|
ret = btrfs_add_delayed_ref(trans, bytenr, num_bytes, parent,
|
|
root_objectid, ref_generation,
|
|
owner_objectid,
|
|
BTRFS_DROP_DELAYED_REF, 1);
|
|
BUG_ON(ret);
|
|
ret = check_ref_cleanup(trans, root, bytenr);
|
|
BUG_ON(ret);
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
static u64 stripe_align(struct btrfs_root *root, u64 val)
|
|
{
|
|
u64 mask = ((u64)root->stripesize - 1);
|
|
u64 ret = (val + mask) & ~mask;
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* walks the btree of allocated extents and find a hole of a given size.
|
|
* The key ins is changed to record the hole:
|
|
* ins->objectid == block start
|
|
* ins->flags = BTRFS_EXTENT_ITEM_KEY
|
|
* ins->offset == number of blocks
|
|
* Any available blocks before search_start are skipped.
|
|
*/
|
|
static noinline int find_free_extent(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *orig_root,
|
|
u64 num_bytes, u64 empty_size,
|
|
u64 search_start, u64 search_end,
|
|
u64 hint_byte, struct btrfs_key *ins,
|
|
u64 exclude_start, u64 exclude_nr,
|
|
int data)
|
|
{
|
|
int ret = 0;
|
|
struct btrfs_root *root = orig_root->fs_info->extent_root;
|
|
struct btrfs_free_cluster *last_ptr = NULL;
|
|
struct btrfs_block_group_cache *block_group = NULL;
|
|
int empty_cluster = 2 * 1024 * 1024;
|
|
int allowed_chunk_alloc = 0;
|
|
struct btrfs_space_info *space_info;
|
|
int last_ptr_loop = 0;
|
|
int loop = 0;
|
|
|
|
WARN_ON(num_bytes < root->sectorsize);
|
|
btrfs_set_key_type(ins, BTRFS_EXTENT_ITEM_KEY);
|
|
ins->objectid = 0;
|
|
ins->offset = 0;
|
|
|
|
space_info = __find_space_info(root->fs_info, data);
|
|
|
|
if (orig_root->ref_cows || empty_size)
|
|
allowed_chunk_alloc = 1;
|
|
|
|
if (data & BTRFS_BLOCK_GROUP_METADATA) {
|
|
last_ptr = &root->fs_info->meta_alloc_cluster;
|
|
if (!btrfs_test_opt(root, SSD))
|
|
empty_cluster = 64 * 1024;
|
|
}
|
|
|
|
if ((data & BTRFS_BLOCK_GROUP_DATA) && btrfs_test_opt(root, SSD)) {
|
|
last_ptr = &root->fs_info->data_alloc_cluster;
|
|
}
|
|
|
|
if (last_ptr) {
|
|
spin_lock(&last_ptr->lock);
|
|
if (last_ptr->block_group)
|
|
hint_byte = last_ptr->window_start;
|
|
spin_unlock(&last_ptr->lock);
|
|
}
|
|
|
|
search_start = max(search_start, first_logical_byte(root, 0));
|
|
search_start = max(search_start, hint_byte);
|
|
|
|
if (!last_ptr) {
|
|
empty_cluster = 0;
|
|
loop = 1;
|
|
}
|
|
|
|
if (search_start == hint_byte) {
|
|
block_group = btrfs_lookup_block_group(root->fs_info,
|
|
search_start);
|
|
if (block_group && block_group_bits(block_group, data)) {
|
|
down_read(&space_info->groups_sem);
|
|
goto have_block_group;
|
|
} else if (block_group) {
|
|
btrfs_put_block_group(block_group);
|
|
}
|
|
}
|
|
|
|
search:
|
|
down_read(&space_info->groups_sem);
|
|
list_for_each_entry(block_group, &space_info->block_groups, list) {
|
|
u64 offset;
|
|
|
|
atomic_inc(&block_group->count);
|
|
search_start = block_group->key.objectid;
|
|
|
|
have_block_group:
|
|
if (unlikely(!block_group->cached)) {
|
|
mutex_lock(&block_group->cache_mutex);
|
|
ret = cache_block_group(root, block_group);
|
|
mutex_unlock(&block_group->cache_mutex);
|
|
if (ret) {
|
|
btrfs_put_block_group(block_group);
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (unlikely(block_group->ro))
|
|
goto loop;
|
|
|
|
if (last_ptr) {
|
|
/*
|
|
* the refill lock keeps out other
|
|
* people trying to start a new cluster
|
|
*/
|
|
spin_lock(&last_ptr->refill_lock);
|
|
offset = btrfs_alloc_from_cluster(block_group, last_ptr,
|
|
num_bytes, search_start);
|
|
if (offset) {
|
|
/* we have a block, we're done */
|
|
spin_unlock(&last_ptr->refill_lock);
|
|
goto checks;
|
|
}
|
|
|
|
spin_lock(&last_ptr->lock);
|
|
/*
|
|
* whoops, this cluster doesn't actually point to
|
|
* this block group. Get a ref on the block
|
|
* group is does point to and try again
|
|
*/
|
|
if (!last_ptr_loop && last_ptr->block_group &&
|
|
last_ptr->block_group != block_group) {
|
|
|
|
btrfs_put_block_group(block_group);
|
|
block_group = last_ptr->block_group;
|
|
atomic_inc(&block_group->count);
|
|
spin_unlock(&last_ptr->lock);
|
|
spin_unlock(&last_ptr->refill_lock);
|
|
|
|
last_ptr_loop = 1;
|
|
search_start = block_group->key.objectid;
|
|
goto have_block_group;
|
|
}
|
|
spin_unlock(&last_ptr->lock);
|
|
|
|
/*
|
|
* this cluster didn't work out, free it and
|
|
* start over
|
|
*/
|
|
btrfs_return_cluster_to_free_space(NULL, last_ptr);
|
|
|
|
last_ptr_loop = 0;
|
|
|
|
/* allocate a cluster in this block group */
|
|
ret = btrfs_find_space_cluster(trans,
|
|
block_group, last_ptr,
|
|
offset, num_bytes,
|
|
empty_cluster + empty_size);
|
|
if (ret == 0) {
|
|
/*
|
|
* now pull our allocation out of this
|
|
* cluster
|
|
*/
|
|
offset = btrfs_alloc_from_cluster(block_group,
|
|
last_ptr, num_bytes,
|
|
search_start);
|
|
if (offset) {
|
|
/* we found one, proceed */
|
|
spin_unlock(&last_ptr->refill_lock);
|
|
goto checks;
|
|
}
|
|
}
|
|
/*
|
|
* at this point we either didn't find a cluster
|
|
* or we weren't able to allocate a block from our
|
|
* cluster. Free the cluster we've been trying
|
|
* to use, and go to the next block group
|
|
*/
|
|
if (loop < 2) {
|
|
btrfs_return_cluster_to_free_space(NULL,
|
|
last_ptr);
|
|
spin_unlock(&last_ptr->refill_lock);
|
|
goto loop;
|
|
}
|
|
spin_unlock(&last_ptr->refill_lock);
|
|
}
|
|
|
|
offset = btrfs_find_space_for_alloc(block_group, search_start,
|
|
num_bytes, empty_size);
|
|
if (!offset)
|
|
goto loop;
|
|
checks:
|
|
search_start = stripe_align(root, offset);
|
|
|
|
/* move on to the next group */
|
|
if (search_start + num_bytes >= search_end) {
|
|
btrfs_add_free_space(block_group, offset, num_bytes);
|
|
goto loop;
|
|
}
|
|
|
|
/* move on to the next group */
|
|
if (search_start + num_bytes >
|
|
block_group->key.objectid + block_group->key.offset) {
|
|
btrfs_add_free_space(block_group, offset, num_bytes);
|
|
goto loop;
|
|
}
|
|
|
|
if (exclude_nr > 0 &&
|
|
(search_start + num_bytes > exclude_start &&
|
|
search_start < exclude_start + exclude_nr)) {
|
|
search_start = exclude_start + exclude_nr;
|
|
|
|
btrfs_add_free_space(block_group, offset, num_bytes);
|
|
/*
|
|
* if search_start is still in this block group
|
|
* then we just re-search this block group
|
|
*/
|
|
if (search_start >= block_group->key.objectid &&
|
|
search_start < (block_group->key.objectid +
|
|
block_group->key.offset))
|
|
goto have_block_group;
|
|
goto loop;
|
|
}
|
|
|
|
ins->objectid = search_start;
|
|
ins->offset = num_bytes;
|
|
|
|
if (offset < search_start)
|
|
btrfs_add_free_space(block_group, offset,
|
|
search_start - offset);
|
|
BUG_ON(offset > search_start);
|
|
|
|
/* we are all good, lets return */
|
|
break;
|
|
loop:
|
|
btrfs_put_block_group(block_group);
|
|
}
|
|
up_read(&space_info->groups_sem);
|
|
|
|
/* loop == 0, try to find a clustered alloc in every block group
|
|
* loop == 1, try again after forcing a chunk allocation
|
|
* loop == 2, set empty_size and empty_cluster to 0 and try again
|
|
*/
|
|
if (!ins->objectid && loop < 3 &&
|
|
(empty_size || empty_cluster || allowed_chunk_alloc)) {
|
|
if (loop >= 2) {
|
|
empty_size = 0;
|
|
empty_cluster = 0;
|
|
}
|
|
|
|
if (allowed_chunk_alloc) {
|
|
ret = do_chunk_alloc(trans, root, num_bytes +
|
|
2 * 1024 * 1024, data, 1);
|
|
allowed_chunk_alloc = 0;
|
|
} else {
|
|
space_info->force_alloc = 1;
|
|
}
|
|
|
|
if (loop < 3) {
|
|
loop++;
|
|
goto search;
|
|
}
|
|
ret = -ENOSPC;
|
|
} else if (!ins->objectid) {
|
|
ret = -ENOSPC;
|
|
}
|
|
|
|
/* we found what we needed */
|
|
if (ins->objectid) {
|
|
if (!(data & BTRFS_BLOCK_GROUP_DATA))
|
|
trans->block_group = block_group->key.objectid;
|
|
|
|
btrfs_put_block_group(block_group);
|
|
ret = 0;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void dump_space_info(struct btrfs_space_info *info, u64 bytes)
|
|
{
|
|
struct btrfs_block_group_cache *cache;
|
|
|
|
printk(KERN_INFO "space_info has %llu free, is %sfull\n",
|
|
(unsigned long long)(info->total_bytes - info->bytes_used -
|
|
info->bytes_pinned - info->bytes_reserved),
|
|
(info->full) ? "" : "not ");
|
|
printk(KERN_INFO "space_info total=%llu, pinned=%llu, delalloc=%llu,"
|
|
" may_use=%llu, used=%llu\n",
|
|
(unsigned long long)info->total_bytes,
|
|
(unsigned long long)info->bytes_pinned,
|
|
(unsigned long long)info->bytes_delalloc,
|
|
(unsigned long long)info->bytes_may_use,
|
|
(unsigned long long)info->bytes_used);
|
|
|
|
down_read(&info->groups_sem);
|
|
list_for_each_entry(cache, &info->block_groups, list) {
|
|
spin_lock(&cache->lock);
|
|
printk(KERN_INFO "block group %llu has %llu bytes, %llu used "
|
|
"%llu pinned %llu reserved\n",
|
|
(unsigned long long)cache->key.objectid,
|
|
(unsigned long long)cache->key.offset,
|
|
(unsigned long long)btrfs_block_group_used(&cache->item),
|
|
(unsigned long long)cache->pinned,
|
|
(unsigned long long)cache->reserved);
|
|
btrfs_dump_free_space(cache, bytes);
|
|
spin_unlock(&cache->lock);
|
|
}
|
|
up_read(&info->groups_sem);
|
|
}
|
|
|
|
static int __btrfs_reserve_extent(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *root,
|
|
u64 num_bytes, u64 min_alloc_size,
|
|
u64 empty_size, u64 hint_byte,
|
|
u64 search_end, struct btrfs_key *ins,
|
|
u64 data)
|
|
{
|
|
int ret;
|
|
u64 search_start = 0;
|
|
struct btrfs_fs_info *info = root->fs_info;
|
|
|
|
data = btrfs_get_alloc_profile(root, data);
|
|
again:
|
|
/*
|
|
* the only place that sets empty_size is btrfs_realloc_node, which
|
|
* is not called recursively on allocations
|
|
*/
|
|
if (empty_size || root->ref_cows) {
|
|
if (!(data & BTRFS_BLOCK_GROUP_METADATA)) {
|
|
ret = do_chunk_alloc(trans, root->fs_info->extent_root,
|
|
2 * 1024 * 1024,
|
|
BTRFS_BLOCK_GROUP_METADATA |
|
|
(info->metadata_alloc_profile &
|
|
info->avail_metadata_alloc_bits), 0);
|
|
}
|
|
ret = do_chunk_alloc(trans, root->fs_info->extent_root,
|
|
num_bytes + 2 * 1024 * 1024, data, 0);
|
|
}
|
|
|
|
WARN_ON(num_bytes < root->sectorsize);
|
|
ret = find_free_extent(trans, root, num_bytes, empty_size,
|
|
search_start, search_end, hint_byte, ins,
|
|
trans->alloc_exclude_start,
|
|
trans->alloc_exclude_nr, data);
|
|
|
|
if (ret == -ENOSPC && num_bytes > min_alloc_size) {
|
|
num_bytes = num_bytes >> 1;
|
|
num_bytes = num_bytes & ~(root->sectorsize - 1);
|
|
num_bytes = max(num_bytes, min_alloc_size);
|
|
do_chunk_alloc(trans, root->fs_info->extent_root,
|
|
num_bytes, data, 1);
|
|
goto again;
|
|
}
|
|
if (ret) {
|
|
struct btrfs_space_info *sinfo;
|
|
|
|
sinfo = __find_space_info(root->fs_info, data);
|
|
printk(KERN_ERR "btrfs allocation failed flags %llu, "
|
|
"wanted %llu\n", (unsigned long long)data,
|
|
(unsigned long long)num_bytes);
|
|
dump_space_info(sinfo, num_bytes);
|
|
BUG();
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
int btrfs_free_reserved_extent(struct btrfs_root *root, u64 start, u64 len)
|
|
{
|
|
struct btrfs_block_group_cache *cache;
|
|
int ret = 0;
|
|
|
|
cache = btrfs_lookup_block_group(root->fs_info, start);
|
|
if (!cache) {
|
|
printk(KERN_ERR "Unable to find block group for %llu\n",
|
|
(unsigned long long)start);
|
|
return -ENOSPC;
|
|
}
|
|
|
|
ret = btrfs_discard_extent(root, start, len);
|
|
|
|
btrfs_add_free_space(cache, start, len);
|
|
btrfs_put_block_group(cache);
|
|
update_reserved_extents(root, start, len, 0);
|
|
|
|
return ret;
|
|
}
|
|
|
|
int btrfs_reserve_extent(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *root,
|
|
u64 num_bytes, u64 min_alloc_size,
|
|
u64 empty_size, u64 hint_byte,
|
|
u64 search_end, struct btrfs_key *ins,
|
|
u64 data)
|
|
{
|
|
int ret;
|
|
ret = __btrfs_reserve_extent(trans, root, num_bytes, min_alloc_size,
|
|
empty_size, hint_byte, search_end, ins,
|
|
data);
|
|
update_reserved_extents(root, ins->objectid, ins->offset, 1);
|
|
return ret;
|
|
}
|
|
|
|
static int __btrfs_alloc_reserved_extent(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *root, u64 parent,
|
|
u64 root_objectid, u64 ref_generation,
|
|
u64 owner, struct btrfs_key *ins,
|
|
int ref_mod)
|
|
{
|
|
int ret;
|
|
u64 super_used;
|
|
u64 root_used;
|
|
u64 num_bytes = ins->offset;
|
|
u32 sizes[2];
|
|
struct btrfs_fs_info *info = root->fs_info;
|
|
struct btrfs_root *extent_root = info->extent_root;
|
|
struct btrfs_extent_item *extent_item;
|
|
struct btrfs_extent_ref *ref;
|
|
struct btrfs_path *path;
|
|
struct btrfs_key keys[2];
|
|
|
|
if (parent == 0)
|
|
parent = ins->objectid;
|
|
|
|
/* block accounting for super block */
|
|
spin_lock(&info->delalloc_lock);
|
|
super_used = btrfs_super_bytes_used(&info->super_copy);
|
|
btrfs_set_super_bytes_used(&info->super_copy, super_used + num_bytes);
|
|
|
|
/* block accounting for root item */
|
|
root_used = btrfs_root_used(&root->root_item);
|
|
btrfs_set_root_used(&root->root_item, root_used + num_bytes);
|
|
spin_unlock(&info->delalloc_lock);
|
|
|
|
memcpy(&keys[0], ins, sizeof(*ins));
|
|
keys[1].objectid = ins->objectid;
|
|
keys[1].type = BTRFS_EXTENT_REF_KEY;
|
|
keys[1].offset = parent;
|
|
sizes[0] = sizeof(*extent_item);
|
|
sizes[1] = sizeof(*ref);
|
|
|
|
path = btrfs_alloc_path();
|
|
BUG_ON(!path);
|
|
|
|
path->leave_spinning = 1;
|
|
ret = btrfs_insert_empty_items(trans, extent_root, path, keys,
|
|
sizes, 2);
|
|
BUG_ON(ret);
|
|
|
|
extent_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
|
|
struct btrfs_extent_item);
|
|
btrfs_set_extent_refs(path->nodes[0], extent_item, ref_mod);
|
|
ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
|
|
struct btrfs_extent_ref);
|
|
|
|
btrfs_set_ref_root(path->nodes[0], ref, root_objectid);
|
|
btrfs_set_ref_generation(path->nodes[0], ref, ref_generation);
|
|
btrfs_set_ref_objectid(path->nodes[0], ref, owner);
|
|
btrfs_set_ref_num_refs(path->nodes[0], ref, ref_mod);
|
|
|
|
btrfs_mark_buffer_dirty(path->nodes[0]);
|
|
|
|
trans->alloc_exclude_start = 0;
|
|
trans->alloc_exclude_nr = 0;
|
|
btrfs_free_path(path);
|
|
|
|
if (ret)
|
|
goto out;
|
|
|
|
ret = update_block_group(trans, root, ins->objectid,
|
|
ins->offset, 1, 0);
|
|
if (ret) {
|
|
printk(KERN_ERR "btrfs update block group failed for %llu "
|
|
"%llu\n", (unsigned long long)ins->objectid,
|
|
(unsigned long long)ins->offset);
|
|
BUG();
|
|
}
|
|
out:
|
|
return ret;
|
|
}
|
|
|
|
int btrfs_alloc_reserved_extent(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *root, u64 parent,
|
|
u64 root_objectid, u64 ref_generation,
|
|
u64 owner, struct btrfs_key *ins)
|
|
{
|
|
int ret;
|
|
|
|
if (root_objectid == BTRFS_TREE_LOG_OBJECTID)
|
|
return 0;
|
|
|
|
ret = btrfs_add_delayed_ref(trans, ins->objectid,
|
|
ins->offset, parent, root_objectid,
|
|
ref_generation, owner,
|
|
BTRFS_ADD_DELAYED_EXTENT, 0);
|
|
BUG_ON(ret);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* this is used by the tree logging recovery code. It records that
|
|
* an extent has been allocated and makes sure to clear the free
|
|
* space cache bits as well
|
|
*/
|
|
int btrfs_alloc_logged_extent(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *root, u64 parent,
|
|
u64 root_objectid, u64 ref_generation,
|
|
u64 owner, struct btrfs_key *ins)
|
|
{
|
|
int ret;
|
|
struct btrfs_block_group_cache *block_group;
|
|
|
|
block_group = btrfs_lookup_block_group(root->fs_info, ins->objectid);
|
|
mutex_lock(&block_group->cache_mutex);
|
|
cache_block_group(root, block_group);
|
|
mutex_unlock(&block_group->cache_mutex);
|
|
|
|
ret = btrfs_remove_free_space(block_group, ins->objectid,
|
|
ins->offset);
|
|
BUG_ON(ret);
|
|
btrfs_put_block_group(block_group);
|
|
ret = __btrfs_alloc_reserved_extent(trans, root, parent, root_objectid,
|
|
ref_generation, owner, ins, 1);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* finds a free extent and does all the dirty work required for allocation
|
|
* returns the key for the extent through ins, and a tree buffer for
|
|
* the first block of the extent through buf.
