linux_dsm_epyc7002/kernel/irq/msi.c
Thomas Gleixner 6f1a4891a5 x86/apic/msi: Plug non-maskable MSI affinity race
Evan tracked down a subtle race between the update of the MSI message and
the device raising an interrupt internally on PCI devices which do not
support MSI masking. The update of the MSI message is non-atomic and
consists of either 2 or 3 sequential 32bit wide writes to the PCI config
space.

   - Write address low 32bits
   - Write address high 32bits (If supported by device)
   - Write data

When an interrupt is migrated then both address and data might change, so
the kernel attempts to mask the MSI interrupt first. But for MSI masking is
optional, so there exist devices which do not provide it. That means that
if the device raises an interrupt internally between the writes then a MSI
message is sent built from half updated state.

On x86 this can lead to spurious interrupts on the wrong interrupt
vector when the affinity setting changes both address and data. As a
consequence the device interrupt can be lost causing the device to
become stuck or malfunctioning.

Evan tried to handle that by disabling MSI accross an MSI message
update. That's not feasible because disabling MSI has issues on its own:

 If MSI is disabled the PCI device is routing an interrupt to the legacy
 INTx mechanism. The INTx delivery can be disabled, but the disablement is
 not working on all devices.

 Some devices lose interrupts when both MSI and INTx delivery are disabled.

Another way to solve this would be to enforce the allocation of the same
vector on all CPUs in the system for this kind of screwed devices. That
could be done, but it would bring back the vector space exhaustion problems
which got solved a few years ago.

Fortunately the high address (if supported by the device) is only relevant
when X2APIC is enabled which implies interrupt remapping. In the interrupt
remapping case the affinity setting is happening at the interrupt remapping
unit and the PCI MSI message is programmed only once when the PCI device is
initialized.

That makes it possible to solve it with a two step update:

  1) Target the MSI msg to the new vector on the current target CPU

  2) Target the MSI msg to the new vector on the new target CPU

In both cases writing the MSI message is only changing a single 32bit word
which prevents the issue of inconsistency.

After writing the final destination it is necessary to check whether the
device issued an interrupt while the intermediate state #1 (new vector,
current CPU) was in effect.

This is possible because the affinity change is always happening on the
current target CPU. The code runs with interrupts disabled, so the
interrupt can be detected by checking the IRR of the local APIC. If the
vector is pending in the IRR then the interrupt is retriggered on the new
target CPU by sending an IPI for the associated vector on the target CPU.

This can cause spurious interrupts on both the local and the new target
CPU.

 1) If the new vector is not in use on the local CPU and the device
    affected by the affinity change raised an interrupt during the
    transitional state (step #1 above) then interrupt entry code will
    ignore that spurious interrupt. The vector is marked so that the
    'No irq handler for vector' warning is supressed once.

 2) If the new vector is in use already on the local CPU then the IRR check
    might see an pending interrupt from the device which is using this
    vector. The IPI to the new target CPU will then invoke the handler of
    the device, which got the affinity change, even if that device did not
    issue an interrupt

 3) If the new vector is in use already on the local CPU and the device
    affected by the affinity change raised an interrupt during the
    transitional state (step #1 above) then the handler of the device which
    uses that vector on the local CPU will be invoked.

expose issues in device driver interrupt handlers which are not prepared to
handle a spurious interrupt correctly. This not a regression, it's just
exposing something which was already broken as spurious interrupts can
happen for a lot of reasons and all driver handlers need to be able to deal
with them.

