mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2024-12-28 11:18:45 +07:00
04d088cc0b
Optimize the hashing operation in the MXS-DCP by doing two adjustments: 1) Given that the output buffer for the hash is now always correctly aligned, we can just use the buffer for the DCP DMA to store the resulting hash. We thus get rid of one copying of data. Moreover, we remove an entry from dcp_coherent_block{} and thus lower the memory footprint of the driver. 2) We map the output buffer for the hash for DMA only in case we will output the hash, not always, as it was now. Signed-off-by: Marek Vasut <marex@denx.de> Cc: David S. Miller <davem@davemloft.net> Cc: Fabio Estevam <fabio.estevam@freescale.com> Cc: Herbert Xu <herbert@gondor.apana.org.au> Cc: Shawn Guo <shawn.guo@linaro.org> Cc: Tom Lendacky <thomas.lendacky@amd.com> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
1122 lines
27 KiB
C
1122 lines
27 KiB
C
/*
|
|
* Freescale i.MX23/i.MX28 Data Co-Processor driver
|
|
*
|
|
* Copyright (C) 2013 Marek Vasut <marex@denx.de>
|
|
*
|
|
* The code contained herein is licensed under the GNU General Public
|
|
* License. You may obtain a copy of the GNU General Public License
|
|
* Version 2 or later at the following locations:
|
|
*
|
|
* http://www.opensource.org/licenses/gpl-license.html
|
|
* http://www.gnu.org/copyleft/gpl.html
|
|
*/
|
|
|
|
#include <linux/crypto.h>
|
|
#include <linux/dma-mapping.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/io.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/kthread.h>
|
|
#include <linux/module.h>
|
|
#include <linux/of.h>
|
|
#include <linux/platform_device.h>
|
|
#include <linux/stmp_device.h>
|
|
|
|
#include <crypto/aes.h>
|
|
#include <crypto/sha.h>
|
|
#include <crypto/internal/hash.h>
|
|
|
|
#define DCP_MAX_CHANS 4
|
|
#define DCP_BUF_SZ PAGE_SIZE
|
|
|
|
#define DCP_ALIGNMENT 64
|
|
|
|
/* DCP DMA descriptor. */
|
|
struct dcp_dma_desc {
|
|
uint32_t next_cmd_addr;
|
|
uint32_t control0;
|
|
uint32_t control1;
|
|
uint32_t source;
|
|
uint32_t destination;
|
|
uint32_t size;
|
|
uint32_t payload;
|
|
uint32_t status;
|
|
};
|
|
|
|
/* Coherent aligned block for bounce buffering. */
|
|
struct dcp_coherent_block {
|
|
uint8_t aes_in_buf[DCP_BUF_SZ];
|
|
uint8_t aes_out_buf[DCP_BUF_SZ];
|
|
uint8_t sha_in_buf[DCP_BUF_SZ];
|
|
|
|
uint8_t aes_key[2 * AES_KEYSIZE_128];
|
|
|
|
struct dcp_dma_desc desc[DCP_MAX_CHANS];
|
|
};
|
|
|
|
struct dcp {
|
|
struct device *dev;
|
|
void __iomem *base;
|
|
|
|
uint32_t caps;
|
|
|
|
struct dcp_coherent_block *coh;
|
|
|
|
struct completion completion[DCP_MAX_CHANS];
|
|
struct mutex mutex[DCP_MAX_CHANS];
|
|
struct task_struct *thread[DCP_MAX_CHANS];
|
|
struct crypto_queue queue[DCP_MAX_CHANS];
|
|
};
|
|
|
|
enum dcp_chan {
|
|
DCP_CHAN_HASH_SHA = 0,
|
|
DCP_CHAN_CRYPTO = 2,
|
|
};
|
|
|
|
struct dcp_async_ctx {
|
|
/* Common context */
|
|
enum dcp_chan chan;
|
|
uint32_t fill;
|
|
|
|
/* SHA Hash-specific context */
|
|
struct mutex mutex;
|
|
uint32_t alg;
|
|
unsigned int hot:1;
|
|
|
|
/* Crypto-specific context */
|
|
struct crypto_ablkcipher *fallback;
|
|
unsigned int key_len;
|
|
uint8_t key[AES_KEYSIZE_128];
|
|
};
|
|
|
|
struct dcp_aes_req_ctx {
|
|
unsigned int enc:1;
|
|
unsigned int ecb:1;
|
|
};
|
|
|
|
struct dcp_sha_req_ctx {
|
|
unsigned int init:1;
|
|
unsigned int fini:1;
|
|
};
|
|
|
|
/*
|
|
* There can even be only one instance of the MXS DCP due to the
|
|
* design of Linux Crypto API.