|
|
*
|
|
* returns 0 if everything worked, non-zero otherwise.
|
|
*/
|
|
int btrfs_alloc_extent(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *root,
|
|
u64 num_bytes, u64 parent, u64 min_alloc_size,
|
|
u64 root_objectid, u64 ref_generation,
|
|
u64 owner_objectid, u64 empty_size, u64 hint_byte,
|
|
u64 search_end, struct btrfs_key *ins, u64 data)
|
|
{
|
|
int ret;
|
|
ret = __btrfs_reserve_extent(trans, root, num_bytes,
|
|
min_alloc_size, empty_size, hint_byte,
|
|
search_end, ins, data);
|
|
BUG_ON(ret);
|
|
if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
|
|
ret = btrfs_add_delayed_ref(trans, ins->objectid,
|
|
ins->offset, parent, root_objectid,
|
|
ref_generation, owner_objectid,
|
|
BTRFS_ADD_DELAYED_EXTENT, 0);
|
|
BUG_ON(ret);
|
|
}
|
|
update_reserved_extents(root, ins->objectid, ins->offset, 1);
|
|
return ret;
|
|
}
|
|
|
|
struct extent_buffer *btrfs_init_new_buffer(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *root,
|
|
u64 bytenr, u32 blocksize,
|
|
int level)
|
|
{
|
|
struct extent_buffer *buf;
|
|
|
|
buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
|
|
if (!buf)
|
|
return ERR_PTR(-ENOMEM);
|
|
btrfs_set_header_generation(buf, trans->transid);
|
|
btrfs_set_buffer_lockdep_class(buf, level);
|
|
btrfs_tree_lock(buf);
|
|
clean_tree_block(trans, root, buf);
|
|
|
|
btrfs_set_lock_blocking(buf);
|
|
btrfs_set_buffer_uptodate(buf);
|
|
|
|
if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
|
|
set_extent_dirty(&root->dirty_log_pages, buf->start,
|
|
buf->start + buf->len - 1, GFP_NOFS);
|
|
} else {
|
|
set_extent_dirty(&trans->transaction->dirty_pages, buf->start,
|
|
buf->start + buf->len - 1, GFP_NOFS);
|
|
}
|
|
trans->blocks_used++;
|
|
/* this returns a buffer locked for blocking */
|
|
return buf;
|
|
}
|
|
|
|
/*
|
|
* helper function to allocate a block for a given tree
|
|
* returns the tree buffer or NULL.
|
|
*/
|
|
struct extent_buffer *btrfs_alloc_free_block(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *root,
|
|
u32 blocksize, u64 parent,
|
|
u64 root_objectid,
|
|
u64 ref_generation,
|
|
int level,
|
|
u64 hint,
|
|
u64 empty_size)
|
|
{
|
|
struct btrfs_key ins;
|
|
int ret;
|
|
struct extent_buffer *buf;
|
|
|
|
ret = btrfs_alloc_extent(trans, root, blocksize, parent, blocksize,
|
|
root_objectid, ref_generation, level,
|
|
empty_size, hint, (u64)-1, &ins, 0);
|
|
if (ret) {
|
|
BUG_ON(ret > 0);
|
|
return ERR_PTR(ret);
|
|
}
|
|
|
|
buf = btrfs_init_new_buffer(trans, root, ins.objectid,
|
|
blocksize, level);
|
|
return buf;
|
|
}
|
|
|
|
int btrfs_drop_leaf_ref(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *root, struct extent_buffer *leaf)
|
|
{
|
|
u64 leaf_owner;
|
|
u64 leaf_generation;
|
|
struct refsort *sorted;
|
|
struct btrfs_key key;
|
|
struct btrfs_file_extent_item *fi;
|
|
int i;
|
|
int nritems;
|
|
int ret;
|
|
int refi = 0;
|
|
int slot;
|
|
|
|
BUG_ON(!btrfs_is_leaf(leaf));
|
|
nritems = btrfs_header_nritems(leaf);
|
|
leaf_owner = btrfs_header_owner(leaf);
|
|
leaf_generation = btrfs_header_generation(leaf);
|
|
|
|
sorted = kmalloc(sizeof(*sorted) * nritems, GFP_NOFS);
|
|
/* we do this loop twice. The first time we build a list
|
|
* of the extents we have a reference on, then we sort the list
|
|
* by bytenr. The second time around we actually do the
|
|
* extent freeing.
|
|
*/
|
|
for (i = 0; i < nritems; i++) {
|
|
u64 disk_bytenr;
|
|
cond_resched();
|
|
|
|
btrfs_item_key_to_cpu(leaf, &key, i);
|
|
|
|
/* only extents have references, skip everything else */
|
|
if (btrfs_key_type(&key) != BTRFS_EXTENT_DATA_KEY)
|
|
continue;
|
|
|
|
fi = btrfs_item_ptr(leaf, i, struct btrfs_file_extent_item);
|
|
|
|
/* inline extents live in the btree, they don't have refs */
|
|
if (btrfs_file_extent_type(leaf, fi) ==
|
|
BTRFS_FILE_EXTENT_INLINE)
|
|
continue;
|
|
|
|
disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
|
|
|
|
/* holes don't have refs */
|
|
if (disk_bytenr == 0)
|
|
continue;
|
|
|
|
sorted[refi].bytenr = disk_bytenr;
|
|
sorted[refi].slot = i;
|
|
refi++;
|
|
}
|
|
|
|
if (refi == 0)
|
|
goto out;
|
|
|
|
sort(sorted, refi, sizeof(struct refsort), refsort_cmp, NULL);
|
|
|
|
for (i = 0; i < refi; i++) {
|
|
u64 disk_bytenr;
|
|
|
|
disk_bytenr = sorted[i].bytenr;
|
|
slot = sorted[i].slot;
|
|
|
|
cond_resched();
|
|
|
|
btrfs_item_key_to_cpu(leaf, &key, slot);
|
|
if (btrfs_key_type(&key) != BTRFS_EXTENT_DATA_KEY)
|
|
continue;
|
|
|
|
fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
|
|
|
|
ret = btrfs_free_extent(trans, root, disk_bytenr,
|
|
btrfs_file_extent_disk_num_bytes(leaf, fi),
|
|
leaf->start, leaf_owner, leaf_generation,
|
|
key.objectid, 0);
|
|
BUG_ON(ret);
|
|
|
|
atomic_inc(&root->fs_info->throttle_gen);
|
|
wake_up(&root->fs_info->transaction_throttle);
|
|
cond_resched();
|
|
}
|
|
out:
|
|
kfree(sorted);
|
|
return 0;
|
|
}
|
|
|
|
static noinline int cache_drop_leaf_ref(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *root,
|
|
struct btrfs_leaf_ref *ref)
|
|
{
|
|
int i;
|
|
int ret;
|
|
struct btrfs_extent_info *info;
|
|
struct refsort *sorted;
|
|
|
|
if (ref->nritems == 0)
|
|
return 0;
|
|
|
|
sorted = kmalloc(sizeof(*sorted) * ref->nritems, GFP_NOFS);
|
|
for (i = 0; i < ref->nritems; i++) {
|
|
sorted[i].bytenr = ref->extents[i].bytenr;
|
|
sorted[i].slot = i;
|
|
}
|
|
sort(sorted, ref->nritems, sizeof(struct refsort), refsort_cmp, NULL);
|
|
|
|
/*
|
|
* the items in the ref were sorted when the ref was inserted
|
|
* into the ref cache, so this is already in order
|
|
*/
|
|
for (i = 0; i < ref->nritems; i++) {
|
|
info = ref->extents + sorted[i].slot;
|
|
ret = btrfs_free_extent(trans, root, info->bytenr,
|
|
info->num_bytes, ref->bytenr,
|
|
ref->owner, ref->generation,
|
|
info->objectid, 0);
|
|
|
|
atomic_inc(&root->fs_info->throttle_gen);
|
|
wake_up(&root->fs_info->transaction_throttle);
|
|
cond_resched();
|
|
|
|
BUG_ON(ret);
|
|
info++;
|
|
}
|
|
|
|
kfree(sorted);
|
|
return 0;
|
|
}
|
|
|
|
static int drop_snap_lookup_refcount(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *root, u64 start,
|
|
u64 len, u32 *refs)
|
|
{
|
|
int ret;
|
|
|
|
ret = btrfs_lookup_extent_ref(trans, root, start, len, refs);
|
|
BUG_ON(ret);
|
|
|
|
#if 0 /* some debugging code in case we see problems here */
|
|
/* if the refs count is one, it won't get increased again. But
|
|
* if the ref count is > 1, someone may be decreasing it at
|
|
* the same time we are.
|
|
*/
|
|
if (*refs != 1) {
|
|
struct extent_buffer *eb = NULL;
|
|
eb = btrfs_find_create_tree_block(root, start, len);
|
|
if (eb)
|
|
btrfs_tree_lock(eb);
|
|
|
|
mutex_lock(&root->fs_info->alloc_mutex);
|
|
ret = lookup_extent_ref(NULL, root, start, len, refs);
|
|
BUG_ON(ret);
|
|
mutex_unlock(&root->fs_info->alloc_mutex);
|
|
|
|
if (eb) {
|
|
btrfs_tree_unlock(eb);
|
|
free_extent_buffer(eb);
|
|
}
|
|
if (*refs == 1) {
|
|
printk(KERN_ERR "btrfs block %llu went down to one "
|
|
"during drop_snap\n", (unsigned long long)start);
|
|
}
|
|
|
|
}
|
|
#endif
|
|
|
|
cond_resched();
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* this is used while deleting old snapshots, and it drops the refs
|
|
* on a whole subtree starting from a level 1 node.
|
|
*
|
|
* The idea is to sort all the leaf pointers, and then drop the
|
|
* ref on all the leaves in order. Most of the time the leaves
|
|
* will have ref cache entries, so no leaf IOs will be required to
|
|
* find the extents they have references on.
|
|
*
|
|
* For each leaf, any references it has are also dropped in order
|
|
*
|
|
* This ends up dropping the references in something close to optimal
|
|
* order for reading and modifying the extent allocation tree.
|
|
*/
|
|
static noinline int drop_level_one_refs(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *root,
|
|
struct btrfs_path *path)
|
|
{
|
|
u64 bytenr;
|
|
u64 root_owner;
|
|
u64 root_gen;
|
|
struct extent_buffer *eb = path->nodes[1];
|
|
struct extent_buffer *leaf;
|
|
struct btrfs_leaf_ref *ref;
|
|
struct refsort *sorted = NULL;
|
|
int nritems = btrfs_header_nritems(eb);
|
|
int ret;
|
|
int i;
|
|
int refi = 0;
|
|
int slot = path->slots[1];
|
|
u32 blocksize = btrfs_level_size(root, 0);
|
|
u32 refs;
|
|
|
|
if (nritems == 0)
|
|
goto out;
|
|
|
|
root_owner = btrfs_header_owner(eb);
|
|
root_gen = btrfs_header_generation(eb);
|
|
sorted = kmalloc(sizeof(*sorted) * nritems, GFP_NOFS);
|
|
|
|
/*
|
|
* step one, sort all the leaf pointers so we don't scribble
|
|
* randomly into the extent allocation tree
|
|
*/
|
|
for (i = slot; i < nritems; i++) {
|
|
sorted[refi].bytenr = btrfs_node_blockptr(eb, i);
|
|
sorted[refi].slot = i;
|
|
refi++;
|
|
}
|
|
|
|
/*
|
|
* nritems won't be zero, but if we're picking up drop_snapshot
|
|
* after a crash, slot might be > 0, so double check things
|
|
* just in case.
|
|
*/
|
|
if (refi == 0)
|
|
goto out;
|
|
|
|
sort(sorted, refi, sizeof(struct refsort), refsort_cmp, NULL);
|
|
|
|
/*
|
|
* the first loop frees everything the leaves point to
|
|
*/
|
|
for (i = 0; i < refi; i++) {
|
|
u64 ptr_gen;
|
|
|
|
bytenr = sorted[i].bytenr;
|
|
|
|
/*
|
|
* check the reference count on this leaf. If it is > 1
|
|
* we just decrement it below and don't update any
|
|
* of the refs the leaf points to.
|
|
*/
|
|
ret = drop_snap_lookup_refcount(trans, root, bytenr,
|
|
blocksize, &refs);
|
|
BUG_ON(ret);
|
|
if (refs != 1)
|
|
continue;
|
|
|
|
ptr_gen = btrfs_node_ptr_generation(eb, sorted[i].slot);
|
|
|
|
/*
|
|
* the leaf only had one reference, which means the
|
|
* only thing pointing to this leaf is the snapshot
|
|
* we're deleting. It isn't possible for the reference
|
|
* count to increase again later
|
|
*
|
|
* The reference cache is checked for the leaf,
|
|
* and if found we'll be able to drop any refs held by
|
|
* the leaf without needing to read it in.
