linux_dsm_epyc7002/drivers/gpu/drm/vc4/vc4_crtc.c
Maxime Ripard 8ba0b6d196
drm/vc4: crtc: Keep the previously assigned HVS FIFO
The HVS FIFOs are currently assigned each time we have an atomic_check
for all the enabled CRTCs.

However, if we are running multiple outputs in parallel and we happen to
disable the first (by index) CRTC, we end up changing the assigned FIFO
of the second CRTC without disabling and reenabling the pixelvalve which
ends up in a stall and eventually a VBLANK timeout.

In order to fix this, we can create a special value for our assigned
channel to mark it as disabled, and if our CRTC already had an assigned
channel in its previous state, we keep on using it.

Fixes: 87ebcd42fb ("drm/vc4: crtc: Assign output to channel automatically")
Signed-off-by: Maxime Ripard <maxime@cerno.tech>
Tested-by: Dave Stevenson <dave.stevenson@raspberrypi.com>
Reviewed-by: Dave Stevenson <dave.stevenson@raspberrypi.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20200923084032.218619-2-maxime@cerno.tech
2020-09-25 16:56:21 +02:00

1182 lines
34 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (C) 2015 Broadcom
*/
/**
* DOC: VC4 CRTC module
*
* In VC4, the Pixel Valve is what most closely corresponds to the
* DRM's concept of a CRTC. The PV generates video timings from the
* encoder's clock plus its configuration. It pulls scaled pixels from
* the HVS at that timing, and feeds it to the encoder.
*
* However, the DRM CRTC also collects the configuration of all the
* DRM planes attached to it. As a result, the CRTC is also
* responsible for writing the display list for the HVS channel that
* the CRTC will use.
*
* The 2835 has 3 different pixel valves. pv0 in the audio power
* domain feeds DSI0 or DPI, while pv1 feeds DS1 or SMI. pv2 in the
* image domain can feed either HDMI or the SDTV controller. The
* pixel valve chooses from the CPRMAN clocks (HSM for HDMI, VEC for
* SDTV, etc.) according to which output type is chosen in the mux.
*
* For power management, the pixel valve's registers are all clocked
* by the AXI clock, while the timings and FIFOs make use of the
* output-specific clock. Since the encoders also directly consume
* the CPRMAN clocks, and know what timings they need, they are the
* ones that set the clock.
*/
#include <linux/clk.h>
#include <linux/component.h>
#include <linux/of_device.h>
#include <drm/drm_atomic.h>
#include <drm/drm_atomic_helper.h>
#include <drm/drm_atomic_uapi.h>
#include <drm/drm_fb_cma_helper.h>
#include <drm/drm_print.h>
#include <drm/drm_probe_helper.h>
#include <drm/drm_vblank.h>
#include "vc4_drv.h"
#include "vc4_regs.h"
#define HVS_FIFO_LATENCY_PIX 6
#define CRTC_WRITE(offset, val) writel(val, vc4_crtc->regs + (offset))
#define CRTC_READ(offset) readl(vc4_crtc->regs + (offset))
static const struct debugfs_reg32 crtc_regs[] = {
VC4_REG32(PV_CONTROL),
VC4_REG32(PV_V_CONTROL),
VC4_REG32(PV_VSYNCD_EVEN),
VC4_REG32(PV_HORZA),
VC4_REG32(PV_HORZB),
VC4_REG32(PV_VERTA),
VC4_REG32(PV_VERTB),
VC4_REG32(PV_VERTA_EVEN),
VC4_REG32(PV_VERTB_EVEN),
VC4_REG32(PV_INTEN),
VC4_REG32(PV_INTSTAT),
VC4_REG32(PV_STAT),
VC4_REG32(PV_HACT_ACT),
};
static unsigned int
vc4_crtc_get_cob_allocation(struct vc4_dev *vc4, unsigned int channel)
{
u32 dispbase = HVS_READ(SCALER_DISPBASEX(channel));
/* Top/base are supposed to be 4-pixel aligned, but the
* Raspberry Pi firmware fills the low bits (which are
* presumably ignored).
*/
u32 top = VC4_GET_FIELD(dispbase, SCALER_DISPBASEX_TOP) & ~3;
u32 base = VC4_GET_FIELD(dispbase, SCALER_DISPBASEX_BASE) & ~3;
return top - base + 4;
}
static bool vc4_crtc_get_scanout_position(struct drm_crtc *crtc,
bool in_vblank_irq,
int *vpos, int *hpos,
ktime_t *stime, ktime_t *etime,
const struct drm_display_mode *mode)
{
struct drm_device *dev = crtc->dev;
struct vc4_dev *vc4 = to_vc4_dev(dev);
struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
struct vc4_crtc_state *vc4_crtc_state = to_vc4_crtc_state(crtc->state);
unsigned int cob_size;
u32 val;
int fifo_lines;
int vblank_lines;
bool ret = false;
/* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */
/* Get optional system timestamp before query. */
if (stime)
*stime = ktime_get();
/*
* Read vertical scanline which is currently composed for our
* pixelvalve by the HVS, and also the scaler status.