|
|
*/
|
|
static struct dcp *global_sdcp;
|
|
static DEFINE_MUTEX(global_mutex);
|
|
|
|
/* DCP register layout. */
|
|
#define MXS_DCP_CTRL 0x00
|
|
#define MXS_DCP_CTRL_GATHER_RESIDUAL_WRITES (1 << 23)
|
|
#define MXS_DCP_CTRL_ENABLE_CONTEXT_CACHING (1 << 22)
|
|
|
|
#define MXS_DCP_STAT 0x10
|
|
#define MXS_DCP_STAT_CLR 0x18
|
|
#define MXS_DCP_STAT_IRQ_MASK 0xf
|
|
|
|
#define MXS_DCP_CHANNELCTRL 0x20
|
|
#define MXS_DCP_CHANNELCTRL_ENABLE_CHANNEL_MASK 0xff
|
|
|
|
#define MXS_DCP_CAPABILITY1 0x40
|
|
#define MXS_DCP_CAPABILITY1_SHA256 (4 << 16)
|
|
#define MXS_DCP_CAPABILITY1_SHA1 (1 << 16)
|
|
#define MXS_DCP_CAPABILITY1_AES128 (1 << 0)
|
|
|
|
#define MXS_DCP_CONTEXT 0x50
|
|
|
|
#define MXS_DCP_CH_N_CMDPTR(n) (0x100 + ((n) * 0x40))
|
|
|
|
#define MXS_DCP_CH_N_SEMA(n) (0x110 + ((n) * 0x40))
|
|
|
|
#define MXS_DCP_CH_N_STAT(n) (0x120 + ((n) * 0x40))
|
|
#define MXS_DCP_CH_N_STAT_CLR(n) (0x128 + ((n) * 0x40))
|
|
|
|
/* DMA descriptor bits. */
|
|
#define MXS_DCP_CONTROL0_HASH_TERM (1 << 13)
|
|
#define MXS_DCP_CONTROL0_HASH_INIT (1 << 12)
|
|
#define MXS_DCP_CONTROL0_PAYLOAD_KEY (1 << 11)
|
|
#define MXS_DCP_CONTROL0_CIPHER_ENCRYPT (1 << 8)
|
|
#define MXS_DCP_CONTROL0_CIPHER_INIT (1 << 9)
|
|
#define MXS_DCP_CONTROL0_ENABLE_HASH (1 << 6)
|
|
#define MXS_DCP_CONTROL0_ENABLE_CIPHER (1 << 5)
|
|
#define MXS_DCP_CONTROL0_DECR_SEMAPHORE (1 << 1)
|
|
#define MXS_DCP_CONTROL0_INTERRUPT (1 << 0)
|
|
|
|
#define MXS_DCP_CONTROL1_HASH_SELECT_SHA256 (2 << 16)
|
|
#define MXS_DCP_CONTROL1_HASH_SELECT_SHA1 (0 << 16)
|
|
#define MXS_DCP_CONTROL1_CIPHER_MODE_CBC (1 << 4)
|
|
#define MXS_DCP_CONTROL1_CIPHER_MODE_ECB (0 << 4)
|
|
#define MXS_DCP_CONTROL1_CIPHER_SELECT_AES128 (0 << 0)
|
|
|
|
static int mxs_dcp_start_dma(struct dcp_async_ctx *actx)
|
|
{
|
|
struct dcp *sdcp = global_sdcp;
|
|
const int chan = actx->chan;
|
|
uint32_t stat;
|
|
int ret;
|
|
struct dcp_dma_desc *desc = &sdcp->coh->desc[actx->chan];
|
|
|
|
dma_addr_t desc_phys = dma_map_single(sdcp->dev, desc, sizeof(*desc),
|
|
DMA_TO_DEVICE);
|
|
|
|
reinit_completion(&sdcp->completion[chan]);
|
|
|
|
/* Clear status register. */
|
|
writel(0xffffffff, sdcp->base + MXS_DCP_CH_N_STAT_CLR(chan));
|
|
|
|
/* Load the DMA descriptor. */
|
|
writel(desc_phys, sdcp->base + MXS_DCP_CH_N_CMDPTR(chan));
|
|
|
|
/* Increment the semaphore to start the DMA transfer. */
|
|
writel(1, sdcp->base + MXS_DCP_CH_N_SEMA(chan));
|
|
|
|
ret = wait_for_completion_timeout(&sdcp->completion[chan],
|
|
msecs_to_jiffies(1000));
|
|
if (!ret) {
|
|
dev_err(sdcp->dev, "Channel %i timeout (DCP_STAT=0x%08x)\n",
|
|
chan, readl(sdcp->base + MXS_DCP_STAT));
|
|
return -ETIMEDOUT;
|
|
}
|
|
|
|
stat = readl(sdcp->base + MXS_DCP_CH_N_STAT(chan));
|
|
if (stat & 0xff) {
|
|
dev_err(sdcp->dev, "Channel %i error (CH_STAT=0x%08x)\n",
|
|
chan, stat);
|
|
return -EINVAL;
|
|
}
|
|
|
|
dma_unmap_single(sdcp->dev, desc_phys, sizeof(*desc), DMA_TO_DEVICE);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Encryption (AES128)
|
|
*/
|
|
static int mxs_dcp_run_aes(struct dcp_async_ctx *actx,
|
|
struct ablkcipher_request *req, int init)
|
|
{
|
|
struct dcp *sdcp = global_sdcp;
|
|
struct dcp_dma_desc *desc = &sdcp->coh->desc[actx->chan];
|
|
struct dcp_aes_req_ctx *rctx = ablkcipher_request_ctx(req);
|
|
int ret;
|
|
|
|
dma_addr_t key_phys = dma_map_single(sdcp->dev, sdcp->coh->aes_key,
|
|
2 * AES_KEYSIZE_128,
|
|
DMA_TO_DEVICE);
|
|
dma_addr_t src_phys = dma_map_single(sdcp->dev, sdcp->coh->aes_in_buf,
|
|
DCP_BUF_SZ, DMA_TO_DEVICE);
|
|
dma_addr_t dst_phys = dma_map_single(sdcp->dev, sdcp->coh->aes_out_buf,
|
|
DCP_BUF_SZ, DMA_FROM_DEVICE);
|
|
|
|
/* Fill in the DMA descriptor. */
|
|
desc->control0 = MXS_DCP_CONTROL0_DECR_SEMAPHORE |
|
|
MXS_DCP_CONTROL0_INTERRUPT |
|
|
MXS_DCP_CONTROL0_ENABLE_CIPHER;
|
|
|
|
/* Payload contains the key. */
|
|
desc->control0 |= MXS_DCP_CONTROL0_PAYLOAD_KEY;
|
|
|
|
if (rctx->enc)
|
|
desc->control0 |= MXS_DCP_CONTROL0_CIPHER_ENCRYPT;
|
|
if (init)
|
|
desc->control0 |= MXS_DCP_CONTROL0_CIPHER_INIT;
|
|
|
|
desc->control1 = MXS_DCP_CONTROL1_CIPHER_SELECT_AES128;
|
|
|
|
if (rctx->ecb)
|
|
desc->control1 |= MXS_DCP_CONTROL1_CIPHER_MODE_ECB;
|
|
else
|
|
desc->control1 |= MXS_DCP_CONTROL1_CIPHER_MODE_CBC;