Reported-by: Evan Green <evgreen@chromium.org>
Debugged-by: Evan Green <evgreen@chromium.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Evan Green <evgreen@chromium.org>
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/r/87imkr4s7n.fsf@nanos.tec.linutronix.de
2020-02-01 09:31:47 +01:00

529 lines
14 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (C) 2014 Intel Corp.
* Author: Jiang Liu <jiang.liu@linux.intel.com>
*
* This file is licensed under GPLv2.
*
* This file contains common code to support Message Signalled Interrupt for
* PCI compatible and non PCI compatible devices.
*/
#include <linux/types.h>
#include <linux/device.h>
#include <linux/irq.h>
#include <linux/irqdomain.h>
#include <linux/msi.h>
#include <linux/slab.h>
#include "internals.h"
/**
* alloc_msi_entry - Allocate an initialize msi_entry
* @dev: Pointer to the device for which this is allocated
* @nvec: The number of vectors used in this entry
* @affinity: Optional pointer to an affinity mask array size of @nvec
*
* If @affinity is not NULL then an affinity array[@nvec] is allocated
* and the affinity masks and flags from @affinity are copied.
*/
struct msi_desc *alloc_msi_entry(struct device *dev, int nvec,
const struct irq_affinity_desc *affinity)
{
struct msi_desc *desc;
desc = kzalloc(sizeof(*desc), GFP_KERNEL);
if (!desc)
return NULL;
INIT_LIST_HEAD(&desc->list);
desc->dev = dev;
desc->nvec_used = nvec;
if (affinity) {
desc->affinity = kmemdup(affinity,
nvec * sizeof(*desc->affinity), GFP_KERNEL);
if (!desc->affinity) {
kfree(desc);
return NULL;
}
}
return desc;
}
void free_msi_entry(struct msi_desc *entry)
{
kfree(entry->affinity);
kfree(entry);
}
void __get_cached_msi_msg(struct msi_desc *entry, struct msi_msg *msg)
{
*msg = entry->msg;
}
void get_cached_msi_msg(unsigned int irq, struct msi_msg *msg)
{
struct msi_desc *entry = irq_get_msi_desc(irq);
__get_cached_msi_msg(entry, msg);
}
EXPORT_SYMBOL_GPL(get_cached_msi_msg);
#ifdef CONFIG_GENERIC_MSI_IRQ_DOMAIN
static inline void irq_chip_write_msi_msg(struct irq_data *data,
struct msi_msg *msg)
{
data->chip->irq_write_msi_msg(data, msg);
}
static void msi_check_level(struct irq_domain *domain, struct msi_msg *msg)
{
struct msi_domain_info *info = domain->host_data;
/*
* If the MSI provider has messed with the second message and
* not advertized that it is level-capable, signal the breakage.
*/
WARN_ON(!((info->flags & MSI_FLAG_LEVEL_CAPABLE) &&
(info->chip->flags & IRQCHIP_SUPPORTS_LEVEL_MSI)) &&
(msg[1].address_lo || msg[1].address_hi || msg[1].data));
}
/**
* msi_domain_set_affinity - Generic affinity setter function for MSI domains
* @irq_data: The irq data associated to the interrupt
* @mask: The affinity mask to set
* @force: Flag to enforce setting (disable online checks)
*
* Intended to be used by MSI interrupt controllers which are
* implemented with hierarchical domains.
*/
int msi_domain_set_affinity(struct irq_data *irq_data,
const struct cpumask *mask, bool force)
{
struct irq_data *parent = irq_data->parent_data;
struct msi_msg msg[2] = { [1] = { }, };
int ret;
ret = parent->chip->irq_set_affinity(parent, mask, force);
if (ret >= 0 && ret != IRQ_SET_MASK_OK_DONE) {
BUG_ON(irq_chip_compose_msi_msg(irq_data, msg));
msi_check_level(irq_data->domain, msg);
irq_chip_write_msi_msg(irq_data, msg);
}
return ret;
}
static int msi_domain_activate(struct irq_domain *domain,
struct irq_data *irq_data, bool early)