*/
val = HVS_READ(SCALER_DISPSTATX(vc4_crtc_state->assigned_channel));
/* Get optional system timestamp after query. */
if (etime)
*etime = ktime_get();
/* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */
/* Vertical position of hvs composed scanline. */
*vpos = VC4_GET_FIELD(val, SCALER_DISPSTATX_LINE);
*hpos = 0;
if (mode->flags & DRM_MODE_FLAG_INTERLACE) {
*vpos /= 2;
/* Use hpos to correct for field offset in interlaced mode. */
if (VC4_GET_FIELD(val, SCALER_DISPSTATX_FRAME_COUNT) % 2)
*hpos += mode->crtc_htotal / 2;
}
cob_size = vc4_crtc_get_cob_allocation(vc4, vc4_crtc_state->assigned_channel);
/* This is the offset we need for translating hvs -> pv scanout pos. */
fifo_lines = cob_size / mode->crtc_hdisplay;
if (fifo_lines > 0)
ret = true;
/* HVS more than fifo_lines into frame for compositing? */
if (*vpos > fifo_lines) {
/*
* We are in active scanout and can get some meaningful results
* from HVS. The actual PV scanout can not trail behind more
* than fifo_lines as that is the fifo's capacity. Assume that
* in active scanout the HVS and PV work in lockstep wrt. HVS
* refilling the fifo and PV consuming from the fifo, ie.
* whenever the PV consumes and frees up a scanline in the
* fifo, the HVS will immediately refill it, therefore
* incrementing vpos. Therefore we choose HVS read position -
* fifo size in scanlines as a estimate of the real scanout
* position of the PV.
*/
*vpos -= fifo_lines + 1;
return ret;
}
/*
* Less: This happens when we are in vblank and the HVS, after getting
* the VSTART restart signal from the PV, just started refilling its
* fifo with new lines from the top-most lines of the new framebuffers.
* The PV does not scan out in vblank, so does not remove lines from
* the fifo, so the fifo will be full quickly and the HVS has to pause.
* We can't get meaningful readings wrt. scanline position of the PV
* and need to make things up in a approximative but consistent way.
*/
vblank_lines = mode->vtotal - mode->vdisplay;
if (in_vblank_irq) {
/*
* Assume the irq handler got called close to first
* line of vblank, so PV has about a full vblank
* scanlines to go, and as a base timestamp use the
* one taken at entry into vblank irq handler, so it
* is not affected by random delays due to lock
* contention on event_lock or vblank_time lock in
* the core.
*/
*vpos = -vblank_lines;
if (stime)
*stime = vc4_crtc->t_vblank;
if (etime)
*etime = vc4_crtc->t_vblank;
/*
* If the HVS fifo is not yet full then we know for certain
* we are at the very beginning of vblank, as the hvs just
* started refilling, and the stime and etime timestamps
* truly correspond to start of vblank.
*
* Unfortunately there's no way to report this to upper levels
* and make it more useful.
*/
} else {
/*
* No clue where we are inside vblank. Return a vpos of zero,
* which will cause calling code to just return the etime
* timestamp uncorrected. At least this is no worse than the
* standard fallback.
*/
*vpos = 0;
}
return ret;
}
void vc4_crtc_destroy(struct drm_crtc *crtc)
{
drm_crtc_cleanup(crtc);
}
static u32 vc4_get_fifo_full_level(struct vc4_crtc *vc4_crtc, u32 format)
{
const struct vc4_crtc_data *crtc_data = vc4_crtc_to_vc4_crtc_data(vc4_crtc);
const struct vc4_pv_data *pv_data = vc4_crtc_to_vc4_pv_data(vc4_crtc);
u32 fifo_len_bytes = pv_data->fifo_depth;
/*
* Pixels are pulled from the HVS if the number of bytes is
* lower than the FIFO full level.
*
* The latency of the pixel fetch mechanism is 6 pixels, so we
* need to convert those 6 pixels in bytes, depending on the
* format, and then subtract that from the length of the FIFO
* to make sure we never end up in a situation where the FIFO
* is full.
*/
switch (format) {
case PV_CONTROL_FORMAT_DSIV_16:
case PV_CONTROL_FORMAT_DSIC_16:
return fifo_len_bytes - 2 * HVS_FIFO_LATENCY_PIX;
case PV_CONTROL_FORMAT_DSIV_18:
return fifo_len_bytes - 14;
case PV_CONTROL_FORMAT_24:
case PV_CONTROL_FORMAT_DSIV_24:
default:
/*
* For some reason, the pixelvalve4 doesn't work with
* the usual formula and will only work with 32.
*/
if (crtc_data->hvs_output == 5)
return 32;
return fifo_len_bytes - 3 * HVS_FIFO_LATENCY_PIX;
}
}
static u32 vc4_crtc_get_fifo_full_level_bits(struct vc4_crtc *vc4_crtc,
u32 format)
{
u32 level = vc4_get_fifo_full_level(vc4_crtc, format);
u32 ret = 0;
ret |= VC4_SET_FIELD((level >> 6),
PV5_CONTROL_FIFO_LEVEL_HIGH);
return ret | VC4_SET_FIELD(level & 0x3f,
PV_CONTROL_FIFO_LEVEL);
}
/*
* Returns the encoder attached to the CRTC.
*
* VC4 can only scan out to one encoder at a time, while the DRM core
* allows drivers to push pixels to more than one encoder from the
* same CRTC.
