mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2024-12-27 07:45:06 +07:00
d66e5139ae
On ixp4xx, the readl() function returns an 'unsigned long' output when indirect I/O is used. This is unlike any other platform, and it causes lots of harmless compiler warnings, such as: drivers/ata/libahci.c: In function 'ahci_show_host_version': drivers/ata/libahci.c:254:22: warning: format '%x' expects argument of type 'unsigned int', but argument 3 has type 'long unsigned int' [-Wformat=] drivers/block/mtip32xx/mtip32xx.c: In function 'mtip_hw_read_registers': drivers/block/mtip32xx/mtip32xx.c:2602:31: warning: format '%X' expects argument of type 'unsigned int', but argument 3 has type 'long unsigned int' [-Wformat=] drivers/block/cciss.c: In function 'print_cfg_table': drivers/block/cciss.c:3845:25: warning: format '%d' expects argument of type 'int', but argument 4 has type 'long unsigned int' [-Wformat=] This changes all six of the ixp4xx specific I/O read functions to return the same types that we have in the normal asm/io.h, to avoid the warnings. Signed-off-by: Arnd Bergmann <arnd@arndb.de> Acked-by: Krzysztof Halasa <khalasa@piap.pl>
531 lines
13 KiB
C
531 lines
13 KiB
C
/*
|
|
* arch/arm/mach-ixp4xx/include/mach/io.h
|
|
*
|
|
* Author: Deepak Saxena <dsaxena@plexity.net>
|
|
*
|
|
* Copyright (C) 2002-2005 MontaVista Software, Inc.
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License version 2 as
|
|
* published by the Free Software Foundation.
|
|
*/
|
|
|
|
#ifndef __ASM_ARM_ARCH_IO_H
|
|
#define __ASM_ARM_ARCH_IO_H
|
|
|
|
#include <linux/bitops.h>
|
|
|
|
#include <mach/hardware.h>
|
|
|
|
extern int (*ixp4xx_pci_read)(u32 addr, u32 cmd, u32* data);
|
|
extern int ixp4xx_pci_write(u32 addr, u32 cmd, u32 data);
|
|
|
|
|
|
/*
|
|
* IXP4xx provides two methods of accessing PCI memory space:
|
|
*
|
|
* 1) A direct mapped window from 0x48000000 to 0x4BFFFFFF (64MB).
|
|
* To access PCI via this space, we simply ioremap() the BAR
|
|
* into the kernel and we can use the standard read[bwl]/write[bwl]
|
|
* macros. This is the preffered method due to speed but it
|
|
* limits the system to just 64MB of PCI memory. This can be
|
|
* problematic if using video cards and other memory-heavy targets.
|
|
*
|
|
* 2) If > 64MB of memory space is required, the IXP4xx can use indirect
|
|
* registers to access the whole 4 GB of PCI memory space (as we do below
|
|
* for I/O transactions). This allows currently for up to 1 GB (0x10000000
|
|
* to 0x4FFFFFFF) of memory on the bus. The disadvantage of this is that
|
|
* every PCI access requires three local register accesses plus a spinlock,
|
|
* but in some cases the performance hit is acceptable. In addition, you
|
|
* cannot mmap() PCI devices in this case.
|
|
*/
|
|
#ifdef CONFIG_IXP4XX_INDIRECT_PCI
|
|
|
|
/*
|
|
* In the case of using indirect PCI, we simply return the actual PCI
|
|
* address and our read/write implementation use that to drive the
|
|
* access registers. If something outside of PCI is ioremap'd, we
|
|
* fallback to the default.