|
|
|
|
desc->next_cmd_addr = 0;
|
|
desc->source = src_phys;
|
|
desc->destination = dst_phys;
|
|
desc->size = actx->fill;
|
|
desc->payload = key_phys;
|
|
desc->status = 0;
|
|
|
|
ret = mxs_dcp_start_dma(actx);
|
|
|
|
dma_unmap_single(sdcp->dev, key_phys, 2 * AES_KEYSIZE_128,
|
|
DMA_TO_DEVICE);
|
|
dma_unmap_single(sdcp->dev, src_phys, DCP_BUF_SZ, DMA_TO_DEVICE);
|
|
dma_unmap_single(sdcp->dev, dst_phys, DCP_BUF_SZ, DMA_FROM_DEVICE);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int mxs_dcp_aes_block_crypt(struct crypto_async_request *arq)
|
|
{
|
|
struct dcp *sdcp = global_sdcp;
|
|
|
|
struct ablkcipher_request *req = ablkcipher_request_cast(arq);
|
|
struct dcp_async_ctx *actx = crypto_tfm_ctx(arq->tfm);
|
|
struct dcp_aes_req_ctx *rctx = ablkcipher_request_ctx(req);
|
|
|
|
struct scatterlist *dst = req->dst;
|
|
struct scatterlist *src = req->src;
|
|
const int nents = sg_nents(req->src);
|
|
|
|
const int out_off = DCP_BUF_SZ;
|
|
uint8_t *in_buf = sdcp->coh->aes_in_buf;
|
|
uint8_t *out_buf = sdcp->coh->aes_out_buf;
|
|
|
|
uint8_t *out_tmp, *src_buf, *dst_buf = NULL;
|
|
uint32_t dst_off = 0;
|
|
|
|
uint8_t *key = sdcp->coh->aes_key;
|
|
|
|
int ret = 0;
|
|
int split = 0;
|
|
unsigned int i, len, clen, rem = 0;
|
|
int init = 0;
|
|
|
|
actx->fill = 0;
|
|
|
|
/* Copy the key from the temporary location. */
|
|
memcpy(key, actx->key, actx->key_len);
|
|
|
|
if (!rctx->ecb) {
|
|
/* Copy the CBC IV just past the key. */
|
|
memcpy(key + AES_KEYSIZE_128, req->info, AES_KEYSIZE_128);
|
|
/* CBC needs the INIT set. */
|
|
init = 1;
|
|
} else {
|
|
memset(key + AES_KEYSIZE_128, 0, AES_KEYSIZE_128);
|
|
}
|
|
|
|
for_each_sg(req->src, src, nents, i) {
|
|
src_buf = sg_virt(src);
|
|
len = sg_dma_len(src);
|
|
|
|
do {
|
|
if (actx->fill + len > out_off)
|
|
clen = out_off - actx->fill;
|
|
else
|
|
clen = len;
|
|
|
|
memcpy(in_buf + actx->fill, src_buf, clen);
|
|
len -= clen;
|
|
src_buf += clen;
|
|
actx->fill += clen;
|
|
|
|
/*
|
|
* If we filled the buffer or this is the last SG,
|
|
* submit the buffer.
|
|
*/
|
|
if (actx->fill == out_off || sg_is_last(src)) {
|
|
ret = mxs_dcp_run_aes(actx, req, init);
|
|
if (ret)
|
|
return ret;
|
|
init = 0;
|
|
|
|
out_tmp = out_buf;
|
|
while (dst && actx->fill) {
|
|
if (!split) {
|
|
dst_buf = sg_virt(dst);
|
|
dst_off = 0;
|
|
}
|
|
rem = min(sg_dma_len(dst) - dst_off,
|
|
actx->fill);
|
|
|
|
memcpy(dst_buf + dst_off, out_tmp, rem);
|
|
out_tmp += rem;
|
|
dst_off += rem;
|
|
actx->fill -= rem;
|
|
|
|
if (dst_off == sg_dma_len(dst)) {
|
|
dst = sg_next(dst);
|
|
split = 0;
|
|
} else {
|
|
split = 1;
|
|
}
|
|
}
|
|
}
|
|
} while (len);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int dcp_chan_thread_aes(void *data)
|
|
{
|
|
struct dcp *sdcp = global_sdcp;
|
|
const int chan = DCP_CHAN_CRYPTO;
|
|
|
|
struct crypto_async_request *backlog;
|
|
struct crypto_async_request *arq;
|
|
|
|
int ret;
|
|
|
|
do {
|
|
__set_current_state(TASK_INTERRUPTIBLE);
|
|
|
|
mutex_lock(&sdcp->mutex[chan]);
|
|
backlog = crypto_get_backlog(&sdcp->queue[chan]);
|
|
arq = crypto_dequeue_request(&sdcp->queue[chan]);
|
|
mutex_unlock(&sdcp->mutex[chan]);
|
|
|
|
if (backlog)
|
|
backlog->complete(backlog, -EINPROGRESS);
|
|
|
|
if (arq) {
|
|
ret = mxs_dcp_aes_block_crypt(arq);
|
|
arq->complete(arq, ret);
|
|
continue;
|
|
}
|
|
|
|
schedule();
|
|
} while (!kthread_should_stop());
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int mxs_dcp_block_fallback(struct ablkcipher_request *req, int enc)
|
|
{
|
|
struct crypto_tfm *tfm =
|
|
crypto_ablkcipher_tfm(crypto_ablkcipher_reqtfm(req));
|
|
struct dcp_async_ctx *ctx = crypto_ablkcipher_ctx(
|
|
crypto_ablkcipher_reqtfm(req));
|
|
int ret;
|
|
|
|
ablkcipher_request_set_tfm(req, ctx->fallback);
|
|
|
|
if (enc)
|
|
ret = crypto_ablkcipher_encrypt(req);
|
|
else
|
|
ret = crypto_ablkcipher_decrypt(req);
|
|
|
|
ablkcipher_request_set_tfm(req, __crypto_ablkcipher_cast(tfm));
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int mxs_dcp_aes_enqueue(struct ablkcipher_request *req, int enc, int ecb)
|
|
{
|
|
struct dcp *sdcp = global_sdcp;
|
|
struct crypto_async_request *arq = &req->base;
|
|
struct dcp_async_ctx *actx = crypto_tfm_ctx(arq->tfm);