|
|
*/
|
|
ref = btrfs_lookup_leaf_ref(root, bytenr);
|
|
if (ref && ref->generation != ptr_gen) {
|
|
btrfs_free_leaf_ref(root, ref);
|
|
ref = NULL;
|
|
}
|
|
if (ref) {
|
|
ret = cache_drop_leaf_ref(trans, root, ref);
|
|
BUG_ON(ret);
|
|
btrfs_remove_leaf_ref(root, ref);
|
|
btrfs_free_leaf_ref(root, ref);
|
|
} else {
|
|
/*
|
|
* the leaf wasn't in the reference cache, so
|
|
* we have to read it.
|
|
*/
|
|
leaf = read_tree_block(root, bytenr, blocksize,
|
|
ptr_gen);
|
|
ret = btrfs_drop_leaf_ref(trans, root, leaf);
|
|
BUG_ON(ret);
|
|
free_extent_buffer(leaf);
|
|
}
|
|
atomic_inc(&root->fs_info->throttle_gen);
|
|
wake_up(&root->fs_info->transaction_throttle);
|
|
cond_resched();
|
|
}
|
|
|
|
/*
|
|
* run through the loop again to free the refs on the leaves.
|
|
* This is faster than doing it in the loop above because
|
|
* the leaves are likely to be clustered together. We end up
|
|
* working in nice chunks on the extent allocation tree.
|
|
*/
|
|
for (i = 0; i < refi; i++) {
|
|
bytenr = sorted[i].bytenr;
|
|
ret = btrfs_free_extent(trans, root, bytenr,
|
|
blocksize, eb->start,
|
|
root_owner, root_gen, 0, 1);
|
|
BUG_ON(ret);
|
|
|
|
atomic_inc(&root->fs_info->throttle_gen);
|
|
wake_up(&root->fs_info->transaction_throttle);
|
|
cond_resched();
|
|
}
|
|
out:
|
|
kfree(sorted);
|
|
|
|
/*
|
|
* update the path to show we've processed the entire level 1
|
|
* node. This will get saved into the root's drop_snapshot_progress
|
|
* field so these drops are not repeated again if this transaction
|
|
* commits.
|
|
*/
|
|
path->slots[1] = nritems;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* helper function for drop_snapshot, this walks down the tree dropping ref
|
|
* counts as it goes.
|
|
*/
|
|
static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *root,
|
|
struct btrfs_path *path, int *level)
|
|
{
|
|
u64 root_owner;
|
|
u64 root_gen;
|
|
u64 bytenr;
|
|
u64 ptr_gen;
|
|
struct extent_buffer *next;
|
|
struct extent_buffer *cur;
|
|
struct extent_buffer *parent;
|
|
u32 blocksize;
|
|
int ret;
|
|
u32 refs;
|
|
|
|
WARN_ON(*level < 0);
|
|
WARN_ON(*level >= BTRFS_MAX_LEVEL);
|
|
ret = drop_snap_lookup_refcount(trans, root, path->nodes[*level]->start,
|
|
path->nodes[*level]->len, &refs);
|
|
BUG_ON(ret);
|
|
if (refs > 1)
|
|
goto out;
|
|
|
|
/*
|
|
* walk down to the last node level and free all the leaves
|
|
*/
|
|
while (*level >= 0) {
|
|
WARN_ON(*level < 0);
|
|
WARN_ON(*level >= BTRFS_MAX_LEVEL);
|
|
cur = path->nodes[*level];
|
|
|
|
if (btrfs_header_level(cur) != *level)
|
|
WARN_ON(1);
|
|
|
|
if (path->slots[*level] >=
|
|
btrfs_header_nritems(cur))
|
|
break;
|
|
|
|
/* the new code goes down to level 1 and does all the
|
|
* leaves pointed to that node in bulk. So, this check
|
|
* for level 0 will always be false.
|
|
*
|
|
* But, the disk format allows the drop_snapshot_progress
|
|
* field in the root to leave things in a state where
|
|
* a leaf will need cleaning up here. If someone crashes
|
|
* with the old code and then boots with the new code,
|
|
* we might find a leaf here.
|
|
*/
|
|
if (*level == 0) {
|
|
ret = btrfs_drop_leaf_ref(trans, root, cur);
|
|
BUG_ON(ret);
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* once we get to level one, process the whole node
|
|
* at once, including everything below it.
|
|
*/
|
|
if (*level == 1) {
|
|
ret = drop_level_one_refs(trans, root, path);
|
|
BUG_ON(ret);
|
|
break;
|
|
}
|
|
|
|
bytenr = btrfs_node_blockptr(cur, path->slots[*level]);
|
|
ptr_gen = btrfs_node_ptr_generation(cur, path->slots[*level]);
|
|
blocksize = btrfs_level_size(root, *level - 1);
|
|
|
|
ret = drop_snap_lookup_refcount(trans, root, bytenr,
|
|
blocksize, &refs);
|
|
BUG_ON(ret);
|
|
|
|
/*
|
|
* if there is more than one reference, we don't need
|
|
* to read that node to drop any references it has. We
|
|
* just drop the ref we hold on that node and move on to the
|
|
* next slot in this level.
|
|
*/
|
|
if (refs != 1) {
|
|
parent = path->nodes[*level];
|
|
root_owner = btrfs_header_owner(parent);
|
|
root_gen = btrfs_header_generation(parent);
|
|
path->slots[*level]++;
|
|
|
|
ret = btrfs_free_extent(trans, root, bytenr,
|
|
blocksize, parent->start,
|
|
root_owner, root_gen,
|
|
*level - 1, 1);
|
|
BUG_ON(ret);
|
|
|
|
atomic_inc(&root->fs_info->throttle_gen);
|
|
wake_up(&root->fs_info->transaction_throttle);
|
|
cond_resched();
|
|
|
|
continue;
|
|
}
|
|
|
|
/*
|
|
* we need to keep freeing things in the next level down.
|
|
* read the block and loop around to process it
|
|
*/
|
|
next = read_tree_block(root, bytenr, blocksize, ptr_gen);
|
|
WARN_ON(*level <= 0);
|
|
if (path->nodes[*level-1])
|
|
free_extent_buffer(path->nodes[*level-1]);
|
|
path->nodes[*level-1] = next;
|
|
*level = btrfs_header_level(next);
|
|
path->slots[*level] = 0;
|
|
cond_resched();
|
|
}
|
|
out:
|
|
WARN_ON(*level < 0);
|
|
WARN_ON(*level >= BTRFS_MAX_LEVEL);
|
|
|
|
if (path->nodes[*level] == root->node) {
|
|
parent = path->nodes[*level];
|
|
bytenr = path->nodes[*level]->start;
|
|
} else {
|
|
parent = path->nodes[*level + 1];
|
|
bytenr = btrfs_node_blockptr(parent, path->slots[*level + 1]);
|
|
}
|
|
|
|
blocksize = btrfs_level_size(root, *level);
|
|
root_owner = btrfs_header_owner(parent);
|
|
root_gen = btrfs_header_generation(parent);
|
|
|
|
/*
|
|
* cleanup and free the reference on the last node
|
|
* we processed
|
|
*/
|
|
ret = btrfs_free_extent(trans, root, bytenr, blocksize,
|
|
parent->start, root_owner, root_gen,
|
|
*level, 1);
|
|
free_extent_buffer(path->nodes[*level]);
|
|
path->nodes[*level] = NULL;
|
|
|
|
*level += 1;
|
|
BUG_ON(ret);
|
|
|
|
cond_resched();
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* helper function for drop_subtree, this function is similar to
|
|
* walk_down_tree. The main difference is that it checks reference
|
|
* counts while tree blocks are locked.
|
|
*/
|
|
static noinline int walk_down_subtree(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *root,
|
|
struct btrfs_path *path, int *level)
|
|
{
|
|
struct extent_buffer *next;
|
|
struct extent_buffer *cur;
|
|
struct extent_buffer *parent;
|
|
u64 bytenr;
|
|
u64 ptr_gen;
|
|
u32 blocksize;
|
|
u32 refs;
|
|
int ret;
|
|
|
|
cur = path->nodes[*level];
|
|
ret = btrfs_lookup_extent_ref(trans, root, cur->start, cur->len,
|
|
&refs);
|
|
BUG_ON(ret);
|
|
if (refs > 1)
|
|
goto out;
|
|
|
|
while (*level >= 0) {
|
|
cur = path->nodes[*level];
|
|
if (*level == 0) {
|
|
ret = btrfs_drop_leaf_ref(trans, root, cur);
|
|
BUG_ON(ret);
|
|
clean_tree_block(trans, root, cur);
|
|
break;
|
|
}
|
|
if (path->slots[*level] >= btrfs_header_nritems(cur)) {
|
|
clean_tree_block(trans, root, cur);
|
|
break;
|
|
}
|
|
|
|
bytenr = btrfs_node_blockptr(cur, path->slots[*level]);
|
|
blocksize = btrfs_level_size(root, *level - 1);
|
|
ptr_gen = btrfs_node_ptr_generation(cur, path->slots[*level]);
|
|
|
|
next = read_tree_block(root, bytenr, blocksize, ptr_gen);
|
|
btrfs_tree_lock(next);
|
|
btrfs_set_lock_blocking(next);
|
|
|
|
ret = btrfs_lookup_extent_ref(trans, root, bytenr, blocksize,
|
|
&refs);
|
|
BUG_ON(ret);
|
|
if (refs > 1) {
|
|
parent = path->nodes[*level];
|
|
ret = btrfs_free_extent(trans, root, bytenr,
|
|
blocksize, parent->start,
|
|
btrfs_header_owner(parent),
|
|
btrfs_header_generation(parent),
|
|
*level - 1, 1);
|
|
BUG_ON(ret);
|
|
path->slots[*level]++;
|
|
btrfs_tree_unlock(next);
|
|
free_extent_buffer(next);
|
|
continue;
|
|
}
|
|
|
|
*level = btrfs_header_level(next);
|
|
path->nodes[*level] = next;
|
|
path->slots[*level] = 0;
|
|
path->locks[*level] = 1;
|
|
cond_resched();
|
|
}
|
|
out:
|
|
parent = path->nodes[*level + 1];
|
|
bytenr = path->nodes[*level]->start;
|
|
blocksize = path->nodes[*level]->len;
|
|
|
|
ret = btrfs_free_extent(trans, root, bytenr, blocksize,
|
|
parent->start, btrfs_header_owner(parent),
|
|
btrfs_header_generation(parent), *level, 1);
|
|
BUG_ON(ret);
|
|
|
|
if (path->locks[*level]) {
|
|
btrfs_tree_unlock(path->nodes[*level]);
|
|
path->locks[*level] = 0;
|
|
}
|
|
free_extent_buffer(path->nodes[*level]);
|
|
path->nodes[*level] = NULL;
|
|
*level += 1;
|
|
cond_resched();
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* helper for dropping snapshots. This walks back up the tree in the path
|
|
* to find the first node higher up where we haven't yet gone through
|
|
* all the slots
|
|
*/
|
|
static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *root,
|
|
struct btrfs_path *path,
|
|
int *level, int max_level)
|
|
{
|
|
u64 root_owner;
|
|
u64 root_gen;
|
|
struct btrfs_root_item *root_item = &root->root_item;
|
|
int i;
|
|
int slot;
|
|
int ret;
|
|
|
|
for (i = *level; i < max_level && path->nodes[i]; i++) {
|
|
slot = path->slots[i];
|
|
if (slot < btrfs_header_nritems(path->nodes[i]) - 1) {
|
|
struct extent_buffer *node;
|
|
struct btrfs_disk_key disk_key;
|
|
|
|
/*
|
|
* there is more work to do in this level.
|
|
* Update the drop_progress marker to reflect
|
|
* the work we've done so far, and then bump
|
|
* the slot number
|
|
*/
|
|
node = path->nodes[i];
|
|
path->slots[i]++;
|
|
*level = i;
|
|
WARN_ON(*level == 0);
|
|
btrfs_node_key(node, &disk_key, path->slots[i]);
|
|
memcpy(&root_item->drop_progress,
|
|
&disk_key, sizeof(disk_key));
|
|
root_item->drop_level = i;
|
|
return 0;
|
|
} else {
|
|
struct extent_buffer *parent;
|
|
|
|
/*
|
|
* this whole node is done, free our reference
|
|
* on it and go up one level
|
|
*/
|
|
if (path->nodes[*level] == root->node)
|
|
parent = path->nodes[*level];
|
|
else
|
|
parent = path->nodes[*level + 1];
|
|
|
|
root_owner = btrfs_header_owner(parent);
|
|
root_gen = btrfs_header_generation(parent);
|
|
|
|
clean_tree_block(trans, root, path->nodes[*level]);
|
|
ret = btrfs_free_extent(trans, root,
|
|
path->nodes[*level]->start,
|
|
path->nodes[*level]->len,
|
|
parent->start, root_owner,
|
|
root_gen, *level, 1);
|
|
BUG_ON(ret);
|
|
if (path->locks[*level]) {
|
|
btrfs_tree_unlock(path->nodes[*level]);
|
|
path->locks[*level] = 0;
|
|
}
|
|
free_extent_buffer(path->nodes[*level]);
|
|
path->nodes[*level] = NULL;
|
|
*level = i + 1;
|
|
}
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* drop the reference count on the tree rooted at 'snap'. This traverses
|
|
* the tree freeing any blocks that have a ref count of zero after being
|
|
* decremented.