|
|
*/
|
|
|
|
extern unsigned long pcibios_min_mem;
|
|
static inline int is_pci_memory(u32 addr)
|
|
{
|
|
return (addr >= pcibios_min_mem) && (addr <= 0x4FFFFFFF);
|
|
}
|
|
|
|
#define writeb(v, p) __indirect_writeb(v, p)
|
|
#define writew(v, p) __indirect_writew(v, p)
|
|
#define writel(v, p) __indirect_writel(v, p)
|
|
|
|
#define writeb_relaxed(v, p) __indirect_writeb(v, p)
|
|
#define writew_relaxed(v, p) __indirect_writew(v, p)
|
|
#define writel_relaxed(v, p) __indirect_writel(v, p)
|
|
|
|
#define writesb(p, v, l) __indirect_writesb(p, v, l)
|
|
#define writesw(p, v, l) __indirect_writesw(p, v, l)
|
|
#define writesl(p, v, l) __indirect_writesl(p, v, l)
|
|
|
|
#define readb(p) __indirect_readb(p)
|
|
#define readw(p) __indirect_readw(p)
|
|
#define readl(p) __indirect_readl(p)
|
|
|
|
#define readb_relaxed(p) __indirect_readb(p)
|
|
#define readw_relaxed(p) __indirect_readw(p)
|
|
#define readl_relaxed(p) __indirect_readl(p)
|
|
|
|
#define readsb(p, v, l) __indirect_readsb(p, v, l)
|
|
#define readsw(p, v, l) __indirect_readsw(p, v, l)
|
|
#define readsl(p, v, l) __indirect_readsl(p, v, l)
|
|
|
|
static inline void __indirect_writeb(u8 value, volatile void __iomem *p)
|
|
{
|
|
u32 addr = (u32)p;
|
|
u32 n, byte_enables, data;
|
|
|
|
if (!is_pci_memory(addr)) {
|
|
__raw_writeb(value, p);
|
|
return;
|
|
}
|
|
|
|
n = addr % 4;
|
|
byte_enables = (0xf & ~BIT(n)) << IXP4XX_PCI_NP_CBE_BESL;
|
|
data = value << (8*n);
|
|
ixp4xx_pci_write(addr, byte_enables | NP_CMD_MEMWRITE, data);
|
|
}
|
|
|
|
static inline void __indirect_writesb(volatile void __iomem *bus_addr,
|
|
const u8 *vaddr, int count)
|
|
{
|
|
while (count--)
|
|
writeb(*vaddr++, bus_addr);
|
|
}
|
|
|
|
static inline void __indirect_writew(u16 value, volatile void __iomem *p)
|
|
{
|
|
u32 addr = (u32)p;
|
|
u32 n, byte_enables, data;
|
|
|
|
if (!is_pci_memory(addr)) {
|
|
__raw_writew(value, p);
|
|
return;
|
|
}
|
|
|
|
n = addr % 4;
|
|
byte_enables = (0xf & ~(BIT(n) | BIT(n+1))) << IXP4XX_PCI_NP_CBE_BESL;
|
|
data = value << (8*n);
|
|
ixp4xx_pci_write(addr, byte_enables | NP_CMD_MEMWRITE, data);
|
|
}
|
|
|
|
static inline void __indirect_writesw(volatile void __iomem *bus_addr,
|
|
const u16 *vaddr, int count)
|
|
{
|
|
while (count--)
|
|
writew(*vaddr++, bus_addr);
|
|
}
|
|
|
|
static inline void __indirect_writel(u32 value, volatile void __iomem *p)
|
|
{
|
|
u32 addr = (__force u32)p;
|
|
|
|
if (!is_pci_memory(addr)) {
|
|
__raw_writel(value, p);
|
|
return;
|
|
}
|
|
|
|
ixp4xx_pci_write(addr, NP_CMD_MEMWRITE, value);