|
|
struct dcp_aes_req_ctx *rctx = ablkcipher_request_ctx(req);
|
|
int ret;
|
|
|
|
if (unlikely(actx->key_len != AES_KEYSIZE_128))
|
|
return mxs_dcp_block_fallback(req, enc);
|
|
|
|
rctx->enc = enc;
|
|
rctx->ecb = ecb;
|
|
actx->chan = DCP_CHAN_CRYPTO;
|
|
|
|
mutex_lock(&sdcp->mutex[actx->chan]);
|
|
ret = crypto_enqueue_request(&sdcp->queue[actx->chan], &req->base);
|
|
mutex_unlock(&sdcp->mutex[actx->chan]);
|
|
|
|
wake_up_process(sdcp->thread[actx->chan]);
|
|
|
|
return -EINPROGRESS;
|
|
}
|
|
|
|
static int mxs_dcp_aes_ecb_decrypt(struct ablkcipher_request *req)
|
|
{
|
|
return mxs_dcp_aes_enqueue(req, 0, 1);
|
|
}
|
|
|
|
static int mxs_dcp_aes_ecb_encrypt(struct ablkcipher_request *req)
|
|
{
|
|
return mxs_dcp_aes_enqueue(req, 1, 1);
|
|
}
|
|
|
|
static int mxs_dcp_aes_cbc_decrypt(struct ablkcipher_request *req)
|
|
{
|
|
return mxs_dcp_aes_enqueue(req, 0, 0);
|
|
}
|
|
|
|
static int mxs_dcp_aes_cbc_encrypt(struct ablkcipher_request *req)
|
|
{
|
|
return mxs_dcp_aes_enqueue(req, 1, 0);
|
|
}
|
|
|
|
static int mxs_dcp_aes_setkey(struct crypto_ablkcipher *tfm, const u8 *key,
|
|
unsigned int len)
|
|
{
|
|
struct dcp_async_ctx *actx = crypto_ablkcipher_ctx(tfm);
|
|
unsigned int ret;
|
|
|
|
/*
|
|
* AES 128 is supposed by the hardware, store key into temporary
|
|
* buffer and exit. We must use the temporary buffer here, since
|
|
* there can still be an operation in progress.
|
|
*/
|
|
actx->key_len = len;
|
|
if (len == AES_KEYSIZE_128) {
|
|
memcpy(actx->key, key, len);
|
|
return 0;
|
|
}
|
|
|
|
/* Check if the key size is supported by kernel at all. */
|
|
if (len != AES_KEYSIZE_192 && len != AES_KEYSIZE_256) {
|
|
tfm->base.crt_flags |= CRYPTO_TFM_RES_BAD_KEY_LEN;
|
|
return -EINVAL;
|
|
}
|
|
|
|
/*
|
|
* If the requested AES key size is not supported by the hardware,
|
|
* but is supported by in-kernel software implementation, we use
|
|
* software fallback.
|
|
*/
|
|
actx->fallback->base.crt_flags &= ~CRYPTO_TFM_REQ_MASK;
|
|
actx->fallback->base.crt_flags |=
|
|
tfm->base.crt_flags & CRYPTO_TFM_REQ_MASK;
|
|
|
|
ret = crypto_ablkcipher_setkey(actx->fallback, key, len);
|
|
if (!ret)
|
|
return 0;
|
|
|
|
tfm->base.crt_flags &= ~CRYPTO_TFM_RES_MASK;
|
|
tfm->base.crt_flags |=
|
|
actx->fallback->base.crt_flags & CRYPTO_TFM_RES_MASK;
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int mxs_dcp_aes_fallback_init(struct crypto_tfm *tfm)
|
|
{
|
|
const char *name = tfm->__crt_alg->cra_name;
|
|
const uint32_t flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_NEED_FALLBACK;
|
|
struct dcp_async_ctx *actx = crypto_tfm_ctx(tfm);
|
|
struct crypto_ablkcipher *blk;
|
|
|
|
blk = crypto_alloc_ablkcipher(name, 0, flags);
|
|
if (IS_ERR(blk))
|
|
return PTR_ERR(blk);
|
|
|
|
actx->fallback = blk;
|
|
tfm->crt_ablkcipher.reqsize = sizeof(struct dcp_aes_req_ctx);
|
|
return 0;
|
|
}
|
|
|
|
static void mxs_dcp_aes_fallback_exit(struct crypto_tfm *tfm)
|
|
{
|
|
struct dcp_async_ctx *actx = crypto_tfm_ctx(tfm);
|
|
|
|
crypto_free_ablkcipher(actx->fallback);
|
|
actx->fallback = NULL;
|
|
}
|
|
|
|
/*
|
|
* Hashing (SHA1/SHA256)
|
|
*/
|
|
static int mxs_dcp_run_sha(struct ahash_request *req)
|
|
{
|
|
struct dcp *sdcp = global_sdcp;
|
|
int ret;
|
|
|
|
struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
|
|
struct dcp_async_ctx *actx = crypto_ahash_ctx(tfm);
|
|
struct dcp_sha_req_ctx *rctx = ahash_request_ctx(req);
|
|
struct hash_alg_common *halg = crypto_hash_alg_common(tfm);
|
|
|
|
struct dcp_dma_desc *desc = &sdcp->coh->desc[actx->chan];
|
|
|
|
dma_addr_t digest_phys = 0;
|
|
dma_addr_t buf_phys = dma_map_single(sdcp->dev, sdcp->coh->sha_in_buf,
|
|
DCP_BUF_SZ, DMA_TO_DEVICE);
|
|
|
|
/* Fill in the DMA descriptor. */
|
|
desc->control0 = MXS_DCP_CONTROL0_DECR_SEMAPHORE |
|
|
MXS_DCP_CONTROL0_INTERRUPT |
|
|
MXS_DCP_CONTROL0_ENABLE_HASH;
|
|
if (rctx->init)
|
|
desc->control0 |= MXS_DCP_CONTROL0_HASH_INIT;
|
|
|
|
desc->control1 = actx->alg;
|
|
desc->next_cmd_addr = 0;
|
|
desc->source = buf_phys;
|
|
desc->destination = 0;
|
|
desc->size = actx->fill;
|
|
desc->payload = 0;
|
|
desc->status = 0;
|
|
|
|
/* Set HASH_TERM bit for last transfer block. */
|
|
if (rctx->fini) {
|
|
