mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2024-12-28 04:45:12 +07:00
75d75b7a4d
In the kernel, the "volatile" keyword is used in various concurrent
contexts, whether in low-level synchronization primitives or for
legacy reasons. If supported by the compiler, it will be assumed
that aligned volatile accesses up to sizeof(long long) (matching
compiletime_assert_rwonce_type()) are atomic.
Recent versions of Clang [1] (GCC tentative [2]) can instrument
volatile accesses differently. Add the option (required) to enable the
instrumentation, and provide the necessary runtime functions. None of
the updated compilers are widely available yet (Clang 11 will be the
first release to support the feature).
[1] 5a2c31116f
[2] https://gcc.gnu.org/pipermail/gcc-patches/2020-April/544452.html
This change allows removing of any explicit checks in primitives such as
READ_ONCE() and WRITE_ONCE().
[ bp: Massage commit message a bit. ]
Signed-off-by: Marco Elver <elver@google.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Will Deacon <will@kernel.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20200521142047.169334-4-elver@google.com
851 lines
27 KiB
C
851 lines
27 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
|
|
#include <linux/atomic.h>
|
|
#include <linux/bug.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/export.h>
|
|
#include <linux/init.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/list.h>
|
|
#include <linux/moduleparam.h>
|
|
#include <linux/percpu.h>
|
|
#include <linux/preempt.h>
|
|
#include <linux/random.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/uaccess.h>
|
|
|
|
#include "atomic.h"
|
|
#include "encoding.h"
|
|
#include "kcsan.h"
|
|
|
|
static bool kcsan_early_enable = IS_ENABLED(CONFIG_KCSAN_EARLY_ENABLE);
|
|
unsigned int kcsan_udelay_task = CONFIG_KCSAN_UDELAY_TASK;
|
|
unsigned int kcsan_udelay_interrupt = CONFIG_KCSAN_UDELAY_INTERRUPT;
|
|
static long kcsan_skip_watch = CONFIG_KCSAN_SKIP_WATCH;
|
|
static bool kcsan_interrupt_watcher = IS_ENABLED(CONFIG_KCSAN_INTERRUPT_WATCHER);
|
|
|
|
#ifdef MODULE_PARAM_PREFIX
|
|
#undef MODULE_PARAM_PREFIX
|
|
#endif
|
|
#define MODULE_PARAM_PREFIX "kcsan."
|
|
module_param_named(early_enable, kcsan_early_enable, bool, 0);
|
|
module_param_named(udelay_task, kcsan_udelay_task, uint, 0644);
|
|
module_param_named(udelay_interrupt, kcsan_udelay_interrupt, uint, 0644);
|
|
module_param_named(skip_watch, kcsan_skip_watch, long, 0644);
|
|
module_param_named(interrupt_watcher, kcsan_interrupt_watcher, bool, 0444);
|
|
|
|
bool kcsan_enabled;
|
|
|
|
/* Per-CPU kcsan_ctx for interrupts */
|
|
static DEFINE_PER_CPU(struct kcsan_ctx, kcsan_cpu_ctx) = {
|
|
.disable_count = 0,
|
|
.atomic_next = 0,
|
|
.atomic_nest_count = 0,
|
|
.in_flat_atomic = false,
|
|
.access_mask = 0,
|
|
.scoped_accesses = {LIST_POISON1, NULL},
|
|
};
|
|
|
|
/*
|
|
* Helper macros to index into adjacent slots, starting from address slot
|
|
* itself, followed by the right and left slots.
|
|
*
|
|
* The purpose is 2-fold:
|
|
*
|
|
* 1. if during insertion the address slot is already occupied, check if
|
|
* any adjacent slots are free;
|
|
* 2. accesses that straddle a slot boundary due to size that exceeds a
|
|
* slot's range may check adjacent slots if any watchpoint matches.
|
|
*
|
|
* Note that accesses with very large size may still miss a watchpoint; however,
|
|
* given this should be rare, this is a reasonable trade-off to make, since this
|
|
* will avoid:
|
|
*
|
|
* 1. excessive contention between watchpoint checks and setup;
|
|
* 2. larger number of simultaneous watchpoints without sacrificing
|
|
* performance.
|
|
*
|
|
* Example: SLOT_IDX values for KCSAN_CHECK_ADJACENT=1, where i is [0, 1, 2]:
|
|
*
|
|
* slot=0: [ 1, 2, 0]
|
|
* slot=9: [10, 11, 9]
|
|
* slot=63: [64, 65, 63]
|
|
*/
|
|
#define SLOT_IDX(slot, i) (slot + ((i + KCSAN_CHECK_ADJACENT) % NUM_SLOTS))
|
|
|
|
/*
|
|
* SLOT_IDX_FAST is used in the fast-path. Not first checking the address's primary
|
|
* slot (middle) is fine if we assume that races occur rarely. The set of
|
|
* indices {SLOT_IDX(slot, i) | i in [0, NUM_SLOTS)} is equivalent to
|
|
* {SLOT_IDX_FAST(slot, i) | i in [0, NUM_SLOTS)}.
