mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2024-12-28 11:18:45 +07:00
27cd5511fe
Now that we removed the memory limit for the allocation of the command line, there is no longer a need to use the page based allocator so switch to a pool allocation instead. Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
815 lines
21 KiB
C
815 lines
21 KiB
C
// SPDX-License-Identifier: GPL-2.0-only
|
|
|
|
/* -----------------------------------------------------------------------
|
|
*
|
|
* Copyright 2011 Intel Corporation; author Matt Fleming
|
|
*
|
|
* ----------------------------------------------------------------------- */
|
|
|
|
#include <linux/efi.h>
|
|
#include <linux/pci.h>
|
|
|
|
#include <asm/efi.h>
|
|
#include <asm/e820/types.h>
|
|
#include <asm/setup.h>
|
|
#include <asm/desc.h>
|
|
#include <asm/boot.h>
|
|
|
|
#include "efistub.h"
|
|
|
|
/* Maximum physical address for 64-bit kernel with 4-level paging */
|
|
#define MAXMEM_X86_64_4LEVEL (1ull << 46)
|
|
|
|
const efi_system_table_t *efi_system_table;
|
|
extern u32 image_offset;
|
|
static efi_loaded_image_t *image = NULL;
|
|
|
|
static efi_status_t
|
|
preserve_pci_rom_image(efi_pci_io_protocol_t *pci, struct pci_setup_rom **__rom)
|
|
{
|
|
struct pci_setup_rom *rom = NULL;
|
|
efi_status_t status;
|
|
unsigned long size;
|
|
uint64_t romsize;
|
|
void *romimage;
|
|
|
|
/*
|
|
* Some firmware images contain EFI function pointers at the place where
|
|
* the romimage and romsize fields are supposed to be. Typically the EFI
|
|
* code is mapped at high addresses, translating to an unrealistically
|
|
* large romsize. The UEFI spec limits the size of option ROMs to 16
|
|
* MiB so we reject any ROMs over 16 MiB in size to catch this.
|
|
*/
|
|
romimage = efi_table_attr(pci, romimage);
|
|
romsize = efi_table_attr(pci, romsize);
|
|
if (!romimage || !romsize || romsize > SZ_16M)
|
|
return EFI_INVALID_PARAMETER;
|
|
|
|
size = romsize + sizeof(*rom);
|
|
|
|
status = efi_bs_call(allocate_pool, EFI_LOADER_DATA, size,
|
|
(void **)&rom);
|
|
if (status != EFI_SUCCESS) {
|
|
efi_err("Failed to allocate memory for 'rom'\n");
|
|
return status;
|
|
}
|
|
|
|
memset(rom, 0, sizeof(*rom));
|
|
|
|
rom->data.type = SETUP_PCI;
|
|
rom->data.len = size - sizeof(struct setup_data);
|
|
rom->data.next = 0;
|
|
rom->pcilen = pci->romsize;
|
|
*__rom = rom;
|
|
|
|
status = efi_call_proto(pci, pci.read, EfiPciIoWidthUint16,
|
|
PCI_VENDOR_ID, 1, &rom->vendor);
|
|
|
|
if (status != EFI_SUCCESS) {
|
|
efi_err("Failed to read rom->vendor\n");
|
|
goto free_struct;
|
|
}
|
|
|
|
status = efi_call_proto(pci, pci.read, EfiPciIoWidthUint16,
|
|
PCI_DEVICE_ID, 1, &rom->devid);
|
|
|
|
if (status != EFI_SUCCESS) {
|
|
efi_err("Failed to read rom->devid\n");
|
|
goto free_struct;
|
|
}
|
|
|
|
status = efi_call_proto(pci, get_location, &rom->segment, &rom->bus,
|
|
&rom->device, &rom->function);
|
|
|
|
if (status != EFI_SUCCESS)
|
|
goto free_struct;
|
|
|
|
memcpy(rom->romdata, romimage, romsize);
|
|
return status;
|
|
|
|
free_struct:
|
|
efi_bs_call(free_pool, rom);
|
|
return status;
|
|
}
|
|
|
|
/*
|
|
* There's no way to return an informative status from this function,
|
|
* because any analysis (and printing of error messages) needs to be
|
|
* done directly at the EFI function call-site.