digest_phys = dma_map_single(sdcp->dev, req->result,
|
|
halg->digestsize, DMA_FROM_DEVICE);
|
|
desc->control0 |= MXS_DCP_CONTROL0_HASH_TERM;
|
|
desc->payload = digest_phys;
|
|
}
|
|
|
|
ret = mxs_dcp_start_dma(actx);
|
|
|
|
if (rctx->fini)
|
|
dma_unmap_single(sdcp->dev, digest_phys, halg->digestsize,
|
|
DMA_FROM_DEVICE);
|
|
|
|
dma_unmap_single(sdcp->dev, buf_phys, DCP_BUF_SZ, DMA_TO_DEVICE);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int dcp_sha_req_to_buf(struct crypto_async_request *arq)
|
|
{
|
|
struct dcp *sdcp = global_sdcp;
|
|
|
|
struct ahash_request *req = ahash_request_cast(arq);
|
|
struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
|
|
struct dcp_async_ctx *actx = crypto_ahash_ctx(tfm);
|
|
struct dcp_sha_req_ctx *rctx = ahash_request_ctx(req);
|
|
struct hash_alg_common *halg = crypto_hash_alg_common(tfm);
|
|
const int nents = sg_nents(req->src);
|
|
|
|
uint8_t *in_buf = sdcp->coh->sha_in_buf;
|
|
|
|
uint8_t *src_buf;
|
|
|
|
struct scatterlist *src;
|
|
|
|
unsigned int i, len, clen;
|
|
int ret;
|
|
|
|
int fin = rctx->fini;
|
|
if (fin)
|
|
rctx->fini = 0;
|
|
|
|
for_each_sg(req->src, src, nents, i) {
|
|
src_buf = sg_virt(src);
|
|
len = sg_dma_len(src);
|
|
|
|
do {
|
|
if (actx->fill + len > DCP_BUF_SZ)
|
|
clen = DCP_BUF_SZ - actx->fill;
|
|
else
|
|
clen = len;
|
|
|
|
memcpy(in_buf + actx->fill, src_buf, clen);
|
|
len -= clen;
|
|
src_buf += clen;
|
|
actx->fill += clen;
|
|
|
|
/*
|
|
* If we filled the buffer and still have some
|
|
* more data, submit the buffer.
|
|
*/
|
|
if (len && actx->fill == DCP_BUF_SZ) {
|
|
ret = mxs_dcp_run_sha(req);
|
|
if (ret)
|
|
return ret;
|
|
actx->fill = 0;
|
|
rctx->init = 0;
|
|
}
|
|
} while (len);
|
|
}
|
|
|
|
if (fin) {
|
|
rctx->fini = 1;
|
|
|
|
/* Submit whatever is left. */
|
|
if (!req->result)
|
|
return -EINVAL;
|
|
|
|
ret = mxs_dcp_run_sha(req);
|
|
if (ret)
|
|
return ret;
|
|
|
|
actx->fill = 0;
|
|
|
|
/* For some reason, the result is flipped. */
|
|
for (i = 0; i < halg->digestsize / 2; i++) {
|
|
swap(req->result[i],
|
|
req->result[halg->digestsize - i - 1]);
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int dcp_chan_thread_sha(void *data)
|
|
{
|
|
struct dcp *sdcp = global_sdcp;
|
|
const int chan = DCP_CHAN_HASH_SHA;
|
|
|
|
struct crypto_async_request *backlog;
|
|
struct crypto_async_request *arq;
|
|
|
|
struct dcp_sha_req_ctx *rctx;
|
|
|
|
struct ahash_request *req;
|
|
int ret, fini;
|
|
|
|
do {
|
|
__set_current_state(TASK_INTERRUPTIBLE);
|
|
|
|
mutex_lock(&sdcp->mutex[chan]);
|
|
backlog = crypto_get_backlog(&sdcp->queue[chan]);
|
|
arq = crypto_dequeue_request(&sdcp->queue[chan]);
|
|
mutex_unlock(&sdcp->mutex[chan]);
|
|
|
|
if (backlog)
|
|
backlog->complete(backlog, -EINPROGRESS);
|
|
|
|
if (arq) {
|
|
req = ahash_request_cast(arq);
|
|
rctx = ahash_request_ctx(req);
|
|
|
|
ret = dcp_sha_req_to_buf(arq);
|
|
fini = rctx->fini;
|
|
arq->complete(arq, ret);
|
|
if (!fini)
|
|
continue;
|
|
}
|
|
|
|
schedule();
|
|
} while (!kthread_should_stop());
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int dcp_sha_init(struct ahash_request *req)
|
|
{
|
|
struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
|
|
struct dcp_async_ctx *actx = crypto_ahash_ctx(tfm);
|
|
|
|
struct hash_alg_common *halg = crypto_hash_alg_common(tfm);
|
|
|
|
/*
|
|
* Start hashing session. The code below only inits the
|
|
* hashing session context, nothing more.
|
|
*/
|
|
memset(actx, 0, sizeof(*actx));
|
|
|
|
if (strcmp(halg->base.cra_name, "sha1") == 0)
|
|
actx->alg = MXS_DCP_CONTROL1_HASH_SELECT_SHA1;
|
|
else
|
|
actx->alg = MXS_DCP_CONTROL1_HASH_SELECT_SHA256;
|
|
|
|
actx->fill = 0;
|
|
actx->hot = 0;
|
|
actx->chan = DCP_CHAN_HASH_SHA;
|
|
|
|
mutex_init(&actx->mutex);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int dcp_sha_update_fx(struct ahash_request *req, int fini)
|
|
{
|
|
struct dcp *sdcp = global_sdcp;
|
|
|
|
struct dcp_sha_req_ctx *rctx = ahash_request_ctx(req);
|
|
struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
|
|
struct dcp_async_ctx *actx = crypto_ahash_ctx(tfm);
|
|
|
|
int ret;
|
|
|
|
/*
|
|
* Ignore requests that have no data in them and are not
|
|
* the trailing requests in the stream of requests.
