linux_dsm_epyc7002/drivers/dma/sirf-dma.c
Linus Torvalds e6b5be2be4 Driver core patches for 3.19-rc1
Here's the set of driver core patches for 3.19-rc1.
 
 They are dominated by the removal of the .owner field in platform
 drivers.  They touch a lot of files, but they are "simple" changes, just
 removing a line in a structure.
 
 Other than that, a few minor driver core and debugfs changes.  There are
 some ath9k patches coming in through this tree that have been acked by
 the wireless maintainers as they relied on the debugfs changes.
 
 Everything has been in linux-next for a while.
 
 Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
 -----BEGIN PGP SIGNATURE-----
 Version: GnuPG v2
 
 iEYEABECAAYFAlSOD20ACgkQMUfUDdst+ylLPACg2QrW1oHhdTMT9WI8jihlHVRM
 53kAoLeteByQ3iVwWurwwseRPiWa8+MI
 =OVRS
 -----END PGP SIGNATURE-----

Merge tag 'driver-core-3.19-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/driver-core

Pull driver core update from Greg KH:
 "Here's the set of driver core patches for 3.19-rc1.

  They are dominated by the removal of the .owner field in platform
  drivers.  They touch a lot of files, but they are "simple" changes,
  just removing a line in a structure.

  Other than that, a few minor driver core and debugfs changes.  There
  are some ath9k patches coming in through this tree that have been
  acked by the wireless maintainers as they relied on the debugfs
  changes.

  Everything has been in linux-next for a while"

* tag 'driver-core-3.19-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/driver-core: (324 commits)
  Revert "ath: ath9k: use debugfs_create_devm_seqfile() helper for seq_file entries"
  fs: debugfs: add forward declaration for struct device type
  firmware class: Deletion of an unnecessary check before the function call "vunmap"
  firmware loader: fix hung task warning dump
  devcoredump: provide a one-way disable function
  device: Add dev_<level>_once variants
  ath: ath9k: use debugfs_create_devm_seqfile() helper for seq_file entries
  ath: use seq_file api for ath9k debugfs files
  debugfs: add helper function to create device related seq_file
  drivers/base: cacheinfo: remove noisy error boot message
  Revert "core: platform: add warning if driver has no owner"
  drivers: base: support cpu cache information interface to userspace via sysfs
  drivers: base: add cpu_device_create to support per-cpu devices
  topology: replace custom attribute macros with standard DEVICE_ATTR*
  cpumask: factor out show_cpumap into separate helper function
  driver core: Fix unbalanced device reference in drivers_probe
  driver core: fix race with userland in device_add()
  sysfs/kernfs: make read requests on pre-alloc files use the buffer.
  sysfs/kernfs: allow attributes to request write buffer be pre-allocated.
  fs: sysfs: return EGBIG on write if offset is larger than file size
  ...
2014-12-14 16:10:09 -08:00

959 lines
25 KiB
C

/*
* DMA controller driver for CSR SiRFprimaII
*
* Copyright (c) 2011 Cambridge Silicon Radio Limited, a CSR plc group company.
*
* Licensed under GPLv2 or later.
*/
#include <linux/module.h>
#include <linux/dmaengine.h>
#include <linux/dma-mapping.h>
#include <linux/pm_runtime.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/slab.h>
#include <linux/of_irq.h>
#include <linux/of_address.h>
#include <linux/of_device.h>
#include <linux/of_platform.h>
#include <linux/clk.h>
#include <linux/of_dma.h>
#include <linux/sirfsoc_dma.h>
#include "dmaengine.h"
#define SIRFSOC_DMA_DESCRIPTORS 16
#define SIRFSOC_DMA_CHANNELS 16
#define SIRFSOC_DMA_CH_ADDR 0x00
#define SIRFSOC_DMA_CH_XLEN 0x04
