mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2024-11-24 08:50:52 +07:00
96bdd2bcc1
There are a few information counters that are intentionally not protected against increment races, so just annotate them using the data_race() macro. BUG: KCSAN: data-race in __frontswap_store / __frontswap_store write to 0xffffffff8b7174d8 of 8 bytes by task 6396 on cpu 103: __frontswap_store+0x2d0/0x344 inc_frontswap_failed_stores at mm/frontswap.c:70 (inlined by) __frontswap_store at mm/frontswap.c:280 swap_writepage+0x83/0xf0 pageout+0x33e/0xae0 shrink_page_list+0x1f57/0x2870 shrink_inactive_list+0x316/0x880 shrink_lruvec+0x8dc/0x1380 shrink_node+0x317/0xd80 do_try_to_free_pages+0x1f7/0xa10 try_to_free_pages+0x26c/0x5e0 __alloc_pages_slowpath+0x458/0x1290 __alloc_pages_nodemask+0x3bb/0x450 alloc_pages_vma+0x8a/0x2c0 do_anonymous_page+0x170/0x700 __handle_mm_fault+0xc9f/0xd00 handle_mm_fault+0xfc/0x2f0 do_page_fault+0x263/0x6f9 page_fault+0x34/0x40 read to 0xffffffff8b7174d8 of 8 bytes by task 6405 on cpu 47: __frontswap_store+0x2b9/0x344 inc_frontswap_failed_stores at mm/frontswap.c:70 (inlined by) __frontswap_store at mm/frontswap.c:280 swap_writepage+0x83/0xf0 pageout+0x33e/0xae0 shrink_page_list+0x1f57/0x2870 shrink_inactive_list+0x316/0x880 shrink_lruvec+0x8dc/0x1380 shrink_node+0x317/0xd80 do_try_to_free_pages+0x1f7/0xa10 try_to_free_pages+0x26c/0x5e0 __alloc_pages_slowpath+0x458/0x1290 __alloc_pages_nodemask+0x3bb/0x450 alloc_pages_vma+0x8a/0x2c0 do_anonymous_page+0x170/0x700 __handle_mm_fault+0xc9f/0xd00 handle_mm_fault+0xfc/0x2f0 do_page_fault+0x263/0x6f9 page_fault+0x34/0x40 Signed-off-by: Qian Cai <cai@lca.pw> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Cc: Marco Elver <elver@google.com> Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Link: http://lkml.kernel.org/r/1581114499-5042-1-git-send-email-cai@lca.pw Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
498 lines
14 KiB
C
498 lines
14 KiB
C
// SPDX-License-Identifier: GPL-2.0-only
|
|
/*
|
|
* Frontswap frontend
|
|
*
|
|
* This code provides the generic "frontend" layer to call a matching
|
|
* "backend" driver implementation of frontswap. See
|
|
* Documentation/vm/frontswap.rst for more information.
|
|
*
|
|
* Copyright (C) 2009-2012 Oracle Corp. All rights reserved.
|
|
* Author: Dan Magenheimer
|
|
*/
|
|
|
|
#include <linux/mman.h>
|
|
#include <linux/swap.h>
|
|
#include <linux/swapops.h>
|
|
#include <linux/security.h>
|
|
#include <linux/module.h>
|
|
#include <linux/debugfs.h>
|
|
#include <linux/frontswap.h>
|
|
#include <linux/swapfile.h>
|
|
|
|
DEFINE_STATIC_KEY_FALSE(frontswap_enabled_key);
|
|
|
|
/*
|
|
* frontswap_ops are added by frontswap_register_ops, and provide the
|
|
* frontswap "backend" implementation functions. Multiple implementations
|
|
* may be registered, but implementations can never deregister. This
|
|
* is a simple singly-linked list of all registered implementations.