|
|
*
|
|
* For example, EFI_INVALID_PARAMETER could indicate a bug or maybe we
|
|
* just didn't find any PCI devices, but there's no way to tell outside
|
|
* the context of the call.
|
|
*/
|
|
static void setup_efi_pci(struct boot_params *params)
|
|
{
|
|
efi_status_t status;
|
|
void **pci_handle = NULL;
|
|
efi_guid_t pci_proto = EFI_PCI_IO_PROTOCOL_GUID;
|
|
unsigned long size = 0;
|
|
struct setup_data *data;
|
|
efi_handle_t h;
|
|
int i;
|
|
|
|
status = efi_bs_call(locate_handle, EFI_LOCATE_BY_PROTOCOL,
|
|
&pci_proto, NULL, &size, pci_handle);
|
|
|
|
if (status == EFI_BUFFER_TOO_SMALL) {
|
|
status = efi_bs_call(allocate_pool, EFI_LOADER_DATA, size,
|
|
(void **)&pci_handle);
|
|
|
|
if (status != EFI_SUCCESS) {
|
|
efi_err("Failed to allocate memory for 'pci_handle'\n");
|
|
return;
|
|
}
|
|
|
|
status = efi_bs_call(locate_handle, EFI_LOCATE_BY_PROTOCOL,
|
|
&pci_proto, NULL, &size, pci_handle);
|
|
}
|
|
|
|
if (status != EFI_SUCCESS)
|
|
goto free_handle;
|
|
|
|
data = (struct setup_data *)(unsigned long)params->hdr.setup_data;
|
|
|
|
while (data && data->next)
|
|
data = (struct setup_data *)(unsigned long)data->next;
|
|
|
|
for_each_efi_handle(h, pci_handle, size, i) {
|
|
efi_pci_io_protocol_t *pci = NULL;
|
|
struct pci_setup_rom *rom;
|
|
|
|
status = efi_bs_call(handle_protocol, h, &pci_proto,
|
|
(void **)&pci);
|
|
if (status != EFI_SUCCESS || !pci)
|
|
continue;
|
|
|
|
status = preserve_pci_rom_image(pci, &rom);
|
|
if (status != EFI_SUCCESS)
|
|
continue;
|
|
|
|
if (data)
|
|
data->next = (unsigned long)rom;
|
|
else
|
|
params->hdr.setup_data = (unsigned long)rom;
|
|
|
|
data = (struct setup_data *)rom;
|
|
}
|
|
|
|
free_handle:
|
|
efi_bs_call(free_pool, pci_handle);
|
|
}
|
|
|
|
static void retrieve_apple_device_properties(struct boot_params *boot_params)
|
|
{
|
|
efi_guid_t guid = APPLE_PROPERTIES_PROTOCOL_GUID;
|
|
struct setup_data *data, *new;
|
|
efi_status_t status;
|
|
u32 size = 0;
|
|
apple_properties_protocol_t *p;
|
|
|
|
status = efi_bs_call(locate_protocol, &guid, NULL, (void **)&p);
|
|
if (status != EFI_SUCCESS)
|
|
return;
|
|
|
|
if (efi_table_attr(p, version) != 0x10000) {
|
|
efi_err("Unsupported properties proto version\n");
|
|
return;
|
|
}
|
|
|
|
efi_call_proto(p, get_all, NULL, &size);
|
|
if (!size)
|
|
return;
|
|
|
|
do {
|
|
status = efi_bs_call(allocate_pool, EFI_LOADER_DATA,
|
|
size + sizeof(struct setup_data),
|
|
(void **)&new);
|
|
if (status != EFI_SUCCESS) {
|
|
efi_err("Failed to allocate memory for 'properties'\n");
|
|
return;
|
|
}
|
|
|
|
status = efi_call_proto(p, get_all, new->data, &size);
|
|
|
|
if (status == EFI_BUFFER_TOO_SMALL)
|
|
efi_bs_call(free_pool, new);
|
|
} while (status == EFI_BUFFER_TOO_SMALL);
|
|
|
|
new->type = SETUP_APPLE_PROPERTIES;
|