{
struct msi_msg msg[2] = { [1] = { }, };
BUG_ON(irq_chip_compose_msi_msg(irq_data, msg));
msi_check_level(irq_data->domain, msg);
irq_chip_write_msi_msg(irq_data, msg);
return 0;
}
static void msi_domain_deactivate(struct irq_domain *domain,
struct irq_data *irq_data)
{
struct msi_msg msg[2];
memset(msg, 0, sizeof(msg));
irq_chip_write_msi_msg(irq_data, msg);
}
static int msi_domain_alloc(struct irq_domain *domain, unsigned int virq,
unsigned int nr_irqs, void *arg)
{
struct msi_domain_info *info = domain->host_data;
struct msi_domain_ops *ops = info->ops;
irq_hw_number_t hwirq = ops->get_hwirq(info, arg);
int i, ret;
if (irq_find_mapping(domain, hwirq) > 0)
return -EEXIST;
if (domain->parent) {
ret = irq_domain_alloc_irqs_parent(domain, virq, nr_irqs, arg);
if (ret < 0)
return ret;
}
for (i = 0; i < nr_irqs; i++) {
ret = ops->msi_init(domain, info, virq + i, hwirq + i, arg);
if (ret < 0) {
if (ops->msi_free) {
for (i--; i > 0; i--)
ops->msi_free(domain, info, virq + i);
}
irq_domain_free_irqs_top(domain, virq, nr_irqs);
return ret;
}
}
return 0;
}
static void msi_domain_free(struct irq_domain *domain, unsigned int virq,
unsigned int nr_irqs)
{
struct msi_domain_info *info = domain->host_data;
int i;
if (info->ops->msi_free) {
for (i = 0; i < nr_irqs; i++)
info->ops->msi_free(domain, info, virq + i);
}
irq_domain_free_irqs_top(domain, virq, nr_irqs);
}
static const struct irq_domain_ops msi_domain_ops = {
.alloc = msi_domain_alloc,
.free = msi_domain_free,
.activate = msi_domain_activate,
.deactivate = msi_domain_deactivate,
};
#ifdef GENERIC_MSI_DOMAIN_OPS
static irq_hw_number_t msi_domain_ops_get_hwirq(struct msi_domain_info *info,
msi_alloc_info_t *arg)
{
return arg->hwirq;
}
static int msi_domain_ops_prepare(struct irq_domain *domain, struct device *dev,
int nvec, msi_alloc_info_t *arg)
{
memset(arg, 0, sizeof(*arg));
return 0;
}
static void msi_domain_ops_set_desc(msi_alloc_info_t *arg,
struct msi_desc *desc)
{
arg->desc = desc;
}
#else
#define msi_domain_ops_get_hwirq NULL
#define msi_domain_ops_prepare NULL
#define msi_domain_ops_set_desc NULL
#endif /* !GENERIC_MSI_DOMAIN_OPS */
static int msi_domain_ops_init(struct irq_domain *domain,
struct msi_domain_info *info,
unsigned int virq, irq_hw_number_t hwirq,
msi_alloc_info_t *arg)
{
irq_domain_set_hwirq_and_chip(domain, virq, hwirq, info->chip,
info->chip_data);
if (info->handler && info->handler_name) {
__irq_set_handler(virq, info->handler, 0, info->handler_name);
if (info->handler_data)
irq_set_handler_data(virq, info->handler_data);
}
return 0;
}
static int msi_domain_ops_check(struct irq_domain *domain,
struct msi_domain_info *info,
struct device *dev)
{
return 0;
}
static struct msi_domain_ops msi_domain_ops_default = {
.get_hwirq = msi_domain_ops_get_hwirq,
.msi_init = msi_domain_ops_init,
.msi_check = msi_domain_ops_check,
.msi_prepare = msi_domain_ops_prepare,
.set_desc = msi_domain_ops_set_desc,
};
static void msi_domain_update_dom_ops(struct msi_domain_info *info)
{
struct msi_domain_ops *ops = info->ops;
if (ops == NULL) {
info->ops = &msi_domain_ops_default;
return;
}
if (ops->get_hwirq == NULL)
ops->get_hwirq = msi_domain_ops_default.get_hwirq;
if (ops->msi_init == NULL)
ops->msi_init = msi_domain_ops_default.msi_init;
if (ops->msi_check == NULL)
ops->msi_check = msi_domain_ops_default.msi_check;
if (ops->msi_prepare == NULL)
ops->msi_prepare = msi_domain_ops_default.msi_prepare;