|
|
*/
|
|
static struct frontswap_ops *frontswap_ops __read_mostly;
|
|
|
|
#define for_each_frontswap_ops(ops) \
|
|
for ((ops) = frontswap_ops; (ops); (ops) = (ops)->next)
|
|
|
|
/*
|
|
* If enabled, frontswap_store will return failure even on success. As
|
|
* a result, the swap subsystem will always write the page to swap, in
|
|
* effect converting frontswap into a writethrough cache. In this mode,
|
|
* there is no direct reduction in swap writes, but a frontswap backend
|
|
* can unilaterally "reclaim" any pages in use with no data loss, thus
|
|
* providing increases control over maximum memory usage due to frontswap.
|
|
*/
|
|
static bool frontswap_writethrough_enabled __read_mostly;
|
|
|
|
/*
|
|
* If enabled, the underlying tmem implementation is capable of doing
|
|
* exclusive gets, so frontswap_load, on a successful tmem_get must
|
|
* mark the page as no longer in frontswap AND mark it dirty.
|
|
*/
|
|
static bool frontswap_tmem_exclusive_gets_enabled __read_mostly;
|
|
|
|
#ifdef CONFIG_DEBUG_FS
|
|
/*
|
|
* Counters available via /sys/kernel/debug/frontswap (if debugfs is
|
|
* properly configured). These are for information only so are not protected
|
|
* against increment races.
|
|
*/
|
|
static u64 frontswap_loads;
|
|
static u64 frontswap_succ_stores;
|
|
static u64 frontswap_failed_stores;
|
|
static u64 frontswap_invalidates;
|
|
|
|
static inline void inc_frontswap_loads(void) {
|
|
data_race(frontswap_loads++);
|
|
}
|
|
static inline void inc_frontswap_succ_stores(void) {
|
|
data_race(frontswap_succ_stores++);
|
|
}
|
|
static inline void inc_frontswap_failed_stores(void) {
|
|
data_race(frontswap_failed_stores++);
|
|
}
|
|
static inline void inc_frontswap_invalidates(void) {
|
|
data_race(frontswap_invalidates++);
|
|
}
|
|
#else
|
|
static inline void inc_frontswap_loads(void) { }
|
|
static inline void inc_frontswap_succ_stores(void) { }
|
|
static inline void inc_frontswap_failed_stores(void) { }
|
|
static inline void inc_frontswap_invalidates(void) { }
|
|
#endif
|
|
|
|
/*
|
|
* Due to the asynchronous nature of the backends loading potentially
|
|
* _after_ the swap system has been activated, we have chokepoints
|
|
* on all frontswap functions to not call the backend until the backend
|
|
* has registered.
|
|
*
|
|
* This would not guards us against the user deciding to call swapoff right as
|
|
* we are calling the backend to initialize (so swapon is in action).
|
|
* Fortunately for us, the swapon_mutex has been taken by the callee so we are
|
|
* OK. The other scenario where calls to frontswap_store (called via
|
|
* swap_writepage) is racing with frontswap_invalidate_area (called via
|
|
* swapoff) is again guarded by the swap subsystem.
|
|
*
|
|
* While no backend is registered all calls to frontswap_[store|load|
|
|
* invalidate_area|invalidate_page] are ignored or fail.
|
|
*
|
|
* The time between the backend being registered and the swap file system
|
|
* calling the backend (via the frontswap_* functions) is indeterminate as
|
|
* frontswap_ops is not atomic_t (or a value guarded by a spinlock).
|
|
* That is OK as we are comfortable missing some of these calls to the newly
|
|
* registered backend.
|
|
*
|
|
* Obviously the opposite (unloading the backend) must be done after all
|
|
* the frontswap_[store|load|invalidate_area|invalidate_page] start
|
|
* ignoring or failing the requests. However, there is currently no way
|
|
* to unload a backend once it is registered.