|
new->len = size;
|
|
new->next = 0;
|
|
|
|
data = (struct setup_data *)(unsigned long)boot_params->hdr.setup_data;
|
|
if (!data) {
|
|
boot_params->hdr.setup_data = (unsigned long)new;
|
|
} else {
|
|
while (data->next)
|
|
data = (struct setup_data *)(unsigned long)data->next;
|
|
data->next = (unsigned long)new;
|
|
}
|
|
}
|
|
|
|
static const efi_char16_t apple[] = L"Apple";
|
|
|
|
static void setup_quirks(struct boot_params *boot_params)
|
|
{
|
|
efi_char16_t *fw_vendor = (efi_char16_t *)(unsigned long)
|
|
efi_table_attr(efi_system_table, fw_vendor);
|
|
|
|
if (!memcmp(fw_vendor, apple, sizeof(apple))) {
|
|
if (IS_ENABLED(CONFIG_APPLE_PROPERTIES))
|
|
retrieve_apple_device_properties(boot_params);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* See if we have Universal Graphics Adapter (UGA) protocol
|
|
*/
|
|
static efi_status_t
|
|
setup_uga(struct screen_info *si, efi_guid_t *uga_proto, unsigned long size)
|
|
{
|
|
efi_status_t status;
|
|
u32 width, height;
|
|
void **uga_handle = NULL;
|
|
efi_uga_draw_protocol_t *uga = NULL, *first_uga;
|
|
efi_handle_t handle;
|
|
int i;
|
|
|
|
status = efi_bs_call(allocate_pool, EFI_LOADER_DATA, size,
|
|
(void **)&uga_handle);
|
|
if (status != EFI_SUCCESS)
|
|
return status;
|
|
|
|
status = efi_bs_call(locate_handle, EFI_LOCATE_BY_PROTOCOL,
|
|
uga_proto, NULL, &size, uga_handle);
|
|
if (status != EFI_SUCCESS)
|
|
goto free_handle;
|
|
|
|
height = 0;
|
|
width = 0;
|
|
|
|
first_uga = NULL;
|
|
for_each_efi_handle(handle, uga_handle, size, i) {
|
|
efi_guid_t pciio_proto = EFI_PCI_IO_PROTOCOL_GUID;
|
|
u32 w, h, depth, refresh;
|
|
void *pciio;
|
|
|
|
status = efi_bs_call(handle_protocol, handle, uga_proto,
|
|
(void **)&uga);
|
|
if (status != EFI_SUCCESS)
|
|
continue;
|
|
|
|
pciio = NULL;
|
|
efi_bs_call(handle_protocol, handle, &pciio_proto, &pciio);
|
|
|
|
status = efi_call_proto(uga, get_mode, &w, &h, &depth, &refresh);
|
|
if (status == EFI_SUCCESS && (!first_uga || pciio)) {
|
|
width = w;
|
|
height = h;
|
|
|
|
/*
|
|
* Once we've found a UGA supporting PCIIO,
|
|
* don't bother looking any further.
|
|
*/
|
|
if (pciio)
|
|
break;
|
|
|
|
first_uga = uga;
|
|
}
|
|
}
|
|
|
|
if (!width && !height)
|
|
goto free_handle;
|
|
|
|
/* EFI framebuffer */
|
|
si->orig_video_isVGA = VIDEO_TYPE_EFI;
|
|
|
|
si->lfb_depth = 32;
|
|
si->lfb_width = width;
|
|
si->lfb_height = height;
|
|
|
|
si->red_size = 8;
|
|
si->red_pos = 16;
|
|
si->green_size = 8;
|
|
si->green_pos = 8;
|
|
si->blue_size = 8;
|
|
si->blue_pos = 0;
|
|
si->rsvd_size = 8;
|
|
si->rsvd_pos = 24;
|
|
|
|
free_handle:
|
|
efi_bs_call(free_pool, uga_handle);
|
|
|
|
return status;
|
|
}
|
|
|
|
static void setup_graphics(struct boot_params *boot_params)
|
|
{
|
|
efi_guid_t graphics_proto = EFI_GRAPHICS_OUTPUT_PROTOCOL_GUID;
