linux_dsm_epyc7002/arch/mips/kernel/setup.c
Franck Bui-Huu a09fc446fb [MIPS] setup.c: use early_param() for early command line parsing
There's no point to rewrite some logic to parse command line
to pass initrd parameters or to declare a user memory area.
We could use instead parse_early_param() that does the same
thing.

Signed-off-by: Franck Bui-Huu <vagabon.xyz@gmail.com>
Signed-off-by: Ralf Baechle <ralf@linux-mips.org>
2006-09-27 13:38:04 +01:00

519 lines
11 KiB
C

/*
* This file is subject to the terms and conditions of the GNU General Public
* License. See the file "COPYING" in the main directory of this archive
* for more details.
*
* Copyright (C) 1995 Linus Torvalds
* Copyright (C) 1995 Waldorf Electronics
* Copyright (C) 1994, 95, 96, 97, 98, 99, 2000, 01, 02, 03 Ralf Baechle
* Copyright (C) 1996 Stoned Elipot
* Copyright (C) 1999 Silicon Graphics, Inc.
* Copyright (C) 2000 2001, 2002 Maciej W. Rozycki
*/
#include <linux/init.h>
#include <linux/ioport.h>
#include <linux/module.h>
#include <linux/screen_info.h>
#include <linux/bootmem.h>
#include <linux/initrd.h>
#include <linux/root_dev.h>
#include <linux/highmem.h>
#include <linux/console.h>
#include <linux/pfn.h>
#include <asm/addrspace.h>
#include <asm/bootinfo.h>
#include <asm/cache.h>
#include <asm/cpu.h>
#include <asm/sections.h>
#include <asm/setup.h>
#include <asm/system.h>
struct cpuinfo_mips cpu_data[NR_CPUS] __read_mostly;
EXPORT_SYMBOL(cpu_data);
#ifdef CONFIG_VT
struct screen_info screen_info;
#endif
/*
* Despite it's name this variable is even if we don't have PCI
*/
unsigned int PCI_DMA_BUS_IS_PHYS;
EXPORT_SYMBOL(PCI_DMA_BUS_IS_PHYS);
/*
* Setup information
*
* These are initialized so they are in the .data section
*/
unsigned long mips_machtype __read_mostly = MACH_UNKNOWN;
unsigned long mips_machgroup __read_mostly = MACH_GROUP_UNKNOWN;
EXPORT_SYMBOL(mips_machtype);
EXPORT_SYMBOL(mips_machgroup);
struct boot_mem_map boot_mem_map;
static char command_line[CL_SIZE];
char arcs_cmdline[CL_SIZE]=CONFIG_CMDLINE;
/*
* mips_io_port_base is the begin of the address space to which x86 style
* I/O ports are mapped.
*/
const unsigned long mips_io_port_base __read_mostly = -1;
EXPORT_SYMBOL(mips_io_port_base);
/*
* isa_slot_offset is the address where E(ISA) busaddress 0 is mapped
* for the processor.
*/
unsigned long isa_slot_offset;
EXPORT_SYMBOL(isa_slot_offset);
static struct resource code_resource = { .name = "Kernel code", };
static struct resource data_resource = { .name = "Kernel data", };
void __init add_memory_region(phys_t start, phys_t size, long type)
{
int x = boot_mem_map.nr_map;
struct boot_mem_map_entry *prev = boot_mem_map.map + x - 1;
/* Sanity check */
if (start + size < start) {
printk("Trying to add an invalid memory region, skipped\n");
return;
}
/*
* Try to merge with previous entry if any. This is far less than
* perfect but is sufficient for most real world cases.
*/
if (x && prev->addr + prev->size == start && prev->type == type) {
prev->size += size;
return;
}
if (x == BOOT_MEM_MAP_MAX) {
printk("Ooops! Too many entries in the memory map!\n");
return;
}
boot_mem_map.map[x].addr = start;
boot_mem_map.map[x].size = size;
boot_mem_map.map[x].type = type;
boot_mem_map.nr_map++;
}
static void __init print_memory_map(void)
{
int i;
const int field = 2 * sizeof(unsigned long);
for (i = 0; i < boot_mem_map.nr_map; i++) {
printk(" memory: %0*Lx @ %0*Lx ",
field, (unsigned long long) boot_mem_map.map[i].size,
field, (unsigned long long) boot_mem_map.map[i].addr);
switch (boot_mem_map.map[i].type) {
case BOOT_MEM_RAM:
printk("(usable)\n");
break;
case BOOT_MEM_ROM_DATA:
printk("(ROM data)\n");
break;
case BOOT_MEM_RESERVED:
printk("(reserved)\n");
break;
default:
printk("type %lu\n", boot_mem_map.map[i].type);
break;
}
}
}
/*
* Manage initrd
*/
#ifdef CONFIG_BLK_DEV_INITRD
static int __init rd_start_early(char *p)
{
unsigned long start = memparse(p, &p);
#ifdef CONFIG_64BIT
/* HACK: Guess if the sign extension was forgotten */
if (start > 0x0000000080000000 && start < 0x00000000ffffffff)
start |= 0xffffffff00000000UL;
#endif
initrd_start = start;
initrd_end += start;
return 0;
}
early_param("rd_start", rd_start_early);
static int __init rd_size_early(char *p)
{
initrd_end += memparse(p, &p);
return 0;
}
early_param("rd_size", rd_size_early);
static unsigned long __init init_initrd(void)
{
unsigned long tmp, end, size;
u32 *initrd_header;
ROOT_DEV = Root_RAM0;
/*
* Board specific code or command line parser should have
* already set up initrd_start and initrd_end. In these cases
* perfom sanity checks and use them if all looks good.