|
|
*/
|
|
#define SLOT_IDX_FAST(slot, i) (slot + i)
|
|
|
|
/*
|
|
* Watchpoints, with each entry encoded as defined in encoding.h: in order to be
|
|
* able to safely update and access a watchpoint without introducing locking
|
|
* overhead, we encode each watchpoint as a single atomic long. The initial
|
|
* zero-initialized state matches INVALID_WATCHPOINT.
|
|
*
|
|
* Add NUM_SLOTS-1 entries to account for overflow; this helps avoid having to
|
|
* use more complicated SLOT_IDX_FAST calculation with modulo in the fast-path.
|
|
*/
|
|
static atomic_long_t watchpoints[CONFIG_KCSAN_NUM_WATCHPOINTS + NUM_SLOTS-1];
|
|
|
|
/*
|
|
* Instructions to skip watching counter, used in should_watch(). We use a
|
|
* per-CPU counter to avoid excessive contention.
|
|
*/
|
|
static DEFINE_PER_CPU(long, kcsan_skip);
|
|
|
|
static __always_inline atomic_long_t *find_watchpoint(unsigned long addr,
|
|
size_t size,
|
|
bool expect_write,
|
|
long *encoded_watchpoint)
|
|
{
|
|
const int slot = watchpoint_slot(addr);
|
|
const unsigned long addr_masked = addr & WATCHPOINT_ADDR_MASK;
|
|
atomic_long_t *watchpoint;
|
|
unsigned long wp_addr_masked;
|
|
size_t wp_size;
|
|
bool is_write;
|
|
int i;
|
|
|
|
BUILD_BUG_ON(CONFIG_KCSAN_NUM_WATCHPOINTS < NUM_SLOTS);
|
|
|
|
for (i = 0; i < NUM_SLOTS; ++i) {
|
|
watchpoint = &watchpoints[SLOT_IDX_FAST(slot, i)];
|
|
*encoded_watchpoint = atomic_long_read(watchpoint);
|
|
if (!decode_watchpoint(*encoded_watchpoint, &wp_addr_masked,
|
|
&wp_size, &is_write))
|
|
continue;
|
|
|
|
if (expect_write && !is_write)
|
|
continue;
|
|
|
|
/* Check if the watchpoint matches the access. */
|
|
if (matching_access(wp_addr_masked, wp_size, addr_masked, size))
|
|
return watchpoint;
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
static inline atomic_long_t *
|
|
insert_watchpoint(unsigned long addr, size_t size, bool is_write)
|
|
{
|
|
const int slot = watchpoint_slot(addr);
|
|
const long encoded_watchpoint = encode_watchpoint(addr, size, is_write);
|
|
atomic_long_t *watchpoint;
|
|
int i;
|
|
|
|
/* Check slot index logic, ensuring we stay within array bounds. */
|
|
BUILD_BUG_ON(SLOT_IDX(0, 0) != KCSAN_CHECK_ADJACENT);
|
|
BUILD_BUG_ON(SLOT_IDX(0, KCSAN_CHECK_ADJACENT+1) != 0);
|
|
BUILD_BUG_ON(SLOT_IDX(CONFIG_KCSAN_NUM_WATCHPOINTS-1, KCSAN_CHECK_ADJACENT) != ARRAY_SIZE(watchpoints)-1);
|
|
BUILD_BUG_ON(SLOT_IDX(CONFIG_KCSAN_NUM_WATCHPOINTS-1, KCSAN_CHECK_ADJACENT+1) != ARRAY_SIZE(watchpoints) - NUM_SLOTS);
|
|
|
|
for (i = 0; i < NUM_SLOTS; ++i) {
|
|
long expect_val = INVALID_WATCHPOINT;
|
|
|
|
/* Try to acquire this slot. */
|
|
watchpoint = &watchpoints[SLOT_IDX(slot, i)];
|
|
if (atomic_long_try_cmpxchg_relaxed(watchpoint, &expect_val, encoded_watchpoint))
|
|
return watchpoint;
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* Return true if watchpoint was successfully consumed, false otherwise.
|
|
*
|
|
* This may return false if:
|
|
*
|
|
* 1. another thread already consumed the watchpoint;
|
|
* 2. the thread that set up the watchpoint already removed it;
|
|
* 3. the watchpoint was removed and then re-used.
|
|
*/
|
|
static __always_inline bool
|
|
try_consume_watchpoint(atomic_long_t *watchpoint, long encoded_watchpoint)
|
|
{
|
|
return atomic_long_try_cmpxchg_relaxed(watchpoint, &encoded_watchpoint, CONSUMED_WATCHPOINT);
|
|
}
|
|
|
|
/* Return true if watchpoint was not touched, false if already consumed. */
|
|
static inline bool consume_watchpoint(atomic_long_t *watchpoint)
|
|
{
|
|
return atomic_long_xchg_relaxed(watchpoint, CONSUMED_WATCHPOINT) != CONSUMED_WATCHPOINT;
|
|
}
|
|
|
|
/* Remove the watchpoint -- its slot may be reused after. */
|
|
static inline void remove_watchpoint(atomic_long_t *watchpoint)
|
|
{
|
|
atomic_long_set(watchpoint, INVALID_WATCHPOINT);
|
|
}
|
|
|
|
static __always_inline struct kcsan_ctx *get_ctx(void)
|
|
{
|
|
/*
|
|
* In interrupts, use raw_cpu_ptr to avoid unnecessary checks, that would
|
|
* also result in calls that generate warnings in uaccess regions.