|
|
*/
|
|
|
|
/*
|
|
* Register operations for frontswap
|
|
*/
|
|
void frontswap_register_ops(struct frontswap_ops *ops)
|
|
{
|
|
DECLARE_BITMAP(a, MAX_SWAPFILES);
|
|
DECLARE_BITMAP(b, MAX_SWAPFILES);
|
|
struct swap_info_struct *si;
|
|
unsigned int i;
|
|
|
|
bitmap_zero(a, MAX_SWAPFILES);
|
|
bitmap_zero(b, MAX_SWAPFILES);
|
|
|
|
spin_lock(&swap_lock);
|
|
plist_for_each_entry(si, &swap_active_head, list) {
|
|
if (!WARN_ON(!si->frontswap_map))
|
|
set_bit(si->type, a);
|
|
}
|
|
spin_unlock(&swap_lock);
|
|
|
|
/* the new ops needs to know the currently active swap devices */
|
|
for_each_set_bit(i, a, MAX_SWAPFILES)
|
|
ops->init(i);
|
|
|
|
/*
|
|
* Setting frontswap_ops must happen after the ops->init() calls
|
|
* above; cmpxchg implies smp_mb() which will ensure the init is
|
|
* complete at this point.
|
|
*/
|
|
do {
|
|
ops->next = frontswap_ops;
|
|
} while (cmpxchg(&frontswap_ops, ops->next, ops) != ops->next);
|
|
|
|
static_branch_inc(&frontswap_enabled_key);
|
|
|
|
spin_lock(&swap_lock);
|
|
plist_for_each_entry(si, &swap_active_head, list) {
|
|
if (si->frontswap_map)
|
|
set_bit(si->type, b);
|
|
}
|
|
spin_unlock(&swap_lock);
|
|
|
|
/*
|
|
* On the very unlikely chance that a swap device was added or
|
|
* removed between setting the "a" list bits and the ops init
|
|
* calls, we re-check and do init or invalidate for any changed
|
|
* bits.
|
|
*/
|
|
if (unlikely(!bitmap_equal(a, b, MAX_SWAPFILES))) {
|
|
for (i = 0; i < MAX_SWAPFILES; i++) {
|
|
if (!test_bit(i, a) && test_bit(i, b))
|
|
ops->init(i);
|
|
else if (test_bit(i, a) && !test_bit(i, b))
|
|
ops->invalidate_area(i);
|
|
}
|
|
}
|
|
}
|
|
EXPORT_SYMBOL(frontswap_register_ops);
|
|
|
|
/*
|
|
* Enable/disable frontswap writethrough (see above).
|
|
*/
|
|
void frontswap_writethrough(bool enable)
|
|
{
|
|
frontswap_writethrough_enabled = enable;
|
|
}
|
|
EXPORT_SYMBOL(frontswap_writethrough);
|
|
|
|
/*
|
|
* Enable/disable frontswap exclusive gets (see above).
|
|
*/
|
|
void frontswap_tmem_exclusive_gets(bool enable)
|
|
{
|
|
frontswap_tmem_exclusive_gets_enabled = enable;
|
|
}
|
|
EXPORT_SYMBOL(frontswap_tmem_exclusive_gets);
|
|
|
|
/*
|
|
* Called when a swap device is swapon'd.
|
|
*/
|
|
void __frontswap_init(unsigned type, unsigned long *map)
|
|
{
|
|
struct swap_info_struct *sis = swap_info[type];
|
|
struct frontswap_ops *ops;
|
|
|
|
VM_BUG_ON(sis == NULL);
|
|
|
|
/*
|
|
* p->frontswap is a bitmap that we MUST have to figure out which page
|
|
* has gone in frontswap. Without it there is no point of continuing.
|
|
*/
|
|
if (WARN_ON(!map))
|
|
return;
|
|
/*
|
|
* Irregardless of whether the frontswap backend has been loaded
|
|
* before this function or it will be later, we _MUST_ have the
|
|
* p->frontswap set to something valid to work properly.