|
|
struct screen_info *si;
|
|
efi_guid_t uga_proto = EFI_UGA_PROTOCOL_GUID;
|
|
efi_status_t status;
|
|
unsigned long size;
|
|
void **gop_handle = NULL;
|
|
void **uga_handle = NULL;
|
|
|
|
si = &boot_params->screen_info;
|
|
memset(si, 0, sizeof(*si));
|
|
|
|
size = 0;
|
|
status = efi_bs_call(locate_handle, EFI_LOCATE_BY_PROTOCOL,
|
|
&graphics_proto, NULL, &size, gop_handle);
|
|
if (status == EFI_BUFFER_TOO_SMALL)
|
|
status = efi_setup_gop(si, &graphics_proto, size);
|
|
|
|
if (status != EFI_SUCCESS) {
|
|
size = 0;
|
|
status = efi_bs_call(locate_handle, EFI_LOCATE_BY_PROTOCOL,
|
|
&uga_proto, NULL, &size, uga_handle);
|
|
if (status == EFI_BUFFER_TOO_SMALL)
|
|
setup_uga(si, &uga_proto, size);
|
|
}
|
|
}
|
|
|
|
|
|
static void __noreturn efi_exit(efi_handle_t handle, efi_status_t status)
|
|
{
|
|
efi_bs_call(exit, handle, status, 0, NULL);
|
|
for(;;)
|
|
asm("hlt");
|
|
}
|
|
|
|
void startup_32(struct boot_params *boot_params);
|
|
|
|
void __noreturn efi_stub_entry(efi_handle_t handle,
|
|
efi_system_table_t *sys_table_arg,
|
|
struct boot_params *boot_params);
|
|
|
|
/*
|
|
* Because the x86 boot code expects to be passed a boot_params we
|
|
* need to create one ourselves (usually the bootloader would create
|
|
* one for us).
|
|
*/
|
|
efi_status_t __efiapi efi_pe_entry(efi_handle_t handle,
|
|
efi_system_table_t *sys_table_arg)
|
|
{
|
|
struct boot_params *boot_params;
|
|
struct setup_header *hdr;
|
|
void *image_base;
|
|
efi_guid_t proto = LOADED_IMAGE_PROTOCOL_GUID;
|
|
int options_size = 0;
|
|
efi_status_t status;
|
|
char *cmdline_ptr;
|
|
unsigned long ramdisk_addr;
|
|
unsigned long ramdisk_size;
|
|
|
|
efi_system_table = sys_table_arg;
|
|
|
|
/* Check if we were booted by the EFI firmware */
|
|
if (efi_system_table->hdr.signature != EFI_SYSTEM_TABLE_SIGNATURE)
|
|
efi_exit(handle, EFI_INVALID_PARAMETER);
|
|
|
|
status = efi_bs_call(handle_protocol, handle, &proto, (void **)&image);
|
|
if (status != EFI_SUCCESS) {
|
|
efi_err("Failed to get handle for LOADED_IMAGE_PROTOCOL\n");
|
|
efi_exit(handle, status);
|
|
}
|
|
|
|
image_base = efi_table_attr(image, image_base);
|
|
image_offset = (void *)startup_32 - image_base;
|
|
|
|
status = efi_allocate_pages(sizeof(struct boot_params),
|
|
(unsigned long *)&boot_params, ULONG_MAX);
|
|
if (status != EFI_SUCCESS) {
|
|
efi_err("Failed to allocate lowmem for boot params\n");
|
|
efi_exit(handle, status);
|
|
}
|
|
|
|
memset(boot_params, 0x0, sizeof(struct boot_params));
|
|
|
|
hdr = &boot_params->hdr;
|
|
|
|
/* Copy the second sector to boot_params */
|
|
memcpy(&hdr->jump, image_base + 512, 512);
|
|
|
|
/*
|
|
* Fill out some of the header fields ourselves because the
|
|
* EFI firmware loader doesn't load the first sector.