|
|
*/
|
|
return in_task() ? ¤t->kcsan_ctx : raw_cpu_ptr(&kcsan_cpu_ctx);
|
|
}
|
|
|
|
/* Check scoped accesses; never inline because this is a slow-path! */
|
|
static noinline void kcsan_check_scoped_accesses(void)
|
|
{
|
|
struct kcsan_ctx *ctx = get_ctx();
|
|
struct list_head *prev_save = ctx->scoped_accesses.prev;
|
|
struct kcsan_scoped_access *scoped_access;
|
|
|
|
ctx->scoped_accesses.prev = NULL; /* Avoid recursion. */
|
|
list_for_each_entry(scoped_access, &ctx->scoped_accesses, list)
|
|
__kcsan_check_access(scoped_access->ptr, scoped_access->size, scoped_access->type);
|
|
ctx->scoped_accesses.prev = prev_save;
|
|
}
|
|
|
|
/* Rules for generic atomic accesses. Called from fast-path. */
|
|
static __always_inline bool
|
|
is_atomic(const volatile void *ptr, size_t size, int type, struct kcsan_ctx *ctx)
|
|
{
|
|
if (type & KCSAN_ACCESS_ATOMIC)
|
|
return true;
|
|
|
|
/*
|
|
* Unless explicitly declared atomic, never consider an assertion access
|
|
* as atomic. This allows using them also in atomic regions, such as
|
|
* seqlocks, without implicitly changing their semantics.
|
|
*/
|
|
if (type & KCSAN_ACCESS_ASSERT)
|
|
return false;
|
|
|
|
if (IS_ENABLED(CONFIG_KCSAN_ASSUME_PLAIN_WRITES_ATOMIC) &&
|
|
(type & KCSAN_ACCESS_WRITE) && size <= sizeof(long) &&
|
|
IS_ALIGNED((unsigned long)ptr, size))
|
|
return true; /* Assume aligned writes up to word size are atomic. */
|
|
|
|
if (ctx->atomic_next > 0) {
|
|
/*
|
|
* Because we do not have separate contexts for nested
|
|
* interrupts, in case atomic_next is set, we simply assume that
|
|
* the outer interrupt set atomic_next. In the worst case, we
|
|
* will conservatively consider operations as atomic. This is a
|
|
* reasonable trade-off to make, since this case should be
|
|
* extremely rare; however, even if extremely rare, it could
|
|
* lead to false positives otherwise.
|
|
*/
|
|
if ((hardirq_count() >> HARDIRQ_SHIFT) < 2)
|
|
--ctx->atomic_next; /* in task, or outer interrupt */
|
|
return true;
|
|
}
|
|
|
|
return ctx->atomic_nest_count > 0 || ctx->in_flat_atomic;
|
|
}
|
|
|
|
static __always_inline bool
|
|
should_watch(const volatile void *ptr, size_t size, int type, struct kcsan_ctx *ctx)
|
|
{
|
|
/*
|
|
* Never set up watchpoints when memory operations are atomic.
|
|
*
|
|
* Need to check this first, before kcsan_skip check below: (1) atomics
|
|
* should not count towards skipped instructions, and (2) to actually
|
|
* decrement kcsan_atomic_next for consecutive instruction stream.
|
|
*/
|
|
if (is_atomic(ptr, size, type, ctx))
|
|
return false;
|
|
|
|
if (this_cpu_dec_return(kcsan_skip) >= 0)
|
|
return false;
|
|
|
|
/*
|
|
* NOTE: If we get here, kcsan_skip must always be reset in slow path
|
|
* via reset_kcsan_skip() to avoid underflow.
|
|
*/
|
|
|
|
/* this operation should be watched */
|
|
return true;
|
|
}
|
|
|
|
static inline void reset_kcsan_skip(void)
|
|
{
|
|
long skip_count = kcsan_skip_watch -
|
|
(IS_ENABLED(CONFIG_KCSAN_SKIP_WATCH_RANDOMIZE) ?
|
|
prandom_u32_max(kcsan_skip_watch) :
|
|
0);
|
|
this_cpu_write(kcsan_skip, skip_count);
|
|
}
|
|
|
|
static __always_inline bool kcsan_is_enabled(void)
|
|
{
|
|
return READ_ONCE(kcsan_enabled) && get_ctx()->disable_count == 0;
|
|
}
|
|
|
|
static inline unsigned int get_delay(void)
|
|
{
|
|
unsigned int delay = in_task() ? kcsan_udelay_task : kcsan_udelay_interrupt;
|
|
return delay - (IS_ENABLED(CONFIG_KCSAN_DELAY_RANDOMIZE) ?