|
|
*/
|
|
frontswap_map_set(sis, map);
|
|
|
|
for_each_frontswap_ops(ops)
|
|
ops->init(type);
|
|
}
|
|
EXPORT_SYMBOL(__frontswap_init);
|
|
|
|
bool __frontswap_test(struct swap_info_struct *sis,
|
|
pgoff_t offset)
|
|
{
|
|
if (sis->frontswap_map)
|
|
return test_bit(offset, sis->frontswap_map);
|
|
return false;
|
|
}
|
|
EXPORT_SYMBOL(__frontswap_test);
|
|
|
|
static inline void __frontswap_set(struct swap_info_struct *sis,
|
|
pgoff_t offset)
|
|
{
|
|
set_bit(offset, sis->frontswap_map);
|
|
atomic_inc(&sis->frontswap_pages);
|
|
}
|
|
|
|
static inline void __frontswap_clear(struct swap_info_struct *sis,
|
|
pgoff_t offset)
|
|
{
|
|
clear_bit(offset, sis->frontswap_map);
|
|
atomic_dec(&sis->frontswap_pages);
|
|
}
|
|
|
|
/*
|
|
* "Store" data from a page to frontswap and associate it with the page's
|
|
* swaptype and offset. Page must be locked and in the swap cache.
|
|
* If frontswap already contains a page with matching swaptype and
|
|
* offset, the frontswap implementation may either overwrite the data and
|
|
* return success or invalidate the page from frontswap and return failure.
|
|
*/
|
|
int __frontswap_store(struct page *page)
|
|
{
|
|
int ret = -1;
|
|
swp_entry_t entry = { .val = page_private(page), };
|
|
int type = swp_type(entry);
|
|
struct swap_info_struct *sis = swap_info[type];
|
|
pgoff_t offset = swp_offset(entry);
|
|
struct frontswap_ops *ops;
|
|
|
|
VM_BUG_ON(!frontswap_ops);
|
|
VM_BUG_ON(!PageLocked(page));
|
|
VM_BUG_ON(sis == NULL);
|
|
|
|
/*
|
|
* If a dup, we must remove the old page first; we can't leave the
|
|
* old page no matter if the store of the new page succeeds or fails,
|
|
* and we can't rely on the new page replacing the old page as we may
|
|
* not store to the same implementation that contains the old page.
|
|
*/
|
|
if (__frontswap_test(sis, offset)) {
|
|
__frontswap_clear(sis, offset);
|
|
for_each_frontswap_ops(ops)
|
|
ops->invalidate_page(type, offset);
|
|
}
|
|
|
|
/* Try to store in each implementation, until one succeeds. */
|
|
for_each_frontswap_ops(ops) {
|
|
ret = ops->store(type, offset, page);
|
|
if (!ret) /* successful store */
|
|
break;
|
|
}
|
|
if (ret == 0) {
|
|
__frontswap_set(sis, offset);
|
|
inc_frontswap_succ_stores();
|
|
} else {
|
|
inc_frontswap_failed_stores();
|
|
}
|
|
if (frontswap_writethrough_enabled)
|
|
/* report failure so swap also writes to swap device */
|
|
ret = -1;
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL(__frontswap_store);
|
|
|
|
/*
|
|
* "Get" data from frontswap associated with swaptype and offset that were
|
|
* specified when the data was put to frontswap and use it to fill the
|
|
* specified page with data. Page must be locked and in the swap cache.