|
|
*/
|
|
hdr->root_flags = 1;
|
|
hdr->vid_mode = 0xffff;
|
|
hdr->boot_flag = 0xAA55;
|
|
|
|
hdr->type_of_loader = 0x21;
|
|
|
|
/* Convert unicode cmdline to ascii */
|
|
cmdline_ptr = efi_convert_cmdline(image, &options_size);
|
|
if (!cmdline_ptr)
|
|
goto fail;
|
|
|
|
efi_set_u64_split((unsigned long)cmdline_ptr,
|
|
&hdr->cmd_line_ptr, &boot_params->ext_cmd_line_ptr);
|
|
|
|
hdr->ramdisk_image = 0;
|
|
hdr->ramdisk_size = 0;
|
|
|
|
efi_stub_entry(handle, sys_table_arg, boot_params);
|
|
/* not reached */
|
|
|
|
fail:
|
|
efi_free(sizeof(struct boot_params), (unsigned long)boot_params);
|
|
|
|
efi_exit(handle, status);
|
|
}
|
|
|
|
static void add_e820ext(struct boot_params *params,
|
|
struct setup_data *e820ext, u32 nr_entries)
|
|
{
|
|
struct setup_data *data;
|
|
|
|
e820ext->type = SETUP_E820_EXT;
|
|
e820ext->len = nr_entries * sizeof(struct boot_e820_entry);
|
|
e820ext->next = 0;
|
|
|
|
data = (struct setup_data *)(unsigned long)params->hdr.setup_data;
|
|
|
|
while (data && data->next)
|
|
data = (struct setup_data *)(unsigned long)data->next;
|
|
|
|
if (data)
|
|
data->next = (unsigned long)e820ext;
|
|
else
|
|
params->hdr.setup_data = (unsigned long)e820ext;
|
|
}
|
|
|
|
static efi_status_t
|
|
setup_e820(struct boot_params *params, struct setup_data *e820ext, u32 e820ext_size)
|
|
{
|
|
struct boot_e820_entry *entry = params->e820_table;
|
|
struct efi_info *efi = ¶ms->efi_info;
|
|
struct boot_e820_entry *prev = NULL;
|
|
u32 nr_entries;
|
|
u32 nr_desc;
|
|
int i;
|
|
|
|
nr_entries = 0;
|
|
nr_desc = efi->efi_memmap_size / efi->efi_memdesc_size;
|
|
|
|
for (i = 0; i < nr_desc; i++) {
|
|
efi_memory_desc_t *d;
|
|
unsigned int e820_type = 0;
|
|
unsigned long m = efi->efi_memmap;
|
|
|
|
#ifdef CONFIG_X86_64
|
|
m |= (u64)efi->efi_memmap_hi << 32;
|
|
#endif
|
|
|
|
d = efi_early_memdesc_ptr(m, efi->efi_memdesc_size, i);
|
|
switch (d->type) {
|
|
case EFI_RESERVED_TYPE:
|
|
case EFI_RUNTIME_SERVICES_CODE:
|
|
case EFI_RUNTIME_SERVICES_DATA:
|
|
case EFI_MEMORY_MAPPED_IO:
|
|
case EFI_MEMORY_MAPPED_IO_PORT_SPACE:
|
|
case EFI_PAL_CODE:
|
|
e820_type = E820_TYPE_RESERVED;
|
|
break;
|
|
|
|
case EFI_UNUSABLE_MEMORY:
|
|
e820_type = E820_TYPE_UNUSABLE;
|
|
break;
|
|
|
|
case EFI_ACPI_RECLAIM_MEMORY:
|
|
e820_type = E820_TYPE_ACPI;
|
|
break;
|
|
|
|
case EFI_LOADER_CODE:
|
|
case EFI_LOADER_DATA:
|
|
case EFI_BOOT_SERVICES_CODE:
|
|
case EFI_BOOT_SERVICES_DATA:
|
|
case EFI_CONVENTIONAL_MEMORY:
|
|
if (efi_soft_reserve_enabled() &&
|
|
(d->attribute & EFI_MEMORY_SP))
|
|
e820_type = E820_TYPE_SOFT_RESERVED;
|
|
else
|
|
e820_type = E820_TYPE_RAM;
|
|
break;
|
|
|
|
case EFI_ACPI_MEMORY_NVS:
|
|
e820_type = E820_TYPE_NVS;
|
|
break;
|
|
|
|
case EFI_PERSISTENT_MEMORY:
|
|
e820_type = E820_TYPE_PMEM;
|
|
break;
|
|
|
|
default:
|
|
continue;
|
|
}
|
|
|
|
/* Merge adjacent mappings */
|
|
if (prev && prev->type == e820_type &&
|
|
(prev->addr + prev->size) == d->phys_addr) {
|
|
prev->size += d->num_pages << 12;
|
|
continue;
|
|
}
|
|
|
|