*/
static struct drm_encoder *vc4_get_crtc_encoder(struct drm_crtc *crtc)
{
struct drm_connector *connector;
struct drm_connector_list_iter conn_iter;
drm_connector_list_iter_begin(crtc->dev, &conn_iter);
drm_for_each_connector_iter(connector, &conn_iter) {
if (connector->state->crtc == crtc) {
drm_connector_list_iter_end(&conn_iter);
return connector->encoder;
}
}
drm_connector_list_iter_end(&conn_iter);
return NULL;
}
static void vc4_crtc_pixelvalve_reset(struct drm_crtc *crtc)
{
struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
/* The PV needs to be disabled before it can be flushed */
CRTC_WRITE(PV_CONTROL, CRTC_READ(PV_CONTROL) & ~PV_CONTROL_EN);
CRTC_WRITE(PV_CONTROL, CRTC_READ(PV_CONTROL) | PV_CONTROL_FIFO_CLR);
}
static void vc4_crtc_config_pv(struct drm_crtc *crtc)
{
struct drm_device *dev = crtc->dev;
struct vc4_dev *vc4 = to_vc4_dev(dev);
struct drm_encoder *encoder = vc4_get_crtc_encoder(crtc);
struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder);
struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
const struct vc4_pv_data *pv_data = vc4_crtc_to_vc4_pv_data(vc4_crtc);
struct drm_crtc_state *state = crtc->state;
struct drm_display_mode *mode = &state->adjusted_mode;
bool interlace = mode->flags & DRM_MODE_FLAG_INTERLACE;
u32 pixel_rep = (mode->flags & DRM_MODE_FLAG_DBLCLK) ? 2 : 1;
bool is_dsi = (vc4_encoder->type == VC4_ENCODER_TYPE_DSI0 ||
vc4_encoder->type == VC4_ENCODER_TYPE_DSI1);
u32 format = is_dsi ? PV_CONTROL_FORMAT_DSIV_24 : PV_CONTROL_FORMAT_24;
u8 ppc = pv_data->pixels_per_clock;
bool debug_dump_regs = false;
if (debug_dump_regs) {
struct drm_printer p = drm_info_printer(&vc4_crtc->pdev->dev);
dev_info(&vc4_crtc->pdev->dev, "CRTC %d regs before:\n",
drm_crtc_index(crtc));
drm_print_regset32(&p, &vc4_crtc->regset);
}
vc4_crtc_pixelvalve_reset(crtc);
CRTC_WRITE(PV_HORZA,
VC4_SET_FIELD((mode->htotal - mode->hsync_end) * pixel_rep / ppc,
PV_HORZA_HBP) |
VC4_SET_FIELD((mode->hsync_end - mode->hsync_start) * pixel_rep / ppc,
PV_HORZA_HSYNC));
CRTC_WRITE(PV_HORZB,
VC4_SET_FIELD((mode->hsync_start - mode->hdisplay) * pixel_rep / ppc,
PV_HORZB_HFP) |
VC4_SET_FIELD(mode->hdisplay * pixel_rep / ppc,
PV_HORZB_HACTIVE));
CRTC_WRITE(PV_VERTA,
VC4_SET_FIELD(mode->crtc_vtotal - mode->crtc_vsync_end,
PV_VERTA_VBP) |
VC4_SET_FIELD(mode->crtc_vsync_end - mode->crtc_vsync_start,
PV_VERTA_VSYNC));
CRTC_WRITE(PV_VERTB,
VC4_SET_FIELD(mode->crtc_vsync_start - mode->crtc_vdisplay,
PV_VERTB_VFP) |
VC4_SET_FIELD(mode->crtc_vdisplay, PV_VERTB_VACTIVE));
if (interlace) {
CRTC_WRITE(PV_VERTA_EVEN,
VC4_SET_FIELD(mode->crtc_vtotal -
mode->crtc_vsync_end - 1,
PV_VERTA_VBP) |
VC4_SET_FIELD(mode->crtc_vsync_end -
mode->crtc_vsync_start,
PV_VERTA_VSYNC));
CRTC_WRITE(PV_VERTB_EVEN,
VC4_SET_FIELD(mode->crtc_vsync_start -
mode->crtc_vdisplay,
PV_VERTB_VFP) |
VC4_SET_FIELD(mode->crtc_vdisplay, PV_VERTB_VACTIVE));
/* We set up first field even mode for HDMI. VEC's
* NTSC mode would want first field odd instead, once
* we support it (to do so, set ODD_FIRST and put the
* delay in VSYNCD_EVEN instead).
*/
CRTC_WRITE(PV_V_CONTROL,
PV_VCONTROL_CONTINUOUS |
(is_dsi ? PV_VCONTROL_DSI : 0) |
PV_VCONTROL_INTERLACE |
VC4_SET_FIELD(mode->htotal * pixel_rep / 2,
PV_VCONTROL_ODD_DELAY));
CRTC_WRITE(PV_VSYNCD_EVEN, 0);
} else {
CRTC_WRITE(PV_V_CONTROL,
PV_VCONTROL_CONTINUOUS |
(is_dsi ? PV_VCONTROL_DSI : 0));
}
if (is_dsi)
CRTC_WRITE(PV_HACT_ACT, mode->hdisplay * pixel_rep);
if (vc4->hvs->hvs5)
CRTC_WRITE(PV_MUX_CFG,
VC4_SET_FIELD(PV_MUX_CFG_RGB_PIXEL_MUX_MODE_NO_SWAP,
PV_MUX_CFG_RGB_PIXEL_MUX_MODE));
CRTC_WRITE(PV_CONTROL, PV_CONTROL_FIFO_CLR |
vc4_crtc_get_fifo_full_level_bits(vc4_crtc, format) |
VC4_SET_FIELD(format, PV_CONTROL_FORMAT) |
VC4_SET_FIELD(pixel_rep - 1, PV_CONTROL_PIXEL_REP) |
PV_CONTROL_CLR_AT_START |
PV_CONTROL_TRIGGER_UNDERFLOW |
PV_CONTROL_WAIT_HSTART |
VC4_SET_FIELD(vc4_encoder->clock_select,
PV_CONTROL_CLK_SELECT));
if (debug_dump_regs) {
struct drm_printer p = drm_info_printer(&vc4_crtc->pdev->dev);
dev_info(&vc4_crtc->pdev->dev, "CRTC %d regs after:\n",
drm_crtc_index(crtc));
drm_print_regset32(&p, &vc4_crtc->regset);
}
}
static void require_hvs_enabled(struct drm_device *dev)
{
struct vc4_dev *vc4 = to_vc4_dev(dev);
WARN_ON_ONCE((HVS_READ(SCALER_DISPCTRL) & SCALER_DISPCTRL_ENABLE) !=
SCALER_DISPCTRL_ENABLE);
}
static int vc4_crtc_disable(struct drm_crtc *crtc, unsigned int channel)
{
struct drm_encoder *encoder = vc4_get_crtc_encoder(crtc);
struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder);
struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
struct drm_device *dev = crtc->dev;
int ret;
CRTC_WRITE(PV_V_CONTROL,
CRTC_READ(PV_V_CONTROL) & ~PV_VCONTROL_VIDEN);
ret = wait_for(!(CRTC_READ(PV_V_CONTROL) & PV_VCONTROL_VIDEN), 1);
WARN_ONCE(ret, "Timeout waiting for !PV_VCONTROL_VIDEN\n");
/*
* This delay is needed to avoid to get a pixel stuck in an
* unflushable FIFO between the pixelvalve and the HDMI
* controllers on the BCM2711.