|
|
*/
|
|
if (!req->nbytes && !fini)
|
|
return 0;
|
|
|
|
mutex_lock(&actx->mutex);
|
|
|
|
rctx->fini = fini;
|
|
|
|
if (!actx->hot) {
|
|
actx->hot = 1;
|
|
rctx->init = 1;
|
|
}
|
|
|
|
mutex_lock(&sdcp->mutex[actx->chan]);
|
|
ret = crypto_enqueue_request(&sdcp->queue[actx->chan], &req->base);
|
|
mutex_unlock(&sdcp->mutex[actx->chan]);
|
|
|
|
wake_up_process(sdcp->thread[actx->chan]);
|
|
mutex_unlock(&actx->mutex);
|
|
|
|
return -EINPROGRESS;
|
|
}
|
|
|
|
static int dcp_sha_update(struct ahash_request *req)
|
|
{
|
|
return dcp_sha_update_fx(req, 0);
|
|
}
|
|
|
|
static int dcp_sha_final(struct ahash_request *req)
|
|
{
|
|
ahash_request_set_crypt(req, NULL, req->result, 0);
|
|
req->nbytes = 0;
|
|
return dcp_sha_update_fx(req, 1);
|
|
}
|
|
|
|
static int dcp_sha_finup(struct ahash_request *req)
|
|
{
|
|
return dcp_sha_update_fx(req, 1);
|
|
}
|
|
|
|
static int dcp_sha_digest(struct ahash_request *req)
|
|
{
|
|
int ret;
|
|
|
|
ret = dcp_sha_init(req);
|
|
if (ret)
|
|
return ret;
|
|
|
|
return dcp_sha_finup(req);
|
|
}
|
|
|
|
static int dcp_sha_cra_init(struct crypto_tfm *tfm)
|
|
{
|
|
crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
|
|
sizeof(struct dcp_sha_req_ctx));
|
|
return 0;
|
|
}
|
|
|
|
static void dcp_sha_cra_exit(struct crypto_tfm *tfm)
|
|
{
|
|
}
|
|
|
|
/* AES 128 ECB and AES 128 CBC */
|
|
static struct crypto_alg dcp_aes_algs[] = {
|
|
{
|
|
.cra_name = "ecb(aes)",
|
|
.cra_driver_name = "ecb-aes-dcp",
|
|
.cra_priority = 400,
|
|
.cra_alignmask = 15,
|
|
.cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
|
|
CRYPTO_ALG_ASYNC |
|
|
CRYPTO_ALG_NEED_FALLBACK,
|
|
.cra_init = mxs_dcp_aes_fallback_init,
|
|
.cra_exit = mxs_dcp_aes_fallback_exit,
|
|
.cra_blocksize = AES_BLOCK_SIZE,
|
|
.cra_ctxsize = sizeof(struct dcp_async_ctx),
|
|
.cra_type = &crypto_ablkcipher_type,
|
|
.cra_module = THIS_MODULE,
|
|
.cra_u = {
|
|
.ablkcipher = {
|
|
.min_keysize = AES_MIN_KEY_SIZE,
|
|
.max_keysize = AES_MAX_KEY_SIZE,
|
|
.setkey = mxs_dcp_aes_setkey,
|
|
.encrypt = mxs_dcp_aes_ecb_encrypt,
|
|
.decrypt = mxs_dcp_aes_ecb_decrypt
|
|
},
|
|
},
|
|
}, {
|
|
.cra_name = "cbc(aes)",
|
|
.cra_driver_name = "cbc-aes-dcp",
|
|
.cra_priority = 400,
|
|
.cra_alignmask = 15,
|
|
.cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
|
|
CRYPTO_ALG_ASYNC |
|
|
CRYPTO_ALG_NEED_FALLBACK,
|
|
.cra_init = mxs_dcp_aes_fallback_init,
|
|
.cra_exit = mxs_dcp_aes_fallback_exit,
|
|
.cra_blocksize = AES_BLOCK_SIZE,
|
|
.cra_ctxsize = sizeof(struct dcp_async_ctx),
|
|
.cra_type = &crypto_ablkcipher_type,
|
|
.cra_module = THIS_MODULE,
|
|
.cra_u = {
|
|
.ablkcipher = {
|
|
.min_keysize = AES_MIN_KEY_SIZE,
|
|
.max_keysize = AES_MAX_KEY_SIZE,
|
|
.setkey = mxs_dcp_aes_setkey,
|
|
.encrypt = mxs_dcp_aes_cbc_encrypt,
|
|
.decrypt = mxs_dcp_aes_cbc_decrypt,
|
|
.ivsize = AES_BLOCK_SIZE,
|
|
},
|
|
},
|
|
},
|
|
};
|
|
|
|
/* SHA1 */
|
|
static struct ahash_alg dcp_sha1_alg = {
|
|
.init = dcp_sha_init,
|
|
.update = dcp_sha_update,
|
|
.final = dcp_sha_final,
|
|
.finup = dcp_sha_finup,
|
|
.digest = dcp_sha_digest,
|
|
.halg = {
|
|
.digestsize = SHA1_DIGEST_SIZE,
|
|
.base = {
|
|
.cra_name = "sha1",
|
|
.cra_driver_name = "sha1-dcp",
|
|
.cra_priority = 400,
|
|
.cra_alignmask = 63,
|
|
.cra_flags = CRYPTO_ALG_ASYNC,
|
|
.cra_blocksize = SHA1_BLOCK_SIZE,
|
|
.cra_ctxsize = sizeof(struct dcp_async_ctx),
|
|
.cra_module = THIS_MODULE,
|
|
.cra_init = dcp_sha_cra_init,
|
|
.cra_exit = dcp_sha_cra_exit,
|
|
},
|
|
},
|
|
};
|
|
|
|