|
|
*/
|
|
int btrfs_drop_snapshot(struct btrfs_trans_handle *trans, struct btrfs_root
|
|
*root)
|
|
{
|
|
int ret = 0;
|
|
int wret;
|
|
int level;
|
|
struct btrfs_path *path;
|
|
int i;
|
|
int orig_level;
|
|
int update_count;
|
|
struct btrfs_root_item *root_item = &root->root_item;
|
|
|
|
WARN_ON(!mutex_is_locked(&root->fs_info->drop_mutex));
|
|
path = btrfs_alloc_path();
|
|
BUG_ON(!path);
|
|
|
|
level = btrfs_header_level(root->node);
|
|
orig_level = level;
|
|
if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
|
|
path->nodes[level] = root->node;
|
|
extent_buffer_get(root->node);
|
|
path->slots[level] = 0;
|
|
} else {
|
|
struct btrfs_key key;
|
|
struct btrfs_disk_key found_key;
|
|
struct extent_buffer *node;
|
|
|
|
btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
|
|
level = root_item->drop_level;
|
|
path->lowest_level = level;
|
|
wret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
|
|
if (wret < 0) {
|
|
ret = wret;
|
|
goto out;
|
|
}
|
|
node = path->nodes[level];
|
|
btrfs_node_key(node, &found_key, path->slots[level]);
|
|
WARN_ON(memcmp(&found_key, &root_item->drop_progress,
|
|
sizeof(found_key)));
|
|
/*
|
|
* unlock our path, this is safe because only this
|
|
* function is allowed to delete this snapshot
|
|
*/
|
|
for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
|
|
if (path->nodes[i] && path->locks[i]) {
|
|
path->locks[i] = 0;
|
|
btrfs_tree_unlock(path->nodes[i]);
|
|
}
|
|
}
|
|
}
|
|
while (1) {
|
|
unsigned long update;
|
|
wret = walk_down_tree(trans, root, path, &level);
|
|
if (wret > 0)
|
|
break;
|
|
if (wret < 0)
|
|
ret = wret;
|
|
|
|
wret = walk_up_tree(trans, root, path, &level,
|
|
BTRFS_MAX_LEVEL);
|
|
if (wret > 0)
|
|
break;
|
|
if (wret < 0)
|
|
ret = wret;
|
|
if (trans->transaction->in_commit ||
|
|
trans->transaction->delayed_refs.flushing) {
|
|
ret = -EAGAIN;
|
|
break;
|
|
}
|
|
atomic_inc(&root->fs_info->throttle_gen);
|
|
wake_up(&root->fs_info->transaction_throttle);
|
|
for (update_count = 0; update_count < 16; update_count++) {
|
|
update = trans->delayed_ref_updates;
|
|
trans->delayed_ref_updates = 0;
|
|
if (update)
|
|
btrfs_run_delayed_refs(trans, root, update);
|
|
else
|
|
break;
|
|
}
|
|
}
|
|
for (i = 0; i <= orig_level; i++) {
|
|
if (path->nodes[i]) {
|
|
free_extent_buffer(path->nodes[i]);
|
|
path->nodes[i] = NULL;
|
|
}
|
|
}
|
|
out:
|
|
btrfs_free_path(path);
|
|
return ret;
|
|
}
|
|
|
|
int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *root,
|
|
struct extent_buffer *node,
|
|
struct extent_buffer *parent)
|
|
{
|
|
struct btrfs_path *path;
|
|
int level;
|
|
int parent_level;
|
|
int ret = 0;
|
|
int wret;
|
|
|
|
path = btrfs_alloc_path();
|
|
BUG_ON(!path);
|
|
|
|
btrfs_assert_tree_locked(parent);
|
|
parent_level = btrfs_header_level(parent);
|
|
extent_buffer_get(parent);
|
|
path->nodes[parent_level] = parent;
|
|
path->slots[parent_level] = btrfs_header_nritems(parent);
|
|
|
|
btrfs_assert_tree_locked(node);
|
|
level = btrfs_header_level(node);
|
|
extent_buffer_get(node);
|
|
path->nodes[level] = node;
|
|
path->slots[level] = 0;
|
|
|
|
while (1) {
|
|
wret = walk_down_subtree(trans, root, path, &level);
|
|
if (wret < 0)
|
|
ret = wret;
|
|
if (wret != 0)
|
|
break;
|
|
|
|
wret = walk_up_tree(trans, root, path, &level, parent_level);
|
|
if (wret < 0)
|
|
ret = wret;
|
|
if (wret != 0)
|
|
break;
|
|
}
|
|
|
|
btrfs_free_path(path);
|
|
return ret;
|
|
}
|
|
|
|
static unsigned long calc_ra(unsigned long start, unsigned long last,
|
|
unsigned long nr)
|
|
{
|
|
return min(last, start + nr - 1);
|
|
}
|
|
|
|
static noinline int relocate_inode_pages(struct inode *inode, u64 start,
|
|
u64 len)
|
|
{
|
|
u64 page_start;
|
|
u64 page_end;
|
|
unsigned long first_index;
|
|
unsigned long last_index;
|
|
unsigned long i;
|
|
struct page *page;
|
|
struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
|
|
struct file_ra_state *ra;
|
|
struct btrfs_ordered_extent *ordered;
|
|
unsigned int total_read = 0;
|
|
unsigned int total_dirty = 0;
|
|
int ret = 0;
|
|
|
|
ra = kzalloc(sizeof(*ra), GFP_NOFS);
|
|
|
|
mutex_lock(&inode->i_mutex);
|
|
first_index = start >> PAGE_CACHE_SHIFT;
|
|
last_index = (start + len - 1) >> PAGE_CACHE_SHIFT;
|
|
|
|
/* make sure the dirty trick played by the caller work */
|
|
ret = invalidate_inode_pages2_range(inode->i_mapping,
|
|
first_index, last_index);
|
|
if (ret)
|
|
goto out_unlock;
|
|
|
|
file_ra_state_init(ra, inode->i_mapping);
|
|
|
|
for (i = first_index ; i <= last_index; i++) {
|
|
if (total_read % ra->ra_pages == 0) {
|
|
btrfs_force_ra(inode->i_mapping, ra, NULL, i,
|
|
calc_ra(i, last_index, ra->ra_pages));
|
|
}
|
|
total_read++;
|
|
again:
|
|
if (((u64)i << PAGE_CACHE_SHIFT) > i_size_read(inode))
|
|
BUG_ON(1);
|
|
page = grab_cache_page(inode->i_mapping, i);
|
|
if (!page) {
|
|
ret = -ENOMEM;
|
|
goto out_unlock;
|
|
}
|
|
if (!PageUptodate(page)) {
|
|
btrfs_readpage(NULL, page);
|
|
lock_page(page);
|
|
if (!PageUptodate(page)) {
|
|
unlock_page(page);
|
|
page_cache_release(page);
|
|
ret = -EIO;
|
|
goto out_unlock;
|
|
}
|
|
}
|
|
wait_on_page_writeback(page);
|
|
|
|
page_start = (u64)page->index << PAGE_CACHE_SHIFT;
|
|
page_end = page_start + PAGE_CACHE_SIZE - 1;
|
|
lock_extent(io_tree, page_start, page_end, GFP_NOFS);
|
|
|
|
ordered = btrfs_lookup_ordered_extent(inode, page_start);
|
|
if (ordered) {
|
|
unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
|
|
unlock_page(page);
|
|
page_cache_release(page);
|
|
btrfs_start_ordered_extent(inode, ordered, 1);
|
|
btrfs_put_ordered_extent(ordered);
|
|
goto again;
|
|
}
|
|
set_page_extent_mapped(page);
|
|
|
|
if (i == first_index)
|
|
set_extent_bits(io_tree, page_start, page_end,
|
|
EXTENT_BOUNDARY, GFP_NOFS);
|
|
btrfs_set_extent_delalloc(inode, page_start, page_end);
|
|
|
|
set_page_dirty(page);
|
|
total_dirty++;
|
|
|
|
unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
|
|
unlock_page(page);
|
|
page_cache_release(page);
|
|
}
|
|
|
|
out_unlock:
|
|
kfree(ra);
|
|
mutex_unlock(&inode->i_mutex);
|
|
balance_dirty_pages_ratelimited_nr(inode->i_mapping, total_dirty);
|
|
return ret;
|
|
}
|
|
|
|
static noinline int relocate_data_extent(struct inode *reloc_inode,
|
|
struct btrfs_key *extent_key,
|
|
u64 offset)
|
|
{
|
|
struct btrfs_root *root = BTRFS_I(reloc_inode)->root;
|
|
struct extent_map_tree *em_tree = &BTRFS_I(reloc_inode)->extent_tree;
|
|
struct extent_map *em;
|
|
u64 start = extent_key->objectid - offset;
|
|
u64 end = start + extent_key->offset - 1;
|
|
|
|
em = alloc_extent_map(GFP_NOFS);
|
|
BUG_ON(!em || IS_ERR(em));
|
|
|
|
em->start = start;
|
|
em->len = extent_key->offset;
|
|
em->block_len = extent_key->offset;
|
|
em->block_start = extent_key->objectid;
|
|
em->bdev = root->fs_info->fs_devices->latest_bdev;
|
|
set_bit(EXTENT_FLAG_PINNED, &em->flags);
|
|
|
|
/* setup extent map to cheat btrfs_readpage */
|
|
lock_extent(&BTRFS_I(reloc_inode)->io_tree, start, end, GFP_NOFS);
|
|
while (1) {
|
|
int ret;
|
|
spin_lock(&em_tree->lock);
|
|
ret = add_extent_mapping(em_tree, em);
|
|
spin_unlock(&em_tree->lock);
|
|
if (ret != -EEXIST) {
|
|
free_extent_map(em);
|
|
break;
|
|
}
|
|
btrfs_drop_extent_cache(reloc_inode, start, end, 0);
|
|
}
|
|
unlock_extent(&BTRFS_I(reloc_inode)->io_tree, start, end, GFP_NOFS);
|
|
|
|
return relocate_inode_pages(reloc_inode, start, extent_key->offset);
|
|
}
|
|
|
|
struct btrfs_ref_path {
|
|
u64 extent_start;
|
|
u64 nodes[BTRFS_MAX_LEVEL];
|
|
u64 root_objectid;
|
|
u64 root_generation;
|
|
u64 owner_objectid;
|
|
u32 num_refs;
|
|
int lowest_level;
|
|
int current_level;
|
|
int shared_level;
|
|
|
|
struct btrfs_key node_keys[BTRFS_MAX_LEVEL];
|
|
u64 new_nodes[BTRFS_MAX_LEVEL];
|
|
};
|
|
|
|
struct disk_extent {
|
|
u64 ram_bytes;
|
|
u64 disk_bytenr;
|
|
u64 disk_num_bytes;
|
|
u64 offset;
|
|
u64 num_bytes;
|
|
u8 compression;
|
|
u8 encryption;
|
|
u16 other_encoding;
|
|
};
|
|
|
|
static int is_cowonly_root(u64 root_objectid)
|
|
{
|
|
if (root_objectid == BTRFS_ROOT_TREE_OBJECTID ||
|
|
root_objectid == BTRFS_EXTENT_TREE_OBJECTID ||
|
|
root_objectid == BTRFS_CHUNK_TREE_OBJECTID ||
|
|
root_objectid == BTRFS_DEV_TREE_OBJECTID ||
|
|
root_objectid == BTRFS_TREE_LOG_OBJECTID ||
|
|
root_objectid == BTRFS_CSUM_TREE_OBJECTID)
|
|
return 1;
|
|
return 0;
|
|
}
|
|
|
|
static noinline int __next_ref_path(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *extent_root,
|
|
struct btrfs_ref_path *ref_path,
|
|
int first_time)
|
|
{
|
|
struct extent_buffer *leaf;
|
|
struct btrfs_path *path;
|
|
struct btrfs_extent_ref *ref;
|
|
struct btrfs_key key;
|
|
struct btrfs_key found_key;
|
|
u64 bytenr;
|
|
u32 nritems;
|
|
int level;
|
|
int ret = 1;
|
|
|
|
path = btrfs_alloc_path();
|
|
if (!path)
|
|
return -ENOMEM;
|
|
|
|
if (first_time) {
|
|
ref_path->lowest_level = -1;
|
|
ref_path->current_level = -1;
|
|
ref_path->shared_level = -1;
|
|
goto walk_up;
|
|
}
|
|
walk_down:
|
|
level = ref_path->current_level - 1;
|
|
while (level >= -1) {
|
|
u64 parent;
|
|
if (level < ref_path->lowest_level)
|
|
break;
|
|
|
|
if (level >= 0)
|
|
bytenr = ref_path->nodes[level];
|
|
else
|
|
bytenr = ref_path->extent_start;
|
|
BUG_ON(bytenr == 0);
|
|
|
|
parent = ref_path->nodes[level + 1];
|
|
ref_path->nodes[level + 1] = 0;
|
|
ref_path->current_level = level;
|
|
BUG_ON(parent == 0);
|
|
|
|
key.objectid = bytenr;
|
|
key.offset = parent + 1;
|
|
key.type = BTRFS_EXTENT_REF_KEY;
|
|
|
|
ret = btrfs_search_slot(trans, extent_root, &key, path, 0, 0);
|
|
if (ret < 0)
|
|
goto out;
|
|
BUG_ON(ret == 0);
|
|
|
|
leaf = path->nodes[0];
|
|
nritems = btrfs_header_nritems(leaf);
|
|
if (path->slots[0] >= nritems) {
|
|
ret = btrfs_next_leaf(extent_root, path);
|
|
if (ret < 0)
|
|
goto out;
|
|
if (ret > 0)
|
|
goto next;
|
|
leaf = path->nodes[0];
|
|
}
|
|
|
|
btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
|
|
if (found_key.objectid == bytenr &&
|
|
found_key.type == BTRFS_EXTENT_REF_KEY) {
|
|
if (level < ref_path->shared_level)
|
|
ref_path->shared_level = level;
|
|
goto found;
|
|
}
|
|
next:
|
|
level--;
|
|
btrfs_release_path(extent_root, path);
|
|
cond_resched();
|
|
}
|
|
/* reached lowest level */
|
|
ret = 1;
|
|
goto out;
|
|
walk_up:
|
|
level = ref_path->current_level;
|
|
while (level < BTRFS_MAX_LEVEL - 1) {
|
|
u64 ref_objectid;
|
|
|
|
if (level >= 0)
|
|
bytenr = ref_path->nodes[level];
|
|
else
|
|
bytenr = ref_path->extent_start;
|
|
|
|
BUG_ON(bytenr == 0);
|
|
|
|
key.objectid = bytenr;
|
|
key.offset = 0;
|
|
key.type = BTRFS_EXTENT_REF_KEY;
|
|
|
|
ret = btrfs_search_slot(trans, extent_root, &key, path, 0, 0);
|
|
if (ret < 0)
|
|
goto out;
|
|
|
|
leaf = path->nodes[0];
|
|
nritems = btrfs_header_nritems(leaf);
|
|
if (path->slots[0] >= nritems) {
|
|
ret = btrfs_next_leaf(extent_root, path);
|
|
if (ret < 0)
|
|
goto out;
|
|
if (ret > 0) {
|
|
/* the extent was freed by someone */
|
|
if (ref_path->lowest_level == level)
|
|
goto out;
|
|
btrfs_release_path(extent_root, path);
|
|
goto walk_down;
|
|
}
|
|
leaf = path->nodes[0];
|
|
}
|
|
|
|
btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
|
|
if (found_key.objectid != bytenr ||
|
|
found_key.type != BTRFS_EXTENT_REF_KEY) {
|
|
/* the extent was freed by someone */
|
|
if (ref_path->lowest_level == level) {
|
|
ret = 1;
|
|
goto out;
|
|
}
|
|
btrfs_release_path(extent_root, path);
|
|
goto walk_down;
|
|
}
|
|
found:
|
|
ref = btrfs_item_ptr(leaf, path->slots[0],
|
|
struct btrfs_extent_ref);
|
|
ref_objectid = btrfs_ref_objectid(leaf, ref);
|
|
if (ref_objectid < BTRFS_FIRST_FREE_OBJECTID) {
|
|
if (first_time) {
|
|
level = (int)ref_objectid;
|
|
BUG_ON(level >= BTRFS_MAX_LEVEL);
|
|
ref_path->lowest_level = level;
|
|
ref_path->current_level = level;
|
|
ref_path->nodes[level] = bytenr;
|
|
} else {
|
|
WARN_ON(ref_objectid != level);
|
|
}
|
|
} else {
|
|
WARN_ON(level != -1);
|
|
}
|
|
first_time = 0;
|
|
|
|
if (ref_path->lowest_level == level) {
|
|
ref_path->owner_objectid = ref_objectid;
|
|
ref_path->num_refs = btrfs_ref_num_refs(leaf, ref);
|
|
}
|
|
|
|
/*
|
|
* the block is tree root or the block isn't in reference
|
|
* counted tree.
|
|
*/
|
|
if (found_key.objectid == found_key.offset ||
|
|
is_cowonly_root(btrfs_ref_root(leaf, ref))) {
|
|
ref_path->root_objectid = btrfs_ref_root(leaf, ref);
|
|
ref_path->root_generation =
|
|
btrfs_ref_generation(leaf, ref);
|
|
if (level < 0) {
|
|
/* special reference from the tree log */
|
|
ref_path->nodes[0] = found_key.offset;
|
|
ref_path->current_level = 0;
|
|
}
|
|
ret = 0;
|
|
goto out;
|
|
}
|
|
|
|
level++;
|
|
BUG_ON(ref_path->nodes[level] != 0);
|
|
ref_path->nodes[level] = found_key.offset;
|
|
ref_path->current_level = level;
|
|
|
|
/*
|
|
* the reference was created in the running transaction,
|
|
* no need to continue walking up.