*
* Timing is fairly sensitive here, so mdelay is the safest
* approach.
*
* If it was to be reworked, the stuck pixel happens on a
* BCM2711 when changing mode with a good probability, so a
* script that changes mode on a regular basis should trigger
* the bug after less than 10 attempts. It manifests itself with
* every pixels being shifted by one to the right, and thus the
* last pixel of a line actually being displayed as the first
* pixel on the next line.
*/
mdelay(20);
if (vc4_encoder && vc4_encoder->post_crtc_disable)
vc4_encoder->post_crtc_disable(encoder);
vc4_crtc_pixelvalve_reset(crtc);
vc4_hvs_stop_channel(dev, channel);
if (vc4_encoder && vc4_encoder->post_crtc_powerdown)
vc4_encoder->post_crtc_powerdown(encoder);
return 0;
}
int vc4_crtc_disable_at_boot(struct drm_crtc *crtc)
{
struct drm_device *drm = crtc->dev;
struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
int channel;
if (!(of_device_is_compatible(vc4_crtc->pdev->dev.of_node,
"brcm,bcm2711-pixelvalve2") ||
of_device_is_compatible(vc4_crtc->pdev->dev.of_node,
"brcm,bcm2711-pixelvalve4")))
return 0;
if (!(CRTC_READ(PV_CONTROL) & PV_CONTROL_EN))
return 0;
if (!(CRTC_READ(PV_V_CONTROL) & PV_VCONTROL_VIDEN))
return 0;
channel = vc4_hvs_get_fifo_from_output(drm, vc4_crtc->data->hvs_output);
if (channel < 0)
return 0;
return vc4_crtc_disable(crtc, channel);
}
static void vc4_crtc_atomic_disable(struct drm_crtc *crtc,
struct drm_crtc_state *old_state)
{
struct vc4_crtc_state *old_vc4_state = to_vc4_crtc_state(old_state);
struct drm_device *dev = crtc->dev;
require_hvs_enabled(dev);
/* Disable vblank irq handling before crtc is disabled. */
drm_crtc_vblank_off(crtc);
vc4_crtc_disable(crtc, old_vc4_state->assigned_channel);
/*
* Make sure we issue a vblank event after disabling the CRTC if
* someone was waiting it.
*/
if (crtc->state->event) {
unsigned long flags;
spin_lock_irqsave(&dev->event_lock, flags);
drm_crtc_send_vblank_event(crtc, crtc->state->event);
crtc->state->event = NULL;
spin_unlock_irqrestore(&dev->event_lock, flags);
}
}
static void vc4_crtc_atomic_enable(struct drm_crtc *crtc,
struct drm_crtc_state *old_state)
{
struct drm_device *dev = crtc->dev;
struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
struct drm_encoder *encoder = vc4_get_crtc_encoder(crtc);
struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder);
require_hvs_enabled(dev);
/* Enable vblank irq handling before crtc is started otherwise
* drm_crtc_get_vblank() fails in vc4_crtc_update_dlist().
*/
drm_crtc_vblank_on(crtc);
vc4_hvs_atomic_enable(crtc, old_state);
if (vc4_encoder->pre_crtc_configure)
vc4_encoder->pre_crtc_configure(encoder);
vc4_crtc_config_pv(crtc);
CRTC_WRITE(PV_CONTROL, CRTC_READ(PV_CONTROL) | PV_CONTROL_EN);
if (vc4_encoder->pre_crtc_enable)
vc4_encoder->pre_crtc_enable(encoder);
/* When feeding the transposer block the pixelvalve is unneeded and
* should not be enabled.