if (ops->set_desc == NULL)
ops->set_desc = msi_domain_ops_default.set_desc;
}
static void msi_domain_update_chip_ops(struct msi_domain_info *info)
{
struct irq_chip *chip = info->chip;
BUG_ON(!chip || !chip->irq_mask || !chip->irq_unmask);
if (!chip->irq_set_affinity)
chip->irq_set_affinity = msi_domain_set_affinity;
}
/**
* msi_create_irq_domain - Create a MSI interrupt domain
* @fwnode: Optional fwnode of the interrupt controller
* @info: MSI domain info
* @parent: Parent irq domain
*/
struct irq_domain *msi_create_irq_domain(struct fwnode_handle *fwnode,
struct msi_domain_info *info,
struct irq_domain *parent)
{
struct irq_domain *domain;
if (info->flags & MSI_FLAG_USE_DEF_DOM_OPS)
msi_domain_update_dom_ops(info);
if (info->flags & MSI_FLAG_USE_DEF_CHIP_OPS)
msi_domain_update_chip_ops(info);
domain = irq_domain_create_hierarchy(parent, IRQ_DOMAIN_FLAG_MSI, 0,
fwnode, &msi_domain_ops, info);
if (domain && !domain->name && info->chip)
domain->name = info->chip->name;
return domain;
}
int msi_domain_prepare_irqs(struct irq_domain *domain, struct device *dev,
int nvec, msi_alloc_info_t *arg)
{
struct msi_domain_info *info = domain->host_data;
struct msi_domain_ops *ops = info->ops;
int ret;
ret = ops->msi_check(domain, info, dev);
if (ret == 0)
ret = ops->msi_prepare(domain, dev, nvec, arg);
return ret;
}
int msi_domain_populate_irqs(struct irq_domain *domain, struct device *dev,
int virq, int nvec, msi_alloc_info_t *arg)
{
struct msi_domain_info *info = domain->host_data;
struct msi_domain_ops *ops = info->ops;
struct msi_desc *desc;
int ret = 0;
for_each_msi_entry(desc, dev) {
/* Don't even try the multi-MSI brain damage. */
if (WARN_ON(!desc->irq || desc->nvec_used != 1)) {
ret = -EINVAL;
break;
}
if (!(desc->irq >= virq && desc->irq < (virq + nvec)))
continue;
ops->set_desc(arg, desc);
/* Assumes the domain mutex is held! */
ret = irq_domain_alloc_irqs_hierarchy(domain, desc->irq, 1,
arg);
if (ret)
break;
irq_set_msi_desc_off(desc->irq, 0, desc);
}
if (ret) {
/* Mop up the damage */
for_each_msi_entry(desc, dev) {
if (!(desc->irq >= virq && desc->irq < (virq + nvec)))
continue;
irq_domain_free_irqs_common(domain, desc->irq, 1);
}
}
return ret;
}
/*
* Carefully check whether the device can use reservation mode. If
* reservation mode is enabled then the early activation will assign a
* dummy vector to the device. If the PCI/MSI device does not support
* masking of the entry then this can result in spurious interrupts when
* the device driver is not absolutely careful. But even then a malfunction
* of the hardware could result in a spurious interrupt on the dummy vector
* and render the device unusable. If the entry can be masked then the core
* logic will prevent the spurious interrupt and reservation mode can be
* used. For now reservation mode is restricted to PCI/MSI.
*/
static bool msi_check_reservation_mode(struct irq_domain *domain,
struct msi_domain_info *info,
struct device *dev)
{
struct msi_desc *desc;
if (domain->bus_token != DOMAIN_BUS_PCI_MSI)
return false;
if (!(info->flags & MSI_FLAG_MUST_REACTIVATE))
return false;
if (IS_ENABLED(CONFIG_PCI_MSI) && pci_msi_ignore_mask)
return false;
/*
* Checking the first MSI descriptor is sufficient. MSIX supports
* masking and MSI does so when the maskbit is set.
*/
desc = first_msi_entry(dev);
return desc->msi_attrib.is_msix || desc->msi_attrib.maskbit;
}
/**