*/
size = initrd_end - initrd_start;
if (initrd_end == 0 || size == 0) {
initrd_start = 0;
initrd_end = 0;
} else
return initrd_end;
end = (unsigned long)&_end;
tmp = PAGE_ALIGN(end) - sizeof(u32) * 2;
if (tmp < end)
tmp += PAGE_SIZE;
initrd_header = (u32 *)tmp;
if (initrd_header[0] == 0x494E5244) {
initrd_start = (unsigned long)&initrd_header[2];
initrd_end = initrd_start + initrd_header[1];
}
return initrd_end;
}
static void __init finalize_initrd(void)
{
unsigned long size = initrd_end - initrd_start;
if (size == 0) {
printk(KERN_INFO "Initrd not found or empty");
goto disable;
}
if (CPHYSADDR(initrd_end) > PFN_PHYS(max_low_pfn)) {
printk("Initrd extends beyond end of memory");
goto disable;
}
reserve_bootmem(CPHYSADDR(initrd_start), size);
initrd_below_start_ok = 1;
printk(KERN_INFO "Initial ramdisk at: 0x%lx (%lu bytes)\n",
initrd_start, size);
return;
disable:
printk(" - disabling initrd\n");
initrd_start = 0;
initrd_end = 0;
}
#else /* !CONFIG_BLK_DEV_INITRD */
#define init_initrd() 0
#define finalize_initrd() do {} while (0)
#endif
/*
* Initialize the bootmem allocator. It also setup initrd related data
* if needed.
*/
#ifdef CONFIG_SGI_IP27
static void __init bootmem_init(void)
{
init_initrd();
finalize_initrd();
}
#else /* !CONFIG_SGI_IP27 */
static void __init bootmem_init(void)
{
unsigned long reserved_end;
unsigned long highest = 0;
unsigned long mapstart = -1UL;
unsigned long bootmap_size;
int i;
/*
* Init any data related to initrd. It's a nop if INITRD is
* not selected. Once that done we can determine the low bound
* of usable memory.
*/
reserved_end = init_initrd();
reserved_end = PFN_UP(CPHYSADDR(max(reserved_end, (unsigned long)&_end)));
/*
* Find the highest page frame number we have available.
*/
for (i = 0; i < boot_mem_map.nr_map; i++) {
unsigned long start, end;
if (boot_mem_map.map[i].type != BOOT_MEM_RAM)
continue;
start = PFN_UP(boot_mem_map.map[i].addr);
end = PFN_DOWN(boot_mem_map.map[i].addr
+ boot_mem_map.map[i].size);
if (end > highest)
highest = end;
if (end <= reserved_end)
continue;
if (start >= mapstart)
continue;
mapstart = max(reserved_end, start);
}
/*
* Determine low and high memory ranges
*/
if (highest > PFN_DOWN(HIGHMEM_START)) {
#ifdef CONFIG_HIGHMEM
highstart_pfn = PFN_DOWN(HIGHMEM_START);
highend_pfn = highest;
#endif
highest = PFN_DOWN(HIGHMEM_START);
}
/*
* Initialize the boot-time allocator with low memory only.
*/
bootmap_size = init_bootmem(mapstart, highest);
/*
* Register fully available low RAM pages with the bootmem allocator.
*/
for (i = 0; i < boot_mem_map.nr_map; i++) {
unsigned long start, end, size;
/*
* Reserve usable memory.
*/
if (boot_mem_map.map[i].type != BOOT_MEM_RAM)
continue;
start = PFN_UP(boot_mem_map.map[i].addr);
end = PFN_DOWN(boot_mem_map.map[i].addr
+ boot_mem_map.map[i].size);
/*
* We are rounding up the start address of usable memory
* and at the end of the usable range downwards.