|
|
*/
|
|
int __frontswap_load(struct page *page)
|
|
{
|
|
int ret = -1;
|
|
swp_entry_t entry = { .val = page_private(page), };
|
|
int type = swp_type(entry);
|
|
struct swap_info_struct *sis = swap_info[type];
|
|
pgoff_t offset = swp_offset(entry);
|
|
struct frontswap_ops *ops;
|
|
|
|
VM_BUG_ON(!frontswap_ops);
|
|
VM_BUG_ON(!PageLocked(page));
|
|
VM_BUG_ON(sis == NULL);
|
|
|
|
if (!__frontswap_test(sis, offset))
|
|
return -1;
|
|
|
|
/* Try loading from each implementation, until one succeeds. */
|
|
for_each_frontswap_ops(ops) {
|
|
ret = ops->load(type, offset, page);
|
|
if (!ret) /* successful load */
|
|
break;
|
|
}
|
|
if (ret == 0) {
|
|
inc_frontswap_loads();
|
|
if (frontswap_tmem_exclusive_gets_enabled) {
|
|
SetPageDirty(page);
|
|
__frontswap_clear(sis, offset);
|
|
}
|
|
}
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL(__frontswap_load);
|
|
|
|
/*
|
|
* Invalidate any data from frontswap associated with the specified swaptype
|
|
* and offset so that a subsequent "get" will fail.
|
|
*/
|
|
void __frontswap_invalidate_page(unsigned type, pgoff_t offset)
|
|
{
|
|
struct swap_info_struct *sis = swap_info[type];
|
|
struct frontswap_ops *ops;
|
|
|
|
VM_BUG_ON(!frontswap_ops);
|
|
VM_BUG_ON(sis == NULL);
|
|
|
|
if (!__frontswap_test(sis, offset))
|
|
return;
|
|
|
|
for_each_frontswap_ops(ops)
|
|
ops->invalidate_page(type, offset);
|
|
__frontswap_clear(sis, offset);
|
|
inc_frontswap_invalidates();
|
|
}
|
|
EXPORT_SYMBOL(__frontswap_invalidate_page);
|
|
|
|
/*
|
|
* Invalidate all data from frontswap associated with all offsets for the
|
|
* specified swaptype.
|
|
*/
|
|
void __frontswap_invalidate_area(unsigned type)
|
|
{
|
|
struct swap_info_struct *sis = swap_info[type];
|
|
struct frontswap_ops *ops;
|
|
|
|
VM_BUG_ON(!frontswap_ops);
|
|
VM_BUG_ON(sis == NULL);
|
|
|
|
if (sis->frontswap_map == NULL)
|
|
return;
|
|
|
|
for_each_frontswap_ops(ops)
|
|
ops->invalidate_area(type);
|
|
atomic_set(&sis->frontswap_pages, 0);
|
|
bitmap_zero(sis->frontswap_map, sis->max);
|
|
}
|
|
EXPORT_SYMBOL(__frontswap_invalidate_area);
|
|
|
|
static unsigned long __frontswap_curr_pages(void)
|
|
{
|
|
unsigned long totalpages = 0;
|
|
struct swap_info_struct *si = NULL;
|
|
|
|
assert_spin_locked(&swap_lock);
|
|
plist_for_each_entry(si, &swap_active_head, list)
|
|
totalpages += atomic_read(&si->frontswap_pages);
|
|
return totalpages;
|
|
}
|
|
|
|
static int __frontswap_unuse_pages(unsigned long total, unsigned long *unused,
|
|
int *swapid)
|
|
{
|
|
int ret = -EINVAL;
|
|
struct swap_info_struct *si = NULL;
|
|
int si_frontswap_pages;
|
|
unsigned long total_pages_to_unuse = total;
|
|
unsigned long pages = 0, pages_to_unuse = 0;
|
|
|
|
assert_spin_locked(&swap_lock);
|
|
plist_for_each_entry(si, &swap_active_head, list) {
|
|
si_frontswap_pages = atomic_read(&si->frontswap_pages);
|
|
if (total_pages_to_unuse < si_frontswap_pages) {
|
|
pages = pages_to_unuse = total_pages_to_unuse;
|
|
} else {
|
|
pages = si_frontswap_pages;
|
|
pages_to_unuse = 0; /* unuse all */
|
|
}
|
|
/* ensure there is enough RAM to fetch pages from frontswap */
|
|
if (security_vm_enough_memory_mm(current->mm, pages)) {
|
|
ret = -ENOMEM;
|
|
continue;
|
|
}
|
|
vm_unacct_memory(pages);
|
|
*unused = pages_to_unuse;
|
|
*swapid = si->type;
|
|
ret = 0;
|
|
break;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Used to check if it's necessary and feasible to unuse pages.