|
|
}
|
|
|
|
static inline void __indirect_writesl(volatile void __iomem *bus_addr,
|
|
const u32 *vaddr, int count)
|
|
{
|
|
while (count--)
|
|
writel(*vaddr++, bus_addr);
|
|
}
|
|
|
|
static inline u8 __indirect_readb(const volatile void __iomem *p)
|
|
{
|
|
u32 addr = (u32)p;
|
|
u32 n, byte_enables, data;
|
|
|
|
if (!is_pci_memory(addr))
|
|
return __raw_readb(p);
|
|
|
|
n = addr % 4;
|
|
byte_enables = (0xf & ~BIT(n)) << IXP4XX_PCI_NP_CBE_BESL;
|
|
if (ixp4xx_pci_read(addr, byte_enables | NP_CMD_MEMREAD, &data))
|
|
return 0xff;
|
|
|
|
return data >> (8*n);
|
|
}
|
|
|
|
static inline void __indirect_readsb(const volatile void __iomem *bus_addr,
|
|
u8 *vaddr, u32 count)
|
|
{
|
|
while (count--)
|
|
*vaddr++ = readb(bus_addr);
|
|
}
|
|
|
|
static inline u16 __indirect_readw(const volatile void __iomem *p)
|
|
{
|
|
u32 addr = (u32)p;
|
|
u32 n, byte_enables, data;
|
|
|
|
if (!is_pci_memory(addr))
|
|
return __raw_readw(p);
|
|
|
|
n = addr % 4;
|
|
byte_enables = (0xf & ~(BIT(n) | BIT(n+1))) << IXP4XX_PCI_NP_CBE_BESL;
|
|
if (ixp4xx_pci_read(addr, byte_enables | NP_CMD_MEMREAD, &data))
|
|
return 0xffff;
|
|
|
|
return data>>(8*n);
|
|
}
|
|
|
|
static inline void __indirect_readsw(const volatile void __iomem *bus_addr,
|
|
u16 *vaddr, u32 count)
|
|
{
|
|
while (count--)
|
|
*vaddr++ = readw(bus_addr);
|
|
}
|
|
|
|
static inline u32 __indirect_readl(const volatile void __iomem *p)
|
|
{
|
|
u32 addr = (__force u32)p;
|
|
u32 data;
|
|
|
|
if (!is_pci_memory(addr))
|
|
return __raw_readl(p);
|
|
|
|
if (ixp4xx_pci_read(addr, NP_CMD_MEMREAD, &data))
|
|
return 0xffffffff;
|
|
|
|
return data;
|
|
}
|
|
|
|
static inline void __indirect_readsl(const volatile void __iomem *bus_addr,
|
|
u32 *vaddr, u32 count)
|
|
{
|
|
while (count--)
|
|
*vaddr++ = readl(bus_addr);
|
|
}
|
|
|
|
|
|
/*
|
|
* We can use the built-in functions b/c they end up calling writeb/readb
|
|
*/
|
|
#define memset_io(c,v,l) _memset_io((c),(v),(l))
|
|
#define memcpy_fromio(a,c,l) _memcpy_fromio((a),(c),(l))
|
|
#define memcpy_toio(c,a,l) _memcpy_toio((c),(a),(l))
|
|
|
|
#endif /* CONFIG_IXP4XX_INDIRECT_PCI */
|
|
|
|
#ifndef CONFIG_PCI
|
|
|
|
#define __io(v) __typesafe_io(v)
|
|
|
|
#else
|
|
|
|
/*
|
|
* IXP4xx does not have a transparent cpu -> PCI I/O translation
|
|
* window. Instead, it has a set of registers that must be tweaked
|
|
* with the proper byte lanes, command types, and address for the
|
|
* transaction. This means that we need to override the default
|
|
* I/O functions.