*/
CRTC_WRITE(PV_V_CONTROL,
CRTC_READ(PV_V_CONTROL) | PV_VCONTROL_VIDEN);
if (vc4_encoder->post_crtc_enable)
vc4_encoder->post_crtc_enable(encoder);
}
static enum drm_mode_status vc4_crtc_mode_valid(struct drm_crtc *crtc,
const struct drm_display_mode *mode)
{
/* Do not allow doublescan modes from user space */
if (mode->flags & DRM_MODE_FLAG_DBLSCAN) {
DRM_DEBUG_KMS("[CRTC:%d] Doublescan mode rejected.\n",
crtc->base.id);
return MODE_NO_DBLESCAN;
}
return MODE_OK;
}
void vc4_crtc_get_margins(struct drm_crtc_state *state,
unsigned int *left, unsigned int *right,
unsigned int *top, unsigned int *bottom)
{
struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state);
struct drm_connector_state *conn_state;
struct drm_connector *conn;
int i;
*left = vc4_state->margins.left;
*right = vc4_state->margins.right;
*top = vc4_state->margins.top;
*bottom = vc4_state->margins.bottom;
/* We have to interate over all new connector states because
* vc4_crtc_get_margins() might be called before
* vc4_crtc_atomic_check() which means margins info in vc4_crtc_state
* might be outdated.
*/
for_each_new_connector_in_state(state->state, conn, conn_state, i) {
if (conn_state->crtc != state->crtc)
continue;
*left = conn_state->tv.margins.left;
*right = conn_state->tv.margins.right;
*top = conn_state->tv.margins.top;
*bottom = conn_state->tv.margins.bottom;
break;
}
}
static int vc4_crtc_atomic_check(struct drm_crtc *crtc,
struct drm_crtc_state *state)
{
struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state);
struct drm_connector *conn;
struct drm_connector_state *conn_state;
int ret, i;
ret = vc4_hvs_atomic_check(crtc, state);
if (ret)
return ret;
for_each_new_connector_in_state(state->state, conn, conn_state, i) {
if (conn_state->crtc != crtc)
continue;
vc4_state->margins.left = conn_state->tv.margins.left;
vc4_state->margins.right = conn_state->tv.margins.right;
vc4_state->margins.top = conn_state->tv.margins.top;
vc4_state->margins.bottom = conn_state->tv.margins.bottom;
break;
}
return 0;
}
static int vc4_enable_vblank(struct drm_crtc *crtc)
{
struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
CRTC_WRITE(PV_INTEN, PV_INT_VFP_START);
return 0;
}
static void vc4_disable_vblank(struct drm_crtc *crtc)
{
struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
CRTC_WRITE(PV_INTEN, 0);
}
static void vc4_crtc_handle_page_flip(struct vc4_crtc *vc4_crtc)
{
struct drm_crtc *crtc = &vc4_crtc->base;
struct drm_device *dev = crtc->dev;
struct vc4_dev *vc4 = to_vc4_dev(dev);
struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state);
u32 chan = vc4_state->assigned_channel;
unsigned long flags;
spin_lock_irqsave(&dev->event_lock, flags);
if (vc4_crtc->event &&
(vc4_state->mm.start == HVS_READ(SCALER_DISPLACTX(chan)) ||
vc4_state->feed_txp)) {
drm_crtc_send_vblank_event(crtc, vc4_crtc->event);
vc4_crtc->event = NULL;
drm_crtc_vblank_put(crtc);
/* Wait for the page flip to unmask the underrun to ensure that
* the display list was updated by the hardware. Before that
* happens, the HVS will be using the previous display list with
* the CRTC and encoder already reconfigured, leading to
* underruns. This can be seen when reconfiguring the CRTC.
*/
vc4_hvs_unmask_underrun(dev, chan);
}
spin_unlock_irqrestore(&dev->event_lock, flags);
}
void vc4_crtc_handle_vblank(struct vc4_crtc *crtc)
{
crtc->t_vblank = ktime_get();
drm_crtc_handle_vblank(&crtc->base);
vc4_crtc_handle_page_flip(crtc);
}
static irqreturn_t vc4_crtc_irq_handler(int irq, void *data)
{
struct vc4_crtc *vc4_crtc = data;
u32 stat = CRTC_READ(PV_INTSTAT);
irqreturn_t ret = IRQ_NONE;
if (stat & PV_INT_VFP_START) {
CRTC_WRITE(PV_INTSTAT, PV_INT_VFP_START);
vc4_crtc_handle_vblank(vc4_crtc);
ret = IRQ_HANDLED;
}
return ret;
}
struct vc4_async_flip_state {
struct drm_crtc *crtc;
struct drm_framebuffer *fb;
struct drm_framebuffer *old_fb;
struct drm_pending_vblank_event *event;
struct vc4_seqno_cb cb;
};
/* Called when the V3D execution for the BO being flipped to is done, so that
* we can actually update the plane's address to point to it.
*/
static void
vc4_async_page_flip_complete(struct vc4_seqno_cb *cb)
{
struct vc4_async_flip_state *flip_state =
container_of(cb, struct vc4_async_flip_state, cb);
struct drm_crtc *crtc = flip_state->crtc;
struct drm_device *dev = crtc->dev;
struct vc4_dev *vc4 = to_vc4_dev(dev);
struct drm_plane *plane = crtc->primary;
vc4_plane_async_set_fb(plane, flip_state->fb);
if (flip_state->event) {
unsigned long flags;
spin_lock_irqsave(&dev->event_lock, flags);
drm_crtc_send_vblank_event(crtc, flip_state->event);
spin_unlock_irqrestore(&dev->event_lock, flags);
}
drm_crtc_vblank_put(crtc);
drm_framebuffer_put(flip_state->fb);
/* Decrement the BO usecnt in order to keep the inc/dec calls balanced
* when the planes are updated through the async update path.
* FIXME: we should move to generic async-page-flip when it's
* available, so that we can get rid of this hand-made cleanup_fb()
* logic.