|
|
*/
|
|
if (btrfs_ref_generation(leaf, ref) == trans->transid) {
|
|
ref_path->root_objectid = btrfs_ref_root(leaf, ref);
|
|
ref_path->root_generation =
|
|
btrfs_ref_generation(leaf, ref);
|
|
ret = 0;
|
|
goto out;
|
|
}
|
|
|
|
btrfs_release_path(extent_root, path);
|
|
cond_resched();
|
|
}
|
|
/* reached max tree level, but no tree root found. */
|
|
BUG();
|
|
out:
|
|
btrfs_free_path(path);
|
|
return ret;
|
|
}
|
|
|
|
static int btrfs_first_ref_path(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *extent_root,
|
|
struct btrfs_ref_path *ref_path,
|
|
u64 extent_start)
|
|
{
|
|
memset(ref_path, 0, sizeof(*ref_path));
|
|
ref_path->extent_start = extent_start;
|
|
|
|
return __next_ref_path(trans, extent_root, ref_path, 1);
|
|
}
|
|
|
|
static int btrfs_next_ref_path(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *extent_root,
|
|
struct btrfs_ref_path *ref_path)
|
|
{
|
|
return __next_ref_path(trans, extent_root, ref_path, 0);
|
|
}
|
|
|
|
static noinline int get_new_locations(struct inode *reloc_inode,
|
|
struct btrfs_key *extent_key,
|
|
u64 offset, int no_fragment,
|
|
struct disk_extent **extents,
|
|
int *nr_extents)
|
|
{
|
|
struct btrfs_root *root = BTRFS_I(reloc_inode)->root;
|
|
struct btrfs_path *path;
|
|
struct btrfs_file_extent_item *fi;
|
|
struct extent_buffer *leaf;
|
|
struct disk_extent *exts = *extents;
|
|
struct btrfs_key found_key;
|
|
u64 cur_pos;
|
|
u64 last_byte;
|
|
u32 nritems;
|
|
int nr = 0;
|
|
int max = *nr_extents;
|
|
int ret;
|
|
|
|
WARN_ON(!no_fragment && *extents);
|
|
if (!exts) {
|
|
max = 1;
|
|
exts = kmalloc(sizeof(*exts) * max, GFP_NOFS);
|
|
if (!exts)
|
|
return -ENOMEM;
|
|
}
|
|
|
|
path = btrfs_alloc_path();
|
|
BUG_ON(!path);
|
|
|
|
cur_pos = extent_key->objectid - offset;
|
|
last_byte = extent_key->objectid + extent_key->offset;
|
|
ret = btrfs_lookup_file_extent(NULL, root, path, reloc_inode->i_ino,
|
|
cur_pos, 0);
|
|
if (ret < 0)
|
|
goto out;
|
|
if (ret > 0) {
|
|
ret = -ENOENT;
|
|
goto out;
|
|
}
|
|
|
|
while (1) {
|
|
leaf = path->nodes[0];
|
|
nritems = btrfs_header_nritems(leaf);
|
|
if (path->slots[0] >= nritems) {
|
|
ret = btrfs_next_leaf(root, path);
|
|
if (ret < 0)
|
|
goto out;
|
|
if (ret > 0)
|
|
break;
|
|
leaf = path->nodes[0];
|
|
}
|
|
|
|
btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
|
|
if (found_key.offset != cur_pos ||
|
|
found_key.type != BTRFS_EXTENT_DATA_KEY ||
|
|
found_key.objectid != reloc_inode->i_ino)
|
|
break;
|
|
|
|
fi = btrfs_item_ptr(leaf, path->slots[0],
|
|
struct btrfs_file_extent_item);
|
|
if (btrfs_file_extent_type(leaf, fi) !=
|
|
BTRFS_FILE_EXTENT_REG ||
|
|
btrfs_file_extent_disk_bytenr(leaf, fi) == 0)
|
|
break;
|
|
|
|
if (nr == max) {
|
|
struct disk_extent *old = exts;
|
|
max *= 2;
|
|
exts = kzalloc(sizeof(*exts) * max, GFP_NOFS);
|
|
memcpy(exts, old, sizeof(*exts) * nr);
|
|
if (old != *extents)
|
|
kfree(old);
|
|
}
|
|
|
|
exts[nr].disk_bytenr =
|
|
btrfs_file_extent_disk_bytenr(leaf, fi);
|
|
exts[nr].disk_num_bytes =
|
|
btrfs_file_extent_disk_num_bytes(leaf, fi);
|
|
exts[nr].offset = btrfs_file_extent_offset(leaf, fi);
|
|
exts[nr].num_bytes = btrfs_file_extent_num_bytes(leaf, fi);
|
|
exts[nr].ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
|
|
exts[nr].compression = btrfs_file_extent_compression(leaf, fi);
|
|
exts[nr].encryption = btrfs_file_extent_encryption(leaf, fi);
|
|
exts[nr].other_encoding = btrfs_file_extent_other_encoding(leaf,
|
|
fi);
|
|
BUG_ON(exts[nr].offset > 0);
|
|
BUG_ON(exts[nr].compression || exts[nr].encryption);
|
|
BUG_ON(exts[nr].num_bytes != exts[nr].disk_num_bytes);
|
|
|
|
cur_pos += exts[nr].num_bytes;
|
|
nr++;
|
|
|
|
if (cur_pos + offset >= last_byte)
|
|
break;
|
|
|
|
if (no_fragment) {
|
|
ret = 1;
|
|
goto out;
|
|
}
|
|
path->slots[0]++;
|
|
}
|
|
|
|
BUG_ON(cur_pos + offset > last_byte);
|
|
if (cur_pos + offset < last_byte) {
|
|
ret = -ENOENT;
|
|
goto out;
|
|
}
|
|
ret = 0;
|
|
out:
|
|
btrfs_free_path(path);
|
|
if (ret) {
|
|
if (exts != *extents)
|
|
kfree(exts);
|
|
} else {
|
|
*extents = exts;
|
|
*nr_extents = nr;
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
static noinline int replace_one_extent(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *root,
|
|
struct btrfs_path *path,
|
|
struct btrfs_key *extent_key,
|
|
struct btrfs_key *leaf_key,
|
|
struct btrfs_ref_path *ref_path,
|
|
struct disk_extent *new_extents,
|
|
int nr_extents)
|
|
{
|
|
struct extent_buffer *leaf;
|
|
struct btrfs_file_extent_item *fi;
|
|
struct inode *inode = NULL;
|
|
struct btrfs_key key;
|
|
u64 lock_start = 0;
|
|
u64 lock_end = 0;
|
|
u64 num_bytes;
|
|
u64 ext_offset;
|
|
u64 search_end = (u64)-1;
|
|
u32 nritems;
|
|
int nr_scaned = 0;
|
|
int extent_locked = 0;
|
|
int extent_type;
|
|
int ret;
|
|
|
|
memcpy(&key, leaf_key, sizeof(key));
|
|
if (ref_path->owner_objectid != BTRFS_MULTIPLE_OBJECTIDS) {
|
|
if (key.objectid < ref_path->owner_objectid ||
|
|
(key.objectid == ref_path->owner_objectid &&
|
|
key.type < BTRFS_EXTENT_DATA_KEY)) {
|
|
key.objectid = ref_path->owner_objectid;
|
|
key.type = BTRFS_EXTENT_DATA_KEY;
|
|
key.offset = 0;
|
|
}
|
|
}
|
|
|
|
while (1) {
|
|
ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
|
|
if (ret < 0)
|
|
goto out;
|
|
|
|
leaf = path->nodes[0];
|
|
nritems = btrfs_header_nritems(leaf);
|
|
next:
|
|
if (extent_locked && ret > 0) {
|
|
/*
|
|
* the file extent item was modified by someone
|
|
* before the extent got locked.
|
|
*/
|
|
unlock_extent(&BTRFS_I(inode)->io_tree, lock_start,
|
|
lock_end, GFP_NOFS);
|
|
extent_locked = 0;
|
|
}
|
|
|
|
if (path->slots[0] >= nritems) {
|
|
if (++nr_scaned > 2)
|
|
break;
|
|
|
|
BUG_ON(extent_locked);
|
|
ret = btrfs_next_leaf(root, path);
|
|
if (ret < 0)
|
|
goto out;
|
|
if (ret > 0)
|
|
break;
|
|
leaf = path->nodes[0];
|
|
nritems = btrfs_header_nritems(leaf);
|
|
}
|
|
|
|
btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
|
|
|
|
if (ref_path->owner_objectid != BTRFS_MULTIPLE_OBJECTIDS) {
|
|
if ((key.objectid > ref_path->owner_objectid) ||
|
|
(key.objectid == ref_path->owner_objectid &&
|
|
key.type > BTRFS_EXTENT_DATA_KEY) ||
|
|
key.offset >= search_end)
|
|
break;
|
|
}
|
|
|
|
if (inode && key.objectid != inode->i_ino) {
|
|
BUG_ON(extent_locked);
|
|
btrfs_release_path(root, path);
|
|
mutex_unlock(&inode->i_mutex);
|
|
iput(inode);
|
|
inode = NULL;
|
|
continue;
|
|
}
|
|
|
|
if (key.type != BTRFS_EXTENT_DATA_KEY) {
|
|
path->slots[0]++;
|
|
ret = 1;
|
|
goto next;
|
|
}
|
|
fi = btrfs_item_ptr(leaf, path->slots[0],
|
|
struct btrfs_file_extent_item);
|
|
extent_type = btrfs_file_extent_type(leaf, fi);
|
|
if ((extent_type != BTRFS_FILE_EXTENT_REG &&
|
|
extent_type != BTRFS_FILE_EXTENT_PREALLOC) ||
|
|
(btrfs_file_extent_disk_bytenr(leaf, fi) !=
|
|
extent_key->objectid)) {
|
|
path->slots[0]++;
|
|
ret = 1;
|
|
goto next;
|
|
}
|
|
|
|
num_bytes = btrfs_file_extent_num_bytes(leaf, fi);
|
|
ext_offset = btrfs_file_extent_offset(leaf, fi);
|
|
|
|
if (search_end == (u64)-1) {
|
|
search_end = key.offset - ext_offset +
|
|
btrfs_file_extent_ram_bytes(leaf, fi);
|
|
}
|
|
|
|
if (!extent_locked) {
|
|
lock_start = key.offset;
|
|
lock_end = lock_start + num_bytes - 1;
|
|
} else {
|
|
if (lock_start > key.offset ||
|
|
lock_end + 1 < key.offset + num_bytes) {
|
|
unlock_extent(&BTRFS_I(inode)->io_tree,
|
|
lock_start, lock_end, GFP_NOFS);
|
|
extent_locked = 0;
|
|
}
|
|
}
|
|
|
|
if (!inode) {
|
|
btrfs_release_path(root, path);
|
|
|
|
inode = btrfs_iget_locked(root->fs_info->sb,
|
|
key.objectid, root);
|
|
if (inode->i_state & I_NEW) {
|
|
BTRFS_I(inode)->root = root;
|
|
BTRFS_I(inode)->location.objectid =
|
|
key.objectid;
|
|
BTRFS_I(inode)->location.type =
|
|
BTRFS_INODE_ITEM_KEY;
|
|
BTRFS_I(inode)->location.offset = 0;
|
|
btrfs_read_locked_inode(inode);
|
|
unlock_new_inode(inode);
|
|
}
|
|
/*
|
|
* some code call btrfs_commit_transaction while
|
|
* holding the i_mutex, so we can't use mutex_lock
|
|
* here.
|
|
*/
|
|
if (is_bad_inode(inode) ||
|
|
!mutex_trylock(&inode->i_mutex)) {
|
|
iput(inode);
|
|
inode = NULL;
|
|
key.offset = (u64)-1;
|
|
goto skip;
|
|
}
|
|
}
|
|
|
|
if (!extent_locked) {
|
|
struct btrfs_ordered_extent *ordered;
|
|
|
|
btrfs_release_path(root, path);
|
|
|
|
lock_extent(&BTRFS_I(inode)->io_tree, lock_start,
|
|
lock_end, GFP_NOFS);
|
|
ordered = btrfs_lookup_first_ordered_extent(inode,
|
|
lock_end);
|
|
if (ordered &&
|
|
ordered->file_offset <= lock_end &&
|
|
ordered->file_offset + ordered->len > lock_start) {
|
|
unlock_extent(&BTRFS_I(inode)->io_tree,
|
|
lock_start, lock_end, GFP_NOFS);
|
|
btrfs_start_ordered_extent(inode, ordered, 1);
|
|
btrfs_put_ordered_extent(ordered);
|
|
key.offset += num_bytes;
|
|
goto skip;
|
|
}
|
|
if (ordered)
|
|
btrfs_put_ordered_extent(ordered);
|
|
|
|
extent_locked = 1;
|
|
continue;
|
|
}
|
|
|
|
if (nr_extents == 1) {
|
|
/* update extent pointer in place */
|
|
btrfs_set_file_extent_disk_bytenr(leaf, fi,
|
|
new_extents[0].disk_bytenr);
|
|
btrfs_set_file_extent_disk_num_bytes(leaf, fi,
|
|
new_extents[0].disk_num_bytes);
|
|
btrfs_mark_buffer_dirty(leaf);
|
|
|
|
btrfs_drop_extent_cache(inode, key.offset,
|
|
key.offset + num_bytes - 1, 0);
|
|
|
|
ret = btrfs_inc_extent_ref(trans, root,
|
|
new_extents[0].disk_bytenr,
|
|
new_extents[0].disk_num_bytes,
|
|
leaf->start,
|
|
root->root_key.objectid,
|
|
trans->transid,
|
|
key.objectid);
|
|
BUG_ON(ret);
|
|
|
|
ret = btrfs_free_extent(trans, root,
|
|
extent_key->objectid,
|
|
extent_key->offset,
|
|
leaf->start,
|
|
btrfs_header_owner(leaf),
|
|
btrfs_header_generation(leaf),
|
|
key.objectid, 0);
|
|
BUG_ON(ret);
|
|
|
|
btrfs_release_path(root, path);
|
|
key.offset += num_bytes;
|
|
} else {
|
|
BUG_ON(1);
|
|
#if 0
|
|
u64 alloc_hint;
|
|
u64 extent_len;
|
|
int i;
|
|
/*
|
|
* drop old extent pointer at first, then insert the
|
|
* new pointers one bye one
|
|
*/
|
|
btrfs_release_path(root, path);
|
|
ret = btrfs_drop_extents(trans, root, inode, key.offset,
|
|
key.offset + num_bytes,
|
|
key.offset, &alloc_hint);
|
|
BUG_ON(ret);
|
|
|
|
for (i = 0; i < nr_extents; i++) {
|
|
if (ext_offset >= new_extents[i].num_bytes) {
|
|
ext_offset -= new_extents[i].num_bytes;
|
|
continue;
|
|
}
|
|
extent_len = min(new_extents[i].num_bytes -
|
|
ext_offset, num_bytes);
|
|
|
|
ret = btrfs_insert_empty_item(trans, root,
|
|
path, &key,
|
|
sizeof(*fi));
|
|
BUG_ON(ret);
|
|
|
|
leaf = path->nodes[0];
|
|
fi = btrfs_item_ptr(leaf, path->slots[0],
|
|
struct btrfs_file_extent_item);
|
|
btrfs_set_file_extent_generation(leaf, fi,
|
|
trans->transid);
|
|
btrfs_set_file_extent_type(leaf, fi,
|
|
BTRFS_FILE_EXTENT_REG);
|
|
btrfs_set_file_extent_disk_bytenr(leaf, fi,
|
|
new_extents[i].disk_bytenr);
|
|
btrfs_set_file_extent_disk_num_bytes(leaf, fi,
|
|
new_extents[i].disk_num_bytes);
|
|
btrfs_set_file_extent_ram_bytes(leaf, fi,
|
|
new_extents[i].ram_bytes);
|
|
|
|
btrfs_set_file_extent_compression(leaf, fi,
|
|
new_extents[i].compression);
|
|
btrfs_set_file_extent_encryption(leaf, fi,
|
|
new_extents[i].encryption);
|
|
btrfs_set_file_extent_other_encoding(leaf, fi,
|
|
new_extents[i].other_encoding);
|
|
|
|
btrfs_set_file_extent_num_bytes(leaf, fi,
|
|
extent_len);
|
|
ext_offset += new_extents[i].offset;
|
|
btrfs_set_file_extent_offset(leaf, fi,
|
|
ext_offset);
|
|
btrfs_mark_buffer_dirty(leaf);
|
|
|
|
btrfs_drop_extent_cache(inode, key.offset,
|
|
key.offset + extent_len - 1, 0);
|
|
|
|
ret = btrfs_inc_extent_ref(trans, root,
|
|
new_extents[i].disk_bytenr,
|
|
new_extents[i].disk_num_bytes,
|
|
leaf->start,
|
|
root->root_key.objectid,
|
|
trans->transid, key.objectid);
|
|
BUG_ON(ret);
|
|
btrfs_release_path(root, path);
|
|
|
|
inode_add_bytes(inode, extent_len);
|
|
|
|
ext_offset = 0;