|
|
*/
|
|
|
|
#define outb outb
|
|
static inline void outb(u8 value, u32 addr)
|
|
{
|
|
u32 n, byte_enables, data;
|
|
n = addr % 4;
|
|
byte_enables = (0xf & ~BIT(n)) << IXP4XX_PCI_NP_CBE_BESL;
|
|
data = value << (8*n);
|
|
ixp4xx_pci_write(addr, byte_enables | NP_CMD_IOWRITE, data);
|
|
}
|
|
|
|
#define outsb outsb
|
|
static inline void outsb(u32 io_addr, const void *p, u32 count)
|
|
{
|
|
const u8 *vaddr = p;
|
|
|
|
while (count--)
|
|
outb(*vaddr++, io_addr);
|
|
}
|
|
|
|
#define outw outw
|
|
static inline void outw(u16 value, u32 addr)
|
|
{
|
|
u32 n, byte_enables, data;
|
|
n = addr % 4;
|
|
byte_enables = (0xf & ~(BIT(n) | BIT(n+1))) << IXP4XX_PCI_NP_CBE_BESL;
|
|
data = value << (8*n);
|
|
ixp4xx_pci_write(addr, byte_enables | NP_CMD_IOWRITE, data);
|
|
}
|
|
|
|
#define outsw outsw
|
|
static inline void outsw(u32 io_addr, const void *p, u32 count)
|
|
{
|
|
const u16 *vaddr = p;
|
|
while (count--)
|
|
outw(cpu_to_le16(*vaddr++), io_addr);
|
|
}
|
|
|
|
#define outl outl
|
|
static inline void outl(u32 value, u32 addr)
|
|
{
|
|
ixp4xx_pci_write(addr, NP_CMD_IOWRITE, value);
|
|
}
|
|
|
|
#define outsl outsl
|
|
static inline void outsl(u32 io_addr, const void *p, u32 count)
|
|
{
|
|
const u32 *vaddr = p;
|
|
while (count--)
|
|
outl(cpu_to_le32(*vaddr++), io_addr);
|
|
}
|
|
|
|
#define inb inb
|
|
static inline u8 inb(u32 addr)
|
|
{
|
|
u32 n, byte_enables, data;
|
|
n = addr % 4;
|
|
byte_enables = (0xf & ~BIT(n)) << IXP4XX_PCI_NP_CBE_BESL;
|
|
if (ixp4xx_pci_read(addr, byte_enables | NP_CMD_IOREAD, &data))
|
|
return 0xff;
|
|
|
|
return data >> (8*n);
|
|
}
|
|
|
|
#define insb insb
|
|
static inline void insb(u32 io_addr, void *p, u32 count)
|
|
{
|
|
u8 *vaddr = p;
|
|
while (count--)
|
|
*vaddr++ = inb(io_addr);
|
|
}
|
|
|
|
#define inw inw
|
|
static inline u16 inw(u32 addr)
|
|
{
|
|
u32 n, byte_enables, data;
|
|
n = addr % 4;
|
|
byte_enables = (0xf & ~(BIT(n) | BIT(n+1))) << IXP4XX_PCI_NP_CBE_BESL;
|
|
if (ixp4xx_pci_read(addr, byte_enables | NP_CMD_IOREAD, &data))
|
|
return 0xffff;
|
|
|
|
return data>>(8*n);
|
|
}
|
|
|
|
#define insw insw
|
|
static inline void insw(u32 io_addr, void *p, u32 count)
|
|
{
|
|
u16 *vaddr = p;
|
|
while (count--)
|
|
*vaddr++ = le16_to_cpu(inw(io_addr));
|
|
}
|
|
|
|
#define inl inl
|
|
static inline u32 inl(u32 addr)
|
|
{
|
|
u32 data;
|
|
if (ixp4xx_pci_read(addr, NP_CMD_IOREAD, &data))
|
|
return 0xffffffff;
|
|
|
|
return data;
|
|
}
|
|
|
|
#define insl insl
|
|
static inline void insl(u32 io_addr, void *p, u32 count)
|
|
{
|
|
u32 *vaddr = p;
|
|
while (count--)
|
|
*vaddr++ = le32_to_cpu(inl(io_addr));
|
|
}
|
|
|
|
#define PIO_OFFSET 0x10000UL
|
|