|
|
prandom_u32_max(delay) :
|
|
0);
|
|
}
|
|
|
|
/*
|
|
* Pull everything together: check_access() below contains the performance
|
|
* critical operations; the fast-path (including check_access) functions should
|
|
* all be inlinable by the instrumentation functions.
|
|
*
|
|
* The slow-path (kcsan_found_watchpoint, kcsan_setup_watchpoint) are
|
|
* non-inlinable -- note that, we prefix these with "kcsan_" to ensure they can
|
|
* be filtered from the stacktrace, as well as give them unique names for the
|
|
* UACCESS whitelist of objtool. Each function uses user_access_save/restore(),
|
|
* since they do not access any user memory, but instrumentation is still
|
|
* emitted in UACCESS regions.
|
|
*/
|
|
|
|
static noinline void kcsan_found_watchpoint(const volatile void *ptr,
|
|
size_t size,
|
|
int type,
|
|
atomic_long_t *watchpoint,
|
|
long encoded_watchpoint)
|
|
{
|
|
unsigned long flags;
|
|
bool consumed;
|
|
|
|
if (!kcsan_is_enabled())
|
|
return;
|
|
|
|
/*
|
|
* The access_mask check relies on value-change comparison. To avoid
|
|
* reporting a race where e.g. the writer set up the watchpoint, but the
|
|
* reader has access_mask!=0, we have to ignore the found watchpoint.
|
|
*/
|
|
if (get_ctx()->access_mask != 0)
|
|
return;
|
|
|
|
/*
|
|
* Consume the watchpoint as soon as possible, to minimize the chances
|
|
* of !consumed. Consuming the watchpoint must always be guarded by
|
|
* kcsan_is_enabled() check, as otherwise we might erroneously
|
|
* triggering reports when disabled.
|
|
*/
|
|
consumed = try_consume_watchpoint(watchpoint, encoded_watchpoint);
|
|
|
|
/* keep this after try_consume_watchpoint */
|
|
flags = user_access_save();
|
|
|
|
if (consumed) {
|
|
kcsan_report(ptr, size, type, KCSAN_VALUE_CHANGE_MAYBE,
|
|
KCSAN_REPORT_CONSUMED_WATCHPOINT,
|
|
watchpoint - watchpoints);
|
|
} else {
|
|
/*
|
|
* The other thread may not print any diagnostics, as it has
|
|
* already removed the watchpoint, or another thread consumed
|
|
* the watchpoint before this thread.
|
|
*/
|
|
kcsan_counter_inc(KCSAN_COUNTER_REPORT_RACES);
|
|
}
|
|
|
|
if ((type & KCSAN_ACCESS_ASSERT) != 0)
|
|
kcsan_counter_inc(KCSAN_COUNTER_ASSERT_FAILURES);
|
|
else
|
|
kcsan_counter_inc(KCSAN_COUNTER_DATA_RACES);
|
|
|
|
user_access_restore(flags);
|
|
}
|
|
|
|
static noinline void
|
|
kcsan_setup_watchpoint(const volatile void *ptr, size_t size, int type)
|
|
{
|
|
const bool is_write = (type & KCSAN_ACCESS_WRITE) != 0;
|
|
const bool is_assert = (type & KCSAN_ACCESS_ASSERT) != 0;
|
|
atomic_long_t *watchpoint;
|
|
union {
|
|
u8 _1;
|
|
u16 _2;
|
|
u32 _4;
|
|
u64 _8;
|
|
} expect_value;
|
|
unsigned long access_mask;
|
|
enum kcsan_value_change value_change = KCSAN_VALUE_CHANGE_MAYBE;
|
|
unsigned long ua_flags = user_access_save();
|
|
unsigned long irq_flags = 0;
|
|
|
|
/*
|
|
* Always reset kcsan_skip counter in slow-path to avoid underflow; see
|
|
* should_watch().
|
|
*/
|
|
reset_kcsan_skip();
|
|
|
|
if (!kcsan_is_enabled())
|
|
goto out;
|
|
|
|
/*
|
|
* Special atomic rules: unlikely to be true, so we check them here in
|
|
* the slow-path, and not in the fast-path in is_atomic(). Call after
|
|
* kcsan_is_enabled(), as we may access memory that is not yet
|
|
* initialized during early boot.
|
|
*/
|
|
if (!is_assert && kcsan_is_atomic_special(ptr))
|
|
goto out;
|
|
|
|
if (!check_encodable((unsigned long)ptr, size)) {
|
|
kcsan_counter_inc(KCSAN_COUNTER_UNENCODABLE_ACCESSES);
|
|
goto out;
|
|
}
|
|
|
|
if (!kcsan_interrupt_watcher)
|
|
/* Use raw to avoid lockdep recursion via IRQ flags tracing. */
|
|
raw_local_irq_save(irq_flags);
|
|
|
|
watchpoint = insert_watchpoint((unsigned long)ptr, size, is_write);
|
|
if (watchpoint == NULL) {
|
|
/*
|
|
* Out of capacity: the size of 'watchpoints', and the frequency
|
|
* with which should_watch() returns true should be tweaked so
|
|
* that this case happens very rarely.