|
|
* Return 1 when nothing to do, 0 when need to shrink pages,
|
|
* error code when there is an error.
|
|
*/
|
|
static int __frontswap_shrink(unsigned long target_pages,
|
|
unsigned long *pages_to_unuse,
|
|
int *type)
|
|
{
|
|
unsigned long total_pages = 0, total_pages_to_unuse;
|
|
|
|
assert_spin_locked(&swap_lock);
|
|
|
|
total_pages = __frontswap_curr_pages();
|
|
if (total_pages <= target_pages) {
|
|
/* Nothing to do */
|
|
*pages_to_unuse = 0;
|
|
return 1;
|
|
}
|
|
total_pages_to_unuse = total_pages - target_pages;
|
|
return __frontswap_unuse_pages(total_pages_to_unuse, pages_to_unuse, type);
|
|
}
|
|
|
|
/*
|
|
* Frontswap, like a true swap device, may unnecessarily retain pages
|
|
* under certain circumstances; "shrink" frontswap is essentially a
|
|
* "partial swapoff" and works by calling try_to_unuse to attempt to
|
|
* unuse enough frontswap pages to attempt to -- subject to memory
|
|
* constraints -- reduce the number of pages in frontswap to the
|
|
* number given in the parameter target_pages.
|
|
*/
|
|
void frontswap_shrink(unsigned long target_pages)
|
|
{
|
|
unsigned long pages_to_unuse = 0;
|
|
int type, ret;
|
|
|
|
/*
|
|
* we don't want to hold swap_lock while doing a very
|
|
* lengthy try_to_unuse, but swap_list may change
|
|
* so restart scan from swap_active_head each time
|
|
*/
|
|
spin_lock(&swap_lock);
|
|
ret = __frontswap_shrink(target_pages, &pages_to_unuse, &type);
|
|
spin_unlock(&swap_lock);
|
|
if (ret == 0)
|
|
try_to_unuse(type, true, pages_to_unuse);
|
|
return;
|
|
}
|
|
EXPORT_SYMBOL(frontswap_shrink);
|
|
|
|
/*
|
|
* Count and return the number of frontswap pages across all
|
|
* swap devices. This is exported so that backend drivers can
|
|
* determine current usage without reading debugfs.
|
|
*/
|
|
unsigned long frontswap_curr_pages(void)
|
|
{
|
|
unsigned long totalpages = 0;
|
|
|
|
spin_lock(&swap_lock);
|
|
totalpages = __frontswap_curr_pages();
|
|
spin_unlock(&swap_lock);
|
|
|
|
return totalpages;
|
|
}
|
|
EXPORT_SYMBOL(frontswap_curr_pages);
|
|
|
|
static int __init init_frontswap(void)
|
|
{
|
|
#ifdef CONFIG_DEBUG_FS
|
|
struct dentry *root = debugfs_create_dir("frontswap", NULL);
|
|
if (root == NULL)
|
|
return -ENXIO;
|
|
debugfs_create_u64("loads", 0444, root, &frontswap_loads);
|
|
debugfs_create_u64("succ_stores", 0444, root, &frontswap_succ_stores);
|
|
debugfs_create_u64("failed_stores", 0444, root,
|
|
&frontswap_failed_stores);
|
|
debugfs_create_u64("invalidates", 0444, root, &frontswap_invalidates);
|
|
#endif
|
|
return 0;
|
|
}
|
|
|
|
module_init(init_frontswap);
|