#define PIO_MASK 0x0ffffUL
|
|
|
|
#define __is_io_address(p) (((unsigned long)p >= PIO_OFFSET) && \
|
|
((unsigned long)p <= (PIO_MASK + PIO_OFFSET)))
|
|
|
|
#define ioread8(p) ioread8(p)
|
|
static inline u8 ioread8(const void __iomem *addr)
|
|
{
|
|
unsigned long port = (unsigned long __force)addr;
|
|
if (__is_io_address(port))
|
|
return (unsigned int)inb(port & PIO_MASK);
|
|
else
|
|
#ifndef CONFIG_IXP4XX_INDIRECT_PCI
|
|
return (unsigned int)__raw_readb(addr);
|
|
#else
|
|
return (unsigned int)__indirect_readb(addr);
|
|
#endif
|
|
}
|
|
|
|
#define ioread8_rep(p, v, c) ioread8_rep(p, v, c)
|
|
static inline void ioread8_rep(const void __iomem *addr, void *vaddr, u32 count)
|
|
{
|
|
unsigned long port = (unsigned long __force)addr;
|
|
if (__is_io_address(port))
|
|
insb(port & PIO_MASK, vaddr, count);
|
|
else
|
|
#ifndef CONFIG_IXP4XX_INDIRECT_PCI
|
|
__raw_readsb(addr, vaddr, count);
|
|
#else
|
|
__indirect_readsb(addr, vaddr, count);
|
|
#endif
|
|
}
|
|
|
|
#define ioread16(p) ioread16(p)
|
|
static inline u16 ioread16(const void __iomem *addr)
|
|
{
|
|
unsigned long port = (unsigned long __force)addr;
|
|
if (__is_io_address(port))
|
|
return (unsigned int)inw(port & PIO_MASK);
|
|
else
|
|
#ifndef CONFIG_IXP4XX_INDIRECT_PCI
|
|
return le16_to_cpu((__force __le16)__raw_readw(addr));
|
|
#else
|
|
return (unsigned int)__indirect_readw(addr);
|
|
#endif
|
|
}
|
|
|
|
#define ioread16_rep(p, v, c) ioread16_rep(p, v, c)
|
|
static inline void ioread16_rep(const void __iomem *addr, void *vaddr,
|
|
u32 count)
|
|
{
|
|
unsigned long port = (unsigned long __force)addr;
|
|
if (__is_io_address(port))
|
|
insw(port & PIO_MASK, vaddr, count);
|
|
else
|
|
#ifndef CONFIG_IXP4XX_INDIRECT_PCI
|
|
__raw_readsw(addr, vaddr, count);
|
|
#else
|
|
__indirect_readsw(addr, vaddr, count);
|
|
#endif
|
|
}
|
|
|
|
#define ioread32(p) ioread32(p)
|
|
static inline u32 ioread32(const void __iomem *addr)
|
|
{
|
|
unsigned long port = (unsigned long __force)addr;
|
|
if (__is_io_address(port))
|
|
return (unsigned int)inl(port & PIO_MASK);
|
|
else {
|
|
#ifndef CONFIG_IXP4XX_INDIRECT_PCI
|
|
return le32_to_cpu((__force __le32)__raw_readl(addr));
|
|
#else
|
|
return (unsigned int)__indirect_readl(addr);
|
|
#endif
|
|
}
|
|
}
|
|
|
|
#define ioread32_rep(p, v, c) ioread32_rep(p, v, c)
|
|
static inline void ioread32_rep(const void __iomem *addr, void *vaddr,
|
|
u32 count)
|
|
{
|
|
unsigned long port = (unsigned long __force)addr;
|
|
if (__is_io_address(port))
|
|
insl(port & PIO_MASK, vaddr, count);
|
|
else
|
|
#ifndef CONFIG_IXP4XX_INDIRECT_PCI
|
|
__raw_readsl(addr, vaddr, count);
|
|
#else
|
|
__indirect_readsl(addr, vaddr, count);
|
|
#endif