*/
if (flip_state->old_fb) {
struct drm_gem_cma_object *cma_bo;
struct vc4_bo *bo;
cma_bo = drm_fb_cma_get_gem_obj(flip_state->old_fb, 0);
bo = to_vc4_bo(&cma_bo->base);
vc4_bo_dec_usecnt(bo);
drm_framebuffer_put(flip_state->old_fb);
}
kfree(flip_state);
up(&vc4->async_modeset);
}
/* Implements async (non-vblank-synced) page flips.
*
* The page flip ioctl needs to return immediately, so we grab the
* modeset semaphore on the pipe, and queue the address update for
* when V3D is done with the BO being flipped to.
*/
static int vc4_async_page_flip(struct drm_crtc *crtc,
struct drm_framebuffer *fb,
struct drm_pending_vblank_event *event,
uint32_t flags)
{
struct drm_device *dev = crtc->dev;
struct vc4_dev *vc4 = to_vc4_dev(dev);
struct drm_plane *plane = crtc->primary;
int ret = 0;
struct vc4_async_flip_state *flip_state;
struct drm_gem_cma_object *cma_bo = drm_fb_cma_get_gem_obj(fb, 0);
struct vc4_bo *bo = to_vc4_bo(&cma_bo->base);
/* Increment the BO usecnt here, so that we never end up with an
* unbalanced number of vc4_bo_{dec,inc}_usecnt() calls when the
* plane is later updated through the non-async path.
* FIXME: we should move to generic async-page-flip when it's
* available, so that we can get rid of this hand-made prepare_fb()
* logic.
*/
ret = vc4_bo_inc_usecnt(bo);
if (ret)
return ret;
flip_state = kzalloc(sizeof(*flip_state), GFP_KERNEL);
if (!flip_state) {
vc4_bo_dec_usecnt(bo);
return -ENOMEM;
}
drm_framebuffer_get(fb);
flip_state->fb = fb;
flip_state->crtc = crtc;
flip_state->event = event;
/* Make sure all other async modesetes have landed. */
ret = down_interruptible(&vc4->async_modeset);
if (ret) {
drm_framebuffer_put(fb);
vc4_bo_dec_usecnt(bo);
kfree(flip_state);
return ret;
}
/* Save the current FB before it's replaced by the new one in
* drm_atomic_set_fb_for_plane(). We'll need the old FB in
* vc4_async_page_flip_complete() to decrement the BO usecnt and keep
* it consistent.
* FIXME: we should move to generic async-page-flip when it's
* available, so that we can get rid of this hand-made cleanup_fb()
* logic.
*/
flip_state->old_fb = plane->state->fb;
if (flip_state->old_fb)
drm_framebuffer_get(flip_state->old_fb);
WARN_ON(drm_crtc_vblank_get(crtc) != 0);
/* Immediately update the plane's legacy fb pointer, so that later
* modeset prep sees the state that will be present when the semaphore
* is released.
*/
drm_atomic_set_fb_for_plane(plane->state, fb);
vc4_queue_seqno_cb(dev, &flip_state->cb, bo->seqno,
vc4_async_page_flip_complete);
/* Driver takes ownership of state on successful async commit. */
return 0;
}
int vc4_page_flip(struct drm_crtc *crtc,
struct drm_framebuffer *fb,
struct drm_pending_vblank_event *event,
uint32_t flags,
struct drm_modeset_acquire_ctx *ctx)
{
if (flags & DRM_MODE_PAGE_FLIP_ASYNC)
return vc4_async_page_flip(crtc, fb, event, flags);
else
return drm_atomic_helper_page_flip(crtc, fb, event, flags, ctx);
}
struct drm_crtc_state *vc4_crtc_duplicate_state(struct drm_crtc *crtc)
{
struct vc4_crtc_state *vc4_state, *old_vc4_state;
vc4_state = kzalloc(sizeof(*vc4_state), GFP_KERNEL);
if (!vc4_state)
return NULL;
old_vc4_state = to_vc4_crtc_state(crtc->state);
vc4_state->feed_txp = old_vc4_state->feed_txp;
vc4_state->margins = old_vc4_state->margins;
vc4_state->assigned_channel = old_vc4_state->assigned_channel;
__drm_atomic_helper_crtc_duplicate_state(crtc, &vc4_state->base);
return &vc4_state->base;
}
void vc4_crtc_destroy_state(struct drm_crtc *crtc,
struct drm_crtc_state *state)
{
struct vc4_dev *vc4 = to_vc4_dev(crtc->dev);
struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state);
if (drm_mm_node_allocated(&vc4_state->mm)) {
unsigned long flags;
spin_lock_irqsave(&vc4->hvs->mm_lock, flags);
drm_mm_remove_node(&vc4_state->mm);
spin_unlock_irqrestore(&vc4->hvs->mm_lock, flags);
}
drm_atomic_helper_crtc_destroy_state(crtc, state);
}
void vc4_crtc_reset(struct drm_crtc *crtc)
{
struct vc4_crtc_state *vc4_crtc_state;
if (crtc->state)
vc4_crtc_destroy_state(crtc, crtc->state);
vc4_crtc_state = kzalloc(sizeof(*vc4_crtc_state), GFP_KERNEL);
if (!vc4_crtc_state) {
crtc->state = NULL;
return;
}
vc4_crtc_state->assigned_channel = VC4_HVS_CHANNEL_DISABLED;
__drm_atomic_helper_crtc_reset(crtc, &vc4_crtc_state->base);
}
static const struct drm_crtc_funcs vc4_crtc_funcs = {
.set_config = drm_atomic_helper_set_config,
.destroy = vc4_crtc_destroy,
.page_flip = vc4_page_flip,
.set_property = NULL,
.cursor_set = NULL, /* handled by drm_mode_cursor_universal */
.cursor_move = NULL, /* handled by drm_mode_cursor_universal */
.reset = vc4_crtc_reset,
.atomic_duplicate_state = vc4_crtc_duplicate_state,
.atomic_destroy_state = vc4_crtc_destroy_state,