/* SHA256 */
|
|
static struct ahash_alg dcp_sha256_alg = {
|
|
.init = dcp_sha_init,
|
|
.update = dcp_sha_update,
|
|
.final = dcp_sha_final,
|
|
.finup = dcp_sha_finup,
|
|
.digest = dcp_sha_digest,
|
|
.halg = {
|
|
.digestsize = SHA256_DIGEST_SIZE,
|
|
.base = {
|
|
.cra_name = "sha256",
|
|
.cra_driver_name = "sha256-dcp",
|
|
.cra_priority = 400,
|
|
.cra_alignmask = 63,
|
|
.cra_flags = CRYPTO_ALG_ASYNC,
|
|
.cra_blocksize = SHA256_BLOCK_SIZE,
|
|
.cra_ctxsize = sizeof(struct dcp_async_ctx),
|
|
.cra_module = THIS_MODULE,
|
|
.cra_init = dcp_sha_cra_init,
|
|
.cra_exit = dcp_sha_cra_exit,
|
|
},
|
|
},
|
|
};
|
|
|
|
static irqreturn_t mxs_dcp_irq(int irq, void *context)
|
|
{
|
|
struct dcp *sdcp = context;
|
|
uint32_t stat;
|
|
int i;
|
|
|
|
stat = readl(sdcp->base + MXS_DCP_STAT);
|
|
stat &= MXS_DCP_STAT_IRQ_MASK;
|
|
if (!stat)
|
|
return IRQ_NONE;
|
|
|
|
/* Clear the interrupts. */
|
|
writel(stat, sdcp->base + MXS_DCP_STAT_CLR);
|
|
|
|
/* Complete the DMA requests that finished. */
|
|
for (i = 0; i < DCP_MAX_CHANS; i++)
|
|
if (stat & (1 << i))
|
|
complete(&sdcp->completion[i]);
|
|
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
static int mxs_dcp_probe(struct platform_device *pdev)
|
|
{
|
|
struct device *dev = &pdev->dev;
|
|
struct dcp *sdcp = NULL;
|
|
int i, ret;
|
|
|
|
struct resource *iores;
|
|
int dcp_vmi_irq, dcp_irq;
|
|
|
|
mutex_lock(&global_mutex);
|
|
if (global_sdcp) {
|
|
dev_err(dev, "Only one DCP instance allowed!\n");
|
|
ret = -ENODEV;
|
|
goto err_mutex;
|
|
}
|
|
|
|
iores = platform_get_resource(pdev, IORESOURCE_MEM, 0);
|
|
dcp_vmi_irq = platform_get_irq(pdev, 0);
|
|
if (dcp_vmi_irq < 0) {
|
|
ret = dcp_vmi_irq;
|
|
goto err_mutex;
|
|
}
|
|
|
|
dcp_irq = platform_get_irq(pdev, 1);
|
|
if (dcp_irq < 0) {
|
|
ret = dcp_irq;
|
|
goto err_mutex;
|
|
}
|
|
|
|
sdcp = devm_kzalloc(dev, sizeof(*sdcp), GFP_KERNEL);
|
|
if (!sdcp) {
|
|
ret = -ENOMEM;
|
|
goto err_mutex;
|
|
}
|
|
|
|
sdcp->dev = dev;
|
|
sdcp->base = devm_ioremap_resource(dev, iores);
|
|
if (IS_ERR(sdcp->base)) {
|
|
ret = PTR_ERR(sdcp->base);
|
|
goto err_mutex;
|
|
}
|
|
|
|
ret = devm_request_irq(dev, dcp_vmi_irq, mxs_dcp_irq, 0,
|
|
"dcp-vmi-irq", sdcp);
|
|
if (ret) {
|
|
dev_err(dev, "Failed to claim DCP VMI IRQ!\n");
|
|
goto err_mutex;
|
|
}
|
|
|
|
ret = devm_request_irq(dev, dcp_irq, mxs_dcp_irq, 0,
|
|
"dcp-irq", sdcp);
|
|
if (ret) {
|
|
dev_err(dev, "Failed to claim DCP IRQ!\n");
|
|
goto err_mutex;
|
|
}
|
|
|
|
/* Allocate coherent helper block. */
|
|
sdcp->coh = devm_kzalloc(dev, sizeof(*sdcp->coh) + DCP_ALIGNMENT,
|
|
GFP_KERNEL);
|
|
if (!sdcp->coh) {
|
|
ret = -ENOMEM;
|
|
goto err_mutex;
|
|
}
|
|
|
|
/* Re-align the structure so it fits the DCP constraints. */
|
|
sdcp->coh = PTR_ALIGN(sdcp->coh, DCP_ALIGNMENT);
|
|
|
|
/* Restart the DCP block. */
|
|
ret = stmp_reset_block(sdcp->base);
|
|
if (ret)
|
|
goto err_mutex;
|
|
|
|
/* Initialize control register. */
|
|
writel(MXS_DCP_CTRL_GATHER_RESIDUAL_WRITES |
|
|
MXS_DCP_CTRL_ENABLE_CONTEXT_CACHING | 0xf,
|
|
sdcp->base + MXS_DCP_CTRL);
|
|
|
|
/* Enable all DCP DMA channels. */
|
|
writel(MXS_DCP_CHANNELCTRL_ENABLE_CHANNEL_MASK,
|
|
sdcp->base + MXS_DCP_CHANNELCTRL);
|
|
|
|
/*
|
|
* We do not enable context switching. Give the context buffer a
|
|
* pointer to an illegal address so if context switching is
|
|
* inadvertantly enabled, the DCP will return an error instead of
|
|
* trashing good memory. The DCP DMA cannot access ROM, so any ROM
|
|
* address will do.