|
|
}
|
|
|
|
#define iowrite8(v, p) iowrite8(v, p)
|
|
static inline void iowrite8(u8 value, void __iomem *addr)
|
|
{
|
|
unsigned long port = (unsigned long __force)addr;
|
|
if (__is_io_address(port))
|
|
outb(value, port & PIO_MASK);
|
|
else
|
|
#ifndef CONFIG_IXP4XX_INDIRECT_PCI
|
|
__raw_writeb(value, addr);
|
|
#else
|
|
__indirect_writeb(value, addr);
|
|
#endif
|
|
}
|
|
|
|
#define iowrite8_rep(p, v, c) iowrite8_rep(p, v, c)
|
|
static inline void iowrite8_rep(void __iomem *addr, const void *vaddr,
|
|
u32 count)
|
|
{
|
|
unsigned long port = (unsigned long __force)addr;
|
|
if (__is_io_address(port))
|
|
outsb(port & PIO_MASK, vaddr, count);
|
|
else
|
|
#ifndef CONFIG_IXP4XX_INDIRECT_PCI
|
|
__raw_writesb(addr, vaddr, count);
|
|
#else
|
|
__indirect_writesb(addr, vaddr, count);
|
|
#endif
|
|
}
|
|
|
|
#define iowrite16(v, p) iowrite16(v, p)
|
|
static inline void iowrite16(u16 value, void __iomem *addr)
|
|
{
|
|
unsigned long port = (unsigned long __force)addr;
|
|
if (__is_io_address(port))
|
|
outw(value, port & PIO_MASK);
|
|
else
|
|
#ifndef CONFIG_IXP4XX_INDIRECT_PCI
|
|
__raw_writew(cpu_to_le16(value), addr);
|
|
#else
|
|
__indirect_writew(value, addr);
|
|
#endif
|
|
}
|
|
|
|
#define iowrite16_rep(p, v, c) iowrite16_rep(p, v, c)
|
|
static inline void iowrite16_rep(void __iomem *addr, const void *vaddr,
|
|
u32 count)
|
|
{
|
|
unsigned long port = (unsigned long __force)addr;
|
|
if (__is_io_address(port))
|
|
outsw(port & PIO_MASK, vaddr, count);
|
|
else
|
|
#ifndef CONFIG_IXP4XX_INDIRECT_PCI
|
|
__raw_writesw(addr, vaddr, count);
|
|
#else
|
|
__indirect_writesw(addr, vaddr, count);
|
|
#endif
|
|
}
|
|
|
|
#define iowrite32(v, p) iowrite32(v, p)
|
|
static inline void iowrite32(u32 value, void __iomem *addr)
|
|
{
|
|
unsigned long port = (unsigned long __force)addr;
|
|
if (__is_io_address(port))
|
|
outl(value, port & PIO_MASK);
|
|
else
|
|
#ifndef CONFIG_IXP4XX_INDIRECT_PCI
|
|
__raw_writel((u32 __force)cpu_to_le32(value), addr);
|
|
#else
|
|
__indirect_writel(value, addr);
|
|
#endif
|
|
}
|
|
|
|
#define iowrite32_rep(p, v, c) iowrite32_rep(p, v, c)
|
|
static inline void iowrite32_rep(void __iomem *addr, const void *vaddr,
|
|
u32 count)
|
|
{
|
|
unsigned long port = (unsigned long __force)addr;
|
|
if (__is_io_address(port))
|
|
outsl(port & PIO_MASK, vaddr, count);
|
|
else
|
|
#ifndef CONFIG_IXP4XX_INDIRECT_PCI
|
|
__raw_writesl(addr, vaddr, count);
|
|
#else
|
|
__indirect_writesl(addr, vaddr, count);
|
|
#endif
|
|
}
|
|
|
|
#define ioport_map(port, nr) ((void __iomem*)(port + PIO_OFFSET))
|
|
#define ioport_unmap(addr)
|
|
#endif /* CONFIG_PCI */
|
|
|
|
#endif /* __ASM_ARM_ARCH_IO_H */
|