* msi_domain_alloc_irqs - Allocate interrupts from a MSI interrupt domain
* @domain: The domain to allocate from
* @dev: Pointer to device struct of the device for which the interrupts
* are allocated
* @nvec: The number of interrupts to allocate
*
* Returns 0 on success or an error code.
*/
int msi_domain_alloc_irqs(struct irq_domain *domain, struct device *dev,
int nvec)
{
struct msi_domain_info *info = domain->host_data;
struct msi_domain_ops *ops = info->ops;
struct irq_data *irq_data;
struct msi_desc *desc;
msi_alloc_info_t arg;
int i, ret, virq;
bool can_reserve;
ret = msi_domain_prepare_irqs(domain, dev, nvec, &arg);
if (ret)
return ret;
for_each_msi_entry(desc, dev) {
ops->set_desc(&arg, desc);
virq = __irq_domain_alloc_irqs(domain, -1, desc->nvec_used,
dev_to_node(dev), &arg, false,
desc->affinity);
if (virq < 0) {
ret = -ENOSPC;
if (ops->handle_error)
ret = ops->handle_error(domain, desc, ret);
if (ops->msi_finish)
ops->msi_finish(&arg, ret);
return ret;
}
for (i = 0; i < desc->nvec_used; i++) {
irq_set_msi_desc_off(virq, i, desc);
irq_debugfs_copy_devname(virq + i, dev);
}
}
if (ops->msi_finish)
ops->msi_finish(&arg, 0);
can_reserve = msi_check_reservation_mode(domain, info, dev);
for_each_msi_entry(desc, dev) {
virq = desc->irq;
if (desc->nvec_used == 1)
dev_dbg(dev, "irq %d for MSI\n", virq);
else
dev_dbg(dev, "irq [%d-%d] for MSI\n",
virq, virq + desc->nvec_used - 1);
/*
* This flag is set by the PCI layer as we need to activate
* the MSI entries before the PCI layer enables MSI in the
* card. Otherwise the card latches a random msi message.
*/
if (!(info->flags & MSI_FLAG_ACTIVATE_EARLY))
continue;
irq_data = irq_domain_get_irq_data(domain, desc->irq);
if (!can_reserve) {
irqd_clr_can_reserve(irq_data);
if (domain->flags & IRQ_DOMAIN_MSI_NOMASK_QUIRK)
irqd_set_msi_nomask_quirk(irq_data);
}
ret = irq_domain_activate_irq(irq_data, can_reserve);
if (ret)
goto cleanup;
}
/*
* If these interrupts use reservation mode, clear the activated bit
* so request_irq() will assign the final vector.
*/
if (can_reserve) {
for_each_msi_entry(desc, dev) {
irq_data = irq_domain_get_irq_data(domain, desc->irq);
irqd_clr_activated(irq_data);
}
}
return 0;
cleanup:
for_each_msi_entry(desc, dev) {
struct irq_data *irqd;
if (desc->irq == virq)
break;
irqd = irq_domain_get_irq_data(domain, desc->irq);
if (irqd_is_activated(irqd))
irq_domain_deactivate_irq(irqd);
}
msi_domain_free_irqs(domain, dev);
return ret;
}
/**
* msi_domain_free_irqs - Free interrupts from a MSI interrupt @domain associated tp @dev
* @domain: The domain to managing the interrupts
* @dev: Pointer to device struct of the device for which the interrupts
* are free
*/
void msi_domain_free_irqs(struct irq_domain *domain, struct device *dev)
{
struct msi_desc *desc;
for_each_msi_entry(desc, dev) {
/*
* We might have failed to allocate an MSI early
* enough that there is no IRQ associated to this
* entry. If that's the case, don't do anything.
*/
if (desc->irq) {
irq_domain_free_irqs(desc->irq, desc->nvec_used);
desc->irq = 0;
}
}
}
/**
* msi_get_domain_info - Get the MSI interrupt domain info for @domain
* @domain: The interrupt domain to retrieve data from
*
* Returns the pointer to the msi_domain_info stored in
* @domain->host_data.
*/
struct msi_domain_info *msi_get_domain_info(struct irq_domain *domain)
{
return (struct msi_domain_info *)domain->host_data;
}
#endif /* CONFIG_GENERIC_MSI_IRQ_DOMAIN */