.gamma_set = drm_atomic_helper_legacy_gamma_set,
.enable_vblank = vc4_enable_vblank,
.disable_vblank = vc4_disable_vblank,
.get_vblank_timestamp = drm_crtc_vblank_helper_get_vblank_timestamp,
};
static const struct drm_crtc_helper_funcs vc4_crtc_helper_funcs = {
.mode_valid = vc4_crtc_mode_valid,
.atomic_check = vc4_crtc_atomic_check,
.atomic_flush = vc4_hvs_atomic_flush,
.atomic_enable = vc4_crtc_atomic_enable,
.atomic_disable = vc4_crtc_atomic_disable,
.get_scanout_position = vc4_crtc_get_scanout_position,
};
static const struct vc4_pv_data bcm2835_pv0_data = {
.base = {
.hvs_available_channels = BIT(0),
.hvs_output = 0,
},
.debugfs_name = "crtc0_regs",
.fifo_depth = 64,
.pixels_per_clock = 1,
.encoder_types = {
[PV_CONTROL_CLK_SELECT_DSI] = VC4_ENCODER_TYPE_DSI0,
[PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_DPI,
},
};
static const struct vc4_pv_data bcm2835_pv1_data = {
.base = {
.hvs_available_channels = BIT(2),
.hvs_output = 2,
},
.debugfs_name = "crtc1_regs",
.fifo_depth = 64,
.pixels_per_clock = 1,
.encoder_types = {
[PV_CONTROL_CLK_SELECT_DSI] = VC4_ENCODER_TYPE_DSI1,
[PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_SMI,
},
};
static const struct vc4_pv_data bcm2835_pv2_data = {
.base = {
.hvs_available_channels = BIT(1),
.hvs_output = 1,
},
.debugfs_name = "crtc2_regs",
.fifo_depth = 64,
.pixels_per_clock = 1,
.encoder_types = {
[PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_HDMI0,
[PV_CONTROL_CLK_SELECT_VEC] = VC4_ENCODER_TYPE_VEC,
},
};
static const struct vc4_pv_data bcm2711_pv0_data = {
.base = {
.hvs_available_channels = BIT(0),
.hvs_output = 0,
},
.debugfs_name = "crtc0_regs",
.fifo_depth = 64,
.pixels_per_clock = 1,
.encoder_types = {
[0] = VC4_ENCODER_TYPE_DSI0,
[1] = VC4_ENCODER_TYPE_DPI,
},
};
static const struct vc4_pv_data bcm2711_pv1_data = {
.base = {
.hvs_available_channels = BIT(0) | BIT(1) | BIT(2),
.hvs_output = 3,
},
.debugfs_name = "crtc1_regs",
.fifo_depth = 64,
.pixels_per_clock = 1,
.encoder_types = {
[0] = VC4_ENCODER_TYPE_DSI1,
[1] = VC4_ENCODER_TYPE_SMI,
},
};
static const struct vc4_pv_data bcm2711_pv2_data = {
.base = {
.hvs_available_channels = BIT(0) | BIT(1) | BIT(2),
.hvs_output = 4,
},
.debugfs_name = "crtc2_regs",
.fifo_depth = 256,
.pixels_per_clock = 2,
.encoder_types = {
[0] = VC4_ENCODER_TYPE_HDMI0,
},
};
static const struct vc4_pv_data bcm2711_pv3_data = {
.base = {
.hvs_available_channels = BIT(1),
.hvs_output = 1,
},
.debugfs_name = "crtc3_regs",
.fifo_depth = 64,
.pixels_per_clock = 1,
.encoder_types = {
[0] = VC4_ENCODER_TYPE_VEC,
},
};
static const struct vc4_pv_data bcm2711_pv4_data = {
.base = {
.hvs_available_channels = BIT(0) | BIT(1) | BIT(2),
.hvs_output = 5,
},
.debugfs_name = "crtc4_regs",
.fifo_depth = 64,
.pixels_per_clock = 2,
.encoder_types = {
[0] = VC4_ENCODER_TYPE_HDMI1,
},
};
static const struct of_device_id vc4_crtc_dt_match[] = {
{ .compatible = "brcm,bcm2835-pixelvalve0", .data = &bcm2835_pv0_data },
{ .compatible = "brcm,bcm2835-pixelvalve1", .data = &bcm2835_pv1_data },
{ .compatible = "brcm,bcm2835-pixelvalve2", .data = &bcm2835_pv2_data },
{ .compatible = "brcm,bcm2711-pixelvalve0", .data = &bcm2711_pv0_data },
{ .compatible = "brcm,bcm2711-pixelvalve1", .data = &bcm2711_pv1_data },
{ .compatible = "brcm,bcm2711-pixelvalve2", .data = &bcm2711_pv2_data },
{ .compatible = "brcm,bcm2711-pixelvalve3", .data = &bcm2711_pv3_data },
{ .compatible = "brcm,bcm2711-pixelvalve4", .data = &bcm2711_pv4_data },
{}
};
static void vc4_set_crtc_possible_masks(struct drm_device *drm,
struct drm_crtc *crtc)
{
struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
const struct vc4_pv_data *pv_data = vc4_crtc_to_vc4_pv_data(vc4_crtc);
const enum vc4_encoder_type *encoder_types = pv_data->encoder_types;
struct drm_encoder *encoder;
drm_for_each_encoder(encoder, drm) {
struct vc4_encoder *vc4_encoder;
int i;
vc4_encoder = to_vc4_encoder(encoder);
for (i = 0; i < ARRAY_SIZE(pv_data->encoder_types); i++) {
if (vc4_encoder->type == encoder_types[i]) {
vc4_encoder->clock_select = i;
encoder->possible_crtcs |= drm_crtc_mask(crtc);
break;
}
}
}
}
int vc4_crtc_init(struct drm_device *drm, struct vc4_crtc *vc4_crtc,
const struct drm_crtc_funcs *crtc_funcs,
const struct drm_crtc_helper_funcs *crtc_helper_funcs)
{
struct vc4_dev *vc4 = to_vc4_dev(drm);
struct drm_crtc *crtc = &vc4_crtc->base;
struct drm_plane *primary_plane;
unsigned int i;
/* For now, we create just the primary and the legacy cursor
* planes. We should be able to stack more planes on easily,
* but to do that we would need to compute the bandwidth
* requirement of the plane configuration, and reject ones
* that will take too much.