#define SIRFSOC_DMA_CH_YLEN 0x08
#define SIRFSOC_DMA_CH_CTRL 0x0C
#define SIRFSOC_DMA_WIDTH_0 0x100
#define SIRFSOC_DMA_CH_VALID 0x140
#define SIRFSOC_DMA_CH_INT 0x144
#define SIRFSOC_DMA_INT_EN 0x148
#define SIRFSOC_DMA_INT_EN_CLR 0x14C
#define SIRFSOC_DMA_CH_LOOP_CTRL 0x150
#define SIRFSOC_DMA_CH_LOOP_CTRL_CLR 0x15C
#define SIRFSOC_DMA_MODE_CTRL_BIT 4
#define SIRFSOC_DMA_DIR_CTRL_BIT 5
/* xlen and dma_width register is in 4 bytes boundary */
#define SIRFSOC_DMA_WORD_LEN 4
struct sirfsoc_dma_desc {
struct dma_async_tx_descriptor desc;
struct list_head node;
/* SiRFprimaII 2D-DMA parameters */
int xlen; /* DMA xlen */
int ylen; /* DMA ylen */
int width; /* DMA width */
int dir;
bool cyclic; /* is loop DMA? */
u32 addr; /* DMA buffer address */
};
struct sirfsoc_dma_chan {
struct dma_chan chan;
struct list_head free;
struct list_head prepared;
struct list_head queued;
struct list_head active;
struct list_head completed;
unsigned long happened_cyclic;
unsigned long completed_cyclic;
/* Lock for this structure */
spinlock_t lock;
int mode;
};
struct sirfsoc_dma_regs {
u32 ctrl[SIRFSOC_DMA_CHANNELS];
u32 interrupt_en;
};
struct sirfsoc_dma {
struct dma_device dma;
struct tasklet_struct tasklet;
struct sirfsoc_dma_chan channels[SIRFSOC_DMA_CHANNELS];
void __iomem *base;
int irq;
struct clk *clk;
bool is_marco;
struct sirfsoc_dma_regs regs_save;
};
#define DRV_NAME "sirfsoc_dma"
static int sirfsoc_dma_runtime_suspend(struct device *dev);
/* Convert struct dma_chan to struct sirfsoc_dma_chan */
static inline
struct sirfsoc_dma_chan *dma_chan_to_sirfsoc_dma_chan(struct dma_chan *c)
{
return container_of(c, struct sirfsoc_dma_chan, chan);
}
/* Convert struct dma_chan to struct sirfsoc_dma */
static inline struct sirfsoc_dma *dma_chan_to_sirfsoc_dma(struct dma_chan *c)
{
struct sirfsoc_dma_chan *schan = dma_chan_to_sirfsoc_dma_chan(c);
return container_of(schan, struct sirfsoc_dma, channels[c->chan_id]);
}
/* Execute all queued DMA descriptors */
static void sirfsoc_dma_execute(struct sirfsoc_dma_chan *schan)
{
struct sirfsoc_dma *sdma = dma_chan_to_sirfsoc_dma(&schan->chan);
int cid = schan->chan.chan_id;
struct sirfsoc_dma_desc *sdesc = NULL;
/*
* lock has been held by functions calling this, so we don't hold
* lock again
*/
sdesc = list_first_entry(&schan->queued, struct sirfsoc_dma_desc,
node);
/* Move the first queued descriptor to active list */
list_move_tail(&sdesc->node, &schan->active);
/* Start the DMA transfer */
writel_relaxed(sdesc->width, sdma->base + SIRFSOC_DMA_WIDTH_0 +
cid * 4);
writel_relaxed(cid | (schan->mode << SIRFSOC_DMA_MODE_CTRL_BIT) |
(sdesc->dir << SIRFSOC_DMA_DIR_CTRL_BIT),
sdma->base + cid * 0x10 + SIRFSOC_DMA_CH_CTRL);
writel_relaxed(sdesc->xlen, sdma->base + cid * 0x10 +
SIRFSOC_DMA_CH_XLEN);
writel_relaxed(sdesc->ylen, sdma->base + cid * 0x10 +
SIRFSOC_DMA_CH_YLEN);
writel_relaxed(readl_relaxed(sdma->base + SIRFSOC_DMA_INT_EN) |
(1 << cid), sdma->base + SIRFSOC_DMA_INT_EN);
/*
* writel has an implict memory write barrier to make sure data is
* flushed into memory before starting DMA
*/
writel(sdesc->addr >> 2, sdma->base + cid * 0x10 + SIRFSOC_DMA_CH_ADDR);
if (sdesc->cyclic) {
writel((1 << cid) | 1 << (cid + 16) |
readl_relaxed(sdma->base + SIRFSOC_DMA_CH_LOOP_CTRL),
sdma->base + SIRFSOC_DMA_CH_LOOP_CTRL);
schan->happened_cyclic = schan->completed_cyclic = 0;
}
}
/* Interrupt handler */
static irqreturn_t sirfsoc_dma_irq(int irq, void *data)
{
struct sirfsoc_dma *sdma = data;
struct sirfsoc_dma_chan *schan;
struct sirfsoc_dma_desc *sdesc = NULL;
u32 is;
int ch;
is = readl(sdma->base + SIRFSOC_DMA_CH_INT);