|
|
num_bytes -= extent_len;
|
|
key.offset += extent_len;
|
|
|
|
if (num_bytes == 0)
|
|
break;
|
|
}
|
|
BUG_ON(i >= nr_extents);
|
|
#endif
|
|
}
|
|
|
|
if (extent_locked) {
|
|
unlock_extent(&BTRFS_I(inode)->io_tree, lock_start,
|
|
lock_end, GFP_NOFS);
|
|
extent_locked = 0;
|
|
}
|
|
skip:
|
|
if (ref_path->owner_objectid != BTRFS_MULTIPLE_OBJECTIDS &&
|
|
key.offset >= search_end)
|
|
break;
|
|
|
|
cond_resched();
|
|
}
|
|
ret = 0;
|
|
out:
|
|
btrfs_release_path(root, path);
|
|
if (inode) {
|
|
mutex_unlock(&inode->i_mutex);
|
|
if (extent_locked) {
|
|
unlock_extent(&BTRFS_I(inode)->io_tree, lock_start,
|
|
lock_end, GFP_NOFS);
|
|
}
|
|
iput(inode);
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
int btrfs_reloc_tree_cache_ref(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *root,
|
|
struct extent_buffer *buf, u64 orig_start)
|
|
{
|
|
int level;
|
|
int ret;
|
|
|
|
BUG_ON(btrfs_header_generation(buf) != trans->transid);
|
|
BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
|
|
|
|
level = btrfs_header_level(buf);
|
|
if (level == 0) {
|
|
struct btrfs_leaf_ref *ref;
|
|
struct btrfs_leaf_ref *orig_ref;
|
|
|
|
orig_ref = btrfs_lookup_leaf_ref(root, orig_start);
|
|
if (!orig_ref)
|
|
return -ENOENT;
|
|
|
|
ref = btrfs_alloc_leaf_ref(root, orig_ref->nritems);
|
|
if (!ref) {
|
|
btrfs_free_leaf_ref(root, orig_ref);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
ref->nritems = orig_ref->nritems;
|
|
memcpy(ref->extents, orig_ref->extents,
|
|
sizeof(ref->extents[0]) * ref->nritems);
|
|
|
|
btrfs_free_leaf_ref(root, orig_ref);
|
|
|
|
ref->root_gen = trans->transid;
|
|
ref->bytenr = buf->start;
|
|
ref->owner = btrfs_header_owner(buf);
|
|
ref->generation = btrfs_header_generation(buf);
|
|
|
|
ret = btrfs_add_leaf_ref(root, ref, 0);
|
|
WARN_ON(ret);
|
|
btrfs_free_leaf_ref(root, ref);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static noinline int invalidate_extent_cache(struct btrfs_root *root,
|
|
struct extent_buffer *leaf,
|
|
struct btrfs_block_group_cache *group,
|
|
struct btrfs_root *target_root)
|
|
{
|
|
struct btrfs_key key;
|
|
struct inode *inode = NULL;
|
|
struct btrfs_file_extent_item *fi;
|
|
u64 num_bytes;
|
|
u64 skip_objectid = 0;
|
|
u32 nritems;
|
|
u32 i;
|
|
|
|
nritems = btrfs_header_nritems(leaf);
|
|
for (i = 0; i < nritems; i++) {
|
|
btrfs_item_key_to_cpu(leaf, &key, i);
|
|
if (key.objectid == skip_objectid ||
|
|
key.type != BTRFS_EXTENT_DATA_KEY)
|
|
continue;
|
|
fi = btrfs_item_ptr(leaf, i, struct btrfs_file_extent_item);
|
|
if (btrfs_file_extent_type(leaf, fi) ==
|
|
BTRFS_FILE_EXTENT_INLINE)
|
|
continue;
|
|
if (btrfs_file_extent_disk_bytenr(leaf, fi) == 0)
|
|
continue;
|
|
if (!inode || inode->i_ino != key.objectid) {
|
|
iput(inode);
|
|
inode = btrfs_ilookup(target_root->fs_info->sb,
|
|
key.objectid, target_root, 1);
|
|
}
|
|
if (!inode) {
|
|
skip_objectid = key.objectid;
|
|
continue;
|
|
}
|
|
num_bytes = btrfs_file_extent_num_bytes(leaf, fi);
|
|
|
|
lock_extent(&BTRFS_I(inode)->io_tree, key.offset,
|
|
key.offset + num_bytes - 1, GFP_NOFS);
|
|
btrfs_drop_extent_cache(inode, key.offset,
|
|
key.offset + num_bytes - 1, 1);
|
|
unlock_extent(&BTRFS_I(inode)->io_tree, key.offset,
|
|
key.offset + num_bytes - 1, GFP_NOFS);
|
|
cond_resched();
|
|
}
|
|
iput(inode);
|
|
return 0;
|
|
}
|
|
|
|
static noinline int replace_extents_in_leaf(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *root,
|
|
struct extent_buffer *leaf,
|
|
struct btrfs_block_group_cache *group,
|
|
struct inode *reloc_inode)
|
|
{
|
|
struct btrfs_key key;
|
|
struct btrfs_key extent_key;
|
|
struct btrfs_file_extent_item *fi;
|
|
struct btrfs_leaf_ref *ref;
|
|
struct disk_extent *new_extent;
|
|
u64 bytenr;
|
|
u64 num_bytes;
|
|
u32 nritems;
|
|
u32 i;
|
|
int ext_index;
|
|
int nr_extent;
|
|
int ret;
|
|
|
|
new_extent = kmalloc(sizeof(*new_extent), GFP_NOFS);
|
|
BUG_ON(!new_extent);
|
|
|
|
ref = btrfs_lookup_leaf_ref(root, leaf->start);
|
|
BUG_ON(!ref);
|
|
|
|
ext_index = -1;
|
|
nritems = btrfs_header_nritems(leaf);
|
|
for (i = 0; i < nritems; i++) {
|
|
btrfs_item_key_to_cpu(leaf, &key, i);
|
|
if (btrfs_key_type(&key) != BTRFS_EXTENT_DATA_KEY)
|
|
continue;
|
|
fi = btrfs_item_ptr(leaf, i, struct btrfs_file_extent_item);
|
|
if (btrfs_file_extent_type(leaf, fi) ==
|
|
BTRFS_FILE_EXTENT_INLINE)
|
|
continue;
|
|
bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
|
|
num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
|
|
if (bytenr == 0)
|
|
continue;
|
|
|
|
ext_index++;
|
|
if (bytenr >= group->key.objectid + group->key.offset ||
|
|
bytenr + num_bytes <= group->key.objectid)
|
|
continue;
|
|
|
|
extent_key.objectid = bytenr;
|
|
extent_key.offset = num_bytes;
|
|
extent_key.type = BTRFS_EXTENT_ITEM_KEY;
|
|
nr_extent = 1;
|
|
ret = get_new_locations(reloc_inode, &extent_key,
|
|
group->key.objectid, 1,
|
|
&new_extent, &nr_extent);
|
|
if (ret > 0)
|
|
continue;
|
|
BUG_ON(ret < 0);
|
|
|
|
BUG_ON(ref->extents[ext_index].bytenr != bytenr);
|
|
BUG_ON(ref->extents[ext_index].num_bytes != num_bytes);
|
|
ref->extents[ext_index].bytenr = new_extent->disk_bytenr;
|
|
ref->extents[ext_index].num_bytes = new_extent->disk_num_bytes;
|
|
|
|
btrfs_set_file_extent_disk_bytenr(leaf, fi,
|
|
new_extent->disk_bytenr);
|
|
btrfs_set_file_extent_disk_num_bytes(leaf, fi,
|
|
new_extent->disk_num_bytes);
|
|
btrfs_mark_buffer_dirty(leaf);
|
|
|
|
ret = btrfs_inc_extent_ref(trans, root,
|
|
new_extent->disk_bytenr,
|
|
new_extent->disk_num_bytes,
|
|
leaf->start,
|
|
root->root_key.objectid,
|
|
trans->transid, key.objectid);
|
|
BUG_ON(ret);
|
|
|
|
ret = btrfs_free_extent(trans, root,
|
|
bytenr, num_bytes, leaf->start,
|
|
btrfs_header_owner(leaf),
|
|
btrfs_header_generation(leaf),
|
|
key.objectid, 0);
|
|
BUG_ON(ret);
|
|
cond_resched();
|
|
}
|
|
kfree(new_extent);
|
|
BUG_ON(ext_index + 1 != ref->nritems);
|
|
btrfs_free_leaf_ref(root, ref);
|
|
return 0;
|
|
}
|
|
|
|
int btrfs_free_reloc_root(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *root)
|
|
{
|
|
struct btrfs_root *reloc_root;
|
|
int ret;
|
|
|
|
if (root->reloc_root) {
|
|
reloc_root = root->reloc_root;
|
|
root->reloc_root = NULL;
|
|
list_add(&reloc_root->dead_list,
|
|
&root->fs_info->dead_reloc_roots);
|
|
|
|
btrfs_set_root_bytenr(&reloc_root->root_item,
|
|
reloc_root->node->start);
|
|
btrfs_set_root_level(&root->root_item,
|
|
btrfs_header_level(reloc_root->node));
|
|
memset(&reloc_root->root_item.drop_progress, 0,
|
|
sizeof(struct btrfs_disk_key));
|
|
reloc_root->root_item.drop_level = 0;
|
|
|
|
ret = btrfs_update_root(trans, root->fs_info->tree_root,
|
|
&reloc_root->root_key,
|
|
&reloc_root->root_item);
|
|
BUG_ON(ret);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
int btrfs_drop_dead_reloc_roots(struct btrfs_root *root)
|
|
{
|
|
struct btrfs_trans_handle *trans;
|
|
struct btrfs_root *reloc_root;
|
|
struct btrfs_root *prev_root = NULL;
|
|
struct list_head dead_roots;
|
|
int ret;
|
|
unsigned long nr;
|
|
|
|
INIT_LIST_HEAD(&dead_roots);
|
|
list_splice_init(&root->fs_info->dead_reloc_roots, &dead_roots);
|
|
|
|
while (!list_empty(&dead_roots)) {
|
|
reloc_root = list_entry(dead_roots.prev,
|
|
struct btrfs_root, dead_list);
|
|
list_del_init(&reloc_root->dead_list);
|
|
|
|
BUG_ON(reloc_root->commit_root != NULL);
|
|
while (1) {
|
|
trans = btrfs_join_transaction(root, 1);
|
|
BUG_ON(!trans);
|
|
|
|
mutex_lock(&root->fs_info->drop_mutex);
|
|
ret = btrfs_drop_snapshot(trans, reloc_root);
|
|
if (ret != -EAGAIN)
|
|
break;
|
|
mutex_unlock(&root->fs_info->drop_mutex);
|
|
|
|
nr = trans->blocks_used;
|
|
ret = btrfs_end_transaction(trans, root);
|
|
BUG_ON(ret);
|
|
btrfs_btree_balance_dirty(root, nr);
|
|
}
|
|
|
|
free_extent_buffer(reloc_root->node);
|
|
|
|
ret = btrfs_del_root(trans, root->fs_info->tree_root,
|
|
&reloc_root->root_key);
|
|
BUG_ON(ret);
|
|
mutex_unlock(&root->fs_info->drop_mutex);
|
|
|
|
nr = trans->blocks_used;
|
|
ret = btrfs_end_transaction(trans, root);
|
|
BUG_ON(ret);
|
|
btrfs_btree_balance_dirty(root, nr);
|
|
|
|
kfree(prev_root);
|
|
prev_root = reloc_root;
|
|
}
|
|
if (prev_root) {
|
|
btrfs_remove_leaf_refs(prev_root, (u64)-1, 0);
|
|
kfree(prev_root);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
int btrfs_add_dead_reloc_root(struct btrfs_root *root)
|
|
{
|
|
list_add(&root->dead_list, &root->fs_info->dead_reloc_roots);
|
|
return 0;
|
|
}
|
|
|
|
int btrfs_cleanup_reloc_trees(struct btrfs_root *root)
|
|
{
|
|
struct btrfs_root *reloc_root;
|
|
struct btrfs_trans_handle *trans;
|
|
struct btrfs_key location;
|
|
int found;
|
|
int ret;
|
|
|
|
mutex_lock(&root->fs_info->tree_reloc_mutex);
|
|
ret = btrfs_find_dead_roots(root, BTRFS_TREE_RELOC_OBJECTID, NULL);
|
|
BUG_ON(ret);
|
|
found = !list_empty(&root->fs_info->dead_reloc_roots);
|
|
mutex_unlock(&root->fs_info->tree_reloc_mutex);
|
|
|
|
if (found) {
|
|
trans = btrfs_start_transaction(root, 1);
|
|
BUG_ON(!trans);
|
|
ret = btrfs_commit_transaction(trans, root);
|
|
BUG_ON(ret);
|
|
}
|
|
|
|
location.objectid = BTRFS_DATA_RELOC_TREE_OBJECTID;
|
|
location.offset = (u64)-1;
|
|
location.type = BTRFS_ROOT_ITEM_KEY;
|
|
|
|
reloc_root = btrfs_read_fs_root_no_name(root->fs_info, &location);
|
|
BUG_ON(!reloc_root);
|
|
btrfs_orphan_cleanup(reloc_root);
|
|
return 0;
|
|
}
|
|
|
|
static noinline int init_reloc_tree(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *root)
|
|
{
|
|
struct btrfs_root *reloc_root;
|
|
struct extent_buffer *eb;
|
|
struct btrfs_root_item *root_item;
|
|
struct btrfs_key root_key;
|
|
int ret;
|
|
|
|
BUG_ON(!root->ref_cows);
|
|
if (root->reloc_root)
|
|
return 0;
|
|
|
|
root_item = kmalloc(sizeof(*root_item), GFP_NOFS);
|
|
BUG_ON(!root_item);
|
|
|
|
ret = btrfs_copy_root(trans, root, root->commit_root,
|
|
&eb, BTRFS_TREE_RELOC_OBJECTID);
|
|
BUG_ON(ret);
|
|
|
|
root_key.objectid = BTRFS_TREE_RELOC_OBJECTID;
|
|
root_key.offset = root->root_key.objectid;
|
|
root_key.type = BTRFS_ROOT_ITEM_KEY;
|
|
|
|
memcpy(root_item, &root->root_item, sizeof(root_item));
|
|
btrfs_set_root_refs(root_item, 0);
|
|
btrfs_set_root_bytenr(root_item, eb->start);
|
|
btrfs_set_root_level(root_item, btrfs_header_level(eb));
|
|
btrfs_set_root_generation(root_item, trans->transid);
|
|
|
|
btrfs_tree_unlock(eb);
|
|
free_extent_buffer(eb);
|
|
|
|
ret = btrfs_insert_root(trans, root->fs_info->tree_root,
|
|
&root_key, root_item);
|
|
BUG_ON(ret);
|
|
kfree(root_item);
|
|
|
|
reloc_root = btrfs_read_fs_root_no_radix(root->fs_info->tree_root,
|
|
&root_key);
|
|
BUG_ON(!reloc_root);
|
|
reloc_root->last_trans = trans->transid;
|
|
reloc_root->commit_root = NULL;
|
|
reloc_root->ref_tree = &root->fs_info->reloc_ref_tree;
|
|
|
|
root->reloc_root = reloc_root;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Core function of space balance.
|
|
*
|
|
* The idea is using reloc trees to relocate tree blocks in reference
|
|
* counted roots. There is one reloc tree for each subvol, and all
|
|
* reloc trees share same root key objectid. Reloc trees are snapshots
|
|
* of the latest committed roots of subvols (root->commit_root).
|
|
*
|
|
* To relocate a tree block referenced by a subvol, there are two steps.
|
|
* COW the block through subvol's reloc tree, then update block pointer
|
|
* in the subvol to point to the new block. Since all reloc trees share
|
|
* same root key objectid, doing special handing for tree blocks owned
|
|
* by them is easy. Once a tree block has been COWed in one reloc tree,
|
|
* we can use the resulting new block directly when the same block is
|
|
* required to COW again through other reloc trees. By this way, relocated
|
|
* tree blocks are shared between reloc trees, so they are also shared
|
|
* between subvols.