|
|
*/
|
|
kcsan_counter_inc(KCSAN_COUNTER_NO_CAPACITY);
|
|
goto out_unlock;
|
|
}
|
|
|
|
kcsan_counter_inc(KCSAN_COUNTER_SETUP_WATCHPOINTS);
|
|
kcsan_counter_inc(KCSAN_COUNTER_USED_WATCHPOINTS);
|
|
|
|
/*
|
|
* Read the current value, to later check and infer a race if the data
|
|
* was modified via a non-instrumented access, e.g. from a device.
|
|
*/
|
|
expect_value._8 = 0;
|
|
switch (size) {
|
|
case 1:
|
|
expect_value._1 = READ_ONCE(*(const u8 *)ptr);
|
|
break;
|
|
case 2:
|
|
expect_value._2 = READ_ONCE(*(const u16 *)ptr);
|
|
break;
|
|
case 4:
|
|
expect_value._4 = READ_ONCE(*(const u32 *)ptr);
|
|
break;
|
|
case 8:
|
|
expect_value._8 = READ_ONCE(*(const u64 *)ptr);
|
|
break;
|
|
default:
|
|
break; /* ignore; we do not diff the values */
|
|
}
|
|
|
|
if (IS_ENABLED(CONFIG_KCSAN_DEBUG)) {
|
|
kcsan_disable_current();
|
|
pr_err("KCSAN: watching %s, size: %zu, addr: %px [slot: %d, encoded: %lx]\n",
|
|
is_write ? "write" : "read", size, ptr,
|
|
watchpoint_slot((unsigned long)ptr),
|
|
encode_watchpoint((unsigned long)ptr, size, is_write));
|
|
kcsan_enable_current();
|
|
}
|
|
|
|
/*
|
|
* Delay this thread, to increase probability of observing a racy
|
|
* conflicting access.
|
|
*/
|
|
udelay(get_delay());
|
|
|
|
/*
|
|
* Re-read value, and check if it is as expected; if not, we infer a
|
|
* racy access.
|
|
*/
|
|
access_mask = get_ctx()->access_mask;
|
|
switch (size) {
|
|
case 1:
|
|
expect_value._1 ^= READ_ONCE(*(const u8 *)ptr);
|
|
if (access_mask)
|
|
expect_value._1 &= (u8)access_mask;
|
|
break;
|
|
case 2:
|
|
expect_value._2 ^= READ_ONCE(*(const u16 *)ptr);
|
|
if (access_mask)
|
|
expect_value._2 &= (u16)access_mask;
|
|
break;
|
|
case 4:
|
|
expect_value._4 ^= READ_ONCE(*(const u32 *)ptr);
|
|
if (access_mask)
|
|
expect_value._4 &= (u32)access_mask;
|
|
break;
|
|
case 8:
|
|
expect_value._8 ^= READ_ONCE(*(const u64 *)ptr);
|
|
if (access_mask)
|
|
expect_value._8 &= (u64)access_mask;
|
|
break;
|
|
default:
|
|
break; /* ignore; we do not diff the values */
|
|
}
|
|
|
|
/* Were we able to observe a value-change? */
|
|
if (expect_value._8 != 0)
|
|
value_change = KCSAN_VALUE_CHANGE_TRUE;
|
|
|
|
/* Check if this access raced with another. */
|
|
if (!consume_watchpoint(watchpoint)) {
|
|
/*
|
|
* Depending on the access type, map a value_change of MAYBE to
|
|
* TRUE (always report) or FALSE (never report).
|
|
*/
|
|
if (value_change == KCSAN_VALUE_CHANGE_MAYBE) {
|
|
if (access_mask != 0) {
|
|
/*
|
|
* For access with access_mask, we require a
|
|
* value-change, as it is likely that races on
|
|
* ~access_mask bits are expected.
|
|
*/
|
|
value_change = KCSAN_VALUE_CHANGE_FALSE;
|
|
} else if (size > 8 || is_assert) {
|
|
/* Always assume a value-change. */
|
|
value_change = KCSAN_VALUE_CHANGE_TRUE;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* No need to increment 'data_races' counter, as the racing
|
|
* thread already did.
|
|
*
|
|
* Count 'assert_failures' for each failed ASSERT access,
|
|
* therefore both this thread and the racing thread may
|
|
* increment this counter.