while ((ch = fls(is) - 1) >= 0) {
is &= ~(1 << ch);
writel_relaxed(1 << ch, sdma->base + SIRFSOC_DMA_CH_INT);
schan = &sdma->channels[ch];
spin_lock(&schan->lock);
sdesc = list_first_entry(&schan->active, struct sirfsoc_dma_desc,
node);
if (!sdesc->cyclic) {
/* Execute queued descriptors */
list_splice_tail_init(&schan->active, &schan->completed);
if (!list_empty(&schan->queued))
sirfsoc_dma_execute(schan);
} else
schan->happened_cyclic++;
spin_unlock(&schan->lock);
}
/* Schedule tasklet */
tasklet_schedule(&sdma->tasklet);
return IRQ_HANDLED;
}
/* process completed descriptors */
static void sirfsoc_dma_process_completed(struct sirfsoc_dma *sdma)
{
dma_cookie_t last_cookie = 0;
struct sirfsoc_dma_chan *schan;
struct sirfsoc_dma_desc *sdesc;
struct dma_async_tx_descriptor *desc;
unsigned long flags;
unsigned long happened_cyclic;
LIST_HEAD(list);
int i;
for (i = 0; i < sdma->dma.chancnt; i++) {
schan = &sdma->channels[i];
/* Get all completed descriptors */
spin_lock_irqsave(&schan->lock, flags);
if (!list_empty(&schan->completed)) {
list_splice_tail_init(&schan->completed, &list);
spin_unlock_irqrestore(&schan->lock, flags);
/* Execute callbacks and run dependencies */
list_for_each_entry(sdesc, &list, node) {
desc = &sdesc->desc;
if (desc->callback)
desc->callback(desc->callback_param);
last_cookie = desc->cookie;
dma_run_dependencies(desc);
}
/* Free descriptors */
spin_lock_irqsave(&schan->lock, flags);
list_splice_tail_init(&list, &schan->free);
schan->chan.completed_cookie = last_cookie;
spin_unlock_irqrestore(&schan->lock, flags);
} else {
/* for cyclic channel, desc is always in active list */
sdesc = list_first_entry(&schan->active, struct sirfsoc_dma_desc,
node);
if (!sdesc || (sdesc && !sdesc->cyclic)) {
/* without active cyclic DMA */
spin_unlock_irqrestore(&schan->lock, flags);
continue;
}
/* cyclic DMA */
happened_cyclic = schan->happened_cyclic;
spin_unlock_irqrestore(&schan->lock, flags);
desc = &sdesc->desc;
while (happened_cyclic != schan->completed_cyclic) {
if (desc->callback)
desc->callback(desc->callback_param);
schan->completed_cyclic++;
}
}
}
}
/* DMA Tasklet */
static void sirfsoc_dma_tasklet(unsigned long data)
{
struct sirfsoc_dma *sdma = (void *)data;
sirfsoc_dma_process_completed(sdma);
}
/* Submit descriptor to hardware */
static dma_cookie_t sirfsoc_dma_tx_submit(struct dma_async_tx_descriptor *txd)
{
struct sirfsoc_dma_chan *schan = dma_chan_to_sirfsoc_dma_chan(txd->chan);
struct sirfsoc_dma_desc *sdesc;
unsigned long flags;
dma_cookie_t cookie;
sdesc = container_of(txd, struct sirfsoc_dma_desc, desc);
spin_lock_irqsave(&schan->lock, flags);
/* Move descriptor to queue */
list_move_tail(&sdesc->node, &schan->queued);
cookie = dma_cookie_assign(txd);
spin_unlock_irqrestore(&schan->lock, flags);
return cookie;
}
static int sirfsoc_dma_slave_config(struct sirfsoc_dma_chan *schan,
struct dma_slave_config *config)
{
unsigned long flags;
if ((config->src_addr_width != DMA_SLAVE_BUSWIDTH_4_BYTES) ||
(config->dst_addr_width != DMA_SLAVE_BUSWIDTH_4_BYTES))
return -EINVAL;
spin_lock_irqsave(&schan->lock, flags);
schan->mode = (config->src_maxburst == 4 ? 1 : 0);
spin_unlock_irqrestore(&schan->lock, flags);
return 0;
}
static int sirfsoc_dma_terminate_all(struct sirfsoc_dma_chan *schan)
{
struct sirfsoc_dma *sdma = dma_chan_to_sirfsoc_dma(&schan->chan);
int cid = schan->chan.chan_id;
unsigned long flags;
spin_lock_irqsave(&schan->lock, flags);
if (!sdma->is_marco) {
writel_relaxed(readl_relaxed(sdma->base + SIRFSOC_DMA_INT_EN) &
~(1 << cid), sdma->base + SIRFSOC_DMA_INT_EN);
writel_relaxed(readl_relaxed(sdma->base + SIRFSOC_DMA_CH_LOOP_CTRL)