|
|
*/
|
|
static noinline int relocate_one_path(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *root,
|
|
struct btrfs_path *path,
|
|
struct btrfs_key *first_key,
|
|
struct btrfs_ref_path *ref_path,
|
|
struct btrfs_block_group_cache *group,
|
|
struct inode *reloc_inode)
|
|
{
|
|
struct btrfs_root *reloc_root;
|
|
struct extent_buffer *eb = NULL;
|
|
struct btrfs_key *keys;
|
|
u64 *nodes;
|
|
int level;
|
|
int shared_level;
|
|
int lowest_level = 0;
|
|
int ret;
|
|
|
|
if (ref_path->owner_objectid < BTRFS_FIRST_FREE_OBJECTID)
|
|
lowest_level = ref_path->owner_objectid;
|
|
|
|
if (!root->ref_cows) {
|
|
path->lowest_level = lowest_level;
|
|
ret = btrfs_search_slot(trans, root, first_key, path, 0, 1);
|
|
BUG_ON(ret < 0);
|
|
path->lowest_level = 0;
|
|
btrfs_release_path(root, path);
|
|
return 0;
|
|
}
|
|
|
|
mutex_lock(&root->fs_info->tree_reloc_mutex);
|
|
ret = init_reloc_tree(trans, root);
|
|
BUG_ON(ret);
|
|
reloc_root = root->reloc_root;
|
|
|
|
shared_level = ref_path->shared_level;
|
|
ref_path->shared_level = BTRFS_MAX_LEVEL - 1;
|
|
|
|
keys = ref_path->node_keys;
|
|
nodes = ref_path->new_nodes;
|
|
memset(&keys[shared_level + 1], 0,
|
|
sizeof(*keys) * (BTRFS_MAX_LEVEL - shared_level - 1));
|
|
memset(&nodes[shared_level + 1], 0,
|
|
sizeof(*nodes) * (BTRFS_MAX_LEVEL - shared_level - 1));
|
|
|
|
if (nodes[lowest_level] == 0) {
|
|
path->lowest_level = lowest_level;
|
|
ret = btrfs_search_slot(trans, reloc_root, first_key, path,
|
|
0, 1);
|
|
BUG_ON(ret);
|
|
for (level = lowest_level; level < BTRFS_MAX_LEVEL; level++) {
|
|
eb = path->nodes[level];
|
|
if (!eb || eb == reloc_root->node)
|
|
break;
|
|
nodes[level] = eb->start;
|
|
if (level == 0)
|
|
btrfs_item_key_to_cpu(eb, &keys[level], 0);
|
|
else
|
|
btrfs_node_key_to_cpu(eb, &keys[level], 0);
|
|
}
|
|
if (nodes[0] &&
|
|
ref_path->owner_objectid >= BTRFS_FIRST_FREE_OBJECTID) {
|
|
eb = path->nodes[0];
|
|
ret = replace_extents_in_leaf(trans, reloc_root, eb,
|
|
group, reloc_inode);
|
|
BUG_ON(ret);
|
|
}
|
|
btrfs_release_path(reloc_root, path);
|
|
} else {
|
|
ret = btrfs_merge_path(trans, reloc_root, keys, nodes,
|
|
lowest_level);
|
|
BUG_ON(ret);
|
|
}
|
|
|
|
/*
|
|
* replace tree blocks in the fs tree with tree blocks in
|
|
* the reloc tree.
|
|
*/
|
|
ret = btrfs_merge_path(trans, root, keys, nodes, lowest_level);
|
|
BUG_ON(ret < 0);
|
|
|
|
if (ref_path->owner_objectid >= BTRFS_FIRST_FREE_OBJECTID) {
|
|
ret = btrfs_search_slot(trans, reloc_root, first_key, path,
|
|
0, 0);
|
|
BUG_ON(ret);
|
|
extent_buffer_get(path->nodes[0]);
|
|
eb = path->nodes[0];
|
|
btrfs_release_path(reloc_root, path);
|
|
ret = invalidate_extent_cache(reloc_root, eb, group, root);
|
|
BUG_ON(ret);
|
|
free_extent_buffer(eb);
|
|
}
|
|
|
|
mutex_unlock(&root->fs_info->tree_reloc_mutex);
|
|
path->lowest_level = 0;
|
|
return 0;
|
|
}
|
|
|
|
static noinline int relocate_tree_block(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *root,
|
|
struct btrfs_path *path,
|
|
struct btrfs_key *first_key,
|
|
struct btrfs_ref_path *ref_path)
|
|
{
|
|
int ret;
|
|
|
|
ret = relocate_one_path(trans, root, path, first_key,
|
|
ref_path, NULL, NULL);
|
|
BUG_ON(ret);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static noinline int del_extent_zero(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *extent_root,
|
|
struct btrfs_path *path,
|
|
struct btrfs_key *extent_key)
|
|
{
|
|
int ret;
|
|
|
|
ret = btrfs_search_slot(trans, extent_root, extent_key, path, -1, 1);
|
|
if (ret)
|
|
goto out;
|
|
ret = btrfs_del_item(trans, extent_root, path);
|
|
out:
|
|
btrfs_release_path(extent_root, path);
|
|
return ret;
|
|
}
|
|
|
|
static noinline struct btrfs_root *read_ref_root(struct btrfs_fs_info *fs_info,
|
|
struct btrfs_ref_path *ref_path)
|
|
{
|
|
struct btrfs_key root_key;
|
|
|
|
root_key.objectid = ref_path->root_objectid;
|
|
root_key.type = BTRFS_ROOT_ITEM_KEY;
|
|
if (is_cowonly_root(ref_path->root_objectid))
|
|
root_key.offset = 0;
|
|
else
|
|
root_key.offset = (u64)-1;
|
|
|
|
return btrfs_read_fs_root_no_name(fs_info, &root_key);
|
|
}
|
|
|
|
static noinline int relocate_one_extent(struct btrfs_root *extent_root,
|
|
struct btrfs_path *path,
|
|
struct btrfs_key *extent_key,
|
|
struct btrfs_block_group_cache *group,
|
|
struct inode *reloc_inode, int pass)
|
|
{
|
|
struct btrfs_trans_handle *trans;
|
|
struct btrfs_root *found_root;
|
|
struct btrfs_ref_path *ref_path = NULL;
|
|
struct disk_extent *new_extents = NULL;
|
|
int nr_extents = 0;
|
|
int loops;
|
|
int ret;
|
|
int level;
|
|
struct btrfs_key first_key;
|
|
u64 prev_block = 0;
|
|
|
|
|
|
trans = btrfs_start_transaction(extent_root, 1);
|
|
BUG_ON(!trans);
|
|
|
|
if (extent_key->objectid == 0) {
|
|
ret = del_extent_zero(trans, extent_root, path, extent_key);
|
|
goto out;
|
|
}
|
|
|
|
ref_path = kmalloc(sizeof(*ref_path), GFP_NOFS);
|
|
if (!ref_path) {
|
|
ret = -ENOMEM;
|
|
goto out;
|
|
}
|
|
|
|
for (loops = 0; ; loops++) {
|
|
if (loops == 0) {
|
|
ret = btrfs_first_ref_path(trans, extent_root, ref_path,
|
|
extent_key->objectid);
|
|
} else {
|
|
ret = btrfs_next_ref_path(trans, extent_root, ref_path);
|
|
}
|
|
if (ret < 0)
|
|
goto out;
|
|
if (ret > 0)
|
|
break;
|
|
|
|
if (ref_path->root_objectid == BTRFS_TREE_LOG_OBJECTID ||
|
|
ref_path->root_objectid == BTRFS_TREE_RELOC_OBJECTID)
|
|
continue;
|
|
|
|
found_root = read_ref_root(extent_root->fs_info, ref_path);
|
|
BUG_ON(!found_root);
|
|
/*
|
|
* for reference counted tree, only process reference paths
|
|
* rooted at the latest committed root.
|
|
*/
|
|
if (found_root->ref_cows &&
|
|
ref_path->root_generation != found_root->root_key.offset)
|
|
continue;
|
|
|
|
if (ref_path->owner_objectid >= BTRFS_FIRST_FREE_OBJECTID) {
|
|
if (pass == 0) {
|
|
/*
|
|
* copy data extents to new locations
|
|
*/
|
|
u64 group_start = group->key.objectid;
|
|
ret = relocate_data_extent(reloc_inode,
|
|
extent_key,
|
|
group_start);
|
|
if (ret < 0)
|
|
goto out;
|
|
break;
|
|
}
|
|
level = 0;
|
|
} else {
|
|
level = ref_path->owner_objectid;
|
|
}
|
|
|
|
if (prev_block != ref_path->nodes[level]) {
|
|
struct extent_buffer *eb;
|
|
u64 block_start = ref_path->nodes[level];
|
|
u64 block_size = btrfs_level_size(found_root, level);
|
|
|
|
eb = read_tree_block(found_root, block_start,
|
|
block_size, 0);
|
|
btrfs_tree_lock(eb);
|
|
BUG_ON(level != btrfs_header_level(eb));
|
|
|
|
if (level == 0)
|
|
btrfs_item_key_to_cpu(eb, &first_key, 0);
|
|
else
|
|
btrfs_node_key_to_cpu(eb, &first_key, 0);
|
|
|
|
btrfs_tree_unlock(eb);
|
|
free_extent_buffer(eb);
|
|
prev_block = block_start;
|
|
}
|
|
|
|
mutex_lock(&extent_root->fs_info->trans_mutex);
|
|
btrfs_record_root_in_trans(found_root);
|
|
mutex_unlock(&extent_root->fs_info->trans_mutex);
|
|
if (ref_path->owner_objectid >= BTRFS_FIRST_FREE_OBJECTID) {
|
|
/*
|
|
* try to update data extent references while
|
|
* keeping metadata shared between snapshots.
|
|
*/
|
|
if (pass == 1) {
|
|
ret = relocate_one_path(trans, found_root,
|
|
path, &first_key, ref_path,
|
|
group, reloc_inode);
|
|
if (ret < 0)
|
|
goto out;
|
|
continue;
|
|
}
|
|
/*
|
|
* use fallback method to process the remaining
|
|
* references.
|
|
*/
|
|
if (!new_extents) {
|
|
u64 group_start = group->key.objectid;
|
|
new_extents = kmalloc(sizeof(*new_extents),
|
|
GFP_NOFS);
|
|
nr_extents = 1;
|
|
ret = get_new_locations(reloc_inode,
|
|
extent_key,
|
|
group_start, 1,
|
|
&new_extents,
|
|
&nr_extents);
|
|
if (ret)
|
|
goto out;
|
|
}
|
|
ret = replace_one_extent(trans, found_root,
|
|
path, extent_key,
|
|
&first_key, ref_path,
|
|
new_extents, nr_extents);
|
|
} else {
|
|
ret = relocate_tree_block(trans, found_root, path,
|
|
&first_key, ref_path);
|
|
}
|
|
if (ret < 0)
|
|
goto out;
|
|
}
|
|
ret = 0;
|
|
out:
|
|
btrfs_end_transaction(trans, extent_root);
|
|
kfree(new_extents);
|
|
kfree(ref_path);
|
|
return ret;
|
|
}
|
|
|
|
static u64 update_block_group_flags(struct btrfs_root *root, u64 flags)
|
|
{
|
|
u64 num_devices;
|
|
u64 stripped = BTRFS_BLOCK_GROUP_RAID0 |
|
|
BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10;
|
|
|
|
num_devices = root->fs_info->fs_devices->rw_devices;
|
|
if (num_devices == 1) {
|
|
stripped |= BTRFS_BLOCK_GROUP_DUP;
|
|
stripped = flags & ~stripped;
|
|
|
|
/* turn raid0 into single device chunks */
|
|
if (flags & BTRFS_BLOCK_GROUP_RAID0)
|
|
return stripped;
|
|
|
|
/* turn mirroring into duplication */
|
|
if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
|
|
BTRFS_BLOCK_GROUP_RAID10))
|
|
return stripped | BTRFS_BLOCK_GROUP_DUP;
|
|
return flags;
|
|
} else {
|
|
/* they already had raid on here, just return */
|
|
if (flags & stripped)
|
|
return flags;
|
|
|
|
stripped |= BTRFS_BLOCK_GROUP_DUP;
|
|
stripped = flags & ~stripped;
|
|
|
|
/* switch duplicated blocks with raid1 */
|
|
if (flags & BTRFS_BLOCK_GROUP_DUP)
|
|
return stripped | BTRFS_BLOCK_GROUP_RAID1;
|
|
|
|
/* turn single device chunks into raid0 */
|
|
return stripped | BTRFS_BLOCK_GROUP_RAID0;
|
|
}
|
|
return flags;
|
|
}
|
|
|
|
static int __alloc_chunk_for_shrink(struct btrfs_root *root,
|
|
struct btrfs_block_group_cache *shrink_block_group,
|
|
int force)
|
|
{
|
|
struct btrfs_trans_handle *trans;
|
|
u64 new_alloc_flags;
|
|
u64 calc;
|
|
|
|
spin_lock(&shrink_block_group->lock);
|
|
if (btrfs_block_group_used(&shrink_block_group->item) > 0) {
|
|
spin_unlock(&shrink_block_group->lock);
|
|
|
|
trans = btrfs_start_transaction(root, 1);
|
|
spin_lock(&shrink_block_group->lock);
|
|
|
|
new_alloc_flags = update_block_group_flags(root,
|
|
shrink_block_group->flags);
|
|
if (new_alloc_flags != shrink_block_group->flags) {
|
|
calc =
|
|
btrfs_block_group_used(&shrink_block_group->item);
|
|
} else {
|
|
calc = shrink_block_group->key.offset;
|
|
}
|
|
spin_unlock(&shrink_block_group->lock);
|
|
|
|
do_chunk_alloc(trans, root->fs_info->extent_root,
|
|
calc + 2 * 1024 * 1024, new_alloc_flags, force);
|
|
|
|
btrfs_end_transaction(trans, root);
|
|
} else
|
|
spin_unlock(&shrink_block_group->lock);
|
|
return 0;
|
|
}
|
|
|
|
static int __insert_orphan_inode(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *root,
|
|
u64 objectid, u64 size)
|
|
{
|
|
struct btrfs_path *path;
|
|
struct btrfs_inode_item *item;
|
|
struct extent_buffer *leaf;
|
|
int ret;
|
|
|
|
path = btrfs_alloc_path();
|
|
if (!path)
|
|
return -ENOMEM;
|
|
|
|
path->leave_spinning = 1;
|
|
ret = btrfs_insert_empty_inode(trans, root, path, objectid);
|
|
if (ret)
|
|
goto out;
|
|
|
|
leaf = path->nodes[0];
|
|
item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_inode_item);
|
|
memset_extent_buffer(leaf, 0, (unsigned long)item, sizeof(*item));
|
|
btrfs_set_inode_generation(leaf, item, 1);
|
|
btrfs_set_inode_size(leaf, item, size);
|
|
btrfs_set_inode_mode(leaf, item, S_IFREG | 0600);
|
|
btrfs_set_inode_flags(leaf, item, BTRFS_INODE_NOCOMPRESS);
|
|
btrfs_mark_buffer_dirty(leaf);
|
|
btrfs_release_path(root, path);
|
|
out:
|
|
btrfs_free_path(path);
|
|
return ret;
|
|
}
|
|
|
|
static noinline struct inode *create_reloc_inode(struct btrfs_fs_info *fs_info,
|
|
struct btrfs_block_group_cache *group)
|
|
{
|
|
struct inode *inode = NULL;
|
|
struct btrfs_trans_handle *trans;
|
|
struct btrfs_root *root;
|
|
struct btrfs_key root_key;
|
|
u64 objectid = BTRFS_FIRST_FREE_OBJECTID;
|
|
int err = 0;
|
|
|
|
root_key.objectid = BTRFS_DATA_RELOC_TREE_OBJECTID;
|
|
root_key.type = BTRFS_ROOT_ITEM_KEY;
|
|
root_key.offset = (u64)-1;
|
|
root = btrfs_read_fs_root_no_name(fs_info, &root_key);
|
|
if (IS_ERR(root))
|
|
return ERR_CAST(root);
|
|
|
|
trans = btrfs_start_transaction(root, 1);
|
|
BUG_ON(!trans);
|
|
|
|
err = btrfs_find_free_objectid(trans, root, objectid, &objectid);
|
|
if (err)
|
|
goto out;
|
|
|
|
err = __insert_orphan_inode(trans, root, objectid, group->key.offset);
|
|
BUG_ON(err);
|
|
|
|
err = btrfs_insert_file_extent(trans, root, objectid, 0, 0, 0,
|
|
group->key.offset, 0, group->key.offset,
|
|
0, 0, 0);
|
|
BUG_ON(err);
|
|
|
|
inode = btrfs_iget_locked(root->fs_info->sb, objectid, root);
|
|
if (inode->i_state & I_NEW) {
|
|
BTRFS_I(inode)->root = root;
|
|
BTRFS_I(inode)->location.objectid = objectid;
|
|
BTRFS_I(inode)->location.type = BTRFS_INODE_ITEM_KEY;
|
|
BTRFS_I(inode)->location.offset = 0;
|
|
btrfs_read_locked_inode(inode);
|
|
unlock_new_inode(inode);
|
|
BUG_ON(is_bad_inode(inode));
|
|
} else {
|
|
BUG_ON(1);
|
|
}
|
|
BTRFS_I(inode)->index_cnt = group->key.objectid;
|
|
|
|
err = btrfs_orphan_add(trans, inode);
|
|
out:
|
|
btrfs_end_transaction(trans, root);
|
|
if (err) {
|
|
if (inode)
|
|
iput(inode);
|
|
inode = ERR_PTR(err);
|
|
}
|