|
|
*/
|
|
if (is_assert && value_change == KCSAN_VALUE_CHANGE_TRUE)
|
|
kcsan_counter_inc(KCSAN_COUNTER_ASSERT_FAILURES);
|
|
|
|
kcsan_report(ptr, size, type, value_change, KCSAN_REPORT_RACE_SIGNAL,
|
|
watchpoint - watchpoints);
|
|
} else if (value_change == KCSAN_VALUE_CHANGE_TRUE) {
|
|
/* Inferring a race, since the value should not have changed. */
|
|
|
|
kcsan_counter_inc(KCSAN_COUNTER_RACES_UNKNOWN_ORIGIN);
|
|
if (is_assert)
|
|
kcsan_counter_inc(KCSAN_COUNTER_ASSERT_FAILURES);
|
|
|
|
if (IS_ENABLED(CONFIG_KCSAN_REPORT_RACE_UNKNOWN_ORIGIN) || is_assert)
|
|
kcsan_report(ptr, size, type, KCSAN_VALUE_CHANGE_TRUE,
|
|
KCSAN_REPORT_RACE_UNKNOWN_ORIGIN,
|
|
watchpoint - watchpoints);
|
|
}
|
|
|
|
/*
|
|
* Remove watchpoint; must be after reporting, since the slot may be
|
|
* reused after this point.
|
|
*/
|
|
remove_watchpoint(watchpoint);
|
|
kcsan_counter_dec(KCSAN_COUNTER_USED_WATCHPOINTS);
|
|
out_unlock:
|
|
if (!kcsan_interrupt_watcher)
|
|
raw_local_irq_restore(irq_flags);
|
|
out:
|
|
user_access_restore(ua_flags);
|
|
}
|
|
|
|
static __always_inline void check_access(const volatile void *ptr, size_t size,
|
|
int type)
|
|
{
|
|
const bool is_write = (type & KCSAN_ACCESS_WRITE) != 0;
|
|
atomic_long_t *watchpoint;
|
|
long encoded_watchpoint;
|
|
|
|
/*
|
|
* Do nothing for 0 sized check; this comparison will be optimized out
|
|
* for constant sized instrumentation (__tsan_{read,write}N).
|
|
*/
|
|
if (unlikely(size == 0))
|
|
return;
|
|
|
|
/*
|
|
* Avoid user_access_save in fast-path: find_watchpoint is safe without
|
|
* user_access_save, as the address that ptr points to is only used to
|
|
* check if a watchpoint exists; ptr is never dereferenced.
|
|
*/
|
|
watchpoint = find_watchpoint((unsigned long)ptr, size, !is_write,
|
|
&encoded_watchpoint);
|
|
/*
|
|
* It is safe to check kcsan_is_enabled() after find_watchpoint in the
|
|
* slow-path, as long as no state changes that cause a race to be
|
|
* detected and reported have occurred until kcsan_is_enabled() is
|
|
* checked.
|
|
*/
|
|
|
|
if (unlikely(watchpoint != NULL))
|
|
kcsan_found_watchpoint(ptr, size, type, watchpoint,
|
|
encoded_watchpoint);
|
|
else {
|
|
struct kcsan_ctx *ctx = get_ctx(); /* Call only once in fast-path. */
|
|
|
|
if (unlikely(should_watch(ptr, size, type, ctx)))
|
|
kcsan_setup_watchpoint(ptr, size, type);
|
|
else if (unlikely(ctx->scoped_accesses.prev))
|
|
kcsan_check_scoped_accesses();
|
|
}
|
|
}
|
|
|
|
/* === Public interface ===================================================== */
|
|
|
|
void __init kcsan_init(void)
|
|
{
|
|
BUG_ON(!in_task());
|
|
|
|
kcsan_debugfs_init();
|
|
|
|
/*
|
|
* We are in the init task, and no other tasks should be running;
|
|
* WRITE_ONCE without memory barrier is sufficient.
|
|
*/
|
|
if (kcsan_early_enable)
|
|
WRITE_ONCE(kcsan_enabled, true);
|
|
}
|
|
|
|
/* === Exported interface =================================================== */
|
|
|
|
void kcsan_disable_current(void)
|
|
{
|
|
++get_ctx()->disable_count;
|
|
}
|
|
EXPORT_SYMBOL(kcsan_disable_current);
|
|
|
|
void kcsan_enable_current(void)
|
|
{
|
|
if (get_ctx()->disable_count-- == 0) {
|
|
/*
|
|
* Warn if kcsan_enable_current() calls are unbalanced with
|
|
* kcsan_disable_current() calls, which causes disable_count to
|
|
* become negative and should not happen.
|
|
*/
|
|
kcsan_disable_current(); /* restore to 0, KCSAN still enabled */
|
|
kcsan_disable_current(); /* disable to generate warning */
|
|
WARN(1, "Unbalanced %s()", __func__);
|
|
kcsan_enable_current();
|
|
}
|
|
}
|
|
EXPORT_SYMBOL(kcsan_enable_current);
|
|
|
|
void kcsan_enable_current_nowarn(void)
|
|
{
|
|
if (get_ctx()->disable_count-- == 0)
|
|
kcsan_disable_current();
|
|
}
|
|
EXPORT_SYMBOL(kcsan_enable_current_nowarn);
|
|
|
|
void kcsan_nestable_atomic_begin(void)
|
|
{
|
|
/*
|
|
* Do *not* check and warn if we are in a flat atomic region: nestable
|
|
* and flat atomic regions are independent from each other.