if (nr_entries == ARRAY_SIZE(params->e820_table)) {
|
|
u32 need = (nr_desc - i) * sizeof(struct e820_entry) +
|
|
sizeof(struct setup_data);
|
|
|
|
if (!e820ext || e820ext_size < need)
|
|
return EFI_BUFFER_TOO_SMALL;
|
|
|
|
/* boot_params map full, switch to e820 extended */
|
|
entry = (struct boot_e820_entry *)e820ext->data;
|
|
}
|
|
|
|
entry->addr = d->phys_addr;
|
|
entry->size = d->num_pages << PAGE_SHIFT;
|
|
entry->type = e820_type;
|
|
prev = entry++;
|
|
nr_entries++;
|
|
}
|
|
|
|
if (nr_entries > ARRAY_SIZE(params->e820_table)) {
|
|
u32 nr_e820ext = nr_entries - ARRAY_SIZE(params->e820_table);
|
|
|
|
add_e820ext(params, e820ext, nr_e820ext);
|
|
nr_entries -= nr_e820ext;
|
|
}
|
|
|
|
params->e820_entries = (u8)nr_entries;
|
|
|
|
return EFI_SUCCESS;
|
|
}
|
|
|
|
static efi_status_t alloc_e820ext(u32 nr_desc, struct setup_data **e820ext,
|
|
u32 *e820ext_size)
|
|
{
|
|
efi_status_t status;
|
|
unsigned long size;
|
|
|
|
size = sizeof(struct setup_data) +
|
|
sizeof(struct e820_entry) * nr_desc;
|
|
|
|
if (*e820ext) {
|
|
efi_bs_call(free_pool, *e820ext);
|
|
*e820ext = NULL;
|
|
*e820ext_size = 0;
|
|
}
|
|
|
|
status = efi_bs_call(allocate_pool, EFI_LOADER_DATA, size,
|
|
(void **)e820ext);
|
|
if (status == EFI_SUCCESS)
|
|
*e820ext_size = size;
|
|
|
|
return status;
|
|
}
|
|
|
|
static efi_status_t allocate_e820(struct boot_params *params,
|
|
struct setup_data **e820ext,
|
|
u32 *e820ext_size)
|
|
{
|
|
unsigned long map_size, desc_size, buff_size;
|
|
struct efi_boot_memmap boot_map;
|
|
efi_memory_desc_t *map;
|
|
efi_status_t status;
|
|
__u32 nr_desc;
|
|
|
|
boot_map.map = ↦
|
|
boot_map.map_size = &map_size;
|
|
boot_map.desc_size = &desc_size;
|
|
boot_map.desc_ver = NULL;
|
|
boot_map.key_ptr = NULL;
|
|
boot_map.buff_size = &buff_size;
|
|
|
|
status = efi_get_memory_map(&boot_map);
|
|
if (status != EFI_SUCCESS)
|
|
return status;
|
|
|
|
nr_desc = buff_size / desc_size;
|
|
|
|
if (nr_desc > ARRAY_SIZE(params->e820_table)) {
|
|
u32 nr_e820ext = nr_desc - ARRAY_SIZE(params->e820_table);
|
|
|
|
status = alloc_e820ext(nr_e820ext, e820ext, e820ext_size);
|
|
if (status != EFI_SUCCESS)
|
|
return status;
|
|
}
|
|
|
|
return EFI_SUCCESS;
|
|
}
|
|
|
|
struct exit_boot_struct {
|
|
struct boot_params *boot_params;
|
|
struct efi_info *efi;
|
|
};
|
|
|
|
static efi_status_t exit_boot_func(struct efi_boot_memmap *map,
|
|
void *priv)
|
|
{
|
|
const char *signature;
|
|
struct exit_boot_struct *p = priv;
|
|
|
|
signature = efi_is_64bit() ? EFI64_LOADER_SIGNATURE
|
|
: EFI32_LOADER_SIGNATURE;
|
|
memcpy(&p->efi->efi_loader_signature, signature, sizeof(__u32));
|
|
|
|
efi_set_u64_split((unsigned long)efi_system_table,
|
|
&p->efi->efi_systab, &p->efi->efi_systab_hi);
|
|
p->efi->efi_memdesc_size = *map->desc_size;
|
|
p->efi->efi_memdesc_version = *map->desc_ver;
|
|
efi_set_u64_split((unsigned long)*map->map,
|
|
&p->efi->efi_memmap, &p->efi->efi_memmap_hi);
|
|
p->efi->efi_memmap_size = *map->map_size;
|
|
|
|
return EFI_SUCCESS;
|
|
}
|
|
|
|