|
|
*/
|
|
writel(0xffff0000, sdcp->base + MXS_DCP_CONTEXT);
|
|
for (i = 0; i < DCP_MAX_CHANS; i++)
|
|
writel(0xffffffff, sdcp->base + MXS_DCP_CH_N_STAT_CLR(i));
|
|
writel(0xffffffff, sdcp->base + MXS_DCP_STAT_CLR);
|
|
|
|
global_sdcp = sdcp;
|
|
|
|
platform_set_drvdata(pdev, sdcp);
|
|
|
|
for (i = 0; i < DCP_MAX_CHANS; i++) {
|
|
mutex_init(&sdcp->mutex[i]);
|
|
init_completion(&sdcp->completion[i]);
|
|
crypto_init_queue(&sdcp->queue[i], 50);
|
|
}
|
|
|
|
/* Create the SHA and AES handler threads. */
|
|
sdcp->thread[DCP_CHAN_HASH_SHA] = kthread_run(dcp_chan_thread_sha,
|
|
NULL, "mxs_dcp_chan/sha");
|
|
if (IS_ERR(sdcp->thread[DCP_CHAN_HASH_SHA])) {
|
|
dev_err(dev, "Error starting SHA thread!\n");
|
|
ret = PTR_ERR(sdcp->thread[DCP_CHAN_HASH_SHA]);
|
|
goto err_mutex;
|
|
}
|
|
|
|
sdcp->thread[DCP_CHAN_CRYPTO] = kthread_run(dcp_chan_thread_aes,
|
|
NULL, "mxs_dcp_chan/aes");
|
|
if (IS_ERR(sdcp->thread[DCP_CHAN_CRYPTO])) {
|
|
dev_err(dev, "Error starting SHA thread!\n");
|
|
ret = PTR_ERR(sdcp->thread[DCP_CHAN_CRYPTO]);
|
|
goto err_destroy_sha_thread;
|
|
}
|
|
|
|
/* Register the various crypto algorithms. */
|
|
sdcp->caps = readl(sdcp->base + MXS_DCP_CAPABILITY1);
|
|
|
|
if (sdcp->caps & MXS_DCP_CAPABILITY1_AES128) {
|
|
ret = crypto_register_algs(dcp_aes_algs,
|
|
ARRAY_SIZE(dcp_aes_algs));
|
|
if (ret) {
|
|
/* Failed to register algorithm. */
|
|
dev_err(dev, "Failed to register AES crypto!\n");
|
|
goto err_destroy_aes_thread;
|
|
}
|
|
}
|
|
|
|
if (sdcp->caps & MXS_DCP_CAPABILITY1_SHA1) {
|
|
ret = crypto_register_ahash(&dcp_sha1_alg);
|
|
if (ret) {
|
|
dev_err(dev, "Failed to register %s hash!\n",
|
|
dcp_sha1_alg.halg.base.cra_name);
|
|
goto err_unregister_aes;
|
|
}
|
|
}
|
|
|
|
if (sdcp->caps & MXS_DCP_CAPABILITY1_SHA256) {
|
|
ret = crypto_register_ahash(&dcp_sha256_alg);
|
|
if (ret) {
|
|
dev_err(dev, "Failed to register %s hash!\n",
|
|
dcp_sha256_alg.halg.base.cra_name);
|
|
goto err_unregister_sha1;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
|
|
err_unregister_sha1:
|
|
if (sdcp->caps & MXS_DCP_CAPABILITY1_SHA1)
|
|
crypto_unregister_ahash(&dcp_sha1_alg);
|
|
|
|
err_unregister_aes:
|
|
if (sdcp->caps & MXS_DCP_CAPABILITY1_AES128)
|
|
crypto_unregister_algs(dcp_aes_algs, ARRAY_SIZE(dcp_aes_algs));
|
|
|
|
err_destroy_aes_thread:
|
|
kthread_stop(sdcp->thread[DCP_CHAN_CRYPTO]);
|
|
|
|
err_destroy_sha_thread:
|
|
kthread_stop(sdcp->thread[DCP_CHAN_HASH_SHA]);
|
|
|
|
err_mutex:
|
|
mutex_unlock(&global_mutex);
|
|
return ret;
|
|
}
|
|
|
|
static int mxs_dcp_remove(struct platform_device *pdev)
|
|
{
|
|
struct dcp *sdcp = platform_get_drvdata(pdev);
|
|
|
|
if (sdcp->caps & MXS_DCP_CAPABILITY1_SHA256)
|
|
crypto_unregister_ahash(&dcp_sha256_alg);
|
|
|
|
if (sdcp->caps & MXS_DCP_CAPABILITY1_SHA1)
|
|
crypto_unregister_ahash(&dcp_sha1_alg);
|
|
|
|
if (sdcp->caps & MXS_DCP_CAPABILITY1_AES128)
|
|
crypto_unregister_algs(dcp_aes_algs, ARRAY_SIZE(dcp_aes_algs));
|
|
|
|
kthread_stop(sdcp->thread[DCP_CHAN_HASH_SHA]);
|
|
kthread_stop(sdcp->thread[DCP_CHAN_CRYPTO]);
|
|
|
|
platform_set_drvdata(pdev, NULL);
|
|
|
|
mutex_lock(&global_mutex);
|
|
global_sdcp = NULL;
|
|
mutex_unlock(&global_mutex);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static const struct of_device_id mxs_dcp_dt_ids[] = {
|
|
{ .compatible = "fsl,imx23-dcp", .data = NULL, },
|
|
{ .compatible = "fsl,imx28-dcp", .data = NULL, },
|
|
{ /* sentinel */ }
|
|
};
|
|
|
|
MODULE_DEVICE_TABLE(of, mxs_dcp_dt_ids);
|
|
|
|
static struct platform_driver mxs_dcp_driver = {
|
|
.probe = mxs_dcp_probe,
|
|
.remove = mxs_dcp_remove,
|
|
.driver = {
|
|
.name = "mxs-dcp",
|
|
.owner = THIS_MODULE,
|
|
.of_match_table = mxs_dcp_dt_ids,
|
|
},
|
|
};
|
|
|
|
module_platform_driver(mxs_dcp_driver);
|
|
|
|
MODULE_AUTHOR("Marek Vasut <marex@denx.de>");
|
|
MODULE_DESCRIPTION("Freescale MXS DCP Driver");
|
|
MODULE_LICENSE("GPL");
|
|
MODULE_ALIAS("platform:mxs-dcp");
|