|
return inode;
|
|
}
|
|
|
|
int btrfs_reloc_clone_csums(struct inode *inode, u64 file_pos, u64 len)
|
|
{
|
|
|
|
struct btrfs_ordered_sum *sums;
|
|
struct btrfs_sector_sum *sector_sum;
|
|
struct btrfs_ordered_extent *ordered;
|
|
struct btrfs_root *root = BTRFS_I(inode)->root;
|
|
struct list_head list;
|
|
size_t offset;
|
|
int ret;
|
|
u64 disk_bytenr;
|
|
|
|
INIT_LIST_HEAD(&list);
|
|
|
|
ordered = btrfs_lookup_ordered_extent(inode, file_pos);
|
|
BUG_ON(ordered->file_offset != file_pos || ordered->len != len);
|
|
|
|
disk_bytenr = file_pos + BTRFS_I(inode)->index_cnt;
|
|
ret = btrfs_lookup_csums_range(root->fs_info->csum_root, disk_bytenr,
|
|
disk_bytenr + len - 1, &list);
|
|
|
|
while (!list_empty(&list)) {
|
|
sums = list_entry(list.next, struct btrfs_ordered_sum, list);
|
|
list_del_init(&sums->list);
|
|
|
|
sector_sum = sums->sums;
|
|
sums->bytenr = ordered->start;
|
|
|
|
offset = 0;
|
|
while (offset < sums->len) {
|
|
sector_sum->bytenr += ordered->start - disk_bytenr;
|
|
sector_sum++;
|
|
offset += root->sectorsize;
|
|
}
|
|
|
|
btrfs_add_ordered_sum(inode, ordered, sums);
|
|
}
|
|
btrfs_put_ordered_extent(ordered);
|
|
return 0;
|
|
}
|
|
|
|
int btrfs_relocate_block_group(struct btrfs_root *root, u64 group_start)
|
|
{
|
|
struct btrfs_trans_handle *trans;
|
|
struct btrfs_path *path;
|
|
struct btrfs_fs_info *info = root->fs_info;
|
|
struct extent_buffer *leaf;
|
|
struct inode *reloc_inode;
|
|
struct btrfs_block_group_cache *block_group;
|
|
struct btrfs_key key;
|
|
u64 skipped;
|
|
u64 cur_byte;
|
|
u64 total_found;
|
|
u32 nritems;
|
|
int ret;
|
|
int progress;
|
|
int pass = 0;
|
|
|
|
root = root->fs_info->extent_root;
|
|
|
|
block_group = btrfs_lookup_block_group(info, group_start);
|
|
BUG_ON(!block_group);
|
|
|
|
printk(KERN_INFO "btrfs relocating block group %llu flags %llu\n",
|
|
(unsigned long long)block_group->key.objectid,
|
|
(unsigned long long)block_group->flags);
|
|
|
|
path = btrfs_alloc_path();
|
|
BUG_ON(!path);
|
|
|
|
reloc_inode = create_reloc_inode(info, block_group);
|
|
BUG_ON(IS_ERR(reloc_inode));
|
|
|
|
__alloc_chunk_for_shrink(root, block_group, 1);
|
|
set_block_group_readonly(block_group);
|
|
|
|
btrfs_start_delalloc_inodes(info->tree_root);
|
|
btrfs_wait_ordered_extents(info->tree_root, 0);
|
|
again:
|
|
skipped = 0;
|
|
total_found = 0;
|
|
progress = 0;
|
|
key.objectid = block_group->key.objectid;
|
|
key.offset = 0;
|
|
key.type = 0;
|
|
cur_byte = key.objectid;
|
|
|
|
trans = btrfs_start_transaction(info->tree_root, 1);
|
|
btrfs_commit_transaction(trans, info->tree_root);
|
|
|
|
mutex_lock(&root->fs_info->cleaner_mutex);
|
|
btrfs_clean_old_snapshots(info->tree_root);
|
|
btrfs_remove_leaf_refs(info->tree_root, (u64)-1, 1);
|
|
mutex_unlock(&root->fs_info->cleaner_mutex);
|
|
|
|
trans = btrfs_start_transaction(info->tree_root, 1);
|
|
btrfs_commit_transaction(trans, info->tree_root);
|
|
|
|
while (1) {
|
|
ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
|
|
if (ret < 0)
|
|
goto out;
|
|
next:
|
|
leaf = path->nodes[0];
|
|
nritems = btrfs_header_nritems(leaf);
|
|
if (path->slots[0] >= nritems) {
|
|
ret = btrfs_next_leaf(root, path);
|
|
if (ret < 0)
|
|
goto out;
|
|
if (ret == 1) {
|
|
ret = 0;
|
|
break;
|
|
}
|
|
leaf = path->nodes[0];
|
|
nritems = btrfs_header_nritems(leaf);
|
|
}
|
|
|
|
btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
|
|
|
|
if (key.objectid >= block_group->key.objectid +
|
|
block_group->key.offset)
|
|
break;
|
|
|
|
if (progress && need_resched()) {
|
|
btrfs_release_path(root, path);
|
|
cond_resched();
|
|
progress = 0;
|
|
continue;
|
|
}
|
|
progress = 1;
|
|
|
|
if (btrfs_key_type(&key) != BTRFS_EXTENT_ITEM_KEY ||
|
|
key.objectid + key.offset <= cur_byte) {
|
|
path->slots[0]++;
|
|
goto next;
|
|
}
|
|
|
|
total_found++;
|
|
cur_byte = key.objectid + key.offset;
|
|
btrfs_release_path(root, path);
|
|
|
|
__alloc_chunk_for_shrink(root, block_group, 0);
|
|
ret = relocate_one_extent(root, path, &key, block_group,
|
|
reloc_inode, pass);
|
|
BUG_ON(ret < 0);
|
|
if (ret > 0)
|
|
skipped++;
|
|
|
|
key.objectid = cur_byte;
|
|
key.type = 0;
|
|
key.offset = 0;
|
|
}
|
|
|
|
btrfs_release_path(root, path);
|
|
|
|
if (pass == 0) {
|
|
btrfs_wait_ordered_range(reloc_inode, 0, (u64)-1);
|
|
invalidate_mapping_pages(reloc_inode->i_mapping, 0, -1);
|
|
}
|
|
|
|
if (total_found > 0) {
|
|
printk(KERN_INFO "btrfs found %llu extents in pass %d\n",
|
|
(unsigned long long)total_found, pass);
|
|
pass++;
|
|
if (total_found == skipped && pass > 2) {
|
|
iput(reloc_inode);
|
|
reloc_inode = create_reloc_inode(info, block_group);
|
|
pass = 0;
|
|
}
|
|
goto again;
|
|
}
|
|
|
|
/* delete reloc_inode */
|
|
iput(reloc_inode);
|
|
|
|
/* unpin extents in this range */
|
|
trans = btrfs_start_transaction(info->tree_root, 1);
|
|
btrfs_commit_transaction(trans, info->tree_root);
|
|
|
|
spin_lock(&block_group->lock);
|
|
WARN_ON(block_group->pinned > 0);
|
|
WARN_ON(block_group->reserved > 0);
|
|
WARN_ON(btrfs_block_group_used(&block_group->item) > 0);
|
|
spin_unlock(&block_group->lock);
|
|
btrfs_put_block_group(block_group);
|
|
ret = 0;
|
|
out:
|
|
btrfs_free_path(path);
|
|
return ret;
|
|
}
|
|
|
|
static int find_first_block_group(struct btrfs_root *root,
|
|
struct btrfs_path *path, struct btrfs_key *key)
|
|
{
|
|
int ret = 0;
|
|
struct btrfs_key found_key;
|
|
struct extent_buffer *leaf;
|
|
int slot;
|
|
|
|
ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
|
|
if (ret < 0)
|
|
goto out;
|
|
|
|
while (1) {
|
|
slot = path->slots[0];
|
|
leaf = path->nodes[0];
|
|
if (slot >= btrfs_header_nritems(leaf)) {
|
|
ret = btrfs_next_leaf(root, path);
|
|
if (ret == 0)
|
|
continue;
|
|
if (ret < 0)
|
|
goto out;
|
|
break;
|
|
}
|
|
btrfs_item_key_to_cpu(leaf, &found_key, slot);
|
|
|
|
if (found_key.objectid >= key->objectid &&
|
|
found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
|
|
ret = 0;
|
|
goto out;
|
|
}
|
|
path->slots[0]++;
|
|
}
|
|
ret = -ENOENT;
|
|
out:
|
|
return ret;
|
|
}
|
|
|
|
int btrfs_free_block_groups(struct btrfs_fs_info *info)
|
|
{
|
|
struct btrfs_block_group_cache *block_group;
|
|
struct btrfs_space_info *space_info;
|
|
struct rb_node *n;
|
|
|
|
spin_lock(&info->block_group_cache_lock);
|
|
while ((n = rb_last(&info->block_group_cache_tree)) != NULL) {
|
|
block_group = rb_entry(n, struct btrfs_block_group_cache,
|
|
cache_node);
|
|
rb_erase(&block_group->cache_node,
|
|
&info->block_group_cache_tree);
|
|
spin_unlock(&info->block_group_cache_lock);
|
|
|
|
btrfs_remove_free_space_cache(block_group);
|
|
down_write(&block_group->space_info->groups_sem);
|
|
list_del(&block_group->list);
|
|
up_write(&block_group->space_info->groups_sem);
|
|
|
|
WARN_ON(atomic_read(&block_group->count) != 1);
|
|
kfree(block_group);
|
|
|
|
spin_lock(&info->block_group_cache_lock);
|
|
}
|
|
spin_unlock(&info->block_group_cache_lock);
|
|
|
|
/* now that all the block groups are freed, go through and
|
|
* free all the space_info structs. This is only called during
|
|
* the final stages of unmount, and so we know nobody is
|
|
* using them. We call synchronize_rcu() once before we start,
|
|
* just to be on the safe side.
|
|
*/
|
|
synchronize_rcu();
|
|
|
|
while(!list_empty(&info->space_info)) {
|
|
space_info = list_entry(info->space_info.next,
|
|
struct btrfs_space_info,
|
|
list);
|
|
|
|
list_del(&space_info->list);
|
|
kfree(space_info);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
int btrfs_read_block_groups(struct btrfs_root *root)
|
|
{
|
|
struct btrfs_path *path;
|
|
int ret;
|
|
struct btrfs_block_group_cache *cache;
|
|
struct btrfs_fs_info *info = root->fs_info;
|
|
struct btrfs_space_info *space_info;
|
|
struct btrfs_key key;
|
|
struct btrfs_key found_key;
|
|
struct extent_buffer *leaf;
|
|
|
|
root = info->extent_root;
|
|
key.objectid = 0;
|
|
key.offset = 0;
|
|
btrfs_set_key_type(&key, BTRFS_BLOCK_GROUP_ITEM_KEY);
|
|
path = btrfs_alloc_path();
|
|
if (!path)
|
|
return -ENOMEM;
|
|
|
|
while (1) {
|
|
ret = find_first_block_group(root, path, &key);
|
|
if (ret > 0) {
|
|
ret = 0;
|
|
goto error;
|
|
}
|
|
if (ret != 0)
|
|
goto error;
|
|
|
|
leaf = path->nodes[0];
|
|
btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
|
|
cache = kzalloc(sizeof(*cache), GFP_NOFS);
|
|
if (!cache) {
|
|
ret = -ENOMEM;
|
|
break;
|
|
}
|
|
|
|
atomic_set(&cache->count, 1);
|
|
spin_lock_init(&cache->lock);
|
|
spin_lock_init(&cache->tree_lock);
|
|
mutex_init(&cache->cache_mutex);
|
|
INIT_LIST_HEAD(&cache->list);
|
|
INIT_LIST_HEAD(&cache->cluster_list);
|
|
read_extent_buffer(leaf, &cache->item,
|
|
btrfs_item_ptr_offset(leaf, path->slots[0]),
|
|
sizeof(cache->item));
|
|
memcpy(&cache->key, &found_key, sizeof(found_key));
|
|
|
|
key.objectid = found_key.objectid + found_key.offset;
|
|
btrfs_release_path(root, path);
|
|
cache->flags = btrfs_block_group_flags(&cache->item);
|
|
|
|
ret = update_space_info(info, cache->flags, found_key.offset,
|
|
btrfs_block_group_used(&cache->item),
|
|
&space_info);
|
|
BUG_ON(ret);
|
|
cache->space_info = space_info;
|
|
down_write(&space_info->groups_sem);
|
|
list_add_tail(&cache->list, &space_info->block_groups);
|
|
up_write(&space_info->groups_sem);
|
|
|
|
ret = btrfs_add_block_group_cache(root->fs_info, cache);
|
|
BUG_ON(ret);
|
|
|
|
set_avail_alloc_bits(root->fs_info, cache->flags);
|
|
if (btrfs_chunk_readonly(root, cache->key.objectid))
|
|
set_block_group_readonly(cache);
|
|
}
|
|
ret = 0;
|
|
error:
|
|
btrfs_free_path(path);
|
|
return ret;
|
|
}
|
|
|
|
int btrfs_make_block_group(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *root, u64 bytes_used,
|
|
u64 type, u64 chunk_objectid, u64 chunk_offset,
|
|
u64 size)
|
|
{
|
|
int ret;
|
|
struct btrfs_root *extent_root;
|
|
struct btrfs_block_group_cache *cache;
|
|
|
|
extent_root = root->fs_info->extent_root;
|
|
|
|
root->fs_info->last_trans_log_full_commit = trans->transid;
|
|
|
|
cache = kzalloc(sizeof(*cache), GFP_NOFS);
|
|
if (!cache)
|
|
return -ENOMEM;
|
|
|
|
cache->key.objectid = chunk_offset;
|
|
cache->key.offset = size;
|
|
cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
|
|
atomic_set(&cache->count, 1);
|
|
spin_lock_init(&cache->lock);
|
|
spin_lock_init(&cache->tree_lock);
|
|
mutex_init(&cache->cache_mutex);
|
|
INIT_LIST_HEAD(&cache->list);
|
|
INIT_LIST_HEAD(&cache->cluster_list);
|
|
|
|
btrfs_set_block_group_used(&cache->item, bytes_used);
|
|
btrfs_set_block_group_chunk_objectid(&cache->item, chunk_objectid);
|
|
cache->flags = type;
|
|
btrfs_set_block_group_flags(&cache->item, type);
|
|
|
|
ret = update_space_info(root->fs_info, cache->flags, size, bytes_used,
|
|
&cache->space_info);
|
|
BUG_ON(ret);
|
|
down_write(&cache->space_info->groups_sem);
|
|
list_add_tail(&cache->list, &cache->space_info->block_groups);
|
|
up_write(&cache->space_info->groups_sem);
|
|
|
|
ret = btrfs_add_block_group_cache(root->fs_info, cache);
|
|
BUG_ON(ret);
|
|
|
|
ret = btrfs_insert_item(trans, extent_root, &cache->key, &cache->item,
|
|
sizeof(cache->item));
|
|
BUG_ON(ret);
|
|
|
|
set_avail_alloc_bits(extent_root->fs_info, type);
|
|
|
|
return 0;
|
|
}
|
|
|
|
int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *root, u64 group_start)
|
|
{
|
|
struct btrfs_path *path;
|
|
struct btrfs_block_group_cache *block_group;
|
|
struct btrfs_key key;
|
|
int ret;
|
|
|
|
root = root->fs_info->extent_root;
|
|
|
|
block_group = btrfs_lookup_block_group(root->fs_info, group_start);
|
|
BUG_ON(!block_group);
|
|
BUG_ON(!block_group->ro);
|
|
|
|
memcpy(&key, &block_group->key, sizeof(key));
|
|
|
|
path = btrfs_alloc_path();
|
|
BUG_ON(!path);
|
|
|
|
spin_lock(&root->fs_info->block_group_cache_lock);
|
|
rb_erase(&block_group->cache_node,
|
|
&root->fs_info->block_group_cache_tree);
|
|
spin_unlock(&root->fs_info->block_group_cache_lock);
|
|
btrfs_remove_free_space_cache(block_group);
|
|
down_write(&block_group->space_info->groups_sem);
|
|
list_del(&block_group->list);
|
|
up_write(&block_group->space_info->groups_sem);
|
|
|
|
spin_lock(&block_group->space_info->lock);
|
|
block_group->space_info->total_bytes -= block_group->key.offset;
|
|
block_group->space_info->bytes_readonly -= block_group->key.offset;
|
|
spin_unlock(&block_group->space_info->lock);
|
|
block_group->space_info->full = 0;
|
|
|
|
btrfs_put_block_group(block_group);
|
|
btrfs_put_block_group(block_group);
|
|
|
|
ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
|
|
if (ret > 0)
|
|
ret = -EIO;
|
|
if (ret < 0)
|
|
goto out;
|
|
|
|
ret = btrfs_del_item(trans, root, path);
|
|
out:
|
|
btrfs_free_path(path);
|
|
return ret;
|
|
}
|