*/
if (start >= max_low_pfn)
continue;
if (start < reserved_end)
start = reserved_end;
if (end > max_low_pfn)
end = max_low_pfn;
/*
* ... finally, is the area going away?
*/
if (end <= start)
continue;
size = end - start;
/* Register lowmem ranges */
free_bootmem(PFN_PHYS(start), size << PAGE_SHIFT);
memory_present(0, start, end);
}
/*
* Reserve the bootmap memory.
*/
reserve_bootmem(PFN_PHYS(mapstart), bootmap_size);
/*
* Reserve initrd memory if needed.
*/
finalize_initrd();
}
#endif /* CONFIG_SGI_IP27 */
/*
* arch_mem_init - initialize memory managment subsystem
*
* o plat_mem_setup() detects the memory configuration and will record detected
* memory areas using add_memory_region.
*
* At this stage the memory configuration of the system is known to the
* kernel but generic memory managment system is still entirely uninitialized.
*
* o bootmem_init()
* o sparse_init()
* o paging_init()
*
* At this stage the bootmem allocator is ready to use.
*
* NOTE: historically plat_mem_setup did the entire platform initialization.
* This was rather impractical because it meant plat_mem_setup had to
* get away without any kind of memory allocator. To keep old code from
* breaking plat_setup was just renamed to plat_setup and a second platform
* initialization hook for anything else was introduced.
*/
static int usermem __initdata = 0;
static int __init early_parse_mem(char *p)
{
unsigned long start, size;
/*
* If a user specifies memory size, we
* blow away any automatically generated
* size.
*/
if (usermem == 0) {
boot_mem_map.nr_map = 0;
usermem = 1;
}
start = 0;
size = memparse(p, &p);
if (*p == '@')
start = memparse(p + 1, &p);
add_memory_region(start, size, BOOT_MEM_RAM);
return 0;
}
early_param("mem", early_parse_mem);
static void __init arch_mem_init(char **cmdline_p)
{
extern void plat_mem_setup(void);
/* call board setup routine */
plat_mem_setup();
printk("Determined physical RAM map:\n");
print_memory_map();
strlcpy(command_line, arcs_cmdline, sizeof(command_line));
strlcpy(saved_command_line, command_line, COMMAND_LINE_SIZE);
*cmdline_p = command_line;
parse_early_param();
if (usermem) {
printk("User-defined physical RAM map:\n");
print_memory_map();
}
bootmem_init();
sparse_init();
paging_init();
}
static void __init resource_init(void)
{
int i;
if (UNCAC_BASE != IO_BASE)
return;
code_resource.start = virt_to_phys(&_text);
code_resource.end = virt_to_phys(&_etext) - 1;
data_resource.start = virt_to_phys(&_etext);
data_resource.end = virt_to_phys(&_edata) - 1;
/*
* Request address space for all standard RAM.
*/
for (i = 0; i < boot_mem_map.nr_map; i++) {
struct resource *res;
unsigned long start, end;
start = boot_mem_map.map[i].addr;
end = boot_mem_map.map[i].addr + boot_mem_map.map[i].size - 1;
if (start >= HIGHMEM_START)
continue;
if (end >= HIGHMEM_START)
end = HIGHMEM_START - 1;
res = alloc_bootmem(sizeof(struct resource));
switch (boot_mem_map.map[i].type) {
case BOOT_MEM_RAM:
case BOOT_MEM_ROM_DATA:
res->name = "System RAM";
break;
case BOOT_MEM_RESERVED:
default:
res->name = "reserved";
}
res->start = start;
res->end = end;
res->flags = IORESOURCE_MEM | IORESOURCE_BUSY;
request_resource(&iomem_resource, res);
/*
* We don't know which RAM region contains kernel data,
* so we try it repeatedly and let the resource manager
* test it.
*/
request_resource(res, &code_resource);
request_resource(res, &data_resource);
}
}
void __init setup_arch(char **cmdline_p)
{
cpu_probe();
prom_init();
cpu_report();
#if defined(CONFIG_VT)
#if defined(CONFIG_VGA_CONSOLE)
conswitchp = &vga_con;
#elif defined(CONFIG_DUMMY_CONSOLE)
conswitchp = &dummy_con;
#endif
#endif
arch_mem_init(cmdline_p);
resource_init();
#ifdef CONFIG_SMP
plat_smp_setup();
#endif
}
int __init fpu_disable(char *s)
{
int i;
for (i = 0; i < NR_CPUS; i++)
cpu_data[i].options &= ~MIPS_CPU_FPU;
return 1;
}
__setup("nofpu", fpu_disable);
int __init dsp_disable(char *s)
{
cpu_data[0].ases &= ~MIPS_ASE_DSP;
return 1;
}
__setup("nodsp", dsp_disable);