|
|
* See include/linux/kcsan.h: struct kcsan_ctx comments for more
|
|
* comments.
|
|
*/
|
|
|
|
++get_ctx()->atomic_nest_count;
|
|
}
|
|
EXPORT_SYMBOL(kcsan_nestable_atomic_begin);
|
|
|
|
void kcsan_nestable_atomic_end(void)
|
|
{
|
|
if (get_ctx()->atomic_nest_count-- == 0) {
|
|
/*
|
|
* Warn if kcsan_nestable_atomic_end() calls are unbalanced with
|
|
* kcsan_nestable_atomic_begin() calls, which causes
|
|
* atomic_nest_count to become negative and should not happen.
|
|
*/
|
|
kcsan_nestable_atomic_begin(); /* restore to 0 */
|
|
kcsan_disable_current(); /* disable to generate warning */
|
|
WARN(1, "Unbalanced %s()", __func__);
|
|
kcsan_enable_current();
|
|
}
|
|
}
|
|
EXPORT_SYMBOL(kcsan_nestable_atomic_end);
|
|
|
|
void kcsan_flat_atomic_begin(void)
|
|
{
|
|
get_ctx()->in_flat_atomic = true;
|
|
}
|
|
EXPORT_SYMBOL(kcsan_flat_atomic_begin);
|
|
|
|
void kcsan_flat_atomic_end(void)
|
|
{
|
|
get_ctx()->in_flat_atomic = false;
|
|
}
|
|
EXPORT_SYMBOL(kcsan_flat_atomic_end);
|
|
|
|
void kcsan_atomic_next(int n)
|
|
{
|
|
get_ctx()->atomic_next = n;
|
|
}
|
|
EXPORT_SYMBOL(kcsan_atomic_next);
|
|
|
|
void kcsan_set_access_mask(unsigned long mask)
|
|
{
|
|
get_ctx()->access_mask = mask;
|
|
}
|
|
EXPORT_SYMBOL(kcsan_set_access_mask);
|
|
|
|
struct kcsan_scoped_access *
|
|
kcsan_begin_scoped_access(const volatile void *ptr, size_t size, int type,
|
|
struct kcsan_scoped_access *sa)
|
|
{
|
|
struct kcsan_ctx *ctx = get_ctx();
|
|
|
|
__kcsan_check_access(ptr, size, type);
|
|
|
|
ctx->disable_count++; /* Disable KCSAN, in case list debugging is on. */
|
|
|
|
INIT_LIST_HEAD(&sa->list);
|
|
sa->ptr = ptr;
|
|
sa->size = size;
|
|
sa->type = type;
|
|
|
|
if (!ctx->scoped_accesses.prev) /* Lazy initialize list head. */
|
|
INIT_LIST_HEAD(&ctx->scoped_accesses);
|
|
list_add(&sa->list, &ctx->scoped_accesses);
|
|
|
|
ctx->disable_count--;
|
|
return sa;
|
|
}
|
|
EXPORT_SYMBOL(kcsan_begin_scoped_access);
|
|
|
|
void kcsan_end_scoped_access(struct kcsan_scoped_access *sa)
|
|
{
|
|
struct kcsan_ctx *ctx = get_ctx();
|
|
|
|
if (WARN(!ctx->scoped_accesses.prev, "Unbalanced %s()?", __func__))
|
|
return;
|
|
|
|
ctx->disable_count++; /* Disable KCSAN, in case list debugging is on. */
|
|
|
|
list_del(&sa->list);
|
|
if (list_empty(&ctx->scoped_accesses))
|
|
/*
|
|
* Ensure we do not enter kcsan_check_scoped_accesses()
|
|
* slow-path if unnecessary, and avoids requiring list_empty()
|
|
* in the fast-path (to avoid a READ_ONCE() and potential
|
|
* uaccess warning).
|
|
*/
|
|
ctx->scoped_accesses.prev = NULL;
|
|
|
|
ctx->disable_count--;
|
|
|
|
__kcsan_check_access(sa->ptr, sa->size, sa->type);
|
|
}
|
|
EXPORT_SYMBOL(kcsan_end_scoped_access);
|
|
|
|
void __kcsan_check_access(const volatile void *ptr, size_t size, int type)
|
|
{
|
|
check_access(ptr, size, type);
|
|
}
|
|
EXPORT_SYMBOL(__kcsan_check_access);
|
|
|
|
/*
|
|
* KCSAN uses the same instrumentation that is emitted by supported compilers
|
|
* for ThreadSanitizer (TSAN).
|
|
*
|
|
* When enabled, the compiler emits instrumentation calls (the functions
|
|
* prefixed with "__tsan" below) for all loads and stores that it generated;
|
|
* inline asm is not instrumented.
|
|
*
|
|
* Note that, not all supported compiler versions distinguish aligned/unaligned
|
|
* accesses, but e.g. recent versions of Clang do. We simply alias the unaligned
|
|
* version to the generic version, which can handle both.