*/
primary_plane = vc4_plane_init(drm, DRM_PLANE_TYPE_PRIMARY);
if (IS_ERR(primary_plane)) {
dev_err(drm->dev, "failed to construct primary plane\n");
return PTR_ERR(primary_plane);
}
drm_crtc_init_with_planes(drm, crtc, primary_plane, NULL,
crtc_funcs, NULL);
drm_crtc_helper_add(crtc, crtc_helper_funcs);
if (!vc4->hvs->hvs5) {
drm_mode_crtc_set_gamma_size(crtc, ARRAY_SIZE(vc4_crtc->lut_r));
drm_crtc_enable_color_mgmt(crtc, 0, false, crtc->gamma_size);
/* We support CTM, but only for one CRTC at a time. It's therefore
* implemented as private driver state in vc4_kms, not here.
*/
drm_crtc_enable_color_mgmt(crtc, 0, true, crtc->gamma_size);
}
for (i = 0; i < crtc->gamma_size; i++) {
vc4_crtc->lut_r[i] = i;
vc4_crtc->lut_g[i] = i;
vc4_crtc->lut_b[i] = i;
}
return 0;
}
static int vc4_crtc_bind(struct device *dev, struct device *master, void *data)
{
struct platform_device *pdev = to_platform_device(dev);
struct drm_device *drm = dev_get_drvdata(master);
const struct vc4_pv_data *pv_data;
struct vc4_crtc *vc4_crtc;
struct drm_crtc *crtc;
struct drm_plane *destroy_plane, *temp;
int ret;
vc4_crtc = devm_kzalloc(dev, sizeof(*vc4_crtc), GFP_KERNEL);
if (!vc4_crtc)
return -ENOMEM;
crtc = &vc4_crtc->base;
pv_data = of_device_get_match_data(dev);
if (!pv_data)
return -ENODEV;
vc4_crtc->data = &pv_data->base;
vc4_crtc->pdev = pdev;
vc4_crtc->regs = vc4_ioremap_regs(pdev, 0);
if (IS_ERR(vc4_crtc->regs))
return PTR_ERR(vc4_crtc->regs);
vc4_crtc->regset.base = vc4_crtc->regs;
vc4_crtc->regset.regs = crtc_regs;
vc4_crtc->regset.nregs = ARRAY_SIZE(crtc_regs);
ret = vc4_crtc_init(drm, vc4_crtc,
&vc4_crtc_funcs, &vc4_crtc_helper_funcs);
if (ret)
return ret;
vc4_set_crtc_possible_masks(drm, crtc);
CRTC_WRITE(PV_INTEN, 0);
CRTC_WRITE(PV_INTSTAT, PV_INT_VFP_START);
ret = devm_request_irq(dev, platform_get_irq(pdev, 0),
vc4_crtc_irq_handler,
IRQF_SHARED,
"vc4 crtc", vc4_crtc);
if (ret)
goto err_destroy_planes;
platform_set_drvdata(pdev, vc4_crtc);
vc4_debugfs_add_regset32(drm, pv_data->debugfs_name,
&vc4_crtc->regset);
return 0;
err_destroy_planes:
list_for_each_entry_safe(destroy_plane, temp,
&drm->mode_config.plane_list, head) {
if (destroy_plane->possible_crtcs == drm_crtc_mask(crtc))
destroy_plane->funcs->destroy(destroy_plane);
}
return ret;
}
static void vc4_crtc_unbind(struct device *dev, struct device *master,
void *data)
{
struct platform_device *pdev = to_platform_device(dev);
struct vc4_crtc *vc4_crtc = dev_get_drvdata(dev);
vc4_crtc_destroy(&vc4_crtc->base);
CRTC_WRITE(PV_INTEN, 0);
platform_set_drvdata(pdev, NULL);
}
static const struct component_ops vc4_crtc_ops = {
.bind = vc4_crtc_bind,
.unbind = vc4_crtc_unbind,
};
static int vc4_crtc_dev_probe(struct platform_device *pdev)
{
return component_add(&pdev->dev, &vc4_crtc_ops);
}
static int vc4_crtc_dev_remove(struct platform_device *pdev)
{
component_del(&pdev->dev, &vc4_crtc_ops);
return 0;
}
struct platform_driver vc4_crtc_driver = {
.probe = vc4_crtc_dev_probe,
.remove = vc4_crtc_dev_remove,
.driver = {
.name = "vc4_crtc",
.of_match_table = vc4_crtc_dt_match,
},
};