static efi_status_t exit_boot(struct boot_params *boot_params, void *handle)
|
|
{
|
|
unsigned long map_sz, key, desc_size, buff_size;
|
|
efi_memory_desc_t *mem_map;
|
|
struct setup_data *e820ext = NULL;
|
|
__u32 e820ext_size = 0;
|
|
efi_status_t status;
|
|
__u32 desc_version;
|
|
struct efi_boot_memmap map;
|
|
struct exit_boot_struct priv;
|
|
|
|
map.map = &mem_map;
|
|
map.map_size = &map_sz;
|
|
map.desc_size = &desc_size;
|
|
map.desc_ver = &desc_version;
|
|
map.key_ptr = &key;
|
|
map.buff_size = &buff_size;
|
|
priv.boot_params = boot_params;
|
|
priv.efi = &boot_params->efi_info;
|
|
|
|
status = allocate_e820(boot_params, &e820ext, &e820ext_size);
|
|
if (status != EFI_SUCCESS)
|
|
return status;
|
|
|
|
/* Might as well exit boot services now */
|
|
status = efi_exit_boot_services(handle, &map, &priv, exit_boot_func);
|
|
if (status != EFI_SUCCESS)
|
|
return status;
|
|
|
|
/* Historic? */
|
|
boot_params->alt_mem_k = 32 * 1024;
|
|
|
|
status = setup_e820(boot_params, e820ext, e820ext_size);
|
|
if (status != EFI_SUCCESS)
|
|
return status;
|
|
|
|
return EFI_SUCCESS;
|
|
}
|
|
|
|
/*
|
|
* On success, we return the address of startup_32, which has potentially been
|
|
* relocated by efi_relocate_kernel.
|
|
* On failure, we exit to the firmware via efi_exit instead of returning.
|
|
*/
|
|
unsigned long efi_main(efi_handle_t handle,
|
|
efi_system_table_t *sys_table_arg,
|
|
struct boot_params *boot_params)
|
|
{
|
|
unsigned long bzimage_addr = (unsigned long)startup_32;
|
|
unsigned long buffer_start, buffer_end;
|
|
struct setup_header *hdr = &boot_params->hdr;
|
|
efi_status_t status;
|
|
|
|
efi_system_table = sys_table_arg;
|
|
|
|
/* Check if we were booted by the EFI firmware */
|
|
if (efi_system_table->hdr.signature != EFI_SYSTEM_TABLE_SIGNATURE)
|
|
efi_exit(handle, EFI_INVALID_PARAMETER);
|
|
|
|
/*
|
|
* If the kernel isn't already loaded at a suitable address,
|
|
* relocate it.
|
|
*
|
|
* It must be loaded above LOAD_PHYSICAL_ADDR.
|
|
*
|
|
* The maximum address for 64-bit is 1 << 46 for 4-level paging. This
|
|
* is defined as the macro MAXMEM, but unfortunately that is not a
|
|
* compile-time constant if 5-level paging is configured, so we instead
|
|
* define our own macro for use here.
|
|
*
|
|
* For 32-bit, the maximum address is complicated to figure out, for
|
|
* now use KERNEL_IMAGE_SIZE, which will be 512MiB, the same as what
|
|
* KASLR uses.
|
|
*
|
|
* Also relocate it if image_offset is zero, i.e. the kernel wasn't
|
|
* loaded by LoadImage, but rather by a bootloader that called the
|
|
* handover entry. The reason we must always relocate in this case is
|
|
* to handle the case of systemd-boot booting a unified kernel image,
|
|
* which is a PE executable that contains the bzImage and an initrd as
|
|
* COFF sections. The initrd section is placed after the bzImage
|
|
* without ensuring that there are at least init_size bytes available
|
|
* for the bzImage, and thus the compressed kernel's startup code may
|
|
* overwrite the initrd unless it is moved out of the way.