|
|
*/
|
|
|
|
#define DEFINE_TSAN_READ_WRITE(size) \
|
|
void __tsan_read##size(void *ptr) \
|
|
{ \
|
|
check_access(ptr, size, 0); \
|
|
} \
|
|
EXPORT_SYMBOL(__tsan_read##size); \
|
|
void __tsan_unaligned_read##size(void *ptr) \
|
|
__alias(__tsan_read##size); \
|
|
EXPORT_SYMBOL(__tsan_unaligned_read##size); \
|
|
void __tsan_write##size(void *ptr) \
|
|
{ \
|
|
check_access(ptr, size, KCSAN_ACCESS_WRITE); \
|
|
} \
|
|
EXPORT_SYMBOL(__tsan_write##size); \
|
|
void __tsan_unaligned_write##size(void *ptr) \
|
|
__alias(__tsan_write##size); \
|
|
EXPORT_SYMBOL(__tsan_unaligned_write##size)
|
|
|
|
DEFINE_TSAN_READ_WRITE(1);
|
|
DEFINE_TSAN_READ_WRITE(2);
|
|
DEFINE_TSAN_READ_WRITE(4);
|
|
DEFINE_TSAN_READ_WRITE(8);
|
|
DEFINE_TSAN_READ_WRITE(16);
|
|
|
|
void __tsan_read_range(void *ptr, size_t size)
|
|
{
|
|
check_access(ptr, size, 0);
|
|
}
|
|
EXPORT_SYMBOL(__tsan_read_range);
|
|
|
|
void __tsan_write_range(void *ptr, size_t size)
|
|
{
|
|
check_access(ptr, size, KCSAN_ACCESS_WRITE);
|
|
}
|
|
EXPORT_SYMBOL(__tsan_write_range);
|
|
|
|
/*
|
|
* Use of explicit volatile is generally disallowed [1], however, volatile is
|
|
* still used in various concurrent context, whether in low-level
|
|
* synchronization primitives or for legacy reasons.
|
|
* [1] https://lwn.net/Articles/233479/
|
|
*
|
|
* We only consider volatile accesses atomic if they are aligned and would pass
|
|
* the size-check of compiletime_assert_rwonce_type().
|
|
*/
|
|
#define DEFINE_TSAN_VOLATILE_READ_WRITE(size) \
|
|
void __tsan_volatile_read##size(void *ptr) \
|
|
{ \
|
|
const bool is_atomic = size <= sizeof(long long) && \
|
|
IS_ALIGNED((unsigned long)ptr, size); \
|
|
if (IS_ENABLED(CONFIG_KCSAN_IGNORE_ATOMICS) && is_atomic) \
|
|
return; \
|
|
check_access(ptr, size, is_atomic ? KCSAN_ACCESS_ATOMIC : 0); \
|
|
} \
|
|
EXPORT_SYMBOL(__tsan_volatile_read##size); \
|
|
void __tsan_unaligned_volatile_read##size(void *ptr) \
|
|
__alias(__tsan_volatile_read##size); \
|
|
EXPORT_SYMBOL(__tsan_unaligned_volatile_read##size); \
|
|
void __tsan_volatile_write##size(void *ptr) \
|
|
{ \
|
|
const bool is_atomic = size <= sizeof(long long) && \
|
|
IS_ALIGNED((unsigned long)ptr, size); \
|
|
if (IS_ENABLED(CONFIG_KCSAN_IGNORE_ATOMICS) && is_atomic) \
|
|
return; \
|
|
check_access(ptr, size, \
|
|
KCSAN_ACCESS_WRITE | \
|
|
(is_atomic ? KCSAN_ACCESS_ATOMIC : 0)); \
|
|
} \
|
|
EXPORT_SYMBOL(__tsan_volatile_write##size); \
|
|
void __tsan_unaligned_volatile_write##size(void *ptr) \
|
|
__alias(__tsan_volatile_write##size); \
|
|
EXPORT_SYMBOL(__tsan_unaligned_volatile_write##size)
|
|
|
|
DEFINE_TSAN_VOLATILE_READ_WRITE(1);
|
|
DEFINE_TSAN_VOLATILE_READ_WRITE(2);
|
|
DEFINE_TSAN_VOLATILE_READ_WRITE(4);
|
|
DEFINE_TSAN_VOLATILE_READ_WRITE(8);
|
|
DEFINE_TSAN_VOLATILE_READ_WRITE(16);
|
|
|
|
/*
|
|
* The below are not required by KCSAN, but can still be emitted by the
|
|
* compiler.
|
|
*/
|
|
void __tsan_func_entry(void *call_pc)
|
|
{
|
|
}
|
|
EXPORT_SYMBOL(__tsan_func_entry);
|
|
void __tsan_func_exit(void)
|
|
{
|
|
}
|
|
EXPORT_SYMBOL(__tsan_func_exit);
|
|
void __tsan_init(void)
|
|
{
|
|
}
|
|
EXPORT_SYMBOL(__tsan_init);
|