& ~((1 << cid) | 1 << (cid + 16)),
sdma->base + SIRFSOC_DMA_CH_LOOP_CTRL);
} else {
writel_relaxed(1 << cid, sdma->base + SIRFSOC_DMA_INT_EN_CLR);
writel_relaxed((1 << cid) | 1 << (cid + 16),
sdma->base + SIRFSOC_DMA_CH_LOOP_CTRL_CLR);
}
writel_relaxed(1 << cid, sdma->base + SIRFSOC_DMA_CH_VALID);
list_splice_tail_init(&schan->active, &schan->free);
list_splice_tail_init(&schan->queued, &schan->free);
spin_unlock_irqrestore(&schan->lock, flags);
return 0;
}
static int sirfsoc_dma_pause_chan(struct sirfsoc_dma_chan *schan)
{
struct sirfsoc_dma *sdma = dma_chan_to_sirfsoc_dma(&schan->chan);
int cid = schan->chan.chan_id;
unsigned long flags;
spin_lock_irqsave(&schan->lock, flags);
if (!sdma->is_marco)
writel_relaxed(readl_relaxed(sdma->base + SIRFSOC_DMA_CH_LOOP_CTRL)
& ~((1 << cid) | 1 << (cid + 16)),
sdma->base + SIRFSOC_DMA_CH_LOOP_CTRL);
else
writel_relaxed((1 << cid) | 1 << (cid + 16),
sdma->base + SIRFSOC_DMA_CH_LOOP_CTRL_CLR);
spin_unlock_irqrestore(&schan->lock, flags);
return 0;
}
static int sirfsoc_dma_resume_chan(struct sirfsoc_dma_chan *schan)
{
struct sirfsoc_dma *sdma = dma_chan_to_sirfsoc_dma(&schan->chan);
int cid = schan->chan.chan_id;
unsigned long flags;
spin_lock_irqsave(&schan->lock, flags);
if (!sdma->is_marco)
writel_relaxed(readl_relaxed(sdma->base + SIRFSOC_DMA_CH_LOOP_CTRL)
| ((1 << cid) | 1 << (cid + 16)),
sdma->base + SIRFSOC_DMA_CH_LOOP_CTRL);
else
writel_relaxed((1 << cid) | 1 << (cid + 16),
sdma->base + SIRFSOC_DMA_CH_LOOP_CTRL);
spin_unlock_irqrestore(&schan->lock, flags);
return 0;
}
static int sirfsoc_dma_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd,
unsigned long arg)
{
struct dma_slave_config *config;
struct sirfsoc_dma_chan *schan = dma_chan_to_sirfsoc_dma_chan(chan);
switch (cmd) {
case DMA_PAUSE:
return sirfsoc_dma_pause_chan(schan);
case DMA_RESUME:
return sirfsoc_dma_resume_chan(schan);
case DMA_TERMINATE_ALL:
return sirfsoc_dma_terminate_all(schan);
case DMA_SLAVE_CONFIG:
config = (struct dma_slave_config *)arg;
return sirfsoc_dma_slave_config(schan, config);
default:
break;
}
return -ENOSYS;
}
/* Alloc channel resources */
static int sirfsoc_dma_alloc_chan_resources(struct dma_chan *chan)
{
struct sirfsoc_dma *sdma = dma_chan_to_sirfsoc_dma(chan);
struct sirfsoc_dma_chan *schan = dma_chan_to_sirfsoc_dma_chan(chan);
struct sirfsoc_dma_desc *sdesc;
unsigned long flags;
LIST_HEAD(descs);
int i;
pm_runtime_get_sync(sdma->dma.dev);
/* Alloc descriptors for this channel */
for (i = 0; i < SIRFSOC_DMA_DESCRIPTORS; i++) {
sdesc = kzalloc(sizeof(*sdesc), GFP_KERNEL);
if (!sdesc) {
dev_notice(sdma->dma.dev, "Memory allocation error. "
"Allocated only %u descriptors\n", i);
break;
}
dma_async_tx_descriptor_init(&sdesc->desc, chan);
sdesc->desc.flags = DMA_CTRL_ACK;
sdesc->desc.tx_submit = sirfsoc_dma_tx_submit;
list_add_tail(&sdesc->node, &descs);
}
/* Return error only if no descriptors were allocated */
if (i == 0)
return -ENOMEM;
spin_lock_irqsave(&schan->lock, flags);
list_splice_tail_init(&descs, &schan->free);
spin_unlock_irqrestore(&schan->lock, flags);
return i;
}
/* Free channel resources */
static void sirfsoc_dma_free_chan_resources(struct dma_chan *chan)
{
struct sirfsoc_dma_chan *schan = dma_chan_to_sirfsoc_dma_chan(chan);
struct sirfsoc_dma *sdma = dma_chan_to_sirfsoc_dma(chan);
struct sirfsoc_dma_desc *sdesc, *tmp;
unsigned long flags;
LIST_HEAD(descs);
spin_lock_irqsave(&schan->lock, flags);
/* Channel must be idle */
BUG_ON(!list_empty(&schan->prepared));
BUG_ON(!list_empty(&schan->queued));
BUG_ON(!list_empty(&schan->active));
BUG_ON(!list_empty(&schan->completed));
/* Move data */
list_splice_tail_init(&schan->free, &descs);
spin_unlock_irqrestore(&schan->lock, flags);
/* Free descriptors */
list_for_each_entry_safe(sdesc, tmp, &descs, node)
kfree(sdesc);
pm_runtime_put(sdma->dma.dev);
}
/* Send pending descriptor to hardware */
static void sirfsoc_dma_issue_pending(struct dma_chan *chan)
{
struct sirfsoc_dma_chan *schan = dma_chan_to_sirfsoc_dma_chan(chan);
unsigned long flags;
spin_lock_irqsave(&schan->lock, flags);
if (list_empty(&schan->active) && !list_empty(&schan->queued))
sirfsoc_dma_execute(schan);
spin_unlock_irqrestore(&schan->lock, flags);
}
/* Check request completion status */
static enum dma_status
sirfsoc_dma_tx_status(struct dma_chan *chan, dma_cookie_t cookie,
struct dma_tx_state *txstate)
{
struct sirfsoc_dma *sdma = dma_chan_to_sirfsoc_dma(chan);
struct sirfsoc_dma_chan *schan = dma_chan_to_sirfsoc_dma_chan(chan);
unsigned long flags;
enum dma_status ret;
struct sirfsoc_dma_desc *sdesc;
int cid = schan->chan.chan_id;
unsigned long dma_pos;
unsigned long dma_request_bytes;
unsigned long residue;
spin_lock_irqsave(&schan->lock, flags);
sdesc = list_first_entry(&schan->active, struct sirfsoc_dma_desc,
node);
dma_request_bytes = (sdesc->xlen + 1) * (sdesc->ylen + 1) *
(sdesc->width * SIRFSOC_DMA_WORD_LEN);
ret = dma_cookie_status(chan, cookie, txstate);
dma_pos = readl_relaxed(sdma->base + cid * 0x10 + SIRFSOC_DMA_CH_ADDR)
<< 2;
residue = dma_request_bytes - (dma_pos - sdesc->addr);
dma_set_residue(txstate, residue);
spin_unlock_irqrestore(&schan->lock, flags);
return ret;
}
static struct dma_async_tx_descriptor *sirfsoc_dma_prep_interleaved(
struct dma_chan *chan, struct dma_interleaved_template *xt,
unsigned long flags)
{
struct sirfsoc_dma *sdma = dma_chan_to_sirfsoc_dma(chan);
struct sirfsoc_dma_chan *schan = dma_chan_to_sirfsoc_dma_chan(chan);
struct sirfsoc_dma_desc *sdesc = NULL;
unsigned long iflags;
int ret;
if ((xt->dir != DMA_MEM_TO_DEV) && (xt->dir != DMA_DEV_TO_MEM)) {
ret = -EINVAL;
goto err_dir;
}
/* Get free descriptor */
spin_lock_irqsave(&schan->lock, iflags);
if (!list_empty(&schan->free)) {
sdesc = list_first_entry(&schan->free, struct sirfsoc_dma_desc,
node);
list_del(&sdesc->node);
}
spin_unlock_irqrestore(&schan->lock, iflags);
if (!sdesc) {
/* try to free completed descriptors */
sirfsoc_dma_process_completed(sdma);
ret = 0;
goto no_desc;
}
/* Place descriptor in prepared list */
spin_lock_irqsave(&schan->lock, iflags);
/*
* Number of chunks in a frame can only be 1 for prima2
* and ylen (number of frame - 1) must be at least 0
*/
if ((xt->frame_size == 1) && (xt->numf > 0)) {
sdesc->cyclic = 0;
sdesc->xlen = xt->sgl[0].size / SIRFSOC_DMA_WORD_LEN;
sdesc->width = (xt->sgl[0].size + xt->sgl[0].icg) /
SIRFSOC_DMA_WORD_LEN;
sdesc->ylen = xt->numf - 1;
if (xt->dir == DMA_MEM_TO_DEV) {
sdesc->addr = xt->src_start;
sdesc->dir = 1;
} else {
sdesc->addr = xt->dst_start;
sdesc->dir = 0;
}
list_add_tail(&sdesc->node, &schan->prepared);
} else {
pr_err("sirfsoc DMA Invalid xfer\n");
ret = -EINVAL;
goto err_xfer;
}
spin_unlock_irqrestore(&schan->lock, iflags);
return &sdesc->desc;
err_xfer:
spin_unlock_irqrestore(&schan->lock, iflags);
no_desc:
err_dir:
return ERR_PTR(ret);
}
static struct dma_async_tx_descriptor *
sirfsoc_dma_prep_cyclic(struct dma_chan *chan, dma_addr_t addr,
size_t buf_len, size_t period_len,
enum dma_transfer_direction direction, unsigned long flags)
{
struct sirfsoc_dma_chan *schan = dma_chan_to_sirfsoc_dma_chan(chan);
struct sirfsoc_dma_desc *sdesc = NULL;
unsigned long iflags;
/*
* we only support cycle transfer with 2 period
* If the X-length is set to 0, it would be the loop mode.
* The DMA address keeps increasing until reaching the end of a loop
* area whose size is defined by (DMA_WIDTH x (Y_LENGTH + 1)). Then
* the DMA address goes back to the beginning of this area.
* In loop mode, the DMA data region is divided into two parts, BUFA
* and BUFB. DMA controller generates interrupts twice in each loop:
* when the DMA address reaches the end of BUFA or the end of the
* BUFB
*/
if (buf_len != 2 * period_len)
return ERR_PTR(-EINVAL);
/* Get free descriptor */
spin_lock_irqsave(&schan->lock, iflags);
if (!list_empty(&schan->free)) {
sdesc = list_first_entry(&schan->free, struct sirfsoc_dma_desc,
node);
list_del(&sdesc->node);
}
spin_unlock_irqrestore(&schan->lock, iflags);
if (!sdesc)
return NULL;
/* Place descriptor in prepared list */
spin_lock_irqsave(&schan->lock, iflags);
sdesc->addr = addr;
sdesc->cyclic = 1;
sdesc->xlen = 0;
sdesc->ylen = buf_len / SIRFSOC_DMA_WORD_LEN - 1;
sdesc->width = 1;
list_add_tail(&sdesc->node, &schan->prepared);
spin_unlock_irqrestore(&schan->lock, iflags);
return &sdesc->desc;
}
/*
* The DMA controller consists of 16 independent DMA channels.
* Each channel is allocated to a different function
*/
bool sirfsoc_dma_filter_id(struct dma_chan *chan, void *chan_id)
{
unsigned int ch_nr = (unsigned int) chan_id;
if (ch_nr == chan->chan_id +
chan->device->dev_id * SIRFSOC_DMA_CHANNELS)
return true;
return false;
}
EXPORT_SYMBOL(sirfsoc_dma_filter_id);
#define SIRFSOC_DMA_BUSWIDTHS \
(BIT(DMA_SLAVE_BUSWIDTH_UNDEFINED) | \
BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | \
BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | \
BIT(DMA_SLAVE_BUSWIDTH_4_BYTES) | \
BIT(DMA_SLAVE_BUSWIDTH_8_BYTES))
static int sirfsoc_dma_device_slave_caps(struct dma_chan *dchan,
struct dma_slave_caps *caps)
{
caps->src_addr_widths = SIRFSOC_DMA_BUSWIDTHS;
caps->dstn_addr_widths = SIRFSOC_DMA_BUSWIDTHS;
caps->directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
caps->cmd_pause = true;
caps->cmd_terminate = true;
return 0;
}
static struct dma_chan *of_dma_sirfsoc_xlate(struct of_phandle_args *dma_spec,
struct of_dma *ofdma)
{
struct sirfsoc_dma *sdma = ofdma->of_dma_data;
unsigned int request = dma_spec->args[0];
if (request >= SIRFSOC_DMA_CHANNELS)
return NULL;
return dma_get_slave_channel(&sdma->channels[request].chan);
}
static int sirfsoc_dma_probe(struct platform_device *op)
{
struct device_node *dn = op->dev.of_node;
struct device *dev = &op->dev;
struct dma_device *dma;
struct sirfsoc_dma *sdma;
struct sirfsoc_dma_chan *schan;
struct resource res;
ulong regs_start, regs_size;
u32 id;
int ret, i;
sdma = devm_kzalloc(dev, sizeof(*sdma), GFP_KERNEL);
if (!sdma) {
dev_err(dev, "Memory exhausted!\n");
return -ENOMEM;
}
if (of_device_is_compatible(dn, "sirf,marco-dmac"))
sdma->is_marco = true;
if (of_property_read_u32(dn, "cell-index", &id)) {
dev_err(dev, "Fail to get DMAC index\n");
return -ENODEV;
}
sdma->irq = irq_of_parse_and_map(dn, 0);
if (sdma->irq == NO_IRQ) {
dev_err(dev, "Error mapping IRQ!\n");
return -EINVAL;
}
sdma->clk = devm_clk_get(dev, NULL);
if (IS_ERR(sdma->clk)) {
dev_err(dev, "failed to get a clock.\n");
return PTR_ERR(sdma->clk);
}
ret = of_address_to_resource(dn, 0, &res);
if (ret) {
dev_err(dev, "Error parsing memory region!\n");
goto irq_dispose;
}
regs_start = res.start;
regs_size = resource_size(&res);
sdma->base = devm_ioremap(dev, regs_start, regs_size);
if (!sdma->base) {
dev_err(dev, "Error mapping memory region!\n");
ret = -ENOMEM;
goto irq_dispose;
}
ret = request_irq(sdma->irq, &sirfsoc_dma_irq, 0, DRV_NAME, sdma);
if (ret) {
dev_err(dev, "Error requesting IRQ!\n");
ret = -EINVAL;
goto irq_dispose;
}
dma = &sdma->dma;
dma->dev = dev;
dma->device_alloc_chan_resources = sirfsoc_dma_alloc_chan_resources;
dma->device_free_chan_resources = sirfsoc_dma_free_chan_resources;
dma->device_issue_pending = sirfsoc_dma_issue_pending;
dma->device_control = sirfsoc_dma_control;
dma->device_tx_status = sirfsoc_dma_tx_status;
dma->device_prep_interleaved_dma = sirfsoc_dma_prep_interleaved;
dma->device_prep_dma_cyclic = sirfsoc_dma_prep_cyclic;
dma->device_slave_caps = sirfsoc_dma_device_slave_caps;
INIT_LIST_HEAD(&dma->channels);
dma_cap_set(DMA_SLAVE, dma->cap_mask);
dma_cap_set(DMA_CYCLIC, dma->cap_mask);
dma_cap_set(DMA_INTERLEAVE, dma->cap_mask);
dma_cap_set(DMA_PRIVATE, dma->cap_mask);
for (i = 0; i < SIRFSOC_DMA_CHANNELS; i++) {
schan = &sdma->channels[i];
schan->chan.device = dma;
dma_cookie_init(&schan->chan);
INIT_LIST_HEAD(&schan->free);
INIT_LIST_HEAD(&schan->prepared);
INIT_LIST_HEAD(&schan->queued);
INIT_LIST_HEAD(&schan->active);
INIT_LIST_HEAD(&schan->completed);
spin_lock_init(&schan->lock);
list_add_tail(&schan->chan.device_node, &dma->channels);
}
tasklet_init(&sdma->tasklet, sirfsoc_dma_tasklet, (unsigned long)sdma);
/* Register DMA engine */
dev_set_drvdata(dev, sdma);
ret = dma_async_device_register(dma);
if (ret)
goto free_irq;
/* Device-tree DMA controller registration */
ret = of_dma_controller_register(dn, of_dma_sirfsoc_xlate, sdma);
if (ret) {
dev_err(dev, "failed to register DMA controller\n");
goto unreg_dma_dev;
}
pm_runtime_enable(&op->dev);
dev_info(dev, "initialized SIRFSOC DMAC driver\n");
return 0;
unreg_dma_dev:
dma_async_device_unregister(dma);
free_irq:
free_irq(sdma->irq, sdma);
irq_dispose:
irq_dispose_mapping(sdma->irq);
return ret;
}
static int sirfsoc_dma_remove(struct platform_device *op)
{
struct device *dev = &op->dev;
struct sirfsoc_dma *sdma = dev_get_drvdata(dev);
of_dma_controller_free(op->dev.of_node);
dma_async_device_unregister(&sdma->dma);
free_irq(sdma->irq, sdma);
irq_dispose_mapping(sdma->irq);
pm_runtime_disable(&op->dev);
if (!pm_runtime_status_suspended(&op->dev))
sirfsoc_dma_runtime_suspend(&op->dev);
return 0;
}
static int sirfsoc_dma_runtime_suspend(struct device *dev)
{
struct sirfsoc_dma *sdma = dev_get_drvdata(dev);
clk_disable_unprepare(sdma->clk);
return 0;
}
static int sirfsoc_dma_runtime_resume(struct device *dev)
{
struct sirfsoc_dma *sdma = dev_get_drvdata(dev);
int ret;
ret = clk_prepare_enable(sdma->clk);
if (ret < 0) {
dev_err(dev, "clk_enable failed: %d\n", ret);
return ret;
}
return 0;
}
#ifdef CONFIG_PM_SLEEP
static int sirfsoc_dma_pm_suspend(struct device *dev)
{
struct sirfsoc_dma *sdma = dev_get_drvdata(dev);
struct sirfsoc_dma_regs *save = &sdma->regs_save;
struct sirfsoc_dma_desc *sdesc;
struct sirfsoc_dma_chan *schan;
int ch;
int ret;
/*
* if we were runtime-suspended before, resume to enable clock
* before accessing register
*/
if (pm_runtime_status_suspended(dev)) {
ret = sirfsoc_dma_runtime_resume(dev);
if (ret < 0)
return ret;
}
/*
* DMA controller will lose all registers while suspending
* so we need to save registers for active channels
*/
for (ch = 0; ch < SIRFSOC_DMA_CHANNELS; ch++) {
schan = &sdma->channels[ch];
if (list_empty(&schan->active))
continue;
sdesc = list_first_entry(&schan->active,
struct sirfsoc_dma_desc,
node);
save->ctrl[ch] = readl_relaxed(sdma->base +
ch * 0x10 + SIRFSOC_DMA_CH_CTRL);
}
save->interrupt_en = readl_relaxed(sdma->base + SIRFSOC_DMA_INT_EN);
/* Disable clock */
sirfsoc_dma_runtime_suspend(dev);
return 0;
}
static int sirfsoc_dma_pm_resume(struct device *dev)
{
struct sirfsoc_dma *sdma = dev_get_drvdata(dev);
struct sirfsoc_dma_regs *save = &sdma->regs_save;
struct sirfsoc_dma_desc *sdesc;
struct sirfsoc_dma_chan *schan;
int ch;
int ret;
/* Enable clock before accessing register */
ret = sirfsoc_dma_runtime_resume(dev);
if (ret < 0)
return ret;
writel_relaxed(save->interrupt_en, sdma->base + SIRFSOC_DMA_INT_EN);
for (ch = 0; ch < SIRFSOC_DMA_CHANNELS; ch++) {
schan = &sdma->channels[ch];
if (list_empty(&schan->active))
continue;
sdesc = list_first_entry(&schan->active,
struct sirfsoc_dma_desc,
node);
writel_relaxed(sdesc->width,
sdma->base + SIRFSOC_DMA_WIDTH_0 + ch * 4);
writel_relaxed(sdesc->xlen,
sdma->base + ch * 0x10 + SIRFSOC_DMA_CH_XLEN);
writel_relaxed(sdesc->ylen,
sdma->base + ch * 0x10 + SIRFSOC_DMA_CH_YLEN);
writel_relaxed(save->ctrl[ch],
sdma->base + ch * 0x10 + SIRFSOC_DMA_CH_CTRL);
writel_relaxed(sdesc->addr >> 2,
sdma->base + ch * 0x10 + SIRFSOC_DMA_CH_ADDR);
}
/* if we were runtime-suspended before, suspend again */
if (pm_runtime_status_suspended(dev))
sirfsoc_dma_runtime_suspend(dev);
return 0;
}
#endif
static const struct dev_pm_ops sirfsoc_dma_pm_ops = {
SET_RUNTIME_PM_OPS(sirfsoc_dma_runtime_suspend, sirfsoc_dma_runtime_resume, NULL)
SET_SYSTEM_SLEEP_PM_OPS(sirfsoc_dma_pm_suspend, sirfsoc_dma_pm_resume)
};
static struct of_device_id sirfsoc_dma_match[] = {
{ .compatible = "sirf,prima2-dmac", },
{ .compatible = "sirf,marco-dmac", },
{},
};
static struct platform_driver sirfsoc_dma_driver = {
.probe = sirfsoc_dma_probe,
.remove = sirfsoc_dma_remove,
.driver = {
.name = DRV_NAME,
.pm = &sirfsoc_dma_pm_ops,
.of_match_table = sirfsoc_dma_match,
},
};
static __init int sirfsoc_dma_init(void)
{
return platform_driver_register(&sirfsoc_dma_driver);
}
static void __exit sirfsoc_dma_exit(void)
{
platform_driver_unregister(&sirfsoc_dma_driver);
}
subsys_initcall(sirfsoc_dma_init);
module_exit(sirfsoc_dma_exit);
MODULE_AUTHOR("Rongjun Ying <rongjun.ying@csr.com>, "
"Barry Song <baohua.song@csr.com>");
MODULE_DESCRIPTION("SIRFSOC DMA control driver");
MODULE_LICENSE("GPL v2");