|
|
*/
|
|
|
|
buffer_start = ALIGN(bzimage_addr - image_offset,
|
|
hdr->kernel_alignment);
|
|
buffer_end = buffer_start + hdr->init_size;
|
|
|
|
if ((buffer_start < LOAD_PHYSICAL_ADDR) ||
|
|
(IS_ENABLED(CONFIG_X86_32) && buffer_end > KERNEL_IMAGE_SIZE) ||
|
|
(IS_ENABLED(CONFIG_X86_64) && buffer_end > MAXMEM_X86_64_4LEVEL) ||
|
|
(image_offset == 0)) {
|
|
status = efi_relocate_kernel(&bzimage_addr,
|
|
hdr->init_size, hdr->init_size,
|
|
hdr->pref_address,
|
|
hdr->kernel_alignment,
|
|
LOAD_PHYSICAL_ADDR);
|
|
if (status != EFI_SUCCESS) {
|
|
efi_err("efi_relocate_kernel() failed!\n");
|
|
goto fail;
|
|
}
|
|
/*
|
|
* Now that we've copied the kernel elsewhere, we no longer
|
|
* have a set up block before startup_32(), so reset image_offset
|
|
* to zero in case it was set earlier.
|
|
*/
|
|
image_offset = 0;
|
|
}
|
|
|
|
#ifdef CONFIG_CMDLINE_BOOL
|
|
status = efi_parse_options(CONFIG_CMDLINE);
|
|
if (status != EFI_SUCCESS) {
|
|
efi_err("Failed to parse options\n");
|
|
goto fail;
|
|
}
|
|
#endif
|
|
if (!IS_ENABLED(CONFIG_CMDLINE_OVERRIDE)) {
|
|
unsigned long cmdline_paddr = ((u64)hdr->cmd_line_ptr |
|
|
((u64)boot_params->ext_cmd_line_ptr << 32));
|
|
status = efi_parse_options((char *)cmdline_paddr);
|
|
if (status != EFI_SUCCESS) {
|
|
efi_err("Failed to parse options\n");
|
|
goto fail;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* At this point, an initrd may already have been loaded by the
|
|
* bootloader and passed via bootparams. We permit an initrd loaded
|
|
* from the LINUX_EFI_INITRD_MEDIA_GUID device path to supersede it.
|
|
*
|
|
* If the device path is not present, any command-line initrd=
|
|
* arguments will be processed only if image is not NULL, which will be
|
|
* the case only if we were loaded via the PE entry point.
|
|
*/
|
|
if (!efi_noinitrd) {
|
|
unsigned long addr, size;
|
|
|
|
status = efi_load_initrd(image, &addr, &size,
|
|
hdr->initrd_addr_max, ULONG_MAX);
|
|
|
|
if (status != EFI_SUCCESS) {
|
|
efi_err("Failed to load initrd!\n");
|
|
goto fail;
|
|
}
|
|
efi_set_u64_split(addr, &hdr->ramdisk_image,
|
|
&boot_params->ext_ramdisk_image);
|
|
efi_set_u64_split(size, &hdr->ramdisk_size,
|
|
&boot_params->ext_ramdisk_size);
|
|
}
|
|
|
|
/*
|
|
* If the boot loader gave us a value for secure_boot then we use that,
|
|
* otherwise we ask the BIOS.
|
|
*/
|
|
if (boot_params->secure_boot == efi_secureboot_mode_unset)
|
|
boot_params->secure_boot = efi_get_secureboot();
|
|
|
|
/* Ask the firmware to clear memory on unclean shutdown */
|
|
efi_enable_reset_attack_mitigation();
|
|
|
|
efi_random_get_seed();
|
|
|
|
efi_retrieve_tpm2_eventlog();
|
|
|
|
setup_graphics(boot_params);
|
|
|
|
setup_efi_pci(boot_params);
|
|
|
|
setup_quirks(boot_params);
|
|
|
|
status = exit_boot(boot_params, handle);
|
|
if (status != EFI_SUCCESS) {
|
|
efi_err("exit_boot() failed!\n");
|
|
goto fail;
|
|
}
|
|
|
|
return bzimage_addr;
|
|
fail:
|
|
efi_err("efi_main() failed!\n");
|
|
|
|
efi_exit(handle, status